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It is well known that the problem of determining the most economical
covering of n-dimensional Euclidean space, by equal spheres whose centres
form a lattice, may be formulated in terms of positive definite quadratic
forms, as follows:

Let f(x) = f(x1, x2, • ", xn) = x'Ax (A' = A) be positive definite,
and d = d{f) = det A. For real o, set

(1.1) m(f; a) = min

(the minimum being taken over integral x),

(1.2) *»(/)= max m(/; a),
a

(1.3) /,(/) = m{J)\&\

If now A = P'P, and A is the lattice spanned by the columns of P, then
spheres of radius (m(f))i centred at the points of A cover space minimally;
and, since

d(A) = |det P\ = di,

the density 6 (A) of the covering is given by

(where Jn is the volume of the unit sphere).
Thus the problem of minimizing 6 (A) is equivalent to that of

determining

(1.4) (in = min /*(/).

If /*(/) is a local minimum, i.e. if fi(g) 2z fi(f) for all forms g sufficiently
close to /, we say that / is extreme; and if /<(/) = fin, we say that / is ab-
solutely extreme. If / is extreme (absolutely extreme) so is any form equivalent
under integral unimodular transformation to a positive multiple of /, and
it is convenient to unite such forms into a single class.
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By a direct investigation of neighbouring forms, Bleicher [3] has
shown that the form

(1.5) n 2 * J - 2 2><*<
i=l i<i

is extreme for all n; for n — 2 and n = 3, Barnes [2] showed that this is
the only class of extreme forms, which Bambah [1] had previously shown
to be absolutely extreