Review Article

The association between vitamin D concentration and pain: a systematic review and meta-analysis

Zhenqiang Wu, Zarintaj Malihi, Alistair W Stewart, Carlene MM Lawes and Robert Scragg*

School of Population Health, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand

Submitted 19 April 2017: Final revision received 31 January 2018: Accepted 12 February 2018: First published online 21 March 2018

Abstract

Objective: Pain-related conditions, such as chronic widespread pain and fibromyalgia, are major burdens for individuals and the health system. Evidence from previous research on the association between circulating 25-hydroxyvitamin D (25(OH)D) concentrations and pain is conflicting. Thus, we aimed to determine if there is an association between mean 25(OH)D concentration (primary aim), or proportion of hypovitaminosis D (secondary aim), and pain conditions in observational studies. *Design:* Published observational research on 25(OH)D concentration and pain-related conditions was systematically searched for in electronic sources (MEDLINE, EMBASE and Cochrane Central Register of Controlled Trials) and a random-effects meta-analysis was conducted on included studies.

Results: Eighty-one observational studies with a total of 50 834 participants were identified. Compared with controls, mean 25(OH)D concentration was significantly lower in patients with arthritis (mean difference (MD): -12.34 nmol/l; P < 0.001), muscle pain (MD: -8.97 nmol/l; P = 0.003) and chronic widespread pain (MD: -7.77 nmol/l; P = 0.001), but not in patients with headache or migraine (MD: -2.53 nmol/l; P = 0.06). The odds of vitamin D deficiency was increased for arthritis, muscle pain and chronic widespread pain, but not for headache or migraine, compared with controls. Sensitivity analyses revealed similar results. *Conclusions:* A significantly lower 25(OH)D concentration was observed in patients with arthritis, muscle pain and chronic widespread pain, compared with those without. These results suggest that low 25(OH)D concentrations may be associated with pain conditions.

Keywords Vitamin D Pain Systematic review Meta-analysis Observational studies

Pain is defined by the International Association for the Study of Pain as 'an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage⁽¹⁾. Pain, and conditions with pain as a prominent symptom, including chronic widespread pain, musculoskeletal pain (e.g. lower-back pain), arthritis and headache, are the most common reason for primary care and medical consultations⁽²⁻⁴⁾. The prevalence of chronic pain ranges from 8 to 60% and over, depending on the population studied⁽⁵⁾. Recent reviews of painful conditions have reported that the prevalence of fibromyalgia varies from 2 to 8% in the general population⁽⁶⁾; while the global prevalence of lower-back pain is $9.4\%^{(7)}$, of rheumatoid arthritis is $0.24\%^{(8)}$ and of current migraine is more than 10% in adults⁽⁴⁾. Painful conditions can seriously influence quality of life, lead to work disability, and result in major economic burdens for both individuals and the health system^(2,4,5,8-12).

Vitamin D comprises a group of fat-soluble secosteroids⁽¹³⁾ and the receptor of vitamin D has been identified in muscle tissue⁽¹⁴⁾. Although the optimal level of serum 25-hydroxyvitamin D (25(OH)D) is a topic of ongoing research, vitamin D deficiency is typically defined as $25(OH)D < 50 \text{ nmol/l}^{(15)}$. Vitamin D deficiency is very common in both developed⁽¹⁶⁾ and developing countries⁽¹⁷⁾. There is increasing evidence from observational studies that vitamin D deficiency is associated with a wide range of acute and chronic diseases⁽¹⁸⁾, including diseases with pain as a prominent symptom⁽¹⁹⁾. Previous research has provided inconsistent findings on the association between vitamin D status and pain. A meta-analysis of seven observational studies with 2420 statin-treated patients found that 25(OH)D levels were lower in those with myalgia than in those without⁽²⁰⁾. However, it used a fixed-effects model, not justified by the high heterogeneity of the results $(I^2 = 94\%)$, which when repeated with a random-effects model was no longer significant (mean difference (MD): -3.52; 95 % CI -8.55, 1.51 ng/ml; P=0.17). Another meta-analysis of twelve observational studies with 1854 participants reported inconsistent results, with significantly increased odds of vitamin D deficiency associated with chronic widespread pain, but no difference in mean 25(OH)D levels between people with and without chronic widespread pain⁽²¹⁾. Moreover, these previous meta-analyses have not reported the association between 25(OH)D concentration and other pain-related conditions, such as arthritis and headache. In addition, recent reviews of randomized controlled trials have reported inconsistent conclusions about whether vitamin D supplementation improves chronic pain, with two being qualitative reviews^(22,23) and only one using quantitative methods⁽²⁴⁾.

Given the limited evidence and inconsistent conclusions from previous reviews and meta-analyses, which for observational studies only searched up to September 2014^(20,21), we conducted an updated meta-analysis of all observational studies reporting data on 25(OH)D levels and pain, including studies of non-statin users and participants with different pain conditions, to determine if there is an association between these two variables.

Methods

Search strategy

Two trained researchers (Z.W., Z.M.) independently searched MEDLINE, EMBASE and Cochrane Central Register of Controlled Trials (up to April 2017) using the following key words: Vitamin D, Vitamin D2, Vitamin D3, Cholecalciferol, Ergocalciferol, 25-hydroxyvitamin D, Pain, Myalgia, Myopathy, Myalgic, Headache, Migraine, Arthritis and Sciatica, for original publications pertinent to vitamin D levels and pain (search strategy listed in the online supplementary material, Supplement 1). In addition, we manually searched the reference lists of eligible articles and previous reviews for additional studies.

Aims

Two aims were predefined in the meta-analysis. The primary aim was the difference in mean circulating 25(OH)D concentration (nmol/l) between participants with and without pain-related conditions. The secondary aim was the difference in proportions of hypovitaminosis D in the participants with and without painful conditions. For the latter, we used the original definition of hypovitaminosis D from each paper (eight studies with a threshold of 75 nmol/l; thirty-four studies with 50 nmol/l; two studies with 25 nmol/l; six studies with other definitions, which were 20 nmol/l, 30 nmol/l, 37.5 nmol/l, 80 nmol/l and 100 nmol/l).

Eligibility criteria

We included observational studies in the current metaanalysis if the study: (i) was a cohort, case-control or cross-sectional study; (ii) enrolled adult participants (\geq 18 years old); (iii) described specific information on pain, such as a pain definition or category; and (iv) reported the 25(OH)D level and/or the proportion of hypovitaminosis D in participants with and without pain. There was no language or ethnicity restriction. In addition, the studies which selected controls with pain conditions were excluded.

Data extraction

Reviewers (Z.W., Z.M.) independently identified the included articles by screening title, abstract and full text (κ coefficient = 0.73), and the main data were extracted based on a standardized data collection form developed for the study. Any inconsistencies were resolved by consensus and discussion.

Quality assessment of individual studies

The quality of each included study was assessed using the Newcastle–Ottawa scale⁽²⁵⁾. Specifically, there were five items for cross-sectional studies, and eight items for cohort and case–control studies. We used the same score to categorize the quality of studies as reported previously⁽²⁶⁾: 5 as very good, 4 as good, 3 as satisfactory and 0–2 as unsatisfactory in cross-sectional studies; similarly, 7–8 as very good, 5–6 as good, 4 as satisfactory and 0–3 as unsatisfactory in case–control or cohort studies.

Synthesis and analysis

Mean and sp of serum 25(OH)D levels, and number of participants with and without pain, were collected for the continuous exposure measurement. All 25(OH)D levels were transformed to nmol/l in the meta-analysis. Digitizer software (GetData Graph Digitizer version 2.26; www. getdata-graph-digitizer.com/) was used to extract the data from graphs, and Wan *et al.*'s⁽²⁷⁾ methods were used to estimate the mean and sp by reported median and range, or median and interquartile range. Sample size and the proportion with hypovitaminosis D were collected for the dichotomous exposure measurement.

Weighted MD and 95% CI were calculated for continuous exposure, and OR and 95 % CI were calculated for dichotomous exposure, to allow the combining of different study designs in the synthesis analysis. Heterogeneity was measured using Cochran's Q test and the I^2 statistic $(I^2 > 50\%$ denotes large or extreme heterogeneity). Random-effects models were used in the meta-analysis⁽²⁸⁾. Predefined analyses were performed to detect the relationship of 25(OH)D with pain by different painful conditions (arthritis, muscle pain, chronic widespread pain, and headache or migraine), type of study design, statin user and different cut-off points of vitamin D deficiency (25 nmol/l, 50 nmol/l and 75 nmol/l). Interactions were tested between different subgroups using a standard method⁽²⁹⁾. In addition, we also conducted metaregression to examine other sources of heterogeneity (e.g. year, sample size, mean age, female proportion, type of study). Sensitivity analyses were also conducted by individually excluding each study in turn, and by collectively excluding low-quality studies or those that used other definitions of vitamin D deficiency (as listed above). We generated funnel plots for visual assessment of publication bias, as well as performed the Egger test⁽³⁰⁾. All tests were two-tailed and $P \le 0.05$ was considered statistically significant. We conducted the meta-analysis using the Stata statistical software package version 13.1 and Review Manager software (Revman version 5.2).

Results

Included studies

A total of 2340 unique articles were identified by searching the three electronic databases and by applying snowballing techniques. After reviewing titles and abstracts, 2155 publications were excluded. The full texts of the remaining 185 studies were assessed for their eligibility and a further 107 were excluded because they did not meet the eligibility criteria (see Supplement 1). The remaining seventy-eight publications, which reported eighty-one observational studies with data on vitamin D concentration and pain, were included in the current meta-analysis (Fig. 1).

The eighty-one observational studies involved nineteen cross-sectional studies^(31–48), fifty-six case–control studies^(49–102) and six cohort studies^(103–108). Together, these studies included 50 834 participants, 21 723 of whom were reported as pain subjects, with a median mean age of 49-4 (median sp 10·3) years and median female proportion of 80.5% (range: 0–100%); and 29 111 participants who were community- or hospital-based controls without pain-related conditions, with a median female proportion of 78.4% (range: 0–100%). The pain conditions or symptoms reported in these studies included arthritis, muscle pain, chronic widespread pain, and headache or migraine. Characteristics of included studies are shown in Table 1.

Quality assessment in included studies

According to the Newcastle–Ottawa scale, sixty-two of the eighty-one observational studies were very good or

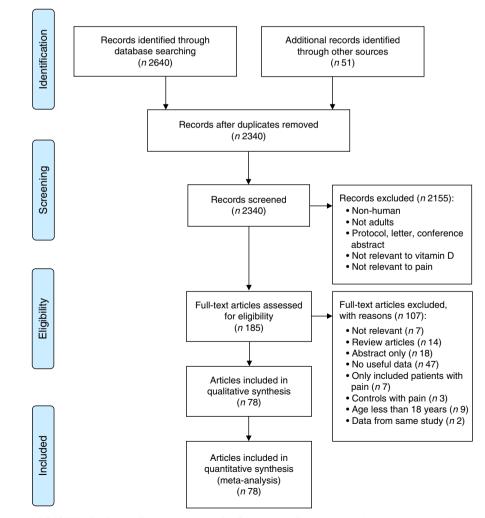


Fig. 1 (colour online) PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) diagram of study selection

Table 1 Characteristics of studies included in the current meta-analysis on the association between vitamin D concentration and pain

				No	o. of su	bjects		Age (years)			Fem	nale		
				Total	With pain	Without pain		pain	Witho	out pain	With	pain	Witl pa		
Study	Country	Population	Pain measurement	n	n	n	Mean or median	sd or IQR or range	Mean or median	SD or IQR or range	n	%	n	%	Type of study
Cross-sectional studies Macfarlane <i>et al.</i> (2005 ⁽³¹⁾	UK	Females aged 18-36 years	Widespread pain	109	8	101	Ν	IA	l	NA	8	100.0	101	100.0	Community-based
Duell <i>et al.</i> (2008) ⁽³²⁾ Hicks <i>et al.</i> (2008) ⁽³³⁾	USA Italy	Hyperlipidaemia patients with statin therapy People living in the Chianti geographic area	Statin-related myalgia Pain at lower extremities and back	99 958	38 420	61 538	59.3 N	10·4 IA	58·4	12·3 NA	26 302	68·4 71·9	30 227		Hospital-based Community-base
Ahmed <i>et al.</i> (2009) ⁽³⁴⁾	USA	Hyperlipidaemia outpatients with statin therapy	Statin-related myalgia	621	128	493	60	11	58	12	76	59.4	219	44-4	Hospital-based
Golan <i>et al.</i> (2009) ⁽³⁵⁾ Linde <i>et al.</i> (2010) ⁽³⁶⁾ McBeth <i>et al.</i> (2010) ⁽³⁷⁾	Israel USA European	Patients with haemodialysis Patients with statin therapy Males aged 40–79 years	Chronic pain Statin-related myalgia CWP and other pain	100 64 3075	51 39 1813	49 25 1262	64∙0 59∙5 N	12·5 10 IA	65-0 59-3	15·2 13·8 NA	32 18 0	62·7 46·2 0·0	23 9 0	36.0	Hospital-based Hospital-based Community-based
Backes <i>et al.</i> (2011) ⁽³⁸⁾	USA	Patients with statin therapy	Statin-related myalgia	129	57	72	62.4	10.5	58.3	13	31	54.4	28	38.9	Hospital-based
(2011) ⁽³⁹⁾ Kjaergaard <i>et al.</i> (2012) ⁽³⁹⁾ *	Norway	Smokers aged 30-87 years	Headache	2339	907	1432	52·1	10.8	57·1	11.6	606	66.8	686	47.9	Community-base
(2012) ⁴ Kjaergaard <i>et al.</i> (2012) ⁽³⁹⁾ *	Norway	Non-smokers aged 30-87 years	Headache	9275	3154	6121	53.7	12.1	59.8	12.5	2006	63.6	2820	46.1	Community-base
Riphagen <i>et al.</i> (2012) ⁽⁴⁰⁾	Netherlands	Outpatients with statin therapy	Statin-related myalgia	75	22	53	Ν	IA	I	NA	Ν	IA	Ν	A	Hospital based
e Silva <i>et al</i> . ⁽⁴¹⁾	Twenty-three countries	Postmenopausal women aged 60-85 years	Back pain	9276	6284	2992	Ν	A	I	NA	6284	100.0	2992	100.0	Community-base
Eisen <i>et al.</i> (2014) ⁽⁴²⁾ Madani <i>et al.</i> (2014) ⁽⁴³⁾	Israel Iran	Clinics patients with statin therapy Female nurses	Statin-related myalgia Non-specific MSK pain	272 200		166 22	66-3 N	10·2 IA	69·3	10∙0 NA	57 178	53·8 100·0	113 22		Hospital-based Community-base
Alipour <i>et al.</i> (2015) ⁽⁴⁴⁾	Iran	Adults aged >60 years and without cancer, depression, osteoarthritis, RA	Chronic pain	857	666	191	69·4	7.3	68·7	7.4	Ν	IA	N	A	Community-base
Hirani <i>et al.</i> (2015) ⁽⁴⁵⁾ Morioka <i>et al.</i> (2015) ⁽⁴⁶⁾	Australia USA	Male aged ≥70 years Adults aged >40 years (NHANES)	Chronic pain MSK pain	1616 5247	480 1429	1136 3818		IA IA		NA NA	0 N	0.0 IA	0 N		Community-base Community-base
Tasoglu <i>et al.</i> (2015) ⁽⁴⁷⁾	Turkey	Male patients with statin therapy	Statin-related myalgia	40	17	23	49.1	7.9	50.6	9.0	0	0.0	0	0.0	Hospital-based
Virtanen <i>et al.</i> (2017) ⁽⁴⁸⁾	Finland	Middle-aged males	Headache	2601	250	2351	Ν	A	I	NA	0	0.0	0	0.0	Community-base
Case-control studies Pietschmann <i>et al.</i> (1989) ⁽⁴⁹⁾	Austria	Patients with RA and healthy controls	RA	59	29	30	53†	45–59	52†	42–68	21	72·4	20	66.7	Hospital-based
Muller <i>et al</i> . (1995) ⁽⁵⁰⁾	Denmark	Patients with RA or osteoarthritis and	RA or osteoarthritis	113	41	72	Ν	IA		45–65∥	29	70.7	36	50	Hospital-based
Al-Allaf <i>et al.</i> (2003) ⁽⁵¹⁾	UK	healthy controls Premenopausal women with FM and age- & sex-matched controls	FM	77	40	37	42·5	3.6	42.5	4.3	40	100.0	37	100.0	Hospital-based
(2003) ^(*) Benson <i>et al.</i> (2006) ⁽⁵²⁾	Australia	Patients with muscle pain and age- & sex-matched controls	Muscle pain	16	8	8	47.6	16.1	44.4	12.2	7	87·5	7	87.5	Hospital-based
Cutolo <i>et al.</i> (2006) ⁽⁵³⁾ *	Italy	Female patients with RA and age- & sex-matched healthy controls	RA	88	53	35	58·5	8.0	59·9	5.3	53	100.0	35	100.0	Hospital-based

