MODULAR REPRESENTATIONS OF FINITE GROUPS WITH UNSATURATED SPLIT (B, N)-PAIRS

N. B. TINBERG

1. Introduction. Let p be a prime number. A finite group $G=$ (G, B, N, R, U) is called a split (B, N)-pair of characteristic p and rank n if
(i) G has a (B, N)-pair (see [3, Definition 2.1, p. B-8]) where $H=B \cap N$ and the Weyl group $W=N / H$ is generated by the set $R=\left\{w_{1}, \ldots, w_{n}\right\}$ of "special generators."
(ii) $H=\bigcap_{n \in N} n^{-1} B n$.
(iii) There exists a p-subgroup U of G such that $B=U H$ is a semidirect product, $U \unlhd B$ and H is abelian with order prime to p.

A (B, N)-pair satisfying (ii) is called a saturated (B, N)-pair. We call a finite group G which satisfies (i) and (iii) an unsaturated split (B, N)pair. (Unsaturated means "not necessarily saturated".) If $C=$ $\cap_{n \in N} n^{-1} U n$ then G has a (saturated) split (B, N)-pair if and only if $C=1$.

We are interested in studying the irreducible modular representations of unsaturated split (B, N) -pairs over an algebraically closed field k of characteristic p. Curtis ([3]) and Richen ([7]) have dealt with the saturated case. Unsaturated split (B, N)-pairs arise, for example, as the (B, N)-pairs of parabolic subgroups of groups with split (B, N)-pairs. It is true that any unsaturated split (B, N)-pair G can be replaced by a saturated pair (B, \widetilde{N}) where $\widetilde{N}=N \tilde{H}$ and $\widetilde{H}=C H$ (see [3, Proposition 2.6, p. B-10]) and the two pairs have isomorphic Weyl groups. However, $B=U \tilde{H}$ may no longer satisfy (iii) above and we cannot apply the Curtis-Richen results on irreducible $k G$-modules directly.

However, if $C \unlhd G$ then $(G / C, B / C, N, R, U / C)$ is a saturated split (B, N) -pair and since C is a p-group there exists a bijection between the set of isomorphism classes of irreducible $k G$-modules and the set of isomorphism classes of irreducible $k(G / C)$-modules. So in the case when $C \unlhd G$ we could apply the Curtis-Richen theory to the group G / C.

There are three major advantages in a theory where we only assume G has an unsaturated split (B, N)-pair:
(1) Unsaturated groups appear even in the course of the CurtisRichen treatment of the saturated case (see [3, Corollary 5.1, p. B-24]
and [7, Lemma 3.23, p. 453]) and so we get some simplification of proofs by dealing with unsaturated groups from the start.
(2) The unsaturated theory applies at once to parabolic subgroups $G_{J}(J \subseteq R)$ of G (see [9]).
(3) In case $p=2$ there exist unsaturated G for which the group C is not normal in G (see below). The irreducible $k G$-modules for such a group G cannot be reached by the "saturated" theory.

Let $G=(G, B, N, R, U)$ be an unsaturated $\operatorname{split}(B, N)$-pair. All k spaces are assumed to be finite dimensional. We study the modular representations of G over k in the following way: Let $Y=\operatorname{Ind}_{U}{ }^{G}\left(k_{U}\right)$ and $E=\operatorname{End}_{k G}(Y)$ where k_{U} is the trivial U-module k. Sawada ([8]) was the first to examine Y and E for groups with split (B, N)-pairs and he established a bijective correspondence between the set of isomorphism classes of irreducible left $k G$-modules and the set of isomorphism classes of irreducible right E-modules. In doing so, Sawada relied upon work done by Curtis and Richen. We begin by discussing the right E-modules directly, and we are able to recover most of the results of Curtis, Richen and Sawada by using a recent theorem of Green ([5]). By this method we are able to discard the saturation condition from the general theory.

The main results of this paper are the following theorems concerning the algebra E :
a) E is Frobenius (3.7).
b) Every simple right E-module is one-dimensional and is thus given by a multiplicative character $\psi: E \rightarrow k$ (3.13).
c) Each such ψ is determined by a vector $\left(\chi, \mu_{1}, \ldots, \mu_{n}\right)$ where χ is a linear character of B and $\mu_{i} \in k(1 \leqq i \leqq n)$ (3.22).

These vectors ($\chi, \mu_{1}, \ldots, \mu_{n}$) correspond exactly to Curtis' "weights" (see [3, Definition 4.2, p. B-17, B-18]) and many, but not all, of the arguments used in the proofs of b) and c) are based on Curtis' work. The application of our results concerning the irreducible representations of E, to the irreducible representations of G, is given at the end of Section 3.

Using a result of Kantor and Seitz on 2-transitive permutation groups we show that if p is odd the group C is normal in G for all unsaturated split (B, N)-pairs (4.5). Lastly we give an example of a rank one unsaturated split (B, N)-pair when $p=2$ but C is not normal in G.

Notations. Since H is abelian, $B=U H$ and U is a p-group all modular irreducible characters of B are linear. Let $k^{*}=k \backslash\{1\}$ and $\hat{B}=$ $\operatorname{Hom}\left(B, k^{*}\right)$. If $x, g \in G$ then $x^{g}=g^{-1} x g$. For any subset T of G, $[T]=\sum_{t \in T} t \in k G$ and $T^{g}=g^{-1} T g$. Let $w \in W$ and $(w) \in N$ be such that $(w) H=w$. For X any subgroup of G containing H, we write $X w$ for $X(w)$ (similarly for $w X, X w X$). If A is any subgroup of G normalized by H, then $A^{(w)}=A^{h(w)}$ for any $h \in H$ so we write A^{w}. The Weyl group W acts on the elements of H by $h^{w}=h^{(w)}$ since H is abelian. If H is a
subgroup of G and M is any $k G$-module, $M \mid H$ denotes the restriction of M to H and we sometimes write $\rho \mid H$ if ρ is the character afforded by M.

The results of this paper formed part of the author's doctoral thesis submitted at the University of Warwick. The author is most grateful to her thesis adviser, Professor J. A. Green, for suggesting the subject dealt with in this work and for his help and encouragement during the research and preparation of this paper.
2. Unsaturated split (B, N)-pairs. Let p be a prime number and let $G=(G, B, N, R, U)$ be an unsaturated split (B, N)-pair of characteristic p and rank n. Therefore, we allow that $\bigcap_{n \in N} B^{n} \neq H$. We assume, unless otherwise stated, that k is an algebraically closed field of characteristic p. Let $v: N \rightarrow W$ be the natural epimorphism where $W=N / H$ is the Weyl group of the (B, N)-pair. The set $R=\left\{w_{1}, \ldots, w_{n}\right\}$ generates W and the length of $w \in W$ as a product of such generators is denoted $l(w)$. The unique element of maximal length in W will be denoted w_{0}.

Let $Y \cong \operatorname{Ind}_{U}{ }^{G}\left(k_{U}\right)$ and let y correspond to the element $1_{k G} \otimes_{k U} 1_{k}$. If $\left\{g_{i} \mid i \in I\right\}$ is a left transversal for the cosets of U in G, then $Y=k G \cdot y$ has k-basis $\left\{g_{i} y \mid i \in I\right\}$. Let $E=\operatorname{End}_{k G}(Y)$.

We assume that $\{(w) \mid w \in W\}$ is a fixed, but arbitrary, set of coset representatives of H in N.

In this preliminary section we state results which, though proved in [3] and [7] under the assumption of saturation, do not actually depend on that condition. For example, statements in [7, Chapter II] which do not involve $H=B \cap N$ will be true in the unsaturated case. We also make adjustments to other results when necessary to suit our unsaturated hypothesis.

The reader will notice that the proofs of certain technical lemmas in Sections 1 and 2 have been deferred to Section 5 where the specific rank 1 case is discussed.

Notation. Let $w \in W$. Then ${ }_{w} B^{+}=B \cap B^{w} ;{ }_{w} U^{+}=U \cap U^{w} ;{ }_{w} B^{-}=$ $B \cap B^{w_{0} w}$; and ${ }_{w} U^{-}=U \cap U^{w_{0} w}$. Write U_{w}^{+}, U_{w}^{-}for ${ }_{w^{-1}} U^{+},{ }_{w}{ }^{-1} U^{-}$ respectively.

