ON A PARTITION PROBLEM OF FINITE ABELIAN GROUPS
 ZHENHUA QU

(Received 7 January 2015; accepted 21 February 2015; first published online 29 April 2015)

Abstract

Let G be a finite abelian group and $A \subseteq G$. For $n \in G$, denote by $r_{A}(n)$ the number of ordered pairs $\left(a_{1}, a_{2}\right) \in A^{2}$ such that $a_{1}+a_{2}=n$. Among other things, we prove that for any odd number $t \geq 3$, it is not possible to partition G into t disjoint sets $A_{1}, A_{2}, \ldots, A_{t}$ with $r_{A_{1}}=r_{A_{2}}=\cdots=r_{A_{t}}$.

2010 Mathematics subject classification: primary 11B34; secondary 20K01.
Keywords and phrases: representation function, partition, finite abelian group.

1. Introduction

We use \mathbb{N} to denote the set of nonnegative integers. Let G be an abelian semigroup with an arbitrary total ordering. For any subset $A \subseteq G$ and $n \in G$, let

$$
\begin{gathered}
r_{A}(n)=\#\left\{\left(a_{1}, a_{2}\right) \in A^{2}: a_{1}+a_{2}=n\right\}, \\
r_{A}^{+}(n)=\#\left\{\left(a_{1}, a_{2}\right) \in A^{2}: a_{1}+a_{2}=n, a_{1} \leq a_{2}\right\}
\end{gathered}
$$

and

$$
r_{A}^{-}(n)=\#\left\{\left(a_{1}, a_{2}\right) \in A^{2}: a_{1}+a_{2}=n, a_{1}<a_{2}\right\},
$$

respectively. These representation functions have been studied by many authors (see, for example, the survey paper [7] for a picture of results in this area). An important problem is the inverse problem for representation functions, which seeks to understand sets $A, B \subseteq G$ with the same representation function.

Nathanson [4] determined all pairs of sets $A, B \subseteq \mathbb{N}$ such that r_{A} and r_{B} eventually coincide. Kiss et al. [2] extended Nathanson's result to 3-fold representation functions. In $[3,6,8]$, the authors classified all subsets $A \subseteq \mathbb{N}$ such that r_{A}^{+}and $r_{\mathbb{N} \backslash A}^{+}$(respectively r_{A}^{-}and $r_{\mathbb{N} \backslash A}^{-}$) eventually coincide. Nathanson [5] posed the following problem, which, to the best of our knowledge, is still open.
Problem 1.1. Let $t \geq 3$. Does there exist a partition of the nonnegative integers into disjoint sets $A_{1}, A_{2}, \ldots, A_{t}$ whose representation functions $r_{A_{1}}^{+}, r_{A_{2}}^{+}, \ldots, r_{A_{t}}^{+}$eventually coincide? Characterise all such partitions if they exist. The same problem can be posed for r_{A}^{-}.

[^0]Analogously, for a finite abelian group G, one may ask the following question.
Problem 1.2. Let $t \geq 2$. Does there exist a partition of G into disjoint sets $A_{1}, A_{2}, \ldots, A_{t}$ whose representation functions $r_{A_{1}}, r_{A_{2}}, \ldots, r_{A_{t}}$ coincide? Characterise all such partitions if they exist. The same problem can be posed for r_{A}^{+}and r_{A}^{-}.

For $t=2$, we have a complete classification.
Theorem 1.3. Let G be a finite abelian group with $|G| \geq 2$ and $A \subseteq G$. Denote the 2 -torsion subgroup of G by $G_{2}:=\{g \in G: 2 g=0\}$. Then:

- $r_{A}=r_{G \backslash A}$ if and only if $|G|$ is even and $|A|=|G| / 2$;
- $r_{A}^{+}=r_{G \backslash A}^{+}$(respectively $\left.r_{A}^{-}=r_{G \backslash A}^{-}\right)$if and only if $|G|$ is even, and $|A \cap H|=|H| / 2$ for every coset H of G_{2}.

We make some progress toward Problem 1.2 for r_{A} and $t \geq 3$. Our main result is the following theorem.

Theorem 1.4. Let G be a finite abelian group and $t \geq 3$ an odd number. Then it is not possible to partition G into t disjoint sets $A_{1}, A_{2}, \ldots, A_{t}$ with $r_{A_{1}}=r_{A_{2}}=\cdots=r_{A_{t}}$.