Table 1 Continued

				No	o. of sub	ojects		Age (years)			Fen	nale		
				Total	With pain	Without pain	With	pain	Witho	ut pain	With	pain	With pa		
Study	Country	Population	Pain measurement	n	n	n	Mean or median	sd or IQR or range	Mean or median	sd or IQR or range	n	%	n	%	Type of study
Cutolo <i>et al.</i> (2006) ⁽⁵³⁾ *	Estonia	Female patients with RA and age- & sex-matched healthy controls	RA	94	64	30	56.3	18·4	51·1	20.8	64	100.0	30	100.0	Hospital-based
Lotfi et al. (2007) ⁽⁵⁴⁾	Egypt	Female patients with LBP and age- & sex-matched health controls	Chronic LBP	80	60	20	32.8	7.1	33.6	8.6	60	100.0	20	100.0	Hospital-based
Tandeter <i>et al.</i> (2009) ⁽⁵⁵⁾	Israel	Premenopausal women with FM and age- & sex-matched women	FM	150	68	82	43.8	7.6	40.4	9.9	68	100.0	82	100.0	Hospital-based
de Rezende Pena et al. (2010) ⁽⁵⁶⁾	Brazil	Female patients with FM and age- & sex-matched controls	FM	179	87	92	44.9	8.6	32.0	10.5	87	100.0	92	100.0	Hospital-based
Heidari <i>et al.</i> (2010) ⁽⁵⁷⁾	Iran	Outpatients with non-specific skeletal pain and controls	Non-specific skeletal pain	478	276	202	44.3	15	46.4	14.2	N	IA	N	A	Hospital-based
Turhanoglu <i>et al.</i> (2011) ⁽⁵⁸⁾	Turkey	Patients with RA and healthy controls	RÁ	105	65	40	46.3	11.9	44·8	10.6	N	IA	Ν	A	Hospital-based
Attar (2012) ⁽⁵⁹⁾	Saudi Arabia	Patients with RA and age- & sex-matched healthy controls	RA	200	100	100	47	13	47	15	90	90.0	89	89.0	Hospital-based
Baykal <i>et al.</i> (2012) ⁽⁶⁰⁾	Turkey	Patients with RA and age- & sex-matched healthy controls	RA	100	55	45	45‡	28–68	١	1A	40	72.7	33	73.3	Hospital-based
Dong <i>et al.</i> (2012) ⁽⁶¹⁾ Heidari <i>et al.</i> (2012) ⁽⁶²⁾	China Iran	Female patients with RA and healthy controls Patients with inflammatory arthritis (RA and UIA) and controls	RA Inflammatory arthritis (RA and UIA)	130 386	72 147	58 239	59·5 47·1	5·3 14·9	58·8 49·4	5.1 14.5		100∙0 IA	58 N		Hospital-based Hospital-based
Kostoglou- Athanassiou <i>et al.</i> (2012) ⁽⁶³⁾	Greece	Patients with RA and age- & sex-matched controls	RA	88	44	44	Ν	A	١	IA	N	IA	N	A	Hospital-based
(2013) ⁽⁶⁴⁾	Kuwait	Rheumatology/rehabilitation clinics patients with MSK pain and age- & sex-matched healthy controls	MSK pain	206	124	82	41.7	13.9	43.7	7.4	118	95·2	79	96.3	Hospital-based
Atwa <i>et al</i> . (2013) ⁽⁶⁵⁾	Saudi Arabia	Patients with RA and age-matched healthy controls	RA	95	55	40	45.6	12.4	45·0	8.0	43	78·2	20	50.0	Hospital-based
Azali <i>et al</i> . (2013) ⁽⁶⁶⁾	Sweden	Patients with IIM and sex- & month of blood sample-matched healthy controls	IIM	439	149	290	56§	18–72	41§	18–70	97	65.1	192	66·2	Hospital-based
Olama <i>et al</i> . (2013) ⁽⁶⁷⁾	Egypt	Female patients with FM and age- & sex-matched healthy controls	FM	100	50	50	32.3	9.4	33.1	9.7	50	100.0	50	100.0	Hospital-based
Orgaz-Molina <i>et al.</i> (2013) ⁽⁶⁸⁾	Spain	Psoriasis patients with arthritis and age- & sex-matched psoriasis without arthritis	Arthritis	122	61	61	44.9	10.9	45.6	11.7	28	45.9	28	45.9	Hospital-based
Rkain <i>et al</i> . (2013) ⁽⁶⁹⁾	Morocco	Postmenopausal women with chronic LBP and age-, sex- & BMI-matched healthy controls	Chronic LBP	149	105	44	56.5	5.6	56.8	7.4	105	100.0	44	100.0	Hospital-based
Yazmalar <i>et al.</i> (2013) ⁽⁷⁰⁾	Turkey	Patients with RA or osteoarthritis and healthy controls	RA or osteoarthritis	215	145	70	47.0	9.1	41.4	4.2	99	68.3	26	37.1	Hospital-based
Baykara <i>et al.</i> (2014) ⁽⁷¹⁾	Turkey	Patients with chronic non-specific LBP and heathy controls	Chronic non-specific LBP	90	60	30	30.6	7.8	31.0	6.7	37	61.7	19	63.3	Hospital-based
Celikbilek <i>et al.</i> (2014) ⁽⁷²⁾	Turkey	Patients with migraine and age- & sex-matched healthy people	Migraine	101	52	49	35.9	9.1	34.2	10.2	48	92.3	42	85.7	Hospital-based
Chen <i>et al.</i> (2014) ⁽⁷³⁾	China	Patients with RA and age- & sex-matched healthy controls	RA	220	110	110	59.5	11.4	56.9	10.5	75	68·2	71	64·5	Hospital-based
Cote et al. (2014) ⁽⁷⁴⁾	USA	Patients with RA and age- & sex-matched non- RA controls	RA	1611	270	1341	N	A	١	1A	225	83.3	1125	83.9	Community-ba

Table 1 Continued

				No	o. of su	bjects		Age	(years)			Ferr	ale		
				Total	With pain	Without pain	With	pain	Witho	out pain	With	pain		hout ain	
itudy	Country	Population	Pain measurement	n	n	n	Mean or median	sd or IQR or range	Mean or median	sd or IQR or range	n	%	n	%	Type of study
Heidari <i>et al.</i> (2014) ⁽⁷⁵⁾	Iran	Patients with unexplained arthralgia and controls	Arthralgia	453	167	286	38	13.3	42.6	14-4	135	80.8	221	77·3	Hospital-based
Hiraki <i>et al</i> . (2014) ⁽⁷⁶⁾ *	USA	Female patients with RA and age-, sex-, date of blood draw- & hormonal factors-matched controls from NHS	RA	477	120	357	56·0	7·1	56.0	7.1	120	100.0	357	100-0	Community-base
Hiraki <i>et al</i> . (2014) ⁽⁷⁶⁾ *	USA	Female patients with RA and age-, sex-, date of blood draw- & hormonal factors-matched controls from NHSII	RA	179	46	133	44.4	4.4	44.5	5.3	46	100.0	133	100-0	Community-base
Hong <i>et al.</i> (2014) ⁽⁷⁷⁾	China	Patients with RA and age- & sex-matched healthy controls	RA	210	130	80	54	14	54	13	95	73·1	57	71.3	Hospital-based
Mateos <i>et al.</i> (2014) ⁽⁷⁸⁾	Spain	Female patients with FM and age-, sex- & enrolled year-matched healthy controls	FM	410	205	205	51.5	9.6	51.3	9.9	205	100.0	205	100.0	Hospital-based
Sezgin Ozcan <i>et al.</i> (2014) ⁽⁷⁹⁾	Turkey	Female patients with FM and age- & sex-matched healthy controls	FM	90	60	30	41.9	9.8	38.8	12.7	60	100.0	30	100.0	Hospital-based
Sharma <i>et al.</i> (2014) ⁽⁸⁰⁾	India	Patients with RA and age- & sex-matched healthy controls	RA	160	80	80	40.98	12.53	42.64	12.67	Ν	IA	Ν	IA	Hospital-based
Zandifar <i>et al.</i> (2014) ⁽⁸¹⁾	Iran	Patients with migraine and age- & sex-matched healthy controls	Migraine	215	105	110	33.6	9.9	32.5	9.5	80	76-2	89	80.9	Hospital-based
Brance <i>et al.</i> (2015) ⁽⁸²⁾	Argentina	Female patients with RA and age-, sex- & BMI-matched healthy controls	RA	75	34	41	52·2	11.1	54.8	10.9	34	100.0	41	100.0	Hospital-based
Cen et al. (2015) ⁽⁸³⁾	China	Patients with RA and normal controls	RA	166	116	50	50.1	10.9	48.1	10.3	93	80.2	40	80.0	Hospital-based
Gullo et al. (2015) ⁽⁸⁴⁾	Italy	Patients with RA and age- & sex-matched controls	RA	68	27	41	47.5	12.5	46·4	4.1	19	70.4	28	68·3	Hospital-based
Lodh <i>et al.</i> (2015) ⁽⁸⁵⁾ Matsumoto <i>et al.</i> (2015) ⁽⁸⁶⁾	India Japan	Patients with chronic LBP and controls Outpatients with RA and age- & sex-matched controls	Chronic LBP RA	400 367	200 181	200 186	46∙2 61†	15·7 51–69	۱ 60†	NA 51–66	146 151	73 83·4	N 155	IA 83∙3	Hospital-based Hospital-based
Park <i>et al.</i> (2015) ⁽⁸⁷⁾	South Korea	Patients with EIA and age- & sex-matched healthy controls	EIA	202	101	101	56.5	12.2	56.6	12.1	86	85·1	86	85·1	Hospital-based
Petho et al. (2015) ⁽⁸⁸⁾	Hungary	Male patients with psoriasis arthritis and age- & sex-matched healthy controls	Psoriatic arthritis	106	53	53	54·7‡	31–84	54·7‡	31–84	0	0.0	0	0.0	Hospital-based
Yagiz et al. (2015) ⁽⁸⁹⁾	Turkey	Patients with RA and healthy controls	RA	154	92	62	49.6	13.9	43.9	8.0	83	90.2	35	56.5	Hospital-based
Askari <i>et al.</i> (2016) ⁽⁹⁰⁾	Iran	Patients with keen osteoarthritis and sex- matched healthy controls	Osteoarthritis	393	131	262	52·0	8.0	55.0	9.0	107	81.7	214	81.7	Hospital-based
Elbassiony <i>et al.</i> (2016) ⁽⁹¹⁾	Egypt	Consecutive patients with RA and age- & sex-matched healthy controls	RA	300	150	150	44.2	11.6	46-4	12.9	97	64.7	97	64.7	Hospital-based
Gamal <i>et al.</i> (2016) ⁽⁹²⁾	Egypt	Patients with RA and age- & sex-matched healthy controls	RA	80	55	25	42·2	10.6	41·2	15.8	47	85.5	20	80.0	Hospital-based
Gheita <i>et al.</i> (2016) ⁽⁹³⁾	Egypt	Patients with RA and age- & sex-matched healthy controls		125	63	62	41.6	9.7	39.7	9.8	49		49	79·0	Hospital-based
Kasapoğlu Aksoy et al. (2017) ⁽⁹⁴⁾	Turkey	Patients with FM and age- & sex-matched healthy controls	FM	100	53	47	46.4	9.8	44.4	7.6	51	96.2	41	87·2	Hospital-based
Liao et al. (2016) ⁽⁹⁵⁾	China	Female patients with RA and healthy controls	RA	114	82	32	54.0	14.0	53.0	14.0		100.0	32		Hospital-based
Maafi <i>et al.</i> (2016) ⁽⁹⁶⁾	Iran	Female patients with FM and healthy controls	FM	142	74	68	38.0	9.8	32.6	10.1		100.0	68		Hospital-based
Okyay <i>et al.</i> (2016) ⁽⁹⁷⁾	Turkey	Female patients with FM and healthy controls	FM	159	79	80	37.0	9.0	35.8	10.7		100.0			Hospital-based
Thorneby <i>et al.</i> (2016) ⁽⁹⁸⁾	Sweden	Patients with chronic LBP and age- & sex- matched controls	Chronic LBP	88	44	44	55.0	16.0	55.0	15.0	26	59.1	26	59.1	Community-bas

Table 1 Continued

				No	. of sul	ojects		Age (years)			Fem	ale		
				Total	With pain	Without pain	With	pain	Witho	ut pain	With	pain	With pa		
Study	Country	Population	Pain measurement	n	n	n	Mean or median	sD or IQR or range	Mean or median	sd or IQR or range	n	%	n	%	Type of study
Wang <i>et al.</i> (2016) ⁽⁹⁹⁾	China	Patients with RA and age- & sex-matched healthy controls	RA	214	154	60	53.5	12.4	51.4	10.3	88	57·1	35	58.3	Hospital-based
Yildirim <i>et al.</i> (2016) ⁽¹⁰⁰⁾	Turkey	Patients with FM and age- & sex-matched healthy controls	FM	198	99	99	49.4	9.2	50.8	8.8	80	80.8	77	77·8	Hospital-based
Brennan-Speranzaa et al. (2017) ⁽¹⁰¹⁾	Australia	Patients with keen osteoarthritis and age- matched controls	Osteoarthritis	29	19	10	66·1	5.2	64·7	7.6	10	52.6	7	70.0	Hospital-based
Wong <i>et al.</i> (2017) ⁽¹⁰²⁾	Malaysia	Female patients with RA and age-matched healthy controls	RA	106	77	29	54·1	6.9	52.6	5.4	77	100.0	29	100-0	Hospital-based
Cohort studies Laroche <i>et al.</i>	France	Early-stage breast cancer and no pain at the start	Joint pain, diffuse	134	77	57	61	7	62·4	7.2	77	100.0	57	100.0	Hospital-based
(2014) ⁽¹⁰³⁾		of AI treatment	pain, neuropathic pain and mixed pain												
Mergenhagen <i>et al.</i> (2014) ⁽¹⁰⁴⁾	USA	Patients with statin therapy	Statin-related myalgia	450	50	400	65·5‡	43–91	68·9‡	39–96	5	10.0	16	4.0	Hospital-based
Shantha <i>et al.</i> (2014) ⁽¹⁰⁵⁾	USA	Patients with statin therapy	Statin-related myalgia	1160	276	884	63.5	10.1	61.8	13.9	92	33.3	349	39.5	Community-based
Singer <i>et al.</i> (2014) ⁽¹⁰⁶⁾	USA	Postmenopausal women with non-metastatic, hormone receptor-positive breast cancer, prescribed adjuvant AI therapy	MSK symptoms	52	28	24	59·8‡	44–76	61.5‡	45–76	28	100.0	24	100-0	Hospital-based
Ovesjo <i>et al.</i> (2016) ⁽¹⁰⁷⁾ Calza <i>et al.</i> (2017) ⁽¹⁰⁸⁾	Sweden Italy	Patients with statin therapy HIV patients with statin therapy	Myopathy Myalgia	127 487	16 42	111 445	65§ 58∙6	39–86 19∙6	65§ 52∙5	32–86 20∙2	12 7	75∙0 16∙7	55 83	49·5 18·7	Hospital-based Hospital-based

IQR, interquartile range; RA, rheumatoid arthritis; NHANES, National Health and Nutrition Examination Survey; FM, fibromyalgia; LBP, lower-back pain; UIA, undifferentiated inflammatory arthritis; MSK, musculoskeletal; IIM, idiopathic inflammatory myopathies; NHS, Nurses' Health Study; NHSII, Nurses' Health Study II; EIA, early inflammatory arthritis; AI, aromatase inhibitor; CWP, chronic widespread pain; NA, not available. *One publication reported two studies. †Median and IQR. ‡Mean and range.

§Median and range.

||Original article reported age range only.

				o. of Sipants	Effe	ct estimate		To she for the second
Category	Subgroup	No. of included studies	With pain	Without pain	MD	95 % CI	P value	Test of subgroup differences, <i>P</i> value
Pain conditions	Arthritis	33	3018	3925	-12.34	-17·97, -6·71	<0.001	0.004
	Muscle pain	22	1723	3784	-8.97	-14.92, -3.02	0.003	
	Chronic widespread pain	13	4085	3306	-7.77	-11·97, -3·57	<0.001	
	Headache or migraine	5	4468	10063	-2.53	-5.13, 0.07	0.06	
Study design	Cross-sectional	15	7906	13457	<u>-3</u> .10	-4·98, -1·21	0.001	<0.001
, ,	Case-control	53	4976	5757	-11·09	-15·25, -6·93	<0.001	
	Cohort	5	412	1864	-23.55	-30.68, -16.41	<0.001	
Statin use	Yes	11	791	2733	-11·15	-20.49, -1.80	0.02	0.85
	No	62	12 503	18 345	<i>−</i> 10·17	-13·17, -7·17	<0.001	

MD, mean difference.

quality^{(33-35,37,39-43,45,48,49,51,54-57,59,60,62,64-70,72-74,} good 76–82,84,86–100,102–108) sixteen were satisfactory^{(31,44,46,} 47,50,52,53,58,61,63,71,75,83,85,101) and the remaining three were unsatisfactory^(32,36,38). Specifically, the quality for cross-sectional studies was good for twelve, satisfactory for four and unsatisfactory for three; for case-control studies, nine were very good, thirty-five were good and twelve were satisfactory; and for cohort studies, three were very good and three good. For the unsatisfactory studies, most of them did not have enough information to evaluate the representativeness for the target population. In addition, all the pain-related outcome measurements were based on questionnaire or self-report, and only a few of them validated the pain measurements. The quality assessment scores are shown in Supplement 2, Supplemental Table 1 (see online supplementary material).

Pooled results

Vitamin D concentration and pain

For the primary aim, seventy-three studies, containing 13 294 participants with pain and 21 078 without pain conditions, reported serum 25(OH)D levels^(32,34–40,42–45,47–50,52–75,77–102,104–108). Two publications reported the vitamin D concentration and pain conditions on different subgroups (smokers and non-smokers⁽³⁹⁾ or Italian and Estonian⁽⁵³⁾), which are reported separately as four different studies in the current meta-analysis (Supplement 2, Supplemental Table 2).

Compared with controls, mean 25(OH)D concentration was significantly lower in patients with arthritis (MD = -12.34 nmol/l; P < 0.001), muscle pain (MD = -8.97 nmol/l; P = 0.003) and chronic widespread pain (MD = -7.77 nmol/l; P < 0.001), but not in patients with headache or migraine (MD = -2.53 nmol/l; P = 0.06; Table 2). These mean differences by disease condition were significantly different (P = 0.004). Because of this interaction, forest plots are shown by pain condition rather than for all conditions combined (Fig. 2). Additionally, among age- and sex-matched case–control studies, similar lower vitamin D levels also were observed in patients with arthritis (MD = -12.03 nmol/l; P < 0.001) and muscle pain (MD = -11.49 nmol/l, P < 0.01).

In addition, interaction tests were conducted by type of study design and statin use (Table 2; Supplement 2, Supplemental Figs 1 and 2). There was a significant interaction between the three types of study design (P < 0.001). For each study design, pain patients had significantly lower 25(OH)D concentration compared with those without pain, but the effect was strongest in cohort studies (MD = -23.55 nmol/l; P < 0.001), moderate in case–control studies (MD = -11.09 nmol/l; P < 0.001) and weakest in cross-sectional studies (MD = -3.10 nmol/l; P = 0.001). However, there was no interaction between studies of statin users and non-statin users (interaction test P = 0.85).

To investigate the impact of other covariables (year, sample size, mean age, female proportion, ratio of participants with and without pain, type of study) on the study-level estimate of the MD in 25(OH)D concentration, we performed random-effects meta-regression analyses. We did not observe any significant association for the above covariables and MD in 25(OH)D levels in both the univariate and multivariate meta-regression analyses (Supplement 2, Supplemental Table 3).

Vitamin D deficiency and pain

For the secondary aim, fifty studies reported the proportion of vitamin D deficiency among 14 027 patients with pain conditions and 14 357 without^(31–34,36–38,41–43,46, 51,52,54–57,59,61,62,65–69,74–77,79–83,87–89,91–99,103,106,107). One publication⁽⁷⁶⁾ reported results from two studies which are included separately in the current meta-analysis (Supplement 2, Supplementary Table 4). To maintain consistency with the primary aim analyses (Table 2), the secondary aim of vitamin D deficiency was also analysed by pain condition, study design, statin use and cut-off point for vitamin D deficiency (Table 3 and Fig. 3). The odds of vitamin D deficiency was increased for arthritis, muscle