Remark 1. Notice that ${ }_{w} B^{+}={ }_{w} U^{+} H,{ }_{w} B^{-}={ }_{w} U^{-} H$ (see [7, proof of Theorem 3.3(b), p. 444]) and that H normalizes ${ }_{w} U^{+},{ }_{w} U^{-}$for any $w \in W$.
2.1 Lemma. The intersection of the N-conjugates of B is $B \cap B^{w_{0}}$. Also

$$
\cap_{n \in N} U^{n}=\cap_{w \in W} U^{w}=U \cap U^{w_{0}} .
$$

Proof. We need only show that $B \cap B^{w_{0}} \subseteq{ }_{w} B^{+}$for all $w \in W$. A proof of this fact can be found in [7, proof of Lemma 2.4, p. 441]. The second statement follows from the remark above.

Remark 2. Let $C={ }_{w_{0}} U^{+}$. Then $C^{w}=C$ for all $w \in W$ by 2.1.
2.2 Lemma. Let $w \in W$ satisfy $l(v w)=l(v)+l(w)$. Then

$$
{ }_{v w} U^{-}={ }_{w} U^{-}\left({ }_{v} U^{-}\right)^{w} \text { and }_{w} U^{-} \cap\left({ }_{v} U^{-}\right)^{w}=C .
$$

Proof. The first part follows by an easy induction on $l(w)$ from [7, proof of Theorem 3.3 (a), p. 444]. By 2.1, $C \subseteq{ }_{w} U^{-} \cap\left({ }_{v} U^{-}\right)^{w}$ and

$$
\begin{aligned}
{ }_{w} U^{-} \cap\left({ }_{v} U^{-}\right)^{w} & =U \cap U^{w_{0} w} \cap U^{w_{0} v w} \cap U^{w} \\
& \subseteq U^{w_{0} w} \cap U^{w} \\
& =\left(U^{w_{0}} \cap U\right)^{w} \\
& =C \text { by remark } 2
\end{aligned}
$$

2.3 Corollary. Let $w \in W$. Then $U={ }_{w} U^{+}{ }_{w} U^{-}$and $_{w} U^{+} \cap{ }_{w} U^{-}=C$. Hence $|U| c=\left.\right|_{w} U^{+} \|_{w} U^{-} \mid$where $c=|C|$.

Proof. Let $v=w_{0} w^{-1}$ and apply 2.2.
2.4 Lemma. Let $w \in W$. Let Ω_{w} be a left transversal (containing 1) of $U_{w}-$ by C. Then Ω_{w} is automatically a transversal of U by $U_{w}+$ by 2.3 and $\left|\Omega_{w}\right|=\left|U_{w}-\right| / C$. Also $B w B=U w B=\Omega_{w} w B$.

Notation. For $w_{i} \in R$, write Ω_{i} for $\Omega_{w_{i}}, B_{i}$ for ${ }_{w_{i}} B^{-}$and U_{i} for ${ }_{w_{i}} U^{-}$.
The following short lemmas are consequences of results proven in the rank one case (see 5.1-5.4) and the Bruhat Decomposition Theorem (see [1, Theorem 1, p. 25]).
2.5 Lemma. Let $w \in W$. Then $\Omega_{w}{ }^{(w)} \cap B=1$.
2.6 Lemma. Let $w_{1}, w_{2} \in W, u_{1}, u_{2} \in U, h_{1}, h_{2} \in H$. Then

$$
u_{1} h_{1}\left(w_{1}\right) U=u_{2} h_{2}\left(w_{2}\right) U \Leftrightarrow w_{1}=w_{2}, u_{2}^{-1} u_{1} \in U_{w_{1}}^{+}, h_{1}=h_{2}
$$

The set $\Gamma=\left\{u_{w} h(w) \mid h \in H, u_{w} \in \Omega_{w}, w \in W\right\}$ is a transversal for the left cosets of U in G.
2.7 Lemma. Every element of G can be uniquely expressed as $g=u(w) h u^{\prime}$ where $w \in W, u \in \Omega_{w}, h \in H$ and $u^{\prime} \in U$.

The next lemma is a consequence of 2.6 and 2.7 .
2.8 Lemma. The elements of N form a transversal for the $U-U$ double cosets of G.
3. The endomorphism algebra E. In this section we characterize the simple right E-modules.

By 2.8 E has k-basis $\left\{A_{n} \mid n \in N\right\}$ where $A_{n}(y)=p_{n} y$ and p_{n} is the sum of those $\gamma \in \Gamma$ which lie in $U n U$ (see, for example, [8, p. 32]). The elements $A_{n}(n \in N)$ are clearly independent of the choice of transversal
of the cosets of U in G. Therefore, using 2.6,

$$
\begin{aligned}
3.1 \quad A_{n}(y) & =\left[\Omega_{w}\right] n y \\
p_{n} & =\left[\Omega_{w}\right] n \text { where } v(n)=w .
\end{aligned}
$$

Clearly $p_{h}=h$ for all $h \in H$. Multiplication in E is given by the formulae $3.2 \quad A_{m} A_{n}=\sum_{t \in N} c_{m n t} A_{t} \quad(m, n \in N)$ where $c_{m n t}=z_{m n t} 1_{k}$ and $z_{m n t} \in \mathbf{Z}$ is the number of pairs $(\gamma, \xi) \in \Gamma \times \Gamma$ such that $\gamma \in U n U, \xi \in U m U$ and $\gamma \xi \in t U$ since $A_{t}(y)$ is the sum of all the distinct U-translates of $t y$ and $g y=g^{\prime} y \Leftrightarrow g U=g^{\prime} U$ for any $g, g^{\prime} \in G$. The following lemma is immediate.
3.3 Lemma. If $t, m, n \in N$ are such that $U t U \nsubseteq U n U m U$, then the coefficient of A_{t} in $A_{m} A_{n}$ is zero.
3.4 Lemma. Let $n, m \in N$ with $v(n)=v, v(m)=w$ be such that $l(v w)=l(v)+l(w)$. Then $A_{m} A_{n}=A_{n m}$.

Proof. We know

$$
\begin{aligned}
A_{m} A_{n}(y) & =\left[\Omega_{v}\right] n\left[\Omega_{w}\right] m y \\
& =\left[\Omega_{v}\right] n\left[\Omega_{w}\right] n^{-1} n m y .
\end{aligned}
$$

By $2.2 U_{v w}{ }^{-}=U_{v}{ }^{-} \cdot n U_{w}{ }^{-} n^{-1}$ and $\left|U_{v w}{ }^{-}\right| c=\left|U_{v}{ }^{-}\right| \cdot\left|U_{w}{ }^{-}\right|$. We see that $A_{m} A_{n}(y)$ is the sum of $\left|\Omega_{v} \| \Omega_{w}\right| U$-translates of $n m y$ by our choice of transversals (2.4). Therefore $A_{m} A_{n}=\lambda A_{n m}$ where λ is the integer $\left|\Omega_{v} \| \Omega_{w}\right| /\left|\Omega_{v w}\right|$. By 2.4

$$
\lambda=\frac{\left|U_{v}^{-}\right|\left|U_{w}^{-}\right|}{c^{2}} \cdot \frac{c}{\mid U_{v w}-}
$$

so that $\lambda=1$ as required.
3.5. Corollary. Let $h \in H, n \in N$. Then

$$
A_{n} A_{h}=A_{n n}=A_{n^{-1} h n} A_{n} .
$$

3.6 Corollary. The set $\left\{A_{h}, A_{\left(w_{i}\right)} \mid h \in H, w_{i} \in R\right\} k$-algebra generates E.

We can now state and prove one of the main results of this paper. The proof is due to Green who proved it for the saturated case. Notice that the proof relies only on 3.4 and is therefore true for any field.
3.7 Proposition. Let G be a finite group with an unsaturated split (B, N)-pair of characteristic p and rank n. Let k be any field. Then E is a Frobenius algebra.