We also pose the following conjecture.
Conjecture 1.5. Let G be a finite abelian group and $t \geq 2$. Suppose that $A_{1}, A_{2}, \ldots, A_{t}$ form a partition of G with $r_{A_{1}}=r_{A_{2}}=\cdots=r_{A_{t}}$; then t divides $\left|G_{2}\right|$.

Problem 1.2 was also asked in [1] for h-fold representation functions and Theorem 1.4 gives a partial solution. Theorem 1.3 was also proved in [1]. We provide a new proof here, since the ingredients in the proof are also needed for proving Theorem 1.4.

2. Proof of results

Throughout this section, G is a finite abelian group. Our main tool is the generating function in the group algebra $\mathbb{C}[G]$ associated to a set $A \subseteq G$. Recall that the elements of $\mathbb{C}[G]$ are of the form

$$
f(x)=\sum_{g \in G} a_{g} x^{g},
$$

where a_{g} is a complex number for every $g \in G$. The multiplication in $\mathbb{C}[G]$ is given by

$$
\left(\sum_{g \in G} a_{g} x^{g}\right)\left(\sum_{g \in G} b_{g} x^{g}\right)=\sum_{g_{1}, g_{2} \in G} a_{g_{1}} b_{g_{2}} x^{g_{1}+g_{2}}=\sum_{\substack{g \in G \\ g_{1}}}\left(\sum_{\substack{g_{1}, g_{2} \in G \\ g_{1}+g_{2}=g}} a_{g_{1}} b_{g_{2}}\right) x^{g} .
$$

For any subset $A \subseteq G$, write

$$
f_{A}(x)=\sum_{a \in A} x^{a} \in \mathbb{C}[G] .
$$

Then

$$
\begin{gather*}
f_{A}(x)^{2}=\sum_{n \in G}\left(\sum_{\substack{a_{1}, a_{2} \in A \\
a_{1}+a_{2}-n}} 1\right) x^{n}=\sum_{n \in G} r_{A}(n) x^{n}, \tag{2.1}\\
f_{A}(x)^{2}+f_{A}\left(x^{2}\right)=\sum_{n \in G}\left(r_{A}(n)+\sum_{\substack{a \in G \\
2 a=n}} 1\right) x^{n}=\sum_{n \in G} 2 r_{A}^{+}(n) x^{n} \tag{2.2}
\end{gather*}
$$

and

$$
\begin{equation*}
f_{A}(x)^{2}-f_{A}\left(x^{2}\right)=\sum_{n \in G}\left(r_{A}(n)-\sum_{\substack{a \in G \\ 2 a=n}} 1\right) x^{n}=\sum_{n \in G} 2 r_{A}^{-}(n) x^{n} . \tag{2.3}
\end{equation*}
$$

We use χ_{A} to denote the characteristic function of A, that is,

$$
\chi_{A}(x)= \begin{cases}1, & x \in A, \\ 0, & x \in G \backslash A .\end{cases}
$$

For any function $f: G \rightarrow \mathbb{Z}$ and map $\varphi: G \rightarrow G^{\prime}$, let $f^{\varphi}: G^{\prime} \rightarrow \mathbb{Z}$ be defined as

$$
f^{\varphi}(n)=\sum_{m \in \varphi^{-1}(n)} f(m), \quad n \in G^{\prime}
$$

For any group homomorphism $\varphi: G \rightarrow G^{\prime}$, we have a natural induced homomorphism of group algebras $\varphi_{*}: \mathbb{C}[G] \rightarrow \mathbb{C}\left[G^{\prime}\right]$, namely

$$
\varphi_{*}\left(\sum_{g \in G} a_{g} x^{g}\right)=\sum_{g \in G} a_{g} x^{\varphi(g)}=\sum_{g \in G^{\prime}}\left(\sum_{n \in \varphi^{-1}(g)} a_{n}\right) x^{g} .
$$

Proof of Theorem 1.3. Let $A \subseteq G$ and write $B=G \backslash A$. If $r_{A}=r_{B}$, then

$$
\begin{equation*}
|A|^{2}=\sum_{n \in G} r_{A}(n)=\sum_{n \in G} r_{B}(n)=|B|^{2} \tag{2.4}
\end{equation*}
$$

and hence $|A|=|B|=|G| / 2$. Now suppose that $|G|$ is even and $|A|=|G| / 2$. It follows from (2.1) that $r_{A}=r_{B}$ if and only if

$$
f_{A}(x)^{2}=f_{B}(x)^{2}
$$

or, equivalently,

$$
\begin{equation*}
\left(f_{A}(x)-f_{B}(x)\right)\left(f_{A}(x)+f_{B}(x)\right)=0 \tag{2.5}
\end{equation*}
$$