	-	With pain			ithout p			MD (95 % CI)	MD (95 % CI)
Subgroup/study ID	Mean	SD	Total	Mean	SD	Total	Weight (%)	IV, random	IV, random
<u>rthritis</u>									
ietschmann (1989)	27.35	19.66	29	37.5	21.39	30	1.3	-10·15 (-20·63, 0·33)	
luller (1995)	65·91	35.8	41	64·06	26.44	72	1.2	1.85 (-10.70, 14.40)	
utolo 1 (2006)	58.9	39.31	53	54·5	32.54	35	1.1	4·40 (–10·71, 19·51)	
utolo 2 (2006)	35.1	15.2	64	43·3	14.24	30	1.5	–8·20 (–14·51, –1·89)	-
urhanoglu (2011)	104.87	60.08	65	105.72	38.06	40	1.0	-0·85 (-19·62, 17·92)	
ttar (2012)	32.3	14.4	100	31.4	16.4	100	1.5	0.90 (-3.38, 5.18)	Ť
aykal (2012)	30.45	19.47	55	48.17	21.96	45	1.4	-17.72 (-25.94, -9.50)	
ong (2012)	55.91	12.98	72	95.85	17.22	58	1.5	-39.94 (-45.29, -34.59)	-
leidari (2012)	84.47	87.11	147	82.87	71.39	239	1.0	1.60 (–15.14, 18.34)	
ostoglou-Athanassiou (2012)	38.09	17.72	44	64.4	26.49	44	1.4	-26·31 (-35·73, -16·89)	
twa (2013)	38.56	16.02	65	61.28	11.21	40	1.5	-22.72 (-28.20, -17.24)	-
orgaz-Molina (2013)	84·91	31.13	61	75.83	24.66	61	1.3	9.08 (-0.89, 19.05)	
azmalar (2013)	72·38	63·65	145	74.43	47·9	70	1.1	-2·05 (-17·32, 13·22)	
hen (2014)	35.62	17.27	110	52.04	16.35	110	1.5	–16·42 (–21·13, –11·71)	-
ote (2014)	76.54	31.63	270	77·38	29.64	1341	1.5	-0.84 (-4.93, 3.25)	+
leidari (2014)	52.17	71.88	167	74·88	75.63	286	1.2	-22.71 (-36.70, -8.72)	
long (2014)	43.12	15.59	130	57.97	15.95	80	1.5	-14.85 (-19.25, -10.45)	-
harma (2014)	43	26.85	80		35.07	80	1.4	-12.97 (-22.65, -3.29)	
rance (2015)	50.92	13.1	34		30.37	41	1.3	-14.72 (-25.01, -4.43)	
en (2015)	35.99	12.59	116	54.35	8.2	50	1.6	-18·36 (-21·59, -15·13)	÷
iullo (2015)	57·41	18.97	27		12.98	41	1.4	-21·71 (-29·89, -13·53)	
latsumoto (2015)	42.18	9·4	176	48.92		186	1.6	-6·74 (-8·93, -4·55)	+
ark (2015)		17·646	101	40.92		101	1.5	-4·75 (-10·27, 0·77)	
etho (2015)	51.9	21.8	53		29.37	53	1.3	-15.30 (-25.15, -5.45)	
agiz (2015)	35.47	19.97	92	33.52		62	1.5	1.95 (-3.49, 7.39)	+
			131		24.46	262	1.6	(, , ,	-
skari (2016)	20.22	8·24			23.96	150	1.5	-52.66 (-55.94, -49.38)	-
Ibassiony (2016)	54·91	22·96	150				1.4	-16.73 (-22.04, -11.42)	
iamal (2016)	48.7	13.5	55	49.1	20.3	25	1.4	-0.40 (-9.12, 8.32)]
iheita (2016)	57.66	31.7	63	81.37	32.7	62		-23·71 (-35·00, -12·42)	_
	32-95	16.72	82	66-39	13.23	32	1.5	-33·44 (-39·28, -27·60)	-
iao (2016)		00 47	454	E7 04	40.70	~~~	1 5		
lang (2016)	48.67	20.47	154		16.72	60	1.5	-9.24 (-14.56, -3.92)	<u>~</u>
Vang (2016) Irennan-Sperenzaa (2017)	48·67 72·8	19.62	19	76·5	17.71	10	1.2	-3.70 (-17.78, 10.38)	-
Vang (2016) irennan-Sperenzaa (2017) Vong (2017) ubtotal (95 % Cl)	48·67 72·8 43·3	19·62 23·1	19 77 3018	76·5 41	17·71 17·9				 •
Vang (2016) rennan-Sperenzaa (2017) Vong (2017)	48·67 72·8 43·3 940·79,	19·62 23·1 df=32 (<i>P</i>	19 77 3018	76·5 41	17·71 17·9	10 29	1.2 1.4	-3·70 (-17·78, 10·38) 2·30 (-6·01, 10·61)	•
Vang (2016) rennan-Sperenzaa (2017) Vong (2017) ubtotal (95 % Cl) leterogeneity: τ ² =250·33; χ ² =	48·67 72·8 43·3 940·79,	19·62 23·1 df=32 (<i>P</i>	19 77 3018	76·5 41	17·71 17·9	10 29	1.2 1.4	-3·70 (-17·78, 10·38) 2·30 (-6·01, 10·61)	•
Vang (2016) rennan-Sperenzaa (2017) Vong (2017) ubtotal (95 % Cl) leterogeneity: $\tau^2 = 250.33$; $\chi^2 =$ est for overall effect: $Z = 4.29$ (48·67 72·8 43·3 940·79,	19·62 23·1 df=32 (<i>P</i>	19 77 3018	76·5 41	17·71 17·9	10 29	1.2 1.4	-3·70 (-17·78, 10·38) 2·30 (-6·01, 10·61)	
Vang (2016) irennan-Sperenzaa (2017) Vong (2017) ubtotal (95 % Cl) leterogeneity: $\tau^2 = 250.33$; $\chi^2 =$ est for overall effect: $Z = 4.29$ (<u>Muscle pain</u>	48.67 72.8 43.3 940.79, (P<0.000	19·62 23·1 df=32 (<i>P</i> 01)	19 77 3018 <00000	76·5 41 01); / ² =	17·71 17·9 97 %)	10 29 3925	1·2 1·4 45·6	–3·70 (–17·78, 10·38) 2·30 (–6·01, 10·61) – 12·34 (–17·97, –6·71)	
Vang (2016) irennan-Sperenzaa (2017) Vong (2017) ubtotal (95 % CI) leterogeneity: $\tau^2 = 250.33$; $\chi^2 =$ est for overall effect: $Z = 4.29$ (Muscle pain Benson (2006)	48.67 72.8 43.3 940.79, (P<0.000 40.88	19.62 23.1 df = 32 (<i>P</i> 01) 3.52	19 77 3018 <0.000	76.5 41 01); <i>I</i> ² = 58.25 75.13	17·71 17·9 97 %) 15·9	10 29 3925 8	1.2 1.4 45.6 1.3	-3·70 (-17·78, 10·38) 2·30 (-6·01, 10·61) -12·34 (-17·97, -6·71)	
Vang (2016) irennan-Sperenzaa (2017) Vong (2017) ubtotal (95 % CI) leterogeneity: $\tau^2 = 250.33$; $\chi^2 =$ est for overall effect: $Z = 4.29$ (<u>Muscle pain</u> Benson (2006) Duell (2008) Ahmed (2009)	48.67 72.8 43.3 940.79, (P<0.000 40.88 51.17	19.62 23.1 df = 32 (<i>P</i> 01) 3.52 24.96	19 77 3018 <0.000	76.5 41 01); / ² = 58.25 75.13 85.36	17.71 17.9 97%) 15.9 31.2	10 29 3925 8 61	1·2 1·4 45·6 1·3 1·3	-3.70 (-17.78, 10.38) 2.30 (-6.01, 10.61) -12.34 (-17.97, -6.71) -17.37 (-28.65, -6.09) -23.96 (-35.11, -12.81)	
<i>l</i> ang (2016) rennan-Sperenzaa (2017) <i>l</i> ong (2017) ubtotal (95 % CI) eterogeneity: τ^2 =250·33; χ^2 = est for overall effect: <i>Z</i> =4·29 (<u>Muscle pain</u> Benson (2006) Duell (2008) Ahmed (2009) Tandeter (2009)	48.67 72.8 43.3 940.79, (/940.79, (940.8851.1771.39	19.62 23.1 df = 32 (<i>P</i> 01) 3.52 24.96 32.95	19 77 3018 <0.0000 8 38 128	76.5 41 01); / ² = 58.25 75.13 85.36	17.71 17.9 97%) 15.9 31.2 34.44 19.49	10 29 3925 8 61 493	1.2 1.4 45.6 1.3 1.3 1.5	-3.70 (-17.78, 10.38) 2.30 (-6.01, 10.61) -12.34 (-17.97, -6.71) -17.37 (-28.65, -6.09) -23.96 (-35.11, -12.81) -13.97 (-20.44, -7.50)	
Vang (2016) rennan-Sperenzaa (2017) Vong (2017) ubtotal (95 % CI) leterogeneity: $\tau^2 = 250.33$; $\chi^2 =$ est for overall effect: $Z = 4.29$ (Muscle pain Benson (2006) Duell (2008) Ahmed (2009) Tandeter (2009) de Rezende Pena (2010)	48.67 72.8 43.3 940.79, (P<0.000 40.88 51.17 71.39 54.29 93.62	19.62 23.1 df = 32 (P 01) 3.52 24.96 32.95 25.46 46.87	19 77 3018 <0.0000 8 38 128 68 87	76.5 41 01); / ² = 58.25 75.13 85.36 48.5 95.42	17.71 17.9 97%) 15.9 31.2 34.44 19.49 40.39	10 29 3925 8 61 493 82 92	1.2 1.4 45-6 1.3 1.3 1.5 1.4 1.2	-3-70 (-17·78, 10·38) 2·30 (-6·01, 10·61) -12·34 (-17·97, -6·71) -17·37 (-28·65, -6·09) -23·96 (-35·11, -12·81) -13·97 (-20·44, -7·50) 5·79 (-1·59, 13·17) -1·80 (-14·65, 11·05)	
Vang (2016) rennan-Sperenzaa (2017) Vong (2017) ubtotal (95 % CI) leterogeneity: $\tau^2 = 250.33$; $\chi^2 =$ est for overall effect: $Z = 4.29$ (Muscle pain Benson (2006) Duell (2008) Ahmed (2009) Tandeter (2009) de Rezende Pena (2010) Linde (2010)	48.67 72.8 43.3 940.79, (P<0.000 40.88 51.17 71.39 54.29 93.62 70.39	19.62 23.1 df = 32 (<i>P</i> 01) 3.52 24.96 32.95 25.46	19 77 3018 <0.0000 8 38 128 68	76.5 41 01); / ² = 58.25 75.13 85.36 48.5	17.71 17.9 97%) 15.9 31.2 34.44 19.49 40.39 26.21	10 29 3925 8 61 493 82	1.2 1.4 45-6 1.3 1.3 1.5 1.4	-3-70 (-17·78, 10·38) 2·30 (-6·01, 10·61) -12·34 (-17·97, -6·71) -13·97 (-28·65, -6·09) -23·96 (-35·11, -12·81) -13·97 (-20·44, -7·50) 5·79 (-1·59, 13·17) -1·80 (-14·65, 11·05) 9·74 (-3·98, 23·46)	
Vang (2016) irennan-Sperenzaa (2017) vong (2017) ubtotal (95 % CI) leterogeneity: $\tau^2 = 250.33$; $\chi^2 =$ est for overall effect: $Z = 4.29$ (Muscle pain Benson (2006) Duell (2008) Ahmed (2009) Tandeter (2009) de Rezende Pena (2010) Linde (2010) Backes (2011)	48.67 72.8 43.3 940.79, (P<0.000 40.88 51.17 71.39 54.29 93.62 70.39 53.41	19.62 23.1 df = 32 (P 01) 3.52 24.96 32.95 25.46 46.87 28.95 24.21	19 77 3018 <0.0000 8 38 128 68 87 39 57	76.5 41 01); <i>I</i> ² = 58.25 75.13 85.36 48.5 95.42 60.65 54.41	17.71 17.9 97%) 15.9 31.2 34.44 19.49 40.39 26.21 30.2	10 29 3925 8 61 493 82 92 25 72	1.2 1.4 45-6 1.3 1.3 1.5 1.4 1.2 1.2 1.4	-3-70 (-17·78, 10·38) 2·30 (-6·01, 10·61) -12·34 (-17·97, -6·71) -23·96 (-35·11, -12·81) -13·97 (-20·44, -7·50) 5·79 (-1·59, 13·17) -1·80 (-14·65, 11·05) 9·74 (-3·98, 23·46) -1·00 (-10·39, 8·39)	
Vang (2016) irennan-Sperenzaa (2017) vong (2017) ubtotal (95 % CI) leterogeneity: $\tau^2 = 250.33$; $\chi^2 =$ est for overall effect: $Z = 4.29$ (Muscle pain Benson (2006) Duell (2008) Ahmed (2009) Tandeter (2009) de Rezende Pena (2010) Linde (2010) Backes (2011) Rlphagen (2012)	48.67 72.8 43.3 940.79, (<i>P</i> <0.000 40.88 51.17 71.39 54.29 93.62 70.39 53.41 45.34	19.62 23.1 df = 32 (P 01) 3.52 24.96 32.95 25.46 46.87 28.95 24.21 20.58	19 77 3018 <0.0000 8 38 128 68 87 39 57 22	76.5 41 01); / ² = 58.25 75.13 85.36 48.5 95.42 60.65 54.41 41.1	17.71 17.9 97%) 15.9 31.2 34.44 19.49 40.39 26.21 30.2 13.31	10 29 3925 8 61 493 82 92 25 72 53	1.2 1.4 45-6 1.3 1.3 1.5 1.4 1.2 1.2 1.4 1.4 1.4	-3.70 (-17.78, 10.38) 2.30 (-6.01, 10.61) -12.34 (-17.97, -6.71) -23.96 (-35.11, -12.81) -13.97 (-20.44, -7.50) 5.79 (-1.59, 13.17) -1.80 (-14.65, 11.05) 9.74 (-3.98, 23.46) -1.00 (-10.39, 8.39) 4.24 (-5.08, 13.56)	
<i>V</i> ang (2016) rennan-Sperenzaa (2017) <i>V</i> ong (2017) ubtotal (95 % CI) eterogeneity: τ^2 =250·33; χ^2 = est for overall effect: <i>Z</i> =4·29 (Muscle pain Benson (2006) Duell (2008) Ahmed (2009) Tandeter (2009) de Rezende Pena (2010) Linde (2010) Backes (2011) Riphagen (2012) Azali (2013)	48.67 72.8 43.3 940.79, P<0.000 40.88 51.17 71.39 54.29 93.62 70.39 53.41 45.34 63.75	19.62 23.1 df = 32 (P 01) 3.52 24.96 32.95 25.46 46.87 28.95 24.21 20.58 24.21	19 77 3018 <0.0000 8 38 128 68 87 39 57 22 149	76-5 41 01); / ² = 58-25 75-13 85-36 48-5 95-42 60-65 54-41 41-1 88	17.71 17.9 97%) 15.9 31.2 34.44 19.49 40.39 26.21 30.2 13.31 31.16	10 29 3925 8 61 493 82 25 72 53 290	1.2 1.4 45.6 1.3 1.3 1.5 1.4 1.2 1.4 1.4 1.4 1.4 1.5	$\begin{array}{c} -3.70 \left(-17.78, 10.38\right) \\ 2.30 \left(-6.01, 10.61\right) \\ -12.34 \left(-17.97, -6.71\right) \end{array}$	
Vang (2016) irennan-Sperenzaa (2017) vong (2017) ubtotal (95 % CI) leterogeneity: $\tau^2 = 250.33$; $\chi^2 =$ est for overall effect: $Z = 4.29$ (Muscle pain Benson (2006) Duell (2008) Ahmed (2009) Tandeter (2009) de Rezende Pena (2010) Linde (2010) Backes (2011) Riphagen (2012) Azali (2013) Olama (2013)	48.67 72.8 43.3 940.79, /P<0.000 40.88 51.17 71.39 54.29 93.62 70.39 53.41 45.34 63.75 37.69	19.62 23.1 df = 32 (P 01) 3.52 24.96 32.95 25.46 46.87 28.95 24.21 20.58 29.96 15.23	19 77 3018 <0.0000 8 38 128 68 87 39 57 22 149 50	76-5 41 01); / ² = 58-25 75-13 85-36 48-5 95-42 60-65 54-41 41-1 88 46-92	17.71 17.9 97%) 15.9 31.2 34.44 19.49 26.21 30.2 13.31 31.16 13.48	10 29 3925 8 61 493 82 92 255 72 53 290 50	1.2 1.4 45-6 1.3 1.3 1.5 1.4 1.2 1.4 1.4 1.5 1.5	$\begin{array}{c} -3.70 \ (-17.78, \ 10.38) \\ 2.30 \ (-6.01, \ 10.61) \\ -12.34 \ (-17.97, \ -6.71) \end{array}$	 + + + - - - - - - - - - - - - - - -
Vang (2016) irennan-Sperenzaa (2017) vong (2017) ubtotal (95 % CI) leterogeneity: $\tau^2 = 250.33$; $\chi^2 =$ est for overall effect: $Z = 4.29$ (<u>Muscle pain</u> Benson (2006) Duell (2008) Ahmed (2009) Tandeter (2009) de Rezende Pena (2010) Linde (2010) Backes (2011) RIphagen (2012) Azali (2013) Olama (2013) Eisen (2014)	48.67 72.8 43.3 940.79, (/P<0.000 40.88 51.17 71.39 54.29 93.62 70.39 53.41 45.34 63.75 37.69 47.8	19.62 23.1 df = 32 (P 01) 3.52 24.96 32.95 25.46 46.87 28.95 24.21 20.58 29.96 15.23 10.2	19 77 3018 <0.0000 8 8 38 128 68 87 39 57 22 149 50 108	76.5 41 01); / ² = 58.25 75.13 85.36 48.5 95.42 60.65 54.41 41.1 88 46.92 50.4	17.71 17.9 97%) 15.9 31.2 34.44 19.49 40.39 26.21 30.2 13.31 31.16 13.48 15	10 29 3925 8 61 493 82 92 25 72 53 290 50 166	1.2 1.4 45-6 1.3 1.3 1.5 1.4 1.2 1.4 1.2 1.4 1.5 1.5 1.5 1.6	$\begin{array}{c} -3.70 \left(-17.78, 10.38\right) \\ 2.30 \left(-6.01, 10.61\right) \\ -12.34 \left(-17.97, -6.71\right) \end{array}$	
Vang (2016) rennan-Sperenzaa (2017) vong (2017) ubtotal (95 % CI) leterogeneity: $\tau^2 = 250.33$; $\chi^2 =$ est for overall effect: $Z = 4.29$ (Muscle pain Benson (2006) Duell (2008) Ahmed (2009) Tandeter (2009) de Rezende Pena (2010) Linde (2010) Backes (2011) Riphagen (2012) Azali (2013) Olama (2013) Eisen (2014) Mateos (2014)	48.67 72.8 43.3 940.79, ' /P<0.000 40.88 51.17 71.39 54.29 93.62 70.39 53.41 45.34 63.75 37.69 47.8 57.41	19.62 23.1 df = 32 (P 01) 3.52 24.96 32.95 25.46 46.87 28.95 24.21 20.58 29.96 15.23 10.2 23.71	19 77 3018 <0.0000 8 8 38 128 68 87 39 57 22 149 50 108 205	76-5 41 01); / ² = 58-25 75-13 85-36 48-5 95-42 60-65 54-41 41-1 88 46-92 50-4 60-15	17.71 17.9 97%) 15.9 31.2 34.44 19.49 40.39 26.21 30.2 13.31 31.16 13.48 15 23.96	10 29 3925 8 61 493 82 92 25 72 53 290 50 166 205	1.2 1.4 45-6 1.3 1.3 1.5 1.4 1.2 1.2 1.4 1.4 1.5 1.5 1.6 1.5	$\begin{array}{c} -3.70 \left(-17.78, 10.38\right) \\ 2.30 \left(-6.01, 10.61\right) \\ -12.34 \left(-17.97, -6.71\right) \end{array}$	
<i>l</i> ang (2016) rennan-Sperenzaa (2017) <i>Jong</i> (2017) ubtotal (95 % CI) eterogeneity: τ^2 =250·33; χ^2 = est for overall effect: <i>Z</i> =4·29 (Muscle pain Benson (2006) Duell (2008) Ahmed (2009) Tandeter (2009) de Rezende Pena (2010) Linde (2010) Backes (2011) Riphagen (2012) Azali (2013) Olama (2013) Eisen (2014) Mateos (2014)	48.67 72.8 43.3 940.79, (P<0.00) 40.88 51.17 71.39 93.62 70.39 53.41 45.34 63.75 37.69 47.88 57.41 65.4	19.62 23.1 df = 32 (P 01) 3.52 24.96 32.95 25.46 46.87 28.95 24.21 20.58 29.58 29.58 15.23 10.2 23.71 22.46	19 77 3018 <0.0000 8 38 128 68 87 39 57 22 149 57 22 149 50 50	76-5 41 01); / ² = 58-25 75-13 85-36 48-5 95-42 60-65 54-41 41-1 88 46-92 50-4 60-15 90-36	17.71 17.9 97%) 97%) 15.9 31.2 34.44 19.49 40.39 26.21 30.2 13.31 31.16 13.48 15 23.96 29.45	10 29 3925 8 61 493 82 92 25 72 53 290 50 166 205 400	1.2 1.4 45-6 1.3 1.3 1.5 1.4 1.2 1.4 1.4 1.5 1.6 1.5 1.5	$\begin{array}{c} -3.70 \left(-17.78, 10.38\right) \\ 2.30 \left(-6.01, 10.61\right) \\ -12.34 \left(-17.97, -6.71\right) \\ \end{array}$	
Vang (2016) rennan-Sperenzaa (2017) vong (2017) ubtotal (95 % CI) leterogeneity: $\tau^2 = 250.33$; $\chi^2 =$ est for overall effect: $Z = 4.29$ (Muscle pain Benson (2006) Duell (2008) Ahmed (2009) Tandeter (2009) de Rezende Pena (2010) Linde (2010) Backes (2011) RIphagen (2012) Azali (2013) Olama (2013) Eisen (2014) Mateos (2014) Mergenhagen (2014) Sezgin Ozcan (2014)	48.67 72.8 43.3 940.79, P<0.000 40.88 51.17 71.39 54.29 93.62 70.39 53.41 45.34 63.75 37.69 47.8 57.41 65.4 41.68	19.62 23.1 df = 32 (P 01) 3.52 24.96 32.95 25.46 46.87 28.95 24.21 20.58 29.96 15.23 10.2 23.71 22.46 23.71	19 77 3018 <0.0000 8 8 38 128 68 87 39 57 22 149 50 108 205 50 60	76.5 41 01); / ² = 58.25 75.13 85.36 48.5 95.42 60.65 54.41 41.1 88 46.92 50.4 60.15 90.36 53.91	17.71 17.9 97%) 15.9 31.2 34.44 19.49 26.21 30.2 13.31 31.16 13.48 15 23.96 29.45 14.73	10 29 3925 8 61 493 82 92 572 53 290 50 166 205 400 30	1.2 1.4 45-6 1.3 1.3 1.5 1.4 1.2 1.4 1.4 1.5 1.5 1.5 1.5 1.5 1.4	$\begin{array}{c} -3.70 \left(-17.78, 10.38\right) \\ 2.30 \left(-6.01, 10.61\right) \\ -12.34 \left(-17.97, -6.71\right) \\ \end{array}$	
Vang (2016) rennan-Sperenzaa (2017) vong (2017) ubtotal (95 % CI) leterogeneity: $\tau^2 = 250.33$; $\chi^2 =$ est for overall effect: $Z = 4.29$ (Muscle pain Benson (2006) Duell (2008) Ahmed (2009) Tandeter (2009) de Rezende Pena (2010) Linde (2010) Backes (2011) RIphagen (2012) Azali (2013) Olama (2013) Eisen (2014) Mateos (2014) Mergenhagen (2014) Sezgin Ozcan (2014) Shantha (2014)	$\begin{array}{c} 48.67\\72.8\\43.3\\940.79,\\P<0.000\\\\40.88\\51.17\\71.39\\54.29\\93.62\\70.39\\53.41\\45.34\\63.75\\37.69\\47.8\\57.61\\65.4\\41.68\\55.66\end{array}$	19.62 23.1 df = 32 (P 01) 3.52 24.96 32.95 25.46 46.87 28.95 24.21 20.58 29.96 15.23 10.2 23.71 122.46 23.71 17.72	19 77 3018 <0.0000 8 8 38 128 68 87 39 57 22 149 50 108 200 108 250 60 276	76.5 41 01); / ² = 58.25 75.13 85.36 48.5 95.42 60.65 54.41 41.1 88 46.92 50.4 60.15 90.36 53.91 84.36	17.71 17.9 97%) 15.9 31.2 34.44 19.49 26.21 30.2 13.31 31.16 13.48 15 23.96 29.45 14.73 11.23	10 29 3925 8 61 493 82 92 53 290 50 166 205 400 30 884	1.2 1.4 45-6 1.3 1.3 1.5 1.4 1.2 1.4 1.4 1.5 1.5 1.6 1.5 1.5 1.4 1.5	$\begin{array}{c} -3.70 \left(-17.78, 10.38\right) \\ 2.30 \left(-6.01, 10.61\right) \\ -12.34 \left(-17.97, -6.71\right) \\ \end{array}$	