Proof. Let $q \in N$ satisfy $v(q)=w_{0}$, the unique element of maximal length in W. Let $f: E \times E \rightarrow k$ be given as follows: For $\alpha, \beta \in E, f(\alpha, \beta)$
is to be the coefficient of A_{q} in the expression of $\alpha \beta$ as a linear combination of the basis elements $\left\{A_{n} \mid n \in N\right\}$. Certainly f is bilinear and associative and we need only show that f is non-degenerate. Let $\left\{Z_{n} \mid n \in N\right\}$ be the basis of E given by $Z_{n}=A_{n^{-1} q}$. We require the following lemma:
3.8 Lemma. Let $n, n^{\prime} \in N, v(n)=w, v\left(n^{\prime}\right)=w^{\prime}$. Then $f\left(Z_{n}, A_{n^{\prime}}\right)$ is zero if either (i) $l(w)>l\left(w^{\prime}\right)$ or (ii) $l(w)=l\left(w^{\prime}\right)$ but $w \neq w^{\prime}$. In the case $w=w^{\prime}, f\left(Z_{n}, A_{n^{\prime}}\right)=\delta_{n, n^{\prime}}$ (that is, 1 for $n=n^{\prime}$ and 0 otherwise).

Proof. By 3.3 the coefficient of A_{q} in $Z_{n} A_{n^{\prime}}=A_{n^{-1} q} A_{n^{\prime}}$ is 0 if $U q U \nsubseteq$ $U n^{\prime} U n^{-1} q U$. So $f\left(Z_{n}, A_{n^{\prime}}\right)$ is certainly 0 if

$$
\begin{equation*}
B w_{0} B \nsubseteq B w^{\prime} B w^{-1} w_{0} B . \tag{*}
\end{equation*}
$$

Since

$$
l\left(w^{\prime} w^{-1} w_{0}\right) \leqq l\left(w^{\prime}\right)+l\left(w^{-1} w_{0}\right)=l\left(w^{\prime}\right)+l\left(w_{0}\right)-l(w)
$$

${ }^{(*)}$) holds in (i) or (ii) (see [1, Lemme 1, p. 23]). If $w=w^{\prime}$, we see that

$$
A_{n^{-1} q} A_{n^{\prime}}=A_{n^{\prime} n^{-1} q}
$$

by 3.4 since

$$
l\left(w^{\prime} w^{-1} w_{0}\right)=l\left(w_{0}\right)=l\left(w^{\prime}\right)+l\left(w^{-1} w_{0}\right) .
$$

Hence $f\left(Z_{n}, A_{n^{\prime}}\right)$ is 0 or 1 depending upon whether $n \neq n^{\prime}$ or $n=n^{\prime}$ and 3.8 is proved.

Now the elements of N can be totally ordered so that

$$
l(v(n))<l\left(v\left(n^{\prime}\right)\right) \Rightarrow n<n^{\prime} .
$$

So if for $n, n^{\prime} \in N$ we have $n \geqq n^{\prime}$ then we must have $l(v(n)) \geqq l\left(v\left(n^{\prime}\right)\right)$. By $3.8 f\left(A_{n}, A_{n}{ }^{\prime}\right)=\delta_{n, n^{\prime}}$ and we see that the matrix

$$
\left(f\left(Z_{n}, A_{n^{\prime}}\right)\right)_{n, n^{\prime} \in N}
$$

is unitriangular and hence nonsingular. We have shown that f is nondegenerate and the proof of Proposition 3.7 is completed.
Definition. Let $w_{i} \in R$. Define $G_{i}=\left\langle U, U_{i}{ }^{w_{i}}\right\rangle, H_{i}=G_{i} \cap H$.
3.9 Lemma. (see [3, Proposition 3.7, p. B-15]) Let $w_{i} \in R$. We can arrange that $\left(w_{i}\right) \in G_{i}$. In this case $G_{i}=U H_{i} \cup \Omega_{i} H_{i}\left(w_{i}\right) U$.

Proof. Consider $P_{i}=B \cup B w_{i} B$ and any representative $\left(w_{i}\right)^{\prime}$ of w_{i}. Let $1 \neq u \in \Omega_{i}$. Then $u^{\left(w_{i}\right)} \in P_{i}$ and if $u^{\left(w_{i}\right)} \in B$ then $u=1$ by 2.5 . Therefore

$$
u^{\left(w_{i}\right)^{\prime}} \in B w_{i} B=\Omega_{i} w_{i} B .
$$

Hence there exists a representative $\left(w_{i}\right) \in G_{i}$ because the subgroup

$$
\left\langle U, \Omega_{i}^{\left(w_{i}\right)^{\prime}}\right\rangle
$$

does not depend on $\left(w_{i}\right)^{\prime}$ since

$$
\begin{aligned}
& U_{i}^{\left(w_{i}\right)^{\prime}}=U_{i}{ }^{w_{i}}=\Omega_{i}{ }^{\left(w_{i}\right)^{\prime}} C^{\left(w_{i}\right)^{\prime}}=\Omega_{i}{ }^{\left(w_{i}\right)^{\prime}} C \text { and } \\
& \left\langle U, \Omega_{i}{ }^{\left(w_{i}\right)^{\prime}}\right\rangle=\left\langle U, \Omega_{i}{ }^{\left(w_{i}\right)^{\prime}} C\right\rangle=\left\langle U, U_{i}{ }^{w_{i}}\right\rangle .
\end{aligned}
$$

The subgroup G_{i} has the required form since $G_{i} \subset P_{i}$.
We assume from now on that $\left(w_{i}\right) \in G_{i}$, for every $w_{i} \in R$.
For proofs of the following two lemmas see 5.6 and 5.10.
3.10 Structural Equations in G. Let $w_{i} \in R, \Omega_{i}{ }^{*}=\Omega_{i} \backslash\{1\}$. There exist functions $f_{i}: \Omega_{i}{ }^{*} \rightarrow \Omega_{i}{ }^{*}, g_{i}: \Omega_{i}{ }^{*} \rightarrow U, h_{i}: \Omega_{i}{ }^{*} \rightarrow H$ where f_{i} is a bijection, such that for every $u \in \Omega_{i}{ }^{*}$

$$
\left(w_{i}\right) u\left(w_{i}\right)=f_{i}(u) h_{i}(u)\left(w_{i}\right) g_{i}(u) .
$$

Since $\left(w_{i}\right) \in G_{i}, h_{i}(u) \in H_{i}$ for all $u \in \Omega_{i}{ }^{*}$.
3.11 Lemma. Let $w_{i} \in R$. Then

$$
A_{\left(w_{i}\right)}{ }^{2}=A_{\left(w_{i}\right)} \sum_{s=1}^{b(i)} A_{n_{i}\left(u_{i_{s}}\right)} \text { where } \quad b(i)=\left|\Omega_{i}{ }^{*}\right|
$$

and $u_{i_{1}}, \ldots, u_{i_{b(i)}}$ are certain elements of $\Omega_{i}{ }^{*}($ not necessarily distinct).
The following formulae were first determined by Sawada ([8, Proposition 2.6, p. 34]) for the saturated case.
3.12 Formulae. Let $n \in N, v(n)=w$.
(i) If $l\left(w_{i} w\right)=l(w)+1$, then $A_{n} A_{\left(w_{i}\right)}=A_{\left(w_{i}\right) n}$.
(ii) If $l\left(w_{i} w\right)=l(w)-1$, then $A_{n} A_{\left(w_{i}\right)}=A_{n} \sum_{s=1}^{b(i)} A_{h_{i}}\left(u_{i_{s}}\right)$.
(iii) If $l\left(w_{w}\right)=l(w)+1$, then $A_{\left(w_{i}\right)} A_{n}=A_{n\left(w_{i}\right)}$.
(iv) If $l\left(w w_{i}\right)=l(w)-1$, then $A_{\left(w_{i}\right)} A_{n}=\sum_{s=1}^{b(i)} A_{\left(w_{i}\right)-1 n_{i}\left(w_{i_{s}}\right)}\left(w_{i}\right) A_{n}$

Proof. Parts (i) and (iii) follow from 3.4. For (ii) let $w=w_{i} v$ with $l(v)=l(w)-1$. Then $\left(w_{i}\right)^{-1} n=m \in N, v(m)=v$ and

$$
A_{n}=A_{\left(w_{i}\right) m}=A_{m} A_{\left(w_{i}\right)}
$$

by 3.4. Therefore

$$
\begin{aligned}
A_{n} A_{\left(w_{i}\right)} & =A_{m} A_{\left(w_{i}\right)}{ }^{2} \\
& =A_{m} A_{\left(w_{i}\right)} \sum_{s=1}^{b(i)} A_{h_{i}\left(u_{i_{s}}\right)} \quad \text { by } 3.11 \\
& =A_{n} \sum_{s=1}^{b i(i)} A_{n_{i}\left(u_{i_{s}}\right)} \quad \text { by } 3.4 .
\end{aligned}
$$

Part (iv) is proved similarly using Lemma 3.5.