To see that (2.5) holds, decompose G into a direct sum of cyclic groups, say

$$
G \cong \bigoplus_{i=1}^{k} \mathbb{Z}_{m_{i}}
$$

Fixing a generator g_{i} of $\mathbb{Z}_{m_{i}}$ for every i and setting $x^{g_{i}}=x_{i}$, we thus obtain an isomorphism

$$
\mathbb{C}[G] \cong \mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{k}\right] /\left(x_{1}^{m_{1}}-1, x_{2}^{m_{2}}-1, \ldots, x_{k}^{m_{k}}-1\right) .
$$

Using this isomorphism,

$$
\begin{equation*}
f_{A}(x)+f_{B}(x)=\sum_{n \in G} x^{n}=\prod_{i=1}^{k}\left(1+x_{i}+\cdots+x_{i}^{m_{i}-1}\right) . \tag{2.6}
\end{equation*}
$$

Let $\bar{f}_{A}, \bar{f}_{B} \in \mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{k}\right]$ be an inverse image of f_{A}, f_{B} respectively under the projection map

$$
\pi: \mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{k}\right] \rightarrow \mathbb{C}\left[x_{1}, \ldots, x_{k}\right] /\left(x_{1}^{m_{1}}-1, x_{2}^{m_{2}}-1, \ldots, x_{k}^{m_{k}}-1\right)
$$

The value of $\bar{f}_{A}(1,1, \ldots, 1)$ does not depend on the choice of \bar{f}_{A}, since the difference of two choices is a polynomial in the ideal $\left(x_{1}^{m_{1}}-1, x_{2}^{m_{2}}-1, \ldots, x_{k}^{m_{k}}-1\right)$, which vanishes at $(1,1, \ldots, 1)$. Thus, we see that

$$
\bar{f}_{A}(1,1, \ldots, 1)=\sum_{n \in A} 1=|A|
$$

and similarly

$$
\bar{f}_{B}(1,1, \ldots, 1)=|B|
$$

It follows that

$$
\begin{equation*}
\bar{f}_{A}(1,1, \ldots, 1)-\bar{f}_{B}(1,1, \ldots, 1)=|A|-|B|=0 . \tag{2.7}
\end{equation*}
$$

Hilbert's Nullstellensatz states that if $P \in \mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{k}\right]$ and P vanishes at some $\left(a_{1}, a_{2}, \ldots, a_{k}\right) \in \mathbb{C}^{k}$, then P is in the maximal ideal $\left(x_{1}-a_{1}, x_{2}-a_{2}, \ldots, x_{k}-a_{k}\right)$. By (2.7) and Hilbert's Nullstellensatz, $\bar{f}_{A}-\bar{f}_{B} \in\left(x_{1}-1, x_{2}-1, \ldots, x_{k}-1\right)$; in other words,

$$
\begin{equation*}
\bar{f}_{A}-\bar{f}_{B}=\sum_{i=1}^{k}\left(x_{i}-1\right) h_{i} \tag{2.8}
\end{equation*}
$$

for some $h_{1}, h_{2}, \ldots, h_{k} \in \mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{k}\right]$. Applying the projection map π to (2.8) and multiplying by (2.6),

$$
\begin{aligned}
\left(f_{A}-f_{B}\right)\left(f_{A}+f_{B}\right) & =\left(\sum_{i=1}^{k}\left(x_{i}-1\right) \pi\left(h_{i}\right)\right) \prod_{j=1}^{k}\left(1+x_{j}+\cdots+x_{j}^{m_{j}-1}\right) \\
& =\sum_{i=1}^{k}\left(\left(x_{i}^{m_{i}}-1\right) \pi\left(h_{i}\right) \prod_{\substack{1 \leq j \leq k \\
j \neq i}}\left(1+x_{j}+\cdots+x_{j}^{m_{j}-1}\right)\right) \\
& =0 \in \mathbb{C}\left[x_{1}, \ldots, x_{k}\right] /\left(x_{1}^{m_{1}}-1, x_{2}^{m_{2}}-1, \ldots, x_{k}^{m_{k}}-1\right) .
\end{aligned}
$$