Vang (2016) rennan-Sperenzaa (2017) Vong (2017) ubtotal (95 % CI) leterogeneity: $\tau^2 = 250.33$; $\chi^2 =$ est for overall effect: $Z = 4.29$ (Muscle pain Benson (2006) Duell (2008) Ahmed (2009) Tandeter (2009) de Rezende Pena (2010) Linde (2010) Backes (2011) Riphagen (2012) Azali (2013) Olama (2013) Eisen (2014) Mateos (2014) Mergenhagen (2014) Sezgin Ozcan (2014) Shantha (2014) Tasoglu (2015)	$\begin{array}{c} 48.67\\72.8\\43.3\\940.79,\\P<0.000\\\\40.88\\51.17\\71.39\\54.29\\93.62\\70.39\\53.41\\45.34\\63.75\\37.69\\47.8\\57.41\\65.4\\1.68\\55.66\\86.88\end{array}$	19.62 23.1 df = 32 (P 01) 3.52 24.96 32.95 25.46 46.87 28.95 24.21 20.58 29.96 15.23 10.2 23.71 22.718 23.71 17.72 27.88	19 77 3018 <0.0000 8 8 38 128 68 87 39 57 22 149 50 108 205 50 60 276 17	76.5 41 01); / ² = 58.25 75.13 85.36 48.5 95.42 60.65 54.41 41.1 88 46.92 50.4 60.15 90.36 53.91 84.36 79.62	17.71 17.9 97%) 15.9 31.2 34.44 19.49 40.39 26.21 30.2 13.31 31.16 13.48 15 23.96 29.45 14.73 11.23 27.41	10 29 3925 8 61 493 82 92 255 72 53 290 50 166 205 400 30 884 23	1.2 1.4 45.6 1.3 1.3 1.5 1.4 1.2 1.4 1.2 1.4 1.5 1.4 1.5 1.5 1.6 1.5 1.5 1.6 1.6 1.5 1.6 1.6 1.5 1.6 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.6 1.5 1.6	$\begin{array}{c} -3.70 \left(-17.78, 10.38\right) \\ 2.30 \left(-6.01, 10.61\right) \\ -12.34 \left(-17.97, -6.71\right) \\ \end{array}$	
<i>V</i> ang (2016) rennan-Sperenzaa (2017) <i>V</i> ong (2017) ubtotal (95 % CI) eterogeneity: τ^2 =250·33; χ^2 = est for overall effect: <i>Z</i> =4·29 (Muscle pain Benson (2006) Duell (2008) Ahmed (2009) Tandeter (2009) de Rezende Pena (2010) Linde (2010) Backes (2011) Riphagen (2012) Azali (2013) Dlama (2013) Eisen (2014) Mateos (2014) Mergenhagen (2014) Shantha (2015) Kasapoğlu Aksoy (2017)	48.67 72.8 43.3 940.79, (P<0.000 40.88 51.17 71.39 54.29 93.62 70.39 53.41 45.34 63.75 37.69 47.8 57.41 65.4 41.68 55.66	19.62 23.1 df = 32 (P 01) 3.52 24.96 32.95 25.46 46.87 28.95 24.21 20.58 29.96 15.23 10.2 23.71 22.46 23.71 12.246 23.71 17.72 27.88 32.2	19 77 3018 <0.0000 8 8 38 128 68 87 39 57 22 149 50 108 205 50 60 276 17 53	$76.5 \\ 41$ $01); I^{2} =$ $58.25 \\ 75.13 \\ 85.36 \\ 48.5 \\ 95.42 \\ 60.65 \\ 54.41 \\ 41.1 \\ 88 \\ 46.92 \\ 50.4 \\ 60.15 \\ 90.36 \\ 53.91 \\ 84.36 \\ 79.62 \\ 65.64 \\ \end{cases}$	17.71 17.9 97%) 15.9 31.2 34.44 19.49 40.39 26.21 30.2 13.31 31.16 13.48 15 23.96 29.45 14.73 11.23 27.41 38.44	10 29 3925 8 61 493 82 92 25 72 53 290 50 166 205 400 30 884 23 47	1.2 1.4 45-6 1.3 1.3 1.5 1.4 1.2 1.4 1.2 1.4 1.5 1.5 1.6 1.5 1.5 1.6 1.5 1.6 1.5 1.4 1.6 1.0 1.2	$\begin{array}{c} -3.70 \left(-17.78, 10.38\right) \\ 2.30 \left(-6.01, 10.61\right) \\ -12.34 \left(-17.97, -6.71\right) \\ \end{array}$	
Vang (2016) vennan-Sperenzaa (2017) vong (2017) ubtotal (95 % CI) leterogeneity: τ^2 = 250·33; χ^2 = est for overall effect: Z=4·29 (Muscle pain Benson (2006) Duell (2008) Ahmed (2009) Tandeter (2009) de Rezende Pena (2010) Linde (2010) Backes (2011) Riphagen (2012) Azali (2013) Olama (2013) Eisen (2014) Mateos (2014) Mergenhagen (2014) Sezgin Ozcan (2014) Shantha (2014) Tasoglu (2015) Kasapoğlu Aksoy (2017) Maafi (2016)	$\begin{array}{c} 48.67\\72.8\\43.3\\940.79,\\7<0.000\\\\40.88\\51.17\\71.39\\54.29\\93.62\\70.39\\53.41\\45.34\\63.75\\37.69\\47.8\\57.41\\65.4\\41.68\\55.66\\86.88\\55.66\\42.93\end{array}$	19.62 23.1 df = 32 (P 01) 3.52 24.96 32.95 25.46 46.87 28.95 24.21 20.58 29.96 15.23 10.2 23.71 22.46 23.71 22.46 23.71 17.72 27.88 32.2 33.7	19 77 3018 < 0.0000 8 8 38 128 68 87 39 57 22 149 50 108 205 50 60 276 60 276 17 53 74	$76.5 \\ 41$ $01); I^2 =$ $58.25 \\ 75.13 \\ 85.36 \\ 48.5 \\ 95.42 \\ 60.65 \\ 54.41 \\ 41.1 \\ 88 \\ 46.92 \\ 50.4 \\ 60.15 \\ 90.36 \\ 53.91 \\ 84.36 \\ 79.62 \\ 65.64 \\ 24.71$	17.71 17.9 97%) 15.9 31.2 34.44 19.49 40.39 26.21 30.2 13.31 13.16 13.48 15 23.96 29.45 14.73 11.23 27.41 38.44 16.22	10 29 3925 8 61 493 82 92 25 72 50 166 205 400 30 884 23 47 68	$\begin{array}{c} 1.2\\ 1.4\\ \textbf{45-6}\\ \end{array}$	$\begin{array}{c} -3.70 \left(-17.78, 10.38\right) \\ 2.30 \left(-6.01, 10.61\right) \\ -12.34 \left(-17.97, -6.71\right) \\ \end{array}$	
Vang (2016) vennan-Sperenzaa (2017) vong (2017) ubtotal (95 % CI) leterogeneity: $\tau^2 = 250.33$; $\chi^2 =$ est for overall effect: $Z = 4.29$ (Muscle pain Benson (2006) Duell (2008) Ahmed (2009) Tandeter (2009) de Rezende Pena (2010) Linde (2010) Backes (2011) Riphagen (2012) Azali (2013) Olama (2013) Eisen (2014) Mateos (2014) Mergenhagen (2014) Sezgin Ozcan (2014) Shantha (2014) Tasoglu (2015) Kasapoğlu Aksoy (2017) Maafi (2016) Okyay (2016)	48.67 72.8 43.3 940.79, (P<0.00) 40.88 51.17 71.39 93.62 70.39 53.41 45.34 63.75 37.69 47.8 57.41 65.4 41.68 55.66 86.88 55.66 86.88 55.66	19.62 23.1 df = 32 (P 01) 3.52 24.96 32.95 25.46 46.87 28.95 24.21 20.58 29.96 15.23 10.2 23.71 22.46 23.71 17.72 27.88 32.2 33.7 20.97	19 77 3018 < 0.0000 8 8 38 128 68 87 39 57 22 149 50 108 205 50 60 276 60 276 60 276 17 53 74 79	76.5 41 $01); I^2 =$ 58.25 75.13 85.36 48.5 95.42 60.65 54.41 41.1 88 46.92 50.4 60.15 90.36 53.91 84.36 79.62 65.64 24.71 40.19	17.71 17.9 97%) 15.9 31.2 34.44 19.49 40.39 26.21 30.2 13.31 31.16 13.48 15 23.96 29.45 14.73 11.23 27.41 38.44 16.22 23.46	10 29 3925 8 61 493 82 92 25 72 53 290 50 166 205 400 30 884 23 47	$\begin{array}{c} 1.2\\ 1.4\\ \textbf{45-6}\\ \end{array}$	$\begin{array}{c} -3.70 \left(-17.78, 10.38\right) \\ 2.30 \left(-6.01, 10.61\right) \\ -12.34 \left(-17.97, -6.71\right) \\ \end{array}$	
Vang (2016) rennan-Sperenzaa (2017) vong (2017) ubtotal (95 % CI) leterogeneity: $\tau^2 = 250.33$; $\chi^2 =$ est for overall effect: $Z = 4.29$ (Muscle pain Benson (2006) Duell (2008) Ahmed (2009) Tandeter (2009) de Rezende Pena (2010) Linde (2010) Backes (2011) RIphagen (2012) Azali (2013) Olama (2013) Eisen (2014) Mateos (2014) Mergenhagen (2014) Sezgin Ozcan (2014) Sezgin Ozcan (2014) Shantha (2014) Tasoglu (2015) Kasapoğlu Aksoy (2017) Maafi (2016) Ovesjo (2016)	$\begin{array}{c} 48.67\\72.8\\43.3\\940.79,\\7<0.000\\\\40.88\\51.17\\71.39\\54.29\\93.62\\70.39\\53.41\\45.34\\63.75\\37.69\\47.8\\57.41\\65.4\\41.68\\55.66\\86.88\\55.66\\42.93\end{array}$	19.62 23.1 df = 32 (P 01) 3.52 24.96 32.95 25.46 46.87 28.95 24.21 20.58 29.96 15.23 10.2 23.71 22.46 23.71 22.46 23.71 17.72 27.88 32.2 33.7	19 77 3018 < 0.0000 8 8 38 128 68 87 39 57 22 149 50 108 205 50 60 276 60 276 17 53 74	76.5 41 $01); I^2 =$ 58.25 75.13 85.36 48.5 95.42 60.65 54.41 41.1 88 46.92 50.4 60.15 90.36 53.91 84.36 79.62 65.64 24.71 40.19	17.71 17.9 97%) 15.9 31.2 34.44 19.49 40.39 26.21 30.2 13.31 13.16 13.48 15 23.96 29.45 14.73 11.23 27.41 38.44 16.22	10 29 3925 8 61 493 82 92 25 72 50 166 205 400 30 884 23 47 68	$\begin{array}{c} 1.2\\ 1.4\\ \textbf{45-6}\\ \end{array}$	$\begin{array}{c} -3.70 \left(-17.78, 10.38\right) \\ 2.30 \left(-6.01, 10.61\right) \\ -12.34 \left(-17.97, -6.71\right) \\ \end{array}$	
Vang (2016) vennan-Sperenzaa (2017) vong (2017) ubtotal (95 % CI) leterogeneity: $\tau^2 = 250.33$; $\chi^2 =$ est for overall effect: $Z = 4.29$ (Muscle pain Benson (2006) Duell (2008) Ahmed (2009) Tandeter (2009) de Rezende Pena (2010) Linde (2010) Backes (2011) Riphagen (2012) Azali (2013) Olama (2013) Eisen (2014) Mateos (2014) Mergenhagen (2014) Sezgin Ozcan (2014) Shantha (2014) Tasoglu (2015) Kasapoğlu Aksoy (2017) Maafi (2016) Okyay (2016)	48.67 72.8 43.3 940.79, (P<0.00) 40.88 51.17 71.39 93.62 70.39 53.41 45.34 63.75 37.69 47.8 57.41 65.4 41.68 55.66 86.88 55.66 86.88 55.66	19.62 23.1 df = 32 (P 01) 3.52 24.96 32.95 25.46 46.87 28.95 24.21 20.58 29.96 15.23 10.2 23.71 22.46 23.71 17.72 27.88 32.2 33.7 20.97	19 77 3018 < 0.0000 8 8 38 128 68 87 39 57 22 149 50 108 205 50 60 276 60 276 60 276 17 53 74 79	$76.5 \\ 41$ $01); I^{2} =$ $58.25 \\ 75.13 \\ 85.36 \\ 48.5 \\ 95.42 \\ 60.65 \\ 54.41 \\ 41.1 \\ 88 \\ 46.92 \\ 50.4 \\ 60.15 \\ 54.41 \\ 41.1 \\ 88 \\ 46.92 \\ 50.4 \\ 60.15 \\ 54.41 \\ 41.1 \\ 88 \\ 46.92 \\ 50.4 \\ 60.65 \\ 54.41 \\ 41.1 \\ 88 \\ 46.92 \\ 50.4 \\ 60.65 \\ 54.41 \\ 41.1 \\ 88 \\ 46.92 \\ 50.4 \\ 60.65 \\ 54.41 \\ 41.1 \\ 88 \\ 46.92 \\ 50.4 \\ 60.15 \\ 60.16 \\ 60 \\ 10.16 \\ 10.$	17.71 17.9 97%) 15.9 31.2 34.44 19.49 40.39 26.21 30.2 13.31 31.16 13.48 15 23.96 29.45 14.73 11.23 27.41 38.44 16.22 23.46	10 29 3925 8 61 493 82 92 25 72 50 50 166 205 400 30 884 400 30 884 47 68 80	$\begin{array}{c} 1.2\\ 1.4\\ \textbf{45-6}\\ \end{array}$	$\begin{array}{c} -3.70 \left(-17.78, 10.38\right) \\ 2.30 \left(-6.01, 10.61\right) \\ -12.34 \left(-17.97, -6.71\right) \\ \end{array}$	
Vang (2016) rennan-Sperenzaa (2017) vong (2017) ubtotal (95 % CI) leterogeneity: $\tau^2 = 250.33$; $\chi^2 =$ est for overall effect: $Z = 4.29$ (Muscle pain Benson (2006) Duell (2008) Ahmed (2009) Tandeter (2009) de Rezende Pena (2010) Linde (2010) Backes (2011) RIphagen (2012) Azali (2013) Olama (2013) Eisen (2014) Mateos (2014) Mergenhagen (2014) Sezgin Ozcan (2014) Sezgin Ozcan (2014) Shantha (2014) Tasoglu (2015) Kasapoğlu Aksoy (2017) Maafi (2016) Ovesjo (2016)	48.67 72.8 43.3 940.79, P<0.000 40.88 51.17 71.39 54.29 93.62 70.39 53.41 45.34 63.75 37.69 47.8 57.41 65.4 41.68 55.66 86.88 55.66 86.88 55.66 86.293 32.45 50	19.62 23.1 df = 32 (P 01) 3.52 24.96 32.95 25.46 46.87 28.95 24.21 20.58 29.96 15.23 10.2 23.71 12.246 23.71 17.72 27.88 32.2 23.77 17.72 27.88	19 77 3018 <0.0000 8 8 38 128 68 87 39 57 22 149 50 108 205 50 60 276 17 53 4 79 16	$76.5 \\ 41$ $01); I^{2} =$ $58.25 \\ 75.13 \\ 85.36 \\ 48.5 \\ 95.42 \\ 60.65 \\ 54.41 \\ 41.1 \\ 88 \\ 46.92 \\ 50.4 \\ 60.15 \\ 54.41 \\ 41.1 \\ 88 \\ 46.92 \\ 50.4 \\ 60.15 \\ 54.41 \\ 41.1 \\ 88 \\ 46.92 \\ 50.4 \\ 60.65 \\ 54.41 \\ 41.1 \\ 88 \\ 46.92 \\ 50.4 \\ 60.65 \\ 54.41 \\ 41.1 \\ 88 \\ 46.92 \\ 50.4 \\ 60.65 \\ 54.41 \\ 41.1 \\ 88 \\ 46.92 \\ 50.4 \\ 60.15 \\ 60.16 \\ 60 \\ 10.16 \\ 10.$	17.71 17.9 97%) 15.9 31.2 34.44 19.49 40.39 26.21 30.2 13.31 31.16 13.48 15 23.96 29.45 14.73 11.23 27.41 38.44 16.22 23.46 21.07 15.23	10 29 3925 8 61 493 82 92 53 290 50 166 205 400 30 884 23 47 884 23 47 880 111	$\begin{array}{c} 1.2\\ 1.4\\ \textbf{45-6}\\ \end{array}$	$\begin{array}{c} -3.70 \left(-17.78, 10.38\right) \\ 2.30 \left(-6.01, 10.61\right) \\ -12.34 \left(-17.97, -6.71\right) \\ \end{array}$	
Vang (2016) rennan-Sperenzaa (2017) vong (2017) ubtotal (95 % CI) leterogeneity: $\tau^2 = 250.33$; $\chi^2 =$ est for overall effect: $Z = 4.29$ (Muscle pain Benson (2006) Duell (2008) Ahmed (2009) Tandeter (2009) de Rezende Pena (2010) Linde (2010) Backes (2011) RIphagen (2012) Azali (2013) Olama (2013) Diama (2013) Eisen (2014) Mateos (2014) Mergenhagen (2014) Sezgin Ozcan (2014) Sezgin Ozcan (2014) Shantha (2014) Tasoglu (2015) Kasapoğlu Aksoy (2017) Maafi (2016) Ovesjo (2016) Yildirim (2016)	$\begin{array}{c} 48.67\\72.8\\43.3\\940.79,\\(P<0.000\\\\40.88\\51.17\\71.39\\54.29\\93.62\\70.39\\53.41\\45.34\\63.75\\37.69\\47.8\\57.41\\65.4\\41.68\\55.66\\86.88\\55.66\\42.93\\32.45\\50\\39.19\end{array}$	19.62 23.1 df = 32 (P 01) 3.52 24.96 32.95 25.46 46.87 28.95 24.21 20.58 29.96 15.23 10.2 23.71 17.72 27.88 32.2 33.7 20.97 16 17.97	19 77 3018 <0.0000 8 8 38 128 68 87 39 57 22 149 50 108 205 50 60 276 17 53 74 79 16 99	$76.5 \\ 41$ $01); I^{2} =$ $58.25 \\ 75.13 \\ 85.36 \\ 48.5 \\ 95.42 \\ 60.65 \\ 54.41 \\ 41.1 \\ 88 \\ 46.92 \\ 50.4 \\ 60.15 \\ 90.36 \\ 53.91 \\ 84.36 \\ 79.62 \\ 65.64 \\ 24.71 \\ 40.19 \\ 60 \\ 51.42 $	17.71 17.9 97%) 15.9 31.2 34.44 19.49 40.39 26.21 30.2 13.31 31.16 13.48 15 23.96 29.45 14.73 11.23 27.41 38.44 16.22 23.46 21.07 15.23	10 29 3925 8 61 493 82 92 53 290 50 166 205 400 30 884 23 47 68 80 111 99	$\begin{array}{c} 1.2\\ 1.4\\ \textbf{45-6}\\ \end{array}$	$\begin{array}{c} -3.70 \left(-17.78, 10.38\right) \\ 2.30 \left(-6.01, 10.61\right) \\ -12.34 \left(-17.97, -6.71\right) \\ \end{array}$	
Vang (2016) vennan-Sperenzaa (2017) vong (2017) ubtotal (95 % CI) leterogeneity: τ^2 = 250·33; χ^2 = est for overall effect: Z=4·29 (Muscle pain Benson (2006) Duell (2008) Ahmed (2009) Tandeter (2009) de Rezende Pena (2010) Linde (2010) Backes (2011) Riphagen (2012) Azali (2013) Olama (2013) Eisen (2014) Mateos (2014) Mergenhagen (2014) Sezgin Ozcan (2014) Shantha (2014) Tasoglu (2015) Kasapoğlu Aksoy (2017) Maafi (2016) Okyay (2016) Okyay (2016) Cyesjo (2017) Subtotal (95 % CI)	48.67 72.8 43.3 940.79, (P<0.000 40.88 51.17 71.39 54.29 93.62 70.39 53.41 45.34 63.75 37.69 47.8 57.41 65.4 41.68 55.66 86.86 642.93 32.45 50 39.19 48.42	19.62 23.1 df = 32 (P 01) 3.52 24.96 32.95 25.46 46.87 28.95 24.21 20.58 29.96 15.23 10.2 23.71 22.46 15.23 10.2 23.71 22.46 3.77 20.97 16 17.97 23.98	19 77 3018 <0.0000 8 8 38 128 68 87 39 57 22 149 50 108 205 50 60 2766 17 53 74 79 16 942 1723	$76.5 \\ 41$ $01); I^2 =$ $58.25 \\ 75.13 \\ 85.36 \\ 48.5 \\ 95.42 \\ 60.65 \\ 54.41 \\ 41.1 \\ 88 \\ 46.92 \\ 50.4 \\ 60.15 \\ 90.36 \\ 53.91 \\ 84.36 \\ 79.62 \\ 65.64 \\ 24.71 \\ 40.19 \\ 60 \\ 51.42 \\ 80.12 $	17.71 17.9 97%) 15.9 31.2 34.44 19.49 40.39 26.21 3.31 31.16 13.48 15 23.96 29.45 14.73 11.23 27.41 38.44 16.22 23.46 21.07 15.23 37.19	10 29 3925 8 61 493 82 92 25 72 53 290 50 166 205 400 304 23 47 68 80 111 995 3784	$\begin{array}{c} 1.2\\ 1.4\\ \textbf{45-6}\\ \end{array}$	$\begin{array}{c} -3.70 \left(-17.78, 10.38\right)\\ 2.30 \left(-6.01, 10.61\right)\\ -12.34 \left(-17.97, -6.71\right)\\ \end{array}$	
fang (2016) rennan-Sperenzaa (2017) long (2017) ubtotal (95 % CI) eterogeneity: τ^2 =250·33; χ^2 = sest for overall effect: Z=4·29 (<u>Muscle pain</u> Benson (2006) Duell (2008) Ahmed (2009) Fandeter (2009) de Rezende Pena (2010) .inde (2010) Backes (2011) Blphagen (2012) Azali (2013) Diama (2013) Eisen (2014) Mergenhagen (2014) Sezgin Ozcan (2014) Shantha (2014) Fasoglu (2015) Kasapoğlu Aksoy (2017) Maafi (2016) Dkyay (2016) Cidirim (2016) Calza (2017)	$\begin{array}{r} 48.67\\ 72.8\\ 43.3\\ 940.79, \\ (P<0.00)\\ 40.88\\ 51.17\\ 71.39\\ 54.29\\ 93.62\\ 70.39\\ 53.41\\ 45.34\\ 63.75\\ 37.69\\ 47.8\\ 57.41\\ 65.4\\ 41.68\\ 55.66\\ 86.86\\ 55.66\\ 42.93\\ 32.45\\ 550\\ 39.19\\ 48.42\\ \end{array}$	19.62 23.1 df = 32 (P 01) 3.52 24.96 32.95 25.46 46.87 28.95 24.21 20.58 29.96 15.23 10.2 23.71 22.46 23.71 22.46 23.71 22.788 32.2 33.7 20.97 167 7.97 167 7.93,98 43, df = 2	19 77 3018 <0.0000 8 8 38 128 68 87 39 57 22 149 50 108 205 50 60 2766 17 53 74 79 16 942 1723	$76.5 \\ 41$ $01); I^2 =$ $58.25 \\ 75.13 \\ 85.36 \\ 48.5 \\ 95.42 \\ 60.65 \\ 54.41 \\ 41.1 \\ 88 \\ 46.92 \\ 50.4 \\ 60.15 \\ 90.36 \\ 53.91 \\ 84.36 \\ 79.62 \\ 65.64 \\ 24.71 \\ 40.19 \\ 60 \\ 51.42 \\ 80.12 $	17.71 17.9 97%) 15.9 31.2 34.44 19.49 40.39 26.21 3.31 31.16 13.48 15 23.96 29.45 14.73 11.23 27.41 38.44 16.22 23.46 21.07 15.23 37.19	10 29 3925 8 61 493 82 92 25 72 53 290 50 166 205 400 304 23 47 68 80 111 995 3784	$\begin{array}{c} 1.2\\ 1.4\\ \textbf{45-6}\\ \end{array}$	$\begin{array}{c} -3.70 \left(-17.78, 10.38\right)\\ 2.30 \left(-6.01, 10.61\right)\\ -12.34 \left(-17.97, -6.71\right)\\ \end{array}$	
ang (2016) ennan-Sperenzaa (2017) ong (2017) Jubtal (95 % CI) sterogeneity: $\tau^2 = 250.33; \chi^2 =$ st for overall effect: Z=4.29 (Auscle pain Benson (2006) Duell (2008) whmed (2009) andeter (2009) le Rezende Pena (2010) inde (2010) Backes (2011) Nphagen (2012) Azali (2013) Eisen (2014) Mateos (2014) Mateos (2014) Mateos (2014) Mateos (2014) Asaoglu (2015) Kasapoğlu Aksoy (2017) Maafi (2016) Divaya (2016) Divalz (2017) Subtotal (95 % CI) Heterogeneity: $\tau^2 = 182.10; \chi^2$	$\begin{array}{r} 48.67\\ 72.8\\ 43.3\\ 940.79, \\ (P<0.00)\\ 40.88\\ 51.17\\ 71.39\\ 54.29\\ 93.62\\ 70.39\\ 53.41\\ 45.34\\ 63.75\\ 37.69\\ 47.8\\ 57.41\\ 65.4\\ 41.68\\ 55.66\\ 86.86\\ 55.66\\ 42.93\\ 32.45\\ 550\\ 39.19\\ 48.42\\ \end{array}$	19.62 23.1 df = 32 (P 01) 3.52 24.96 32.95 25.46 46.87 28.95 24.21 20.58 29.96 15.23 10.2 23.71 22.46 23.71 22.46 23.71 22.788 32.2 33.7 20.97 167 7.97 167 7.93,98 43, df = 2	19 77 3018 <0.0000 8 8 38 128 68 87 39 57 22 149 50 108 205 50 60 2766 17 53 74 79 16 942 1723	$76.5 \\ 41$ $01); I^2 =$ $58.25 \\ 75.13 \\ 85.36 \\ 48.5 \\ 95.42 \\ 60.65 \\ 54.41 \\ 41.1 \\ 88 \\ 46.92 \\ 50.4 \\ 60.15 \\ 90.36 \\ 53.91 \\ 84.36 \\ 79.62 \\ 65.64 \\ 24.71 \\ 40.19 \\ 60 \\ 51.42 \\ 80.12 $	17.71 17.9 97%) 15.9 31.2 34.44 19.49 40.39 26.21 3.31 31.16 13.48 15 23.96 29.45 14.73 11.23 27.41 38.44 16.22 23.46 21.07 15.23 37.19	10 29 3925 8 61 493 82 92 25 72 53 290 50 166 205 400 304 23 47 68 80 111 995 3784	$\begin{array}{c} 1.2\\ 1.4\\ \textbf{45-6}\\ \end{array}$	$\begin{array}{c} -3.70 \left(-17.78, 10.38\right)\\ 2.30 \left(-6.01, 10.61\right)\\ -12.34 \left(-17.97, -6.71\right)\\ \end{array}$	

Fig. 2 (colour online) Meta-analysis of the difference in mean serum vitamin D concentration (nmol/l) between participants with and without pain-related conditions. The study-specific mean difference (MD) and 95 % CI are represented by the square and horizontal line, respectively; the centre of the diamond represents the pooled MD and its width represents the pooled 95 % CI. IV denotes inverse variance; random denotes random-effects model

Vitamin D concentration and pain

		With pain		W	ithout pa	ain		MD (95% CI)	MD (95% CI)
Subgroup/study ID	Mean	SD	Total	Mean	SD	Total	Weight (%)	IV, random	IV, random
Chronic widespread pain									
Lotfi (2007)	90.36	15.48	60	99·34	17.22	20	1.4	-8.98 (-17.48, -0.48)	
Golan (2009)	43.43	23.48	51	49.67	26.46	49	1.3	-6.24 (-16.06, 3.58)	+
Heidari (2010)	59.4	72.63	276	82.62	70.89	202	1.2	-23.22 (-36.22, -10.22)	
McBeth (2010)	61.58	31.82	1813	63·9	31·2	1262	1.6	-2.32 (-4.58, -0.06)	-
Al-Jarallah (2013)	27.61	13.06	124	25.82	15.06	82	1.5	1.79 (-2.20, 5.78)	+
Rkain (2013)	42.18	17.47	105	46.92	23.46	44	1.4	-4·74 (-12·44, 2·96)	
Baykara (2014)	27.21	19.84	60	59.9	27.18	30	1.3	-32.69 (-43.64, -21.74)	
Madani (2014)	39.31	50.27	178	66.14	65.4	22	0.6	-26.83 (-55.14, 1.48)	
Singer (2014)	110.32	46.28	26	122·9	39.34	24	0.8	-12.58 (-35.85, 10.69)	
Alipour (2015)	73.63	67.64	666	70.14	69.89	191	1.3	3.49 (-7.67, 14.65)	- -
Hirani (2015)	54.3	21	480	56.7	22.7	1136	1.6	-2.40 (-4.70, -0.10)	-
Lodh (2015)	88·01	70.6	200	109.55	16.88	200	1.3	-21.54 (-31.60, -11.48)	
Thorneby (2016)	81	27	44	80	25	44	1.3	1.00 (-9.87, 11.87)	+-
Subtotal (95 % CI)			4085			3306	16.7	-7·77 (-11·97, -3·57)	•
Heterogeneity: $\tau^2 = 35.45$; χ^2 Test for overall effect: $Z = 3.63$			0.0000	1); <i>I</i> ² = 8	1%				
	- (,							
Headache or migraine									
Kjaergaard 1 (2012)	69	21.99	907	68·8	20.4	1432	1.6	0.20 (-1.58, 1.98)	Ť
Kjaergaard 2 (2012)	53·5	17.1	3154	55.8	17·9	6121	1.6	-2·30 (-3·05, -1·55)	•
Celikbilek (2014)	95.05	43.13		119.88		49	0.9	-24.83 (-43.90, -5.76)	
Zandifar (2014)	33.82	23.27	105		31.15	110	1.4	0.90 (-6.43, 8.23)	+
Virtanen (2017)	38.3	18.8	250	43.9	18-9	2351	1.6	-5·60 (-8·05, -3·15)	Ţ
Subtotal (95 % CI)			4468	_		10063	7.1	–2·53 (–5·13, 0·07)	•
Heterogeneity: $\tau^2 = 5.12$; $\chi^2 =$			0004); <i>l'</i>	² =81%					
Test for overall effect: $Z = 1.9$	91 (<i>P</i> = 0·06	6)							
Total (95% CI)			13 294			21 078	100-0	–10·36 (–13·28, –7·44)	•
Heterogeneity: $\tau^2 = 139.73$; χ^2	² = 2077·10), df = 72	(P < 0.0)	0001); / ²	² =97%			100	
Test for overall effect: $Z = 6.9$	5 (P<0.00	001)						-100	-50 0 50 100 With pain Without pain
Test for subgroup differences	s: $\chi^2 = 13.13$	3, df = 3	(P = 0.0)	04), $I^2 = -$	77.1%				MD (95 % CI)
- ·			-						

Fig. 2 continued

pain and chronic widespread pain, but not for headache or migraine; and also increased for each of the study designs (cross-sectional, case–control and cohort) and for statin users and non-users separately (Supplement 2, Supplemental Figs 3 and 4). There was a significant interaction associated with the 25(OH)D cut-off point (P=0.06), with studies that used cut-offs below 50 or 75 nmol/l reporting significantly increased odds of vitamin D deficiency in patients with pain, but not at a very low cut-off of <25 nmol/l, although there were only two studies in the latter group (Table 3; Supplement 2, Supplemental Fig. 5). Meta-regression analyses did not find any other covariables that were significantly associated with the log(OR) of vitamin D deficiency (Supplement 2, Supplemental Table 5).

Sensitivity analysis and publication bias

For the primary and secondary aims, sensitivity analyses found similar summary measures to those shown in Figs 2 and 3 when studies were individually excluded (see Supplement 2, Supplemental Tables 6 and 7). In addition, after excluding studies with poor quality, we observed similarly lower 25(OH)D levels in arthritis, muscle pain and chronic widespread pain patients than in their controls (see Supplement 2, Supplemental Table 6). There was no convincing evidence of publication bias from funnel plots (Supplement 2, Supplemental Figs 6 and 7), nor from the Egger's test for the primary and secondary aims (25(OH)D concentration: P values for publication bias were 0.49, 0.10, 0.17 and 0.66 for arthritis, muscle pain, chronic widespread pain, and headache or migraine conditions, respectively; while for the proportion of vitamin D deficiency: P values were 0.13, 0.64 and 0.06 for arthritis, muscle pain and chronic widespread pain conditions, respectively).

Discussion

Our results show lower mean 25(OH)D concentration among patients with widespread chronic pain, muscle pain and arthritis than among their controls (Fig. 2). This result was consistent with the increased odds of hypovitaminosis D associated with these three conditions (Fig. 3). In addition, our study found that the weighted MD in 25(OH)D concentration between patients with pain and control groups is large (arthritis: 12.34 nmol/l or 20% difference; muscle pain: 8.97 nmol/l or 14% difference; chronic widespread pain: 7.77 nmol/l or 11.7% difference) compared with disease-related differences in previous studies, such as those which have reported a $3 \text{ nmol/l} (5\%)^{(109)}$ and a 7 nmol/l (11%) difference⁽¹¹⁰⁾ between diabetes cases and controls. Overall, these results suggest that low vitamin D status may be associated with the development of painful conditions, with the overall

Table 3	Association	between	hypovitaminosis	D ar	nd painful	conditions
---------	-------------	---------	-----------------	------	------------	------------

				o. of cipants	Effect	estimate		
Category	Subgroup	No. of included studies	With pain	Without pain	OR	95 % CI	P value	Test of subgroup differences, <i>P</i> value
Pain conditions	Arthritis	21	2148	3411	2.17	1.56, 3.00	<0.001	0.06
	Muscle pain	16	1052	1712	2.03	1.24, 3.33	0.005	
	Chronic widespread pain	12	10722	9124	1.51	1.24, 1.85	<0.001	
	Headache or migraine	1	105	110	0.89	0.45, 1.76	0.73	
Study design	Cross-sectional	11	10500	9550	1.42	1.17, 1.73	<0.001	0.07
, ,	Case-control	36	3406	4615	2.08	1.59, 2.73	<0.001	
	Cohort	3	121	192	2.32	0.76, 7.10	0.14	
Statin use	Yes	7	659	1539	1.88	1.15, 3.10	0.01	0.94
	No	44	13368	12818	1.92	1.58, 2.33	<0.001	
Cut-off point (nmol/l)	25	2	428	639	1.26	0.93, 1.72	0.13	0.06
,	50	34	9398	7573	2.08	1.59, 2.71	<0.001	
	75	8	1999	4142	1.64	1.04, 2.57	0.03	

quality of the evidence being rated as moderate according to the Grading of Recommendations Assessment, Development and Evaluation (GRADE) criteria⁽¹¹¹⁾ because of the high heterogeneity, although there was no evidence of publication bias, the quality of studies was good and the association was strong (Supplement 2, Supplemental Tables 8 and 9).