Definition. Let $\chi \in \hat{B}, w \in W$. Then ${ }^{w} \chi \in \hat{B}$ where ${ }^{w} \chi(h u)=\chi\left(h^{w} u\right)$ for $h \in H, u \in U$.

The proof of the following lemma is based on [3, proof of Theorem 4.3a, p. B-20].
3.13 Lemma. Every irreducible right E-module X is one-dimensional and if $X=k x$ there exists a character $\chi \in \hat{B}$ uniquely defined by $x A_{h}=\chi(h) x$ for all $h \in H$.

Proof. Every one-dimensional right E-module will uniquely determine a character of B since by 3.4

$$
A_{h} A_{h^{\prime}}=A_{h^{\prime} h}=A_{h^{\prime}} A_{h}\left(h, h^{\prime} \in H\right)
$$

Let

$$
\chi \in \hat{B}, \quad E_{\chi}=\frac{1}{|H|} \sum_{h \in H} \chi\left(h^{-1}\right) A_{h} .
$$

Then

$$
\begin{aligned}
& E_{\chi} A_{h}=\chi(h) E_{\chi} \text { for all } h \in H \text { and } \\
& 1_{E}=\sum_{\chi \in \hat{B}} \oplus E_{\chi} .
\end{aligned}
$$

Since

$$
X=\sum_{\chi \in \hat{B}} \oplus X E_{\chi}
$$

there exists $\chi \in \hat{B}$ with $X E_{\chi} \neq 0$. Take any $z \in X$ for which $z E_{\chi} \neq 0$ and let $t=z E_{\chi}$. Then $t A_{h}=\chi(h) t$ for all $h \in H$.

Choose $w \in W$ of maximal length so that $x=t A_{(w)} \neq 0$. Then x affords the character ${ }^{w} \chi$: that is

$$
\begin{aligned}
x A_{h} & ={ }^{w} \chi(h) x \text { since } x A_{h}=t A_{(w)} A_{h} \\
& =t A_{(w)^{-1} h(w)} A_{(w)} \text { by } 3.5 \\
& ={ }^{w} \chi(h) t A_{(w)} .
\end{aligned}
$$

We now consider $x A_{\left(w_{i}\right)}$ for $w_{i} \in R$.
Case 1. $l\left(w_{i} w\right)>l(w)$. Then

$$
\begin{aligned}
x A_{\left(w_{i}\right)} & =t A_{(w)} A_{\left(w_{i}\right)} \\
& =t A_{\left(w_{i}\right)(w)} \text { by } 3.12(\mathrm{i}) \\
& =t A_{\left(w_{i} w\right) h} \text { for some } h \in H \text { since } v\left(\left(w_{i}\right)(w)\right)=v\left(\left(w_{i} w\right)\right) \\
& =t A_{h} A_{\left(w_{i} w\right)} \text { by } 3.4 \\
& =\chi(h) t A_{\left(w_{i} w\right)} \\
& =0 \text { by choice of } w .
\end{aligned}
$$

Case 2. $l\left(w_{i} w\right)<l(w)$. Then

$$
\begin{align*}
x A_{\left(w_{i}\right)} & =t A_{(w)} A_{\left(w_{i}\right)} \\
& =t A_{(w)} \sum_{s=1}^{b(i)} A_{h_{i}\left(u_{i}\right)} \quad \text { by } 3.12 \text { (ii) } \tag{ii}\\
& =x \sum_{s=1}^{b(i)} A_{h_{i}\left(u_{i_{s}}\right)} \\
& =\sum_{s=1}^{b(i)}{ }^{w} \chi\left(h_{i}\left(u_{i_{s}}\right)\right) x .
\end{align*}
$$

Therefore x generates a one-dimensional right E-submodule of X by 3.6. But X irreducible implies $X=k x$.

We are able to formulate more results based on the rank one case, the first being the following crucial lemma.
3.14 Lemma. Fix $\chi \in \hat{B}, w_{i} \in R$. Let $d_{i}=\sum_{s=1}^{b(i)} \chi\left(h_{i}\left(u_{i_{s}}\right)\right)$. If $d_{i} \neq 0$ then $\chi \mid H_{i}=1$. Hence $d_{i}=-1$.

Proof. By Theorem 5.12 there exists a one-dimensional $P_{i}=$ $B \cup B w_{i} B$-module M such that if M affords $\xi: P_{i} \rightarrow k^{*}$ then $\xi|H=\chi| H$. Now G_{i} is generated by p-groups so that $\xi \mid G_{i}=1$ and $\xi \mid H_{i}=1$. Therefore $\chi \mid H_{i}=1$ and since $h_{i}\left(u_{i_{s}}\right) \in H_{i}(s=1, \ldots, b(i))$ (by 3.10) and $b(i)=\left|\Omega_{i}\right|-1$, the result follows since $1<\left|\Omega_{i}\right|$ is a power of p.
3.15 Lemma. Let ψ be any multiplicative character $\psi: E \rightarrow k$. Then there exist $\chi \in \hat{B}, \mu_{1}, \ldots, \mu_{n} \in k$ such that
(i) $\psi\left(A_{h}\right)=\chi(h)$ for all $\left.h \in H\right\}$
(ii) $\left.\psi\left(A_{\left(w_{i}\right)}\right)=\mu_{i}(1 \leqq i \leqq n)\right\}$

Moreover, $\mu_{i}=0$ or -1 and $\mu_{i} \neq 0$ implies $\chi \mid H_{i}=1$.
Proof. Part (i) follows from 3.13 and (ii) follows from 3.11 and 3.14.
We might call the sequence $\left(\chi, \mu_{i}, \ldots, \mu_{n}\right)$ the "weight of ψ " to correspond with Curtis' terminology.

Definition. Let $J \subseteq R$. Then $W_{J}=\left\langle w_{i} \mid w_{i} \in J\right\rangle$.
3.16 Lemma. Let $\chi \in \hat{B}, J \subseteq R$. Suppose $\chi \mid H_{i}=1$ for every $w_{i} \in J$. Then ${ }^{w} \chi=\chi$ for all $w \in W_{J}$.

Proof. It is sufficient to show ${ }^{w} \chi=\chi$ for all $w_{i} \in J$. Since $\chi \mid H_{i}=1$,

$$
d_{i}=\sum_{s=1}^{b(i)} \chi\left(h_{i}\left(u_{i_{s}}\right)\right) \neq 0
$$

for every $w_{i} \in J$ and the result follows by Lemma 5.11.

The above lemma is also proved in [3, Lemma 5.4, p. B-26] and [7, Corollary 3.22 , p. 453] under the saturation condition.

We wish to prove the converse of 3.15 ; that is, given any sequence $\left(\chi, \mu_{i}, \ldots, \mu_{n}\right)$ where $\chi \in \hat{B}, \mu_{i} \in k(1 \leqq i \leqq n)$ and where $\mu_{i}=0$ or -1 with $\mu_{i} \neq 0$ implying $\chi \mid H_{i}=1$, then there exists a multiplicative character $\psi: E \rightarrow k$ with properties (*). In order to do this we place additional restrictions on the choice of coset representations $\left\{\left(w_{i}\right) \mid w_{i} \in R\right\}$.

The following lemma is due to Tits. A proof can be found in [4, (1G), p. 5].
3.17 Lemma. Let $w_{i} \in R$. Then $B_{i} \cup B_{i} w_{i} B_{i}$ is a subgroup of G.

Remark. Notice that the above lemma does not depend on a saturated condition since $B_{i}=U_{i} H, U \cap U^{w_{0}}$ is normalized by H and $U \cap U^{w_{0}} \subset$ $U_{i}\left(w_{i} \in R\right)$.
3.18 Lemma. Let $w_{i} \in R$. Then coset representative (w_{i}) can be chosen in $\left\langle U_{i}, U_{i}{ }^{w_{i}}\right\rangle$.