Hence, (2.5) holds.
If $r_{A}^{+}=r_{B}^{+}$(respectively $r_{A}^{-}=r_{B}^{-}$), then

$$
\binom{|A|+1}{2}=\sum_{n \in G} r_{A}^{+}(n)=\sum_{n \in G} r_{B}^{+}(n)=\binom{|B|+1}{2}
$$

or, respectively,

$$
\binom{|A|}{2}=\sum_{n \in G} r_{A}^{-}(n)=\sum_{n \in G} r_{B}^{-}(n)=\binom{|B|}{2}
$$

and again we have $|A|=|B|$. Now suppose that $|G|$ is even and $|A|=|G| / 2$. Noting that we have already proved that $f_{A}^{2}=f_{B}^{2}$, it follows from (2.2) and (2.3) that $r_{A}^{+}=r_{B}^{+}$
(respectively $r_{A}^{-}=r_{B}^{-}$) if and only if $f_{A}\left(x^{2}\right)=f_{B}\left(x^{2}\right)$. Consider the homomorphism $\varphi: G \rightarrow 2 G$ given by $\varphi(x)=2 x$ for $x \in G$, where $2 G:=\{2 x: x \in G\}$. The kernel of φ is $\operatorname{ker} \varphi=G_{2}=\{g \in G: 2 g=0\}$. Since

$$
f_{A}\left(x^{2}\right)=\sum_{n \in G} \chi_{A}(n) x^{2 n}=\sum_{m \in 2 G}\left(\sum_{n \in \varphi^{-1}(m)} \chi_{A}(n)\right) x^{m}=\sum_{m \in 2 G} \chi_{A}^{\varphi}(m) x^{m},
$$

and similarly

$$
f_{B}\left(x^{2}\right)=\sum_{n \in G} \chi_{B}(n) x^{2 n}=\sum_{m \in 2 G} \chi_{B}^{\varphi}(m) x^{m},
$$

it follows that $f_{A}\left(x^{2}\right)=f_{B}\left(x^{2}\right)$ if and only if

$$
\chi_{A}^{\varphi}(m)=\chi_{B}^{\varphi}(m)
$$

for every $m \in 2 G$. Note that

$$
\chi_{A}^{\varphi}(m)=\sum_{n \in \varphi^{-1}(m)} \chi_{A}(n)=\left|A \cap \varphi^{-1}(m)\right|
$$

and similarly $\chi_{B}^{\varphi}(m)=\left|B \cap \varphi^{-1}(m)\right|$. Thus, $f_{A}\left(x^{2}\right)=f_{B}\left(x^{2}\right)$ if and only if

$$
|A \cap H|=|B \cap H|=|H| / 2
$$

for every coset $H=\varphi^{-1}(m)$ of G_{2}. This completes the proof of Theorem 1.3.
We now proceed to prove Theorem 1.4. Our strategy is to study f_{A} under projections of G onto various cyclic groups.
Lemma 2.1. Let $t \geq 3$ be an odd integer. Suppose that $A_{1}, A_{2}, \ldots, A_{t}$ form a partition of G with $r_{A_{1}}=r_{A_{2}}=\cdots=r_{A_{t}}$. Then for any cyclic quotient map $\varphi: G \rightarrow \mathbb{Z}_{q}$ with q a prime power, $\chi_{A_{i}}^{\varphi}$ is a constant function on \mathbb{Z}_{q} for every $i=1,2, \ldots, t$.
Proof. Write $q=p^{k}$ with p prime and $k>0$. With the same argument as in (2.4), we first conclude that $\left|A_{1}\right|=\left|A_{2}\right|=\cdots=\left|A_{t}\right|$. The lemma is proved by induction on k.