Our findings are consistent with previous meta-analyses which found significantly lower 25(OH)D levels in patients on statin therapy with myalgia compared with those without⁽²⁰⁾ and a positive association between hypovitaminosis D and chronic widespread pain⁽²¹⁾. However, by including a further sixty-two studies in our meta-analysis (three studies that were included in the previous meta-analysis were excluded because of controls with pain conditions or no available data), we have extended previous meta-analyses to show that 25(OH)D levels are also lower in patients with pain not caused by statin therapy - for both the 25(OH)D concentration and hypovitaminosis D aims (Tables 2 and 3). The evidence for the primary aim from the five cohort studies⁽¹⁰⁴⁻¹⁰⁸⁾, which shows that low vitamin D levels at baseline predicted increased incidence of pain-related conditions (Table 2), supports a possible causal association. In addition, in analyses based on painful conditions, lower mean 25(OH)D levels were found in patients with arthritis, muscle pain and chronic widespread pain (compared with those without pain) for both primary and secondary aims, but not in patients with headache or migraine (Table 2). The latter finding could be due to chance because of the small number of studies (three cross-sectional comparisons from two publications, and two case-control studies) and further research is required to clarify this.

The strengths of the current meta-analysis include: (i) two aims that were predefined at the start of the study; (ii) a search of three electronic databases (MEDLINE, EMBASE and Cochrane Central Register of Controlled Trials), which reduces the possibility of missing relevant articles; (iii) assessment for publication bias by both funnel plots and Egger's test; (iv) inclusion of broader pain conditions, particularly studies of patients with pain who were not on statins; and (v) evaluation of the quality of included studies by the Newcastle–Ottawa scale.

Nevertheless, there are several limitations of the current meta-analysis. Most of the included studies were casecontrol or cross-sectional in design, which could have resulted in reverse causation between pain and lower vitamin D levels. Some studies reported medians, and not means and sD, and information may have been lost in the transfer process. In addition, the included studies lack or have limited adjustment for potential confounders, so the unadjusted association must be interpreted with caution as the spurious associations can be result from potential confounders.

Of major importance is the high heterogeneity observed in the meta-analysis. We tried to identify the sources of this using subgroup, meta-regression and sensitivity analyses, but it remained even when analysing studies by type of pain condition or study design. The high heterogeneity could partly be due to the higher heterogeneity often seen in meta-analyses of observational studies where there is variable control of confounding, compared with randomized controlled trials where effects from standard interventions congregate more closely; and also due to the relatively large number of studies (up to thirty-three) included in the pooled analyses which increases the opportunity for heterogeneity. In our view, this does not lessen the validity of our findings as the results of individual studies almost all go in the same direction (Supplement 2, Supplemental Figs 1 and 2). Further, we used a random-effects model which allows for between-study variation of effect in its calculations.

In addition, the definition of pain varied in each individual publication, so that combining them may also have contributed to the heterogeneity of our results. Therefore, more objective outcome measurements, such as consumption of analgesics as reported in previous studies which have found increased opioid use in people with

Vitamin D concentration and pain

Subgroup/study ID	With Events	pain Total	Withou Events	t pain Total	Weight	OR (95 % CI) (%) M-H, random	OR (95 % CI) M-H, random
Arthritis						()))	
Attar (2012)	90	100	89	100	4.3	1.11 (0.45, 2.75)	
Dong (2012)	43	72	19	58	4.9	3.04 (1.48, 6.27)	
Heidari (2012)	66	147	85	239	5.8	1.48 (0.97, 2.25)	- <u>-</u> -
Atwa (2013)	47	55	16	40	4.0	8.81 (3.30, 23.50)	
Drgaz-Molina (2013)	25	61	29	61	4.9	0.77 (0.37, 1.57)	
Cote (2014)	55	270	245	1341	6.0	1.14 (0.83, 1.59)	—
Heidari (2014)	118	167	127	286	5.8	3.01 (2.01, 4.53)	
Hiraki NHS (2014)	37	120	116	357	5.7	0.93 (0.59, 1.45)	
Hiraki NHSII (2014)	18	46	46	133	5.0	1.22 (0.61, 2.43)	
Hong (2014)	85	130	26	80	5.3	3.92 (2.17, 7.09)	
Sharma (2014)	72	80	56	80	4.4	3.86 (1.61, 9.23)	
Brance (2015)	12	34	17	41	4.2	0.77 (0.30, 1.97)	
Cen (2015)	100	116	15	50	4.6	14.58 (6.53, 32.54)	- I
Park (2015)	76	101	66	101	5.2	1.61 (0.88, 2.97)	
Petho (2015)	27	53	15	53	4.6	2.63 (1.18, 5.88)	
ragiz (2015)	73	92	53	62	4.4	0.65 (0.27, 1.55)	
Elbassiony (2016)	64	150	34	150	5.6	2.54 (1.54, 4.19)	
Gamal (2016)	12	55	5	25	3.5	1.12 (0.35, 3.60)	
Gheita (2016)	32	63	8	62	4.3	6.97 (2.86, 17.00)	
.iao (2016)	80	82	24	32	2.5	13.33 (2.65, 67.05)	—
Vang (2016)	75	154	18	60	5.1	2·22 (1·17, 4·19)	
Subtotal (95 % CI)		2148		3411	100-0	2·17 (1·56, 3·00)	◆
Fotal events	1207		1109				
Heterogeneity: $\tau^2 = 0.43$; $\chi^2 =$ Test for overall effect: $Z = 4.6$			0.00001);	/ ² =81%			
Auscle pain							
AI-Allaf (2003)	18	40	7	37	5.9	3.51 (1.25, 9.84)	_
Benson (2006)	.8	8	1	8	1.7	85.00 (2.99, 2417.50)	
Duell (2008)	24	38	11	61	6.2	7.79 (3.08, 19.70)	
Ahmed (2009)	82	128	214	493	7.6	2.32 (1.55, 3.48)	
Fandeter (2009)	30	68	42	82	7·0	0.75 (0.39, 1.43)	
. ,						,	<u> </u>
de Rezende Pena (2010)	15	87	10	92	6·4	1.71 (0.72, 4.04)	
inde (2010)	22	39	15	25	6.0	0.86 (0.31, 2.39)	
Backes (2011)	30	57	39	72	6.9	0.94 (0.47, 1.89)	
Azali (2013)	96	149	60	290	7.5	6.94 (4.47, 10.78)	-
Dlama (2013)	28	50	15	50	6.5	2.97 (1.30, 6.76)	
Eisen (2014)	13	106	20	166	6.8	1.02 (0.48, 2.15)	_
Sezgin Ozcan (2014)	45	60	12	30	6.2	4·50 (1·77, 11·47)	
Kasapoğlu Aksoy (2017)	33	53	27	47	6.6	1.22 (0.55, 2.72)	
Maafi (2016)	48	74	63	68	5.9	0.15 (0.05, 0.41)	
Okyay (2016)	63	79	51	80	6.9	2·24 (1·10, 4·57)	
Dvesjo (2016)	9	16	21	111	5.7	5·51 (1·84, 16·49)	
Subtotal (95 % CI)		1052		1712	100-0	2.03 (1.24, 3.33)	•
Fotal events	564		608			. , ,	
Heterogeneity: $\tau^2 = 0.80$; $\chi^2 =$		15 (P<∩		= 85 %			
Test for overall effect: $Z=2.8$,, 1	_00 /0			
Chronic widespread pain							
lacfarlane (2005)	7	8	71	101	0.8	2.96 (0.35, 25.10)	-
_otfi (2007)	49	60	12	20	2.8	2.97 (0.98, 8.99)	⊢
Hicks (2008)	99	420	107	538	13·9	1.24 (0.91, 1.69)	
Heidari (2010)	175	276	73	202	12.0	3.06 (2.10,4.47)	
AcBeth (2010)	426	1813	235	1262	17.8	1.34 (1.12, 1.60)	-
e Silva (2013)		6284		2992	19.6	1.14 (1.03, 1.26)	L
, ,	1580		682	44	5.2	2.38 (1.10, 5.12)	ſ
Rkain (2013)	83	105	27	57	3·2 4·5	1.22 (0.53, 2.82)	
aroche (2014)	62	77	44	57 22	4·5 3·0	,	
Madani (2014)	162	178	16			3·80 (1·30, 11·07)	
Singer (2014)	2	28	1	24	0.6	1.77 (0.15, 20.82)	
Morioka (2015)	1193	1429	3064	3818	18.2	1.24 (1.06, 1.46)	
Thorneby (2016)	3	44	4	44	1.5	0.73 (0.15, 3.48)	_
Subtotal (95 % CI)		10722		9124	100-0	1.51 (1.24, 1.85)	♥
Fotal events	3841		4336				
Heterogeneity: $\tau^2 = 0.05$; $\chi^2 = 1.000$ Fest for overall effect: $Z = 4.000$			•0002); <i>I</i> ² =	69%			
	,	,					
						0·01	0.1 1 10
						0.01	U 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
							With pain Without pain

Fig. 3 (colour online) Meta-analysis of the difference in the proportion of vitamin D deficiency between participants with and without pain-related conditions. The study-specific OR and 95% CI are represented by the square and horizontal line, respectively; the centre of the diamond represents the pooled OR and its width represents the pooled 95% CI. M-H denotes Mantel–Haenszel; random denotes random-effects model

vitamin D deficiency^(46,112), or use of validated questionnaires to assess pain severity and function⁽¹¹³⁾, would help to clarify the association between vitamin D levels and pain in future studies.

Conclusion

In conclusion, our meta-analysis of eighty-one observational studies suggests that low vitamin D concentration is associated with arthritis, muscle pain and chronic widespread pain. Further well-designed randomized controlled trials should be conducted to confirm the relationship between vitamin D levels and painful conditions.

Acknowledgements

Financial support: This research received no specific grant from any funding agency in the public, commercial or notfor-profit sectors. *Conflict of interest:* The authors declare no conflicts of interest related to this study. *Authorship:* Z.W. conceived the idea, carried out the meta-analyses and drafted the text; Z.M. edited the manuscript and assisted with searching and extracting data; A.W.S. edited the manuscript and advised on statistical methods; C.M.M.L. edited the manuscript; R.S. contributed to the manuscript and provided critical revision to the study. *Ethics of human subject participation:* Not applicable.

Supplementary material

To view supplementary material for this article, please visit https://doi.org/10.1017/S1368980018000551

References

- 1. International Association for the Study of Pain (1994) IASP Taxonomy. http://www.iasp-pain.org/Taxonomy#Pain (accessed January 2017).
- 2. Ehrlich GE (2003) Low back pain. Bull World Health Organ 81, 671–676.
- 3. Brooks PM (2006) The burden of musculoskeletal disease a global perspective. *Clin Rheumatol* **25**, 778–781.
- Stovner L, Hagen K, Jensen R *et al.* (2007) The global burden of headache: a documentation of headache prevalence and disability worldwide. *Cephalalgia* 27, 193–210.
- Phillips CJ (2009) The cost and burden of chronic pain. *Rev Pain* 3, 2–5.
- Clauw DJ (2014) Fibromyalgia: a clinical review. JAMA 311, 1547–1555.
- Hoy D, March L, Brooks P *et al.* (2014) The global burden of low back pain: estimates from the Global Burden of Disease 2010 study. *Ann Rheum Dis* **73**, 968–974.
- Cross M, Smith E, Hoy D *et al.* (2014) The global burden of rheumatoid arthritis: estimates from the global burden of disease 2010 study. *Ann Rheum Dis* 73, 1316–1322.
- Borman P & Celiker R (1999) A comparative analysis of quality of life in rheumatoid arthritis and fibromyalgia. *J Musculoskelet Pain* 7, 5–14.

- Arnold LM, Crofford LJ, Mease PJ *et al.* (2008) Patient perspectives on the impact of fibromyalgia. *Patient Educ Couns* 73, 114–120.
- Woolf AD & Pfleger B (2003) Burden of major musculoskeletal conditions. *Bull World Health Organ* 81, 646–656.
- Yelin E (2003) Cost of musculoskeletal diseases: impact of work disability and functional decline. *J Rheumatol Suppl* 68, 8–11.
- Holick MF (2006) High prevalence of vitamin D inadequacy and implications for health. *Mayo Clinic Proc* 81, 353–373.
- 14. Simpson RU, Thomas GA & Arnold AJ (1985) Identification of 1,25-dihydroxyvitamin D_3 receptors and activities in muscle. *J Biol Chem* **260**, 8882–8891.
- Ross AC, Manson JE, Abrams SA *et al.* (2011) The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. *J Clin Endocrinol Metab* **96**, 53–58.
- Hilger J, Friedel A, Herr R *et al.* (2014) A systematic review of vitamin D status in populations worldwide. *Br J Nutr* 111, 23–45.
- Arabi A, El Rassi R & El-Hajj Fuleihan G (2010) Hypovitaminosis D in developing countries – prevalence, risk factors and outcomes. *Nat Rev Endocrinol* 6, 550–561.
- Hossein-nezhad A & Holick MF (2013) Vitamin D for health: a global perspective. *Mayo Clin Proc* 88, 720–755.
- Thacher TD & Clarke BL (2011) Vitamin D insufficiency. Mayo Clin Proc 86, 50–60.
- Michalska-Kasiczak M, Sahebkar A, Mikhailidis DP *et al.* (2015) Analysis of vitamin D levels in patients with and without statin-associated myalgia a systematic review and meta-analysis of 7 studies with 2420 patients. *Int J Cardiol* **178**, 111–116.
- Hsiao MY, Hung CY, Chang KV *et al.* (2015) Is serum hypovitaminosis D associated with chronic widespread pain including fibromyalgia? A meta-analysis of observational studies. *Pain Physician* 18, E877–E887.
- 22. Shipton EE & Shipton EA (2015) Vitamin D deficiency and pain: clinical evidence of low levels of vitamin D and supplementation in chronic pain states. *Pain Ther* **4**, 67–87.
- 23. Straube S, Derry S, Straube C *et al.* (2015) Vitamin D for the treatment of chronic painful conditions in adults. *Cochrane Database Syst Rev* **5**, CD007771.
- Wu Z, Malihi Z, Stewart AW *et al.* (2016) Effect of vitamin D supplementation on pain: a systematic review and metaanalysis. *Pain Physician* 19, 415–427.
- 25. Wells GA, Shea B, O'Connell D *et al.* (2000) The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. http://www.ohri. ca/programs/clinical_epidemiology/oxford.asp (accessed January 2017).
- Takahashi N & Hashizume M (2014) A systematic review of the influence of occupational organophosphate pesticides exposure on neurological impairment. *BMJ Open* 4, e004798.
- 27. Wan X, Wang W, Liu J *et al.* (2014) Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. *BMC Med Res Methodol* **14**, 135.
- Borenstein M, Hedges LV, Higgins JPT *et al.* (2010) A basic introduction to fixed-effect and random-effects models for meta-analysis. *Res Synth Metbods* 1, 97–111.
- Altman DG & Bland JM (2003) Interaction revisited: the difference between two estimates. *BMJ* **326**, 219.
- Egger M, Davey Smith G, Schneider M *et al.* (1997) Bias in meta-analysis detected by a simple, graphical test. *BMJ* **315**, 629–634.