Proof. Clearly

$$
\left\langle U_{i}, U_{i}{ }^{w_{i}}\right\rangle \subset B_{i} \cup B_{i} w_{i} B_{i}=U_{i} H \cup U_{i} H w_{i} U
$$

If $U_{i}{ }^{w_{i}} \subset U_{i} H$ then $U_{i}{ }^{w_{i}}=U_{i}$ so that

$$
\begin{aligned}
B^{w_{i}} & =U_{i}^{w_{i}}\left(w_{i} U^{+}\right)^{w_{i}} H \\
& =U_{i w_{i}} U^{+} H \\
& =B,
\end{aligned}
$$

contrary to the (B, N)-pair axioms. Hence $U_{i}{ }^{w_{i}} \cap U_{i} H w_{i} U_{i}$ is nonempty and there exists a coset representative n_{i} and $u_{1}, u_{2}, u_{3} \in U_{i}$ such that

$$
u_{1}{ }^{w_{i}}=u_{2} n_{i} u_{3} . \text { Hence }
$$

3.19. The coset representative $\left(w_{i}\right)$ can be chosen in $U_{i} U_{i}{ }^{w_{i}} U_{i}$ and the proof of 3.18 is completed.

Remark. Statement 3.19 is important since we are able to choose the coset representatives $\left\{\left(w_{i}\right) \mid w_{i} \in R\right\}$ in the same way whether the (B, N)-pair is saturated or not (see [2, Lemma 2.2, p. 351] or [3, Definition 3.9, p. B-16]).

We assume from now on that coset representatives $\left\{\left(w_{i}\right) \mid w_{i} \in R\right\}$ are chosen according to 3.19 .

The next lemma (see [7, Lemma 3.28, p. 456]) holds in the unsaturated case:
3.20 Lemma. Let $J \subseteq R$. Coset representatives $\left\{(w) \mid w \in W_{J}\right\}$ can be
chosen so that if $w, w^{\prime} \in W_{J}$ then

$$
(w)\left(w^{\prime}\right)\left(w w^{\prime}\right)^{-1} \in H_{J}=\left\langle H_{i} \mid w \in W_{J}, w_{i} \in J\right\rangle .
$$

Definition. For any $\chi \in \hat{B}$, let $e(\chi)=\sum_{h \in H} \chi\left(h^{-1}\right) A_{h}$.
Sawada proved the following theorem (see [8, Proposition 3.1, p. 36]) for the saturated case. The theorem remains true for the unsaturated case using results above and we omit the proof.
3.21 Theorem. Let $J \subseteq R$ and let coset representatives $\left\{(w) \mid w \in W_{J}\right\}$ be chosen according to 3.20. Let $\chi \in \hat{B}$ and suppose $\chi \mid H_{i}=1$ for all $w_{i} \in J$. Let

$$
z(J, \chi)=e\left({ }^{w_{0}} \chi\right) \sum_{w \in W_{J}} A_{(w)\left(w_{n}\right)}
$$

Then $z=z(J, \chi)$ generates a one-dimensional right E-module (right ideal of E) with the following properties:
(i) $z A_{h}=\chi(h) z(h \in H)$
(ii) $z A_{\left(w_{i}\right)}=\left\{\begin{aligned} 0 & w_{i} \in J \text { or } \chi \mid H_{i} \neq 1 \\ -z & w_{i} \notin J \text { and } \chi \mid H_{i}=1 .\end{aligned}\right.$

We can now prove the converse of 3.15 , one of the main results of this paper. We might call the sequence $\left(\chi, \mu_{1}, \ldots, \mu_{n}\right)$ an admissible vector if $\chi \in \hat{B}$, all $\mu_{i} \in\{0,-1\}$ and $\mu_{i} \neq 0$ implies $\chi \mid H_{i}=1$.
3.22 Theorem. Let G be a finite group with an unsaturated split (B, N) pair of characteristic p and rank n, and let k be an algebraically closed field of the same characteristic. Given any sequence $\left(\chi, \mu_{1}, \ldots, \mu_{n}\right)$ where $\chi: B \rightarrow k^{*}$ is a homomorphism, $\mu_{i} \in k(1 \leqq i \leqq n)$ such that $\mu_{i}=0$ or -1 , there exists a multiplicative character $\psi: E \rightarrow k$ given by $\psi\left(A_{h}\right)=\chi(h)$ $(h \in H)$ and $\psi\left(A_{\left(w_{i}\right)}\right)=\mu_{i}(1 \leqq i \leqq n)$ if and only if for any $i \in\{1, \ldots, n\}$ with $u_{i} \neq 0$ we have $\chi \mid H_{i}=1$.

Proof. (\Leftrightarrow) This follows by 3.15 .
(\Leftrightarrow) Let $J=\left\{w_{i} \in R \mid \mu_{i}=0\right.$ and $\left.\chi \mid H_{i}=1\right\}$.
Let $z(J, \chi)$ be as in Theorem 3.21 and the result follows.
Remark. We have shown that $\left(\chi, \mu_{1}, \ldots, \mu_{n}\right)$ is the weight of some multiplicative character $\psi: E \rightarrow k$ if and only if it is an admissible vector.

Definition. Let $\chi \in \hat{B}, J \subseteq M(\chi)=\left\{w_{i} \in R|\chi| H_{i}=1\right\}$. Then (J, χ) is called an admissible pair.

By 3.21 each admissible pair (J, χ) determines an admissible vector $\left(\chi, \mu_{1}, \ldots, \mu_{n}\right)$ where $\mu_{i}=0$ (for $w_{i} \in J$ or $\chi \mid H_{i} \neq 1$) or $\mu_{i}=-1$ (for
$w_{i} \notin J$ and $\chi \mid H_{i}=1$). If for each admissible vector $\left(\chi, \mu_{1}, \ldots, \mu_{n}\right)$ we let

$$
J=\left\{w_{i} \in R \mid \mu_{i}=0 \text { and } \chi \mid H_{i}=1\right\}
$$

we see by 3.22 that the correspondence

$$
(J, \chi) \leftrightarrow\left(\chi, \mu_{1}, \ldots, \mu_{n}\right)
$$

described above is a bijective one between the set of all admissible pairs and the set of all admissible vectors. We now show how such weights and vectors correspond to Curtis' weights (see [3, Definition 4.2, p. B-17, B-18]) and find a full set of irreducible left $k G$-modules in Y.

Definition. Let M be any finite dimensional left $k G$-module. Let

$$
F(M)=\{m \in M \mid u m=m, \text { all } u \in U\}
$$

Green ($[\mathbf{5}, 1.3]$) describes how $F(M)$ may be regarded as a right E-module. In fact, if $m \in F(M)$ and $\alpha \in E$,

$$
m \alpha=p_{\alpha} m \text { where } \alpha(y)=p_{\alpha} y\left(p_{\alpha} \in k G\right) .
$$

In particular (by 3.1)

$$
\begin{array}{rll}
3.23 & m A_{\left(w_{i}\right)} & =\left[\Omega_{i}\right]\left(w_{i}\right) m \\
& & \left(w_{i} \in R\right) \\
m A_{h} & =h m & (h \in H)
\end{array}
$$

for all $m \in F(M)$.
Green proves ([5, Theorem 2]) that the correspondence $M \rightarrow F(M)$ induces a bijection between the set of isomorphism classes of irreducible left $k G$-modules and the set of isomorphism classes of simple right E-modules. Since we have shown that all simple right E-modules are one-dimensional (3.13), $F(M)$ is one dimensional if M is an irreducible $k G$-module and $F(M)$ is associated with an admissible vector $\left(\chi, \mu_{1}, \ldots, \mu_{n}\right)$ by 3.22 . By 3.23 this vector coincides with the CurtisRichen weight of M and any non-zero $m \in F(M)$ is called a weight element of weight $\left(\chi, \mu_{1}, \ldots, \mu_{n}\right)$. In other words $F(M)$ is precisely the set of all weight elements in M and if M is irreducible then M has a unique U-stable (B-stable) line.

The following theorem was first proved by ([8]). His proof uses [3], [7] and therefore applies only to saturated split (B, N)-pairs.
3.24 Theorem. Let G be a finite group with an unsaturated split (B, N) pair of characteristic p and rank n. Let k be an algebraically closed field of the same characteristic. There exist bijective correspondences between the following:
(i) the set of admissible vectors,
(ii) the set of admissible pairs,
(iii) the set of isomorphism classes of simple right E-modules, and
(iv) the set of isomorphism classes of irreducible left $k G$-modules.