For $k=1$, let

$$
g_{A_{i}}:=\varphi_{*}\left(f_{A_{i}}\right)=\sum_{g \in G} \chi_{A_{i}}(g) x^{\varphi(g)}=\sum_{n \in \mathbb{Z}_{p}}\left(\sum_{m \in \varphi^{-1}(n)} \chi_{A_{i}}(m)\right) x^{n}=\sum_{n \in \mathbb{Z}_{p}} \chi_{A_{i}}^{\varphi}(n) x^{n}
$$

in $\mathbb{C}\left[\mathbb{Z}_{p}\right] \cong \mathbb{C}[x] /\left(x^{p}-1\right)$. In treating the divisibility of polynomials, we can consider $g_{A_{i}}$ as a polynomial in $\mathbb{C}[x]$ by taking an inverse image in $\mathbb{C}[x]$. Since $f_{A_{i}}^{2}=f_{A_{j}}^{2}$ in $\mathbb{C}[G]$, we have $g_{A_{i}}^{2}=g_{A_{j}}^{2}$ in $\mathbb{C}\left[\mathbb{Z}_{p}\right]$, that is, $x^{p}-1 \mid g_{A_{i}}^{2}-g_{A_{j}}^{2}$. In particular, $\Phi_{p}(x) \mid g_{A_{i}}^{2}-g_{A_{j}}^{2}$, where $\Phi_{m}(x)$ denotes the m th cyclotomic polynomial. Note that $\Phi_{p}(x)$ is irreducible over \mathbb{Z}, and $g_{A_{i}}$ also has integral coefficients; therefore, either $\Phi_{p}(x) \mid g_{A_{i}}-g_{A_{j}}$ or $\Phi_{p}(x) \mid g_{A_{i}}+g_{A_{j}}$.

Note that

$$
g_{A_{i}} \pm g_{A_{j}} \equiv \sum_{n=0}^{p-1}\left(\chi_{A_{i}}^{\varphi}(n) \pm \chi_{A_{j}}^{\varphi}(n)\right) x^{n}\left(\bmod x^{p}-1\right)
$$

and $\Phi_{p}(x)=1+x+\cdots+x^{p-1}$. Thus, $\Phi_{p}(x) \mid g_{A_{i}} \pm g_{A_{j}}$ if and only if $\chi_{A_{i}}^{\varphi} \pm \chi_{A_{j}}^{\varphi}$ is a constant function on \mathbb{Z}_{p}. Since

$$
\sum_{n \in \mathbb{Z}_{p}} \chi_{A_{i}}^{\varphi}(n)=\sum_{n \in \mathbb{Z}_{p}} \chi_{A_{j}}^{\varphi}(n)=\left|A_{i}\right|=\left|A_{j}\right|=|G| / t,
$$

$\chi_{A_{i}}^{\varphi}-\chi_{A_{j}}^{\varphi}$ is constant if and only if $\chi_{A_{i}}^{\varphi}=\chi_{A_{j}}^{\varphi}$, and $\chi_{A_{i}}^{\varphi}+\chi_{A_{j}}^{\varphi}$ is constant if and only if

$$
\chi_{A_{i}}^{\varphi}+\chi_{A_{j}}^{\varphi}=\frac{2|G|}{t p}
$$

that is,

$$
\begin{equation*}
\chi_{A_{j}}^{\varphi}=\frac{2|G|}{t p}-\chi_{A_{i}}^{\varphi} \tag{2.9}
\end{equation*}
$$

Suppose on the contrary that $\chi_{A_{i}}^{\varphi}$ is not a constant function. Assume that there are a sets A_{j} among $A_{1}, A_{2}, \ldots, A_{t}$ satisfying $\chi_{A_{j}}^{\varphi}=\chi_{A_{i}}^{\varphi}$, and the remaining A_{j} satisfy (2.9); then

$$
\chi_{G}^{\varphi}=\sum_{j=1}^{t} \chi_{A_{j}}^{\varphi}=a \chi_{A_{i}}^{\varphi}+(t-a)\left(\frac{2|G|}{t p}-\chi_{A_{i}}^{\varphi}\right)=\frac{2(t-a)|G|}{t p}+(2 a-t) \chi_{A_{i}}^{\varphi} .
$$

Since t is odd, $2 a-t \neq 0$; we conclude that χ_{G}^{φ} is not a constant function, which is clearly a contradiction.