- Macfarlane GJ, Palmer B, Roy D *et al.* (2005) An excess of widespread pain among South Asians: are low levels of vitamin D implicated? *Ann Rheum Dis* 64, 1217–1219.
- Duell PB & Connor WE (2008) Vitamin D deficiency is associated with myalgias in hyperlipidemic subjects taking statins. *Circulation* **118**, S470–S470.
- Hicks GE, Shardell M, Miller RR *et al.* (2008) Associations between vitamin D status and pain in older adults: the Invecchiare in Chianti study. *J Am Geriatr Soc* 56, 785–791.
- Ahmed W, Khan N, Glueck CJ *et al.* (2009) Low serum 25 (OH) vitamin D levels (<32 ng/mL) are associated with reversible myositis-myalgia in statin-treated patients. *Transl Res* 153, 11–16.
- Golan E, Haggiag I, Os P *et al.* (2009) Calcium, parathyroid hormone, and vitamin D: major determinants of chronic pain in hemodialysis patients. *Clin J Am Soc Nepbrol* 4, 1374–1380.
- Linde R, Peng L, Desai M *et al.* (2010) The role of vitamin D and SLCO1B1*5 gene polymorphism in statin-associated myalgias. *Dermatoendocrinology* 2, 77–84.
- 37. McBeth J, Pye SR, O'Neill TW *et al.* (2010) Musculoskeletal pain is associated with very low levels of vitamin D in men: results from the European Male Ageing Study. *Ann Rheum Dis* **69**, 1448–1452.
- Backes JM, Barnes BJ, Ruisinger JF *et al.* (2011) A comparison of 25-hydroxyvitamin D serum levels among those with or without statin-associated myalgias. *Atherosclerosis* 218, 247–249.
- Kjaergaard M, Eggen AE, Mathiesen EB et al. (2012) Association between headache and serum 25hydroxyvitamin D: the Tromsø Study: Tromsø 6. Headache 52, 1499–1505.
- Riphagen IJ, van der Veer E, Muskiet FA *et al.* (2012) Myopathy during statin therapy in the daily practice of an outpatient cardiology clinic: prevalence, predictors and relation with vitamin D. *Curr Med Res Opin* 28, 1247–1252.
- e Silva AV, Lacativa PG, Russo LA *et al.* (2013) Association of back pain with hypovitaminosis D in postmenopausal women with low bone mass. *BMC Musculoskelet Disord* 14, 184.
- 42. Eisen A, Lev E, Iakobishvilli Z *et al.* (2014) Low plasma vitamin D levels and muscle-related adverse effects in statin users. *Isr Med Assoc J* **16**, 42–45.
- Madani M, Alavi NM & Taghizadeh M (2014) Non-specific musculoskeletal pain and vitamin D deficiency in female nurses in Kashan, Iran. *J Musculoskelet Pain* 22, 268–274.
- 44. Alipour M, Hosseini SR, Saadat P *et al.* (2015) The relationship between chronic musculoskeletal pain and vitamin D deficiency in the elderly population of Amirkola, Iran. *J Babol Univ Med Sci* **17**, 7–14.
- Hirani V, Blyth FM, Naganathan V *et al.* (2015) Active vitamin D (1,25 dihydroxyvitamin D) is associated with chronic pain in older Australian men: the Concord Health and Ageing in Men Project. *J Gerontol A Biol Sci Med Sci* **70**, 387–395.
- Morioka TY, Lee AJ, Bertisch S *et al.* (2015) Vitamin D status modifies the association between statin use and musculoskeletal pain: a population based study. *Atherosclerosis* 238, 77–82.
- 47. Tasoglu O, Kutsal YG, Tasoglu I *et al.* (2015) Is vitamin D deficiency a risk factor for the development of statininduced myalgia in patients receiving statins? *Turk Fiz Tip Rehab D* **61**, 314–319.
- Virtanen JK, Giniatullin R, Mantyselka P *et al.* (2017) Low serum 25-hydroxyvitamin D is associated with higher risk of frequent headache in middle-aged and older men. *Sci Rep* 7, 39697.

- Pietschmann P, Machold KP, Wolosczuk W et al. (1989) Serum osteocalcin concentrations in patients with rheumatoid arthritis. Ann Rheum Dis 48, 654–657.
- 50. Muller K, Kriegbaum NJ, Baslund B *et al.* (1995) Vitamin D_3 metabolism in patients with rheumatic diseases: low serum levels of 25-hydroxyvitamin D_3 in patients with systemic lupus erythematosus. *Clin Rheumatol* **14**, 397–400.
- Al-Allaf AW, Mole PA, Paterson CR *et al.* (2003) Bone health in patients with fibromyalgia. *Rheumatology* 42, 1202–1206.
- Benson J, Wilson A, Stocks N *et al.* (2006) Muscle pain as an indicator of vitamin D deficiency in an urban Australian Aboriginal population. *Med J Aust* 185, 76–77.
- Cutolo M, Otsa K, Laas K *et al.* (2006) Circannual vitamin d serum levels and disease activity in rheumatoid arthritis: Northern versus Southern Europe. *Clin Exp Rheumatol* 24, 702–704.
- Lotfi A, Abdel-Nasser AM, Hamdy A et al. (2007) Hypovitaminosis D in female patients with chronic low back pain. Clin Rheumatol 26, 1895–1901.
- Tandeter H, Grynbaum M, Zuili I *et al.* (2009) Serum 25-OH vitamin D levels in patients with fibromyalgia. *Isr Med Assoc J* 11, 339–342.
- de Rezende Pena C, Grillo LP & das Chagas Medeiros MM (2010) Evaluation of 25-hydroxyvitamin D serum levels in patients with fibromyalgia. *Clin Rheumatol* 16, 365–369.
- Heidari B, Shirvani JS, Firouzjahi A *et al.* (2010) Association between nonspecific skeletal pain and vitamin D deficiency. *Int J Rheum Dis* 13, 340–346.
- Turhanoglu AD, Guler H, Yonden Z *et al.* (2011) The relationship between vitamin D and disease activity and functional health status in rheumatoid arthritis. *Rheumatol Int* **31**, 911–914.
- Attar SM (2012) Vitamin D deficiency in rheumatoid arthritis. Prevalence and association with disease activity in Western Saudi Arabia. *Saudi Med J* 33, 520–525.
- 60. Baykal T, Senel K, Alp F *et al.* (2012) Is there an association between serum 25-hydroxyvitamin D concentrations and disease activity in rheumatoid arthritis? *Bratisl Lek Listy* **113**, 610–611.
- Dong H, Xu L & Bi L (2012) An investigation on vitamin D levels in peripheral blood in rheumatoid arthritis. Wei Sheng Yen Chiu 41, 313–315.
- Heidari B, Hajian-Tilaki K & Heidari P (2012) The status of serum vitamin D in patients with rheumatoid arthritis and undifferentiated inflammatory arthritis compared with controls. *Rheumatol Int* **32**, 991–995.
- Kostoglou-Athanassiou I, Athanassiou P, Lyraki A et al. (2012) Vitamin D and rheumatoid arthritis. Ther Adv Endocrinol Metabol 3, 181–187.
- Al-Jarallah K, Shehab D, Abraham M *et al.* (2013) Musculoskeletal pain: should physicians test for vitamin D level? *Int J Rheum Dis* 16, 193–197.
- 65. Atwa MA, Balata MG, Hussein AM *et al.* (2013) Serum 25hydroxyvitamin D concentration in patients with psoriasis and rheumatoid arthritis and its association with disease activity and serum tumor necrosis factor-α. *Saudi Med J* **34**, 806–813.
- 66. Azali P, Barbasso Helmers S, Kockum I *et al.* (2013) Low serum levels of vitamin D in idiopathic inflammatory myopathies. *Ann Rheum Dis* **72**, 512–516.
- 67. Olama SM, Senna MK, Elarman MM *et al.* (2013) Serum vitamin D level and bone mineral density in premenopausal Egyptian women with fibromyalgia. *Rheumatol Int* **33**, 185–192.
- 68. Orgaz-Molina J, Magro-Checa C, Rosales-Alexander JL et al. (2013) Association of 25-hydroxyvitamin D serum levels and metabolic parameters in psoriatic patients

with and without arthritis. J Am Acad Dermatol 69, 938–946.

- Rkain H, Bouaddi I, Ibrahimi A *et al.* (2013) Relationship between vitamin D deficiency and chronic low back pain in postmenopausal women. *Curr Rheumatol Rev* 9, 63–67.
- Yazmalar L, Ediz L, Alpayci M *et al.* (2013) Seasonal disease activity and serum vitamin D levels in rheumatoid arthritis, ankylosing spondylitis and osteoarthritis. *Afr Health Sci* 13, 47–55.
- Baykara B, Dilek B, Nas K *et al.* (2014) Vitamin D levels and related factors in patients with chronic nonspecific low back pain. *J Musculoskelet Pain* 22, 160–169.
- Celikbilek A, Gocmen AY, Zararsiz G *et al.* (2014) Serum levels of vitamin D, vitamin D-binding protein and vitamin D receptor in migraine patients from central Anatolia region. *Int J Clin Prac* 68, 1272–1277.
- 73. Chen J, Liu W, Lin Q *et al.* (2014) Vitamin D deficiency and low bone mineral density in native Chinese rheumatoid arthritis patients. *Int J Rheum Dis* **17**, 66–70.
- 74. Cote J, Berger A, Kirchner LH *et al.* (2014) Low vitamin D level is not associated with increased incidence of rheumatoid arthritis. *Rheumatol Int* **34**, 1475–1479.
- 75. Heidari B, Heidari P & Tilaki KH (2014) Relationship between unexplained arthralgia and vitamin D deficiency: a case control study. *Acta Med Iran* **52**, 400–405.
- 76. Hiraki LT, Arkema EV, Cui J *et al.* (2014) Circulating 25hydroxyvitamin D level and risk of developing rheumatoid arthritis. *Rheumatology* **53**, 2243–2248.
- Hong Q, Xu J, Xu S *et al.* (2014) Associations between serum 25-hydroxyvitamin D and disease activity, inflammatory cytokines and bone loss in patients with rheumatoid arthritis. *Rheumatology* 53, 1994–2001.
- Mateos F, Valero C, Olmos JM *et al.* (2014) Bone mass and vitamin D levels in women with a diagnosis of fibromyalgia. *Osteoporos Int* 25, 525–533.
- Sezgin Ozcan D, Oken O, Aras M *et al.* (2014) Vitamin D levels in women with fibromyalgia and relationship between pain, depression, and sleep. *Turk Fiz Tip Rebab* D 60, 329–334.
- Sharma R, Saigal R, Goyal L *et al.* (2014) Estimation of vitamin D levels in rheumatoid arthritis patients and its correlation with the disease activity. *J Assoc Physicians India* 62, 678–681.
- Zandifar A, Masjedi SS, Banihashemi M *et al.* (2014) Vitamin D status in migraine patients: a case–control study. *BioMed Res Int* 2014, 514782.
- Brance ML, Brun LR, Lioi S *et al.* (2015) Vitamin D levels and bone mass in rheumatoid arthritis. *Rheumatol Int* 35, 499–505.
- Cen X, Liu Y, Yin G *et al.* (2015) Association between serum 25-hydroxyvitamin D level and rheumatoid arthritis. *BioMed Res Int* 2015, 913804.
- Gullo A, Mandraffino G, Bagnato G *et al.* (2015) Vitamin D status in rheumatoid arthritis: inflammation, arterial stiffness and circulating progenitor cell number. *PLoS One* 10, e0134602.
- Lodh M, Goswami B, Mahajan RD *et al.* (2015) Assessment of vitamin D status in patients of chronic low back pain of unknown etiology. *Indian J Clin Biochem* **30**, 174–179.
- Matsumoto Y, Sugioka Y, Tada M *et al.* (2015) Relationships between serum 25-hydroxycalciferol, vitamin D intake and disease activity in patients with rheumatoid arthritis – TOMORROW study. *Mod Rheumatol* 25, 246–250.
- 87. Park YE, Kim BH, Lee SG *et al.* (2015) Vitamin D status of patients with early inflammatory arthritis. *Clin Rheumatol* **34**, 239–246.
- Petho Z, Kulcsar-Jakab E, Kalina E *et al.* (2015) Vitamin D status in men with psoriatic arthritis: a case–control study. *Osteoporos Int* 26, 1965–1970.

- 89. Yagiz AE, Ustun N, Paksoy H *et al.* (2015) Association of vitamin D with disease activity in rheumatoid arthritis and ankylosing spondylitis. *J Clin Anal Med* **6**, 486–489.
- 90. Askari A, Naghizadeh MM, Homayounfar R *et al.* (2016) Increased serum levels of IL-17A and IL-23 are associated with decreased vitamin D_3 and increased pain in osteoarthritis. *PLoS One* **11**, e0164757.
- 91. Elbassiony SR, Tawhid Z, Ahmad HS *et al.* (2016) Serum 25-hydroxy vitamin D levels in Egyptian patients with rheumatoid arthritis: association with disease activity, functional disability and radiological damage. *Egyptian Rheumatol* **38**, 133–139.
- 92. Gamal RM, Gaber W, Sayed S *et al.* (2016) Vitamin D status in Egyptian patients with rheumatoid arthritis. *Aktuelle Rheumatologie* **41**, 492–498.
- 93. Gheita TA, Sayed S, Gheita HA *et al.* (2016) Vitamin D status in rheumatoid arthritis patients: relation to clinical manifestations, disease activity, quality of life and fibro-myalgia syndrome. *Int J Rheum Dis* **19**, 294–299.
- Kasapoğlu Aksoy M, Altan L & Okmen Metin B (2017) The relationship between balance and vitamin 25(OH)D in fibromyalgia patients. *Mod Rheumatol* 27, 868–874.
- Liao H, Pan L, Ci W *et al.* (2016) Clinical significance of serum 25-hydroxyvitamin D in female patients with rheumatoid arthritis. *Zhonghua Yi Xue Za Zhi* 96, 181–184.
- Maafi AA, Ghavidel-Parsa B, Haghdoost A *et al.* (2016) Serum vitamin D status in Iranian fibromyalgia patients: according to the symptom severity and illness invalidation. *Korean J Pain* 29, 172–178.
- Okyay R, Kocyigit BF & Gursoy S (2016) Vitamin D levels in women with fibromyalgia and relationship between pain, tender point count and disease activity. *Acta Med Mediterr* 32, 243–247.
- Thorneby A, Nordeman LM & Johanson EH (2016) No association between level of vitamin D and chronic low back pain in Swedish primary care: a cross-sectional case– control study. *Scand J Prim Health Care* 34, 196–204.
- 99. Wang Y, Zhang F, Wang S *et al.* (2016) Serum vitamin D level is inversely associated with anti-cyclic citrullinated peptide antibody level and disease activity in rheumatoid arthritis patients. *Arch Rheumatol* **31**, 64–70.
- 100. Yildirim T, Solmaz D, Akgol G *et al.* (2016) Relationship between mean platelet volume and vitamin D deficiency in fibromyalgia. *Biomed Res* **27**, 1265–1270.
- Brennan-Speranza TC, Mor D, Mason RS *et al.* (2017) Skeletal muscle vitamin D in patients with end stage osteoarthritis of the knee. *J Steroid Biochem Mol Biol* **173**, 180–184.
- 102. Wong TH, Gupta ED, Radhakrishnan AK *et al.* (2017) Effects of 25-hydroxyvitamin D and vitamin D-binding protein on bone mineral density and disease activity in Malaysian patients with rheumatoid arthritis. *Int J Rheum Dis.* Published online: 20 February 2017. doi: 10.1111/ 1756-185X.13048.
- 103. Laroche F, Coste J, Medkour T *et al.* (2014) Classification of and risk factors for estrogen deprivation pain syndromes related to aromatase inhibitor treatments in women with breast cancer: a prospective multicenter cohort study. *J Pain* **15**, 293–303.
- 104. Mergenhagen K, Ott M, Heckman K *et al.* (2014) Low vitamin D as a risk factor for the development of myalgia in patients taking high-dose simvastatin: a retrospective review. *Clin Ther* **36**, 770–777.
- Shantha GPS, Ramos J, Thomas-Hemak L *et al.* (2014) Association of vitamin D and incident statin induced myalgia – a retrospective cohort study. *PLoS One* **9**, e88877.
- 106. Singer O, Cigler T, Moore AB *et al.* (2014) Hypovitaminosis D is a predictor of aromatase inhibitor musculoskeletal symptoms. *Breast J* 20, 174–179.

- 107. Ovesjo ML, Skilving I, Bergman P *et al.* (2016) Low vitamin D levels and genetic polymorphism in the vitamin D receptor are associated with increased risk of statininduced myopathy. *Basic Clin Pharmacol Toxicol* **118**, 214–218.
- Calza L, Magistrelli E, Colangeli V *et al.* (2017) Significant association between statin-associated myalgia and vitamin D deficiency among treated HIV-infected patients. *AIDS* 31, 681–688.
- 109. Deleskog A, Hilding A, Brismar K *et al.* (2012) Low serum 25-hydroxyvitamin D level predicts progression to type 2 diabetes in individuals with prediabetes but not with normal glucose tolerance. *Diabetologia* **55**, 1668–1678.
- 110. Gagnon C, Lu ZX, Magliano DJ *et al.* (2011) Serum 25-hydroxyvitamin D, calcium intake, and risk of type 2 diabetes after 5 years: results from a national, population-based prospective study (the Australian

Diabetes, Obesity and Lifestyle study). *Diabetes Care* **34**, 1133–1138.

- 111. Guyatt GH, Oxman AD, Vist GE *et al.* (2008) GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. *BMJ* **336**, 924–926.
- 112. Bergman P, Sperneder S, Hoijer J *et al.* (2015) Low vitamin D levels are associated with higher opioid dose in palliative cancer patients results from an observational study in Sweden. *PLoS One* **10**, e0128223.
- 113. Hawker GA, Mian S, Kendzerska T *et al.* (2011) Measures of Adult Pain Visual Analog Scale for Pain (VAS Pain), Numeric Rating Scale for pain (NRS Pain), McGill Pain Questionnaire (MPQ), Short-Form McGill Pain Questionnaire (SF-MPQ), Chronic Pain Grade Scale (CPGS), Short Form-36 Bodily Pain Scale (SF-36 BPS), and Measure of Intermittent and Constant Osteoarthritis Pain (ICOAP). *Arthrit Care Res (Hoboken)* **63**, Suppl. 11, S240–S252.