These correspondences are given by:

$$
\left(\chi, \mu_{1}, \ldots, \mu_{n}\right) \leftrightarrow(J, \chi) \leftrightarrow k z(J, \chi) \leftrightarrow k G z(J, \chi)(y) .
$$

Proof. We need only verify the correspondence between (iii) and (iv). Green ($[\mathbf{5}, 1.3 \mathrm{c}]$) proves that the map $E \rightarrow F(Y)$ given by $\beta \rightarrow \beta(y)$ ($\beta \in E$) is a right E-isomorphism. Let (J, χ) be an admissible pair. Since $z(J, \chi)$ generates a one-dimensional right ideal of $E(3.21), k z(J, \chi)(y)$ is a one-dimensional right E-submodule of $F(Y)$. Therefore by [$\mathbf{5}, 2.6$ a], $k G z(J, \chi)(y)$ is an irreducible left $k G$-module and

$$
F(k G z(J, \chi)(y))=k z(J, \chi)(y) .
$$

If M is any irreducible left $k G$-module, there exists an admissible pair (J, χ) with

$$
F(M) \cong k z(J, \chi) \cong k z(J, \chi)(y)
$$

as right E-modules. But M irreducible implies

$$
M \cong k G z(J, \chi)(y) .
$$

Therefore $\{k G z(J, \chi)(y) \mid(J, \chi)$ admissible $\}$ is a full set of irreducible left $k G$-modules. (Curtis also determines such a set in [3, Corollary 6.12, p. B-37].)
4. Normality of C : A counter-example. In this short section we examine the subgroup $C=U \cap U^{w_{0}}=\cap_{n \in N} U^{n}$. We know that $C=1$ if and only if G has a saturated split (B, N)-pair. In cases where $C \unlhd G$, the Curtis-Richen theory can be applied to the saturated split (B, N) pair $(G / C, B / C, N, R, U / C)$. Since C is normalized by H and N (see Remark 2 of Section 2.1), $C \unlhd G$ if and only if $C \unlhd U$. We show that if $C_{i}=U \cap U^{w_{i}} \unlhd U$ for all $w_{i} \in R$ then $C \unlhd U$; that is, $C \unlhd G$ if this condition is satisfied for all rank 1 parabolic subgroups of G (Lemma 4.4). Using a theorem of Kantor and Seitz we show that $C \unlhd G$ if p is odd (Lemma 4.5) and we give an example of a rank $1(B, N)$-pair when $p=2$ and C is not normal in G.
4.1 Lemma. $U=\left\langle\left(U_{i}\right)^{w-1} \mid w \in W, w_{i} \in R, l\left(w_{w}\right)=l(w)+1\right\rangle$.

Proof. Let $w=w_{i_{1}} \ldots w_{i_{t}}$ be a reduced expression for $w \in W$. It follows from 2.2 that

$$
{ }_{w} U^{-}=\left(U_{i_{t}}\right)\left(U_{i_{t-1}}\right)^{w_{i_{t}}} \ldots\left(U_{i_{1}}\right)^{w_{i_{2}} \ldots w_{i_{t}}}
$$

since $l\left(w_{i_{t}} \ldots w_{i_{s}} w_{i_{s}-1}\right)=l\left(w_{i_{t}} \ldots w_{i_{s}}\right)+1$ for any $2 \leqq s \leqq t-1$. Since $U={ }_{w_{0}} U^{-}$we have

$$
U \subseteq\left\langle\left(U_{i}\right)^{w^{-1}} \mid w \in W, l\left(w w_{i}\right)=l(w)+1\right\rangle .
$$

Also if $l\left(w_{i}\right)=l(w)+1$ then $\left(U_{i}\right)^{w^{-1}} \subseteq U$ by [7, Lemma 2.8, p. 441] which doesn't depend on saturation.

Since $C^{w}=C$ for all $w \in W$ we have
4.2 Lemma. $C \unlhd U$ if and only if $C \unlhd U_{i}$ for all $w_{i} \in R$.
4.3 Lemma. Let $w_{i} \in R$. Assume $C_{i} \unlhd U$. Then $C \unlhd U_{i}$.

Proof. We have

$$
\begin{aligned}
C & =U \cap U^{w_{0}} \cap U^{w_{i} w_{0}} \\
& =U \cap\left(U \cap U^{w_{i}}\right)^{w_{i} w_{0}} .
\end{aligned}
$$

By assumption $\left(U \cap U^{w_{i}}\right)^{w_{i} w_{0}} \unlhd U^{w_{i} w_{0}}$ so that

$$
C=C^{w_{0} w_{i}} \unlhd U \cap U^{w_{0} w_{i}}=U_{i} .
$$

The next lemma is immediate by 4.2 and 4.3 .
4.4 Lemma. Suppose say $C_{i} \unlhd P_{i}=B \cup B w_{i} B$ for all $w_{i} \in R$. Then $C \unlhd G$.

The following discussion will prove one of the main results of this paper:
4.5 Theorem. If p is odd, $C \unlhd G$ for all unsaturated split (B, N)-pairs.

In order to prove 4.5 we may restrict our attention to the rank 1 case by Lemma 4.4. Suppose then that $G=B \cup B w B$ where $(G, B, N$, $\{w\}, U)$ is an unsaturated split (B, N)-pair. Then
a) G acts 2-transitively on $\Omega=G / B$, the space of cosets $g B(g \in G)$ and
b) $G^{*}=G / Z$ acts faithfully and 2 -transitively on Ω where $Z=\bigcap_{\ell \in G} B^{g}$.

Let $\alpha=B, \beta=w B$. Notice that $|\Omega|=1+p^{t}$ where $2 \leqq|U / C|=p^{t}$ and that $B / Z=\left(G^{*}\right)_{\alpha}$, the stabilizer in G^{*} of α. Since U is a normal p subgroup of B, the group B / Z contains a normal nilpotent subgroup $Q=U Z / Z$. Since $B w B=U w B$, the group Q acts transitively on $\Omega \backslash\{\alpha\}$. By [6, Theorem C^{\prime}, p. 131] of Kantor and Seitz we consider the following two cases.
(1) Q is regular on $\Omega \backslash\{\alpha\}$. Therefore $Q_{\beta}=1$. But

$$
\begin{aligned}
Q_{\beta} & =\{u Z \mid u \in U, u(w B)=w B\} \\
& =\left\{u Z \mid u \in U, u^{w} \in B\right\} \\
& =C Z / Z
\end{aligned}
$$

Hence $C \subseteq Z \cap U \subseteq B^{w} \cap U \subseteq U^{w} \cap U=C$. Therefore $C=U \cap Z$ and in this case $\mathrm{C} \unlhd G$ since $Z \unlhd G$.
(2) G^{*} contains a regular normal subgroup of order q^{2} where q is a

Mersenne prime. Let $q=2^{r}-1$ where r is prime. Therefore $|\Omega|=q^{2}$ is an odd integer and p^{t} is even. Hence $p=2$.

Thus, we have proved Theorem 4.5.
The argument in [6, proof of Corollary 1, p. 139] leads to the following example of a rank 1 unsaturated split (B, N)-pair where $p=2$ and C is not normal in G.

Let $a=\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right], b=\left[\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right]$. Then $a, b \in G L(2,3)$ and $U=$ $\langle a, b\rangle$ has defining relations $b^{8}=a^{2}=1, a^{-1} b a=b^{3}$. Moreover, U is a Sylow 2 -subgroup of $G L(2,3)$. Let $M=V(2,3)$, the space of 2 -dimensional column vectors over $G F(3)$. We have a map $\tau: U \rightarrow$ Aut (M) given by $x \rightarrow \tau_{x}$ where $\tau_{x}(m)=x m(x \in U, m \in M)$. Let G be the semi-direct product of M and U and let $U_{1}=\{(0, x) \mid x \in U\}$,

$$
w=\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right]\right)
$$

and $N=\{1, w\}$. It can be easily verified that $G=\left(G, U_{1}, N,\{w\}, U_{1}\right\}$ is an unsaturated split (B, N)-pair. Furthermore, $C=U_{1} \cap U_{1}{ }^{w}$ is not normalized by $\left(\left[\begin{array}{l}0 \\ 0\end{array}\right], b\right)$.
5. The rank one case. If G is a finite group with an unsaturated split (B, N)-pair (G, B, N, R, U) then for each $w_{i} \in R$ the parabolic subgroup $P_{i}=B \cup B_{w_{i}} B$ has an unsaturated split (B, N)-pair $\left(P_{i}, B, N_{i},\left\{w_{i}\right\}, U\right)$ of rank 1 where $N_{i}=H \cup w_{i} H$. Let $\left(w_{i}\right) \in N$ satisfy $\left(w_{i}\right) H=w_{i}$. As in the general case the set $\left\{A_{h}{ }^{\prime}, A^{\prime}{ }_{\left(w_{i}\right)} \mid h \in H\right\} k$-algebra generates

$$
E_{i}=\operatorname{End}_{k P_{i}}\left(Y_{i}\right)
$$

where

$$
Y_{i} \cong \operatorname{Ind}_{U}^{P_{i}}\left(k_{U}\right)
$$

(see 5.7). There exists an injective k-linear algebra homomorphism

$$
\gamma: E_{i} \rightarrow E
$$

given by

$$
\begin{aligned}
& A_{h}^{\prime} \rightarrow A_{h}(h \in H) \\
& A_{\left(w_{i}\right)} \rightarrow A_{\left(w_{i}\right)}
\end{aligned}
$$

since the set $\left\{h, h\left(w_{i}\right) \mid h \in H\right\}$ forms part of the transversal for the $U-U$ double cosets in G (see 3.2). Therefore, results proved for the rank one case can be extended to G.