For $k>1$, we assume that the assertion holds for $k-1$. Let $\alpha: \mathbb{Z}_{p^{k}} \rightarrow \mathbb{Z}_{p^{k-1}}$ be the canonical projection and $\beta=\alpha \circ \varphi$. By the inductive hypothesis, $\chi_{A_{i}}^{\beta}$ is a constant function for $i=1,2, \ldots, t$; thus,

$$
1+x+x^{2}+\cdots+x^{p^{k-1}-1} \mid \beta_{*}\left(f_{A_{i}}\right)
$$

and therefore

$$
\begin{equation*}
1+x+x^{2}+\cdots+x^{p^{k-1}-1} \mid g_{A_{i}} \tag{2.10}
\end{equation*}
$$

where $g_{A_{i}}=\varphi_{*}\left(f_{A_{i}}\right)$. Since $g_{A_{i}}^{2}=g_{A_{j}}^{2}$ in $\mathbb{C}\left[\mathbb{Z}_{q}\right]$, we have $x^{q}-1 \mid g_{A_{i}}^{2}-g_{A_{j}}^{2}$. It follows that either $\Phi_{q} \mid g_{A_{i}}-g_{A_{j}}$ or $\Phi_{q} \mid g_{A_{i}}+g_{A_{j}}$. By (2.10),

$$
1+x+x^{2}+\cdots+x^{p^{k-1}-1} \mid g_{A_{i}} \pm g_{A_{j}}
$$

and $x-1 \mid g_{A_{i}}-g_{A_{j}}$, since $g_{A_{i}}(1)-g_{A_{j}}(1)=\left|A_{i}\right|-\left|A_{j}\right|=0$.
If $\Phi_{q}(x) \mid g_{A_{i}}-g_{A_{j}}$, then $x^{q}-1 \mid g_{A_{i}}-g_{A_{j}}$. Since

$$
\begin{equation*}
g_{A_{i}} \pm g_{A_{j}} \equiv \sum_{n=0}^{q-1}\left(\chi_{A_{i}}^{\varphi}(n) \pm \chi_{A_{j}}^{\varphi}(n)\right) x^{n}\left(\bmod x^{q}-1\right) \tag{2.11}
\end{equation*}
$$

$$
\chi_{A_{i}}^{\varphi}=\chi_{A_{j}}^{\varphi} . \text { If } \Phi_{q} \mid g_{A_{i}}+g_{A_{j}}, \text { then }
$$

$$
1+x+\cdots+x^{q-1} \mid g_{A_{i}}+g_{A_{j}}
$$

Again, by (2.11), $\chi_{A_{i}}^{\varphi}+\chi_{A_{j}}^{\varphi}$ is a constant function and consequently

$$
\chi_{A_{j}}^{\varphi}=\frac{2|G|}{t q}-\chi_{A_{i}}^{\varphi} .
$$

With the same argument as in the case $k=1$, we see that $\chi_{A_{i}}^{\varphi}$ is a constant function for $i=1,2, \ldots, t$. This completes the proof of the lemma.

Lemma 2.2. Let G be a finite abelian group, $|G|=p^{k}$ with p prime and $f: G \rightarrow \mathbb{Z}$. Assume that for any cyclic quotient map $\varphi: G \rightarrow \mathbb{Z}_{q}, f^{\varphi}$ is a constant function. Then f is a constant function.

Proof. We use induction on k. For $k=1, G$ is cyclic and the result follows from the assumptions.

Now let $k>1$ and assume that the assertion holds for all smaller cases. We may assume that G is not cyclic, otherwise the result again follows by assumption. For any subgroup $0 \neq H<G$, consider the quotient $\operatorname{map} \varphi: G \rightarrow G / H$. Applying the inductive hypothesis to G / H and f^{φ}, we conclude that f^{φ} is a constant function. Thus, for any $x, y \in G$,

$$
\begin{equation*}
\sum_{m \in(x+H)} f(m)=\sum_{m \in(y+H)} f(m) . \tag{2.12}
\end{equation*}
$$

Let $H_{1}, H_{2}, \ldots, H_{r}$ be all subgroups of G of order p. Since G is not cyclic, G has at least two direct summands; thus, $r \geq 2$.

It is clear that $H_{i} \cap H_{j}=\{0\}$ for all $1 \leq i<j \leq r$. Let $G_{p}<G$ be the p-torsion subgroup. Every nonzero element of G_{p} belongs to exactly one H_{i}, while 0 belongs to every H_{i}. Let $x, y \in G$ be such that $x-y \in G_{p}$. Summing over all cosets of H_{i} containing x,

$$
\begin{equation*}
\sum_{i=1}^{r} \sum_{m \in\left(x+H_{i}\right)} f(m)=(r-1) f(x)+\sum_{m \in\left(x+G_{p}\right)} f(m) \tag{2.13}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
\sum_{i=1}^{r} \sum_{m \in\left(y+H_{i}\right)} f(m)=(r-1) f(y)+\sum_{m \in\left(y+G_{p}\right)} f(m) . \tag{2.14}
\end{equation*}
$$