It becomes necessary $(5.11,5.12)$ to examine $d=\sum_{s=1}^{b} \chi\left(h\left(u_{s}\right)\right)$ where $\chi \in \hat{B}$ is fixed and the $h\left(u_{s}\right)(s=1, \ldots, b)$ are certain elements of H
determined by (w_{i}) and Richen's "structural equations." Since these equations exist for every $w_{i} \in R$, we refer in Section 3 to

$$
d_{i}=\sum_{s=1}^{b(i)} \chi\left(h\left(u_{i_{s}}\right)\right) .
$$

Therefore we now assume G has an unsaturated split (B, N)-pair of rank 1 . Let $W=\{1, w\}$ and let Y, y, E and (w) be as in previous sections. We must give some technical lemmas concerning the structure of $G=B \cup B w B$.
5.1 Lemma. Let Ω be any left transversal (containing 1) of U by ${ }_{w} U^{+}$. Then

$$
\Omega^{(w)} \cap B=1
$$

Proof. Since $\Omega \cap B^{w} \subset B \cap B^{w}=\left(U \cap U^{w}\right) H$, the result follows.
Remark. Note that $|\Omega|>1$, for otherwise $U={ }_{w} U^{+}, w B w=B$, contrary to the (B, N)-pair axioms.
5.2 Lemma. Cosets of the form $g U(g \in G)$ contained in $B w B=B w U$ are of the form $u h(w) U$ for some $u \in U, h \in H$. Moreover, if $u_{1}, u_{2} \in U$ and $h_{1}, h_{2} \in H$ then

$$
u_{1} h_{1}(w) U=u_{2} h_{2}(w) U \Leftrightarrow u_{2}^{-1} u_{1} \in{ }_{w} U^{+} \text {and } h_{1}=h_{2}
$$

Proof. Clearly $u_{1} h_{1}(w) U=u_{2} h_{1}(w) U$ if $u_{1}=u_{2} u$ for some $u \in{ }_{w} U^{+}$ since H normalizes U and ${ }_{w} U^{+}$.

Say $u_{1} h_{1}(w)=u_{2} h_{2}(w) u(u \in U)$. Then

$$
\begin{aligned}
u_{2}^{-1} u_{1} & =h_{2}(w) u(w)^{-1} h_{1}^{-1} \\
& =(w) h_{2} w u\left(h_{1}^{-1}\right)^{w}(w)^{-1}
\end{aligned}
$$

so that

$$
u_{2}^{-1} u_{1} \in B^{w} \cap B={ }_{w} U^{+} H
$$

Therefore $u_{2}^{-1} u_{1} \in{ }_{w} U^{+}$since it is an element whose order is a power of p. Therefore

$$
h_{2}{ }^{w} u\left(h_{1}^{-1}\right)^{w} \in{ }_{w} U^{+} \subset U
$$

so that

$$
\left(h_{2}^{w} u\left(h_{2}^{-1}\right)^{w}\right)\left(h_{2}{ }^{w}\left(h_{1}^{-1}\right)^{w}\right) \in U
$$

Therefore $h_{2}{ }^{w}\left(h_{1}^{-1}\right)^{w} \in U$ and $h_{2}=h_{1}$.
The following facts are easily verified:
5.3. Let $\Gamma=\{h, u(w) h \mid h \in H, u \in \Omega\}$. Then Γ is a set of representatives of left cosets of U in G.
5.4. Every element g of G can be uniquely expressed as $g=u_{1} h$ or $g=u(w) h u_{2}$ with $u_{1}, u_{2} \in U, u \in \Omega$ and $h \in H$.
5.5. The elements of N form a transversal for the $U-U$ double cosets in G.

Richen determines "structural equations" in the saturated case and these equations can be adapted to the unsaturated case, but we omit the detailed proof (see [7, p. 445]).
5.6. Structural Equations in G. Let $\Omega^{*}=\Omega \backslash\{1\}$. There exist functions

$$
f: \Omega^{*} \rightarrow \Omega^{*}, g: \Omega^{*} \rightarrow U, h: \Omega^{*} \rightarrow H
$$

where f is a bijection and

$$
(w) u(w)=f(u) h(u)(w) g(u)
$$

for any $u \in \Omega^{*}$.
We now examine the endomorphism algebra E.
As in Section 3 the set $\left\{A_{n} \mid n \in N\right\}$ is a k-basis for E where for $h \in H$ $5.7 \quad A_{h}{ }^{\prime}(y)=h y$

$$
A_{h(w)}^{\prime}(y)=[\Omega] h(w) y
$$

It is easy to see that

$$
5.8 \quad A_{h}^{\prime} A_{(w)}^{\prime}=A_{(w) h}^{\prime} \text { and } A_{(w)}^{\prime} A_{h}^{\prime}=A_{h(w)}^{\prime} \text { for any } h \in H
$$

Therefore
5.9. The set $\left\{A_{h}{ }^{\prime}, A_{(w)}{ }^{\prime} \mid h \in H\right\} k$-algebra generates E.
5.10 Lemma. There exist elements u_{1}, \ldots, u_{b} (not necessarily distinct) belonging to Ω^{*} such that

$$
A_{(w)}^{\prime 2}=A_{(w)}^{\prime} \sum_{s=1}^{b} A_{\prime,\left(u_{s}\right)}^{\prime}
$$

where $b=|\Omega|-1$.
Proof. We can write $A_{(w)}{ }^{\prime 2}=\sum_{h \in H} \lambda_{h} A_{h}{ }^{\prime}+\sum_{h \in H} \lambda_{h(w)} A_{h(w)}^{\prime}$ where $\lambda_{h}, \lambda_{h(w)} \in k$ for all $h \in H$. Fix $h \in H$. We show
(i) if $\lambda_{h} \neq 0$ then $h=(w)^{2}$ and $\lambda_{(w)}{ }^{2}=|\Omega| \cdot 1_{k}$
(ii) if $\lambda_{h(w)} \neq 0$ then $h=h(u)$ for some $u \in \Omega^{*}$.

Proof of (i). By 3.2 there exist $u_{1}, u_{2} \in \Omega$ such that $u_{1}(w) u_{2}(w) \in h U$. We must have $u_{2}=1$ for otherwise

$$
(w)^{-1} u_{2}(w) \in(w)^{-2} h U \subset B
$$

contradicting 5.1. Now $u_{1}(w)^{2} \in h U$ if and only if $(w)^{2}=h$. It follows that

$$
\lambda_{(w)}{ }^{2}=|\Omega| \cdot 1_{k}
$$

Proof of (ii). If $\lambda_{h(w)} \neq 0$ there exist $u_{1}, u_{2} \in \Omega$ such that

$$
u_{1}(w) u_{2}(w) \in h(w) U .
$$

Therefore by $5.6 U h\left(u_{2}\right)(w) U=U h(w) U$ so that $h=h\left(u_{2}\right)$ by 5.3 .
We know that $A_{(w)}{ }^{\prime 2}(y)$ is a sum of $|\Omega|^{2} G$-translates of y; that is $|\Omega|^{2}$ terms of the form $g y=\gamma y(\gamma \in \Gamma, g \in \gamma U)$. If the term γy appears, $(\gamma \notin H)$, so will each of its distinct G-translates of which there are $|\Omega|$ in number. If we call γy and its set of distinct U-translates an "orbit" then by (i) and because $|\Omega|^{2}-|\Omega|=|\Omega|(|\Omega|-1)$, we see that there are $|\Omega|-1$ such orbits in $\sum_{h \in H} \lambda_{h(w)} A_{h(w)}^{\prime}$. By (ii) $A_{(w)}^{\prime 2}$ has the required form since $1<|\Omega|$ is a power of p.

Definition. For $\chi \in \hat{B}$, let $e(\chi)=\sum_{h \in H} \chi\left(h^{-1}\right) A_{h}{ }^{\prime}$. Notice that

$$
A_{h}^{\prime} e(\chi)=e(\chi) A_{h}^{\prime}=\chi(h) e(\chi) \text { for any } h \in H
$$

We now fix $\chi \in \hat{B}$ and examine $d=\sum_{s=1}^{b} \chi\left(h\left(u_{s}\right)\right)$. Remember that ${ }^{w} \chi \in \hat{B}$ where ${ }^{w} \chi(h u)=\chi\left(h^{w} u\right)$ for any $h \in H, u \in U$.
5.11 Lemma. Assume $d \neq 0$. Then ${ }^{w} \chi=\chi$.

Proof. Let $v=e\left({ }^{w} \chi\right) A_{(w)}{ }^{\prime}$. By $5.9 v$ generates a one-dimensional right E-module since
(i) $v A_{h}{ }^{\prime}=e\left({ }^{w} \chi\right) A_{(w)}{ }^{\prime} A_{h}{ }^{\prime}$

$$
=e\left({ }^{w} \chi\right) A_{h(w)}^{\prime} \text { by } 5.8
$$

$$
=e\left({ }^{w} \chi\right) A_{(w)(w)^{-1} h(w)}^{\prime}
$$

$$
=e\left({ }^{w} \chi\right) A_{(w)^{-1} h(w)}^{\prime} A_{(w)}{ }^{\prime} \text { by } 5.8
$$

$$
=\chi(h) v \text { for all } h \in H, \text { and }
$$

(ii) $v A_{(w)}{ }^{\prime}=e\left({ }^{w} \chi\right) A_{(w)}{ }^{\prime 2}$

$$
\begin{aligned}
& =e\left({ }^{w} \chi\right) A_{(u)}^{\prime} \sum_{s=1}^{b} A_{h\left(u_{s}\right)}^{\prime} \quad \text { by } 5.10 \\
& =\sum_{s=1}^{b} \chi\left(h\left(u_{s}\right)\right) v \quad \text { by part (i) } \\
& =d v
\end{aligned}
$$

Therefore there exists a multiplicative character $\phi: E \rightarrow k$ such that

$$
\phi\left(A_{(w)}{ }^{\prime}\right)=d \text { and } \phi\left(A_{h}^{\prime}\right)=\chi(h) \text { for all } h \in H
$$

But

$$
\phi\left(A_{(w)^{\prime}} A_{h}{ }^{\prime}\right)=\phi\left(A_{(w)^{-1} h(w)}^{\prime} A_{(w)}{ }^{\prime}\right) \quad \text { for any } h \in H
$$

by 5.8 so that

$$
\phi\left(A_{(w)^{\prime}}\right) \phi\left(A_{h^{\prime}}\right)=\phi\left(A_{(w)^{-1}(w)}^{\prime}\right) \phi\left(A_{(w)^{\prime}}\right) \text { for any } h \in H
$$

and so

$$
d_{\chi}(h)={ }^{w} \chi(h) d \text { for all } h \in H
$$

and the result follows.
5.12 Theorem. Assume $d \neq 0$. Then there exists a one-dimensional $k G$-module M_{0} affording the character $\xi: G \rightarrow k^{*}$ with $\xi|H=\chi| H$.

Proof. By $5.11 A_{(w)}{ }^{\prime}$ commutes with $e(\chi)$. Hence $e(\chi)$ is in the centre of E and

$$
e(\chi) E=e(\chi) E e(\chi)=k e(\chi) \oplus k e(\chi) A_{(w)^{\prime}}
$$

is an algebra which has basis $e=e(\chi)$ and $t=e(\chi) A_{(w)^{\prime}}$. Now $e^{2}=e$, $e t=t e=t, t^{2}=d t$ and $e=e_{0}+e_{1}$ is a decomposition of e into primitive idempotents in $e(\chi) E$ where $e_{0}=(1 / d)(d e-t)$ and $e_{1}=(1 / d) t$. Let $Y_{\chi}=e(\chi) Y$. Then Y_{χ} is a $k G$-module of dimension $|G: B|=|\Omega|+1$ since $Y_{\chi} \cong \operatorname{Ind}_{B}{ }^{G}\left(L_{\chi}\right)$ where L_{χ} is a $k B$-module affording the character χ. Let $m_{0}=e_{0}(Y)$ and $M_{1}=e_{1}(Y)$. Then $Y_{\chi}=M_{0} \oplus M_{1}$ where M_{0} and M_{1} are indecomposable left $k G$-modules. We show that the dimension of M_{0} is one by showing the dimension of M_{1} is $|\Omega|$. Let $x_{1}=e_{1}(y)$. Then x_{1} is U-invariant and

$$
\begin{aligned}
{[\Omega](w) x_{1} } & =[\Omega](w) e_{1}(y) \\
& =e_{1}([\Omega](w) y) \\
& \left.=e_{1} A_{(w)}\right)^{\prime}(y) \\
& =(1 / d) e(\chi) A_{(w)^{\prime}}{ }^{2}(y) \\
& =(1 / d) e(\chi) A_{(w)}{ }^{\prime} \sum_{s=1}^{b} A_{h\left(u_{s}\right)}^{\prime}(y) \quad \text { by } 5.10 \\
& =(1 / d) e(\chi) A_{(w)^{\prime}} \sum_{s=1}^{b} \chi\left(h\left(u_{s}\right)\right) y \text { since } e(\chi) \text { and } A_{(w)^{\prime}} \text { commute } \\
& =d e_{1}(y) \\
& =d x_{1} \neq 0 \text { as } d \neq 0 .
\end{aligned}
$$

Therefore M_{1} contains an element $x=(w) x_{1}$ such that $[\Omega] x \neq 0$ and x is stabilized by ${ }_{w} U^{+}$. Let $L=\operatorname{Ind}_{T}{ }^{U}\left(k_{T}\right)$ where $T={ }_{w} U^{+}$. Then there exists a surjective $k U$-map $\theta: L \rightarrow k U x$ given by $\theta(z)=x$ where $z=1 \otimes 1$. Hence

$$
\theta\left(\sum_{\omega \in \mathbb{\Omega}} \omega z\right)=\sum_{\omega \in \Omega} \omega x \neq 0 .
$$

The socle of L is its space of U-invariants [$\Omega] z$. Therefore θ is a bijection
and the k-space $k U x$ has dimension $|\Omega|$. But $k U x \subset M_{1}$ and
dimension $M_{1}=$ dimension $Y_{\chi}-$ dimension $M_{0} \leqq|\Omega|$
so that the dimension of M_{1} is $|\Omega|$.
Assume M_{0} affords the character $\xi: G \rightarrow k^{*}$ and let $v=e_{0}(y)$. Then $M_{0}=k v$ and if $h \in H$ it is easily verified that $h v=\chi(h) v$. Hence

$$
\xi|H=\chi| H
$$

References

1. N. Bourbaki, Groupes et algèbres de Lie, Chapters 4, 5, 6 (Herman, Paris, 1968).
2. R. Carter and G. Lusztig, Modular representations of finite groups of Lie type, Proc. London Math. Soc. (3) 32 (1976), 347-384.
3. C. W. Curtis, Modular representations of finite groups with split (B, N)-pairs, Lecture Notes in Mathematics No. 131, (B-1)-(B-39) (Springer, Berlin-Heidelberg-New York, 1970).
4. P. Fong and G. Seitz, Groups with a (B, N)-pair of rank 2.I, Inventiones Math. 21 (1973), 1-57.
5. J. A. Green, On a theorem of H. Sawada, To appear in Proc. London Math. Soc.
6. W. M. Kantor and G. Seitz, Some results on 2-transitive groups, Inventiones Math. 13 (1971), 125-142.
7. F. Richen, Modular representations of split (B, N)-pairs, Trans. Amer. Math. Soc. 140 (1969), 435-460.
8. H. Sawada, A characterization of the modular representations of finite groups with split (B, N)-pairs, Math. Z. 155 (1977), 29-41.
9. N. Tinberg, Some indecomposable modules of groups with split (B, N)-pairs, J. Alg. 61 (1979), 508-526.

Occidental College,
Los Angeles, California