Applying (2.12) with $H=H_{i}$ for $i=1,2, \ldots, r$ and summing,

$$
\begin{equation*}
\sum_{i=1}^{r} \sum_{m \in\left(x+H_{i}\right)} f(m)=\sum_{i=1}^{r} \sum_{m \in\left(y+H_{i}\right)} f(m) . \tag{2.15}
\end{equation*}
$$

Noting that $x+G_{p}=y+G_{p}$, it follows from (2.13)-(2.15) that $f(x)=f(y)$, that is, f is constant on each coset of G_{p}. For any $x, y \in G$, applying (2.12) with $H=G_{p}$ yields

$$
f(x)=\frac{1}{\left|G_{p}\right|} \sum_{m \in\left(x+G_{p}\right)} f(m)=\frac{1}{\left|G_{p}\right|} \sum_{m \in\left(y+G_{p}\right)} f(m)=f(y) .
$$

This completes the proof of the lemma.

We are now ready to prove Theorem 1.4.
Proof of Theorem 1.4. Suppose on the contrary that there exists a partition of G into disjoint sets $A_{1}, A_{2}, \ldots, A_{t}$ such that $r_{A_{1}}=r_{A_{2}}=\cdots=r_{A_{t}}$. It is clear that $\left|A_{i}\right|=|G| / t$ for all $1 \leq i \leq t$. Let p be a prime divisor of t and

$$
H:=\left\{g \in G: p^{k} \cdot g=0 \text { for some } k>0\right\} .
$$

Since H is a direct summand of G, let $\varphi: G \rightarrow H$ be the projection map. By Lemma 2.1, $\left(\chi_{A_{i}}^{\varphi}\right)^{\psi}=\chi_{A_{i}}^{\psi \circ \varphi}$ is a constant function for any cyclic quotient map $\psi: H \rightarrow \mathbb{Z}_{q}$. By Lemma 2.2, we conclude that $\chi_{A_{i}}^{\varphi}=c \in \mathbb{Z}$ is a constant function. Thus,

$$
\begin{equation*}
|H| \cdot c=\sum_{n \in H} \chi_{A_{i}}^{\varphi}(n)=\sum_{m \in G} \chi_{A_{i}}(m)=\left|A_{i}\right|=\frac{|G|}{t} . \tag{2.16}
\end{equation*}
$$

However, $|G| /|H|$ is not divisible by p by definition of H, and $p \mid t$; hence, (2.16) cannot hold. This completes the proof of Theorem 1.4.

Acknowledgement

The author would like to thank the referee for his/her detailed comments, especially for pointing out the relevant work of Kiss et al. [1].

References

[1] S. Z. Kiss, E. Rozgonyi and C. Sándor, 'Groups, partitions and representation functions', Publ. Math. Debrecen 85(3-4) (2014), 425-433.
[2] S. Z. Kiss, E. Rozgonyi and C. Sándor, 'Sets with almost coinciding representation functions', Bull. Aust. Math. Soc. 89 (2014), 97-111.
[3] V. F. Lev, 'Reconstructing integer sets from their representation functions', Electron. J. Combin. 11 (2004), R78.
[4] M. B. Nathanson, 'Representation functions of sequences in additive number theory', Proc. Amer. Math. Soc. 72(1) (1978), 16-20.
[5] M. B. Nathanson, 'Inverse problems for representation functions in additive number theory', in: Surveys in Number Theory (ed. K. Alladi) (Springer, New York, 2008), 89-117.
[6] C. Sándor, 'Partitions of natural numbers and their representation functions', Integers 4 (2004), A18.
[7] A. Sárközy and V. T. Sós, 'On additive representation functions', in: The Mathematics of Paul Erdö́s I (eds. R. Graham et al.) (Springer, Berlin, 1997), 129-150.
[8] M. Tang, 'Partitions of the set of natural numbers and their representation functions', Discrete Math. 308 (2008), 2614-2616.

ZHENHUA QU, Department of Mathematics, Shanghai Key Laboratory of PMMP, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
e-mail: zhqu@math.ecnu.edu.cn

[^0]: This work was supported by the National Natural Science Foundation of China, Grant No. 11101152.
 (C) 2015 Australian Mathematical Publishing Association Inc. 0004-9727/2015 \$16.00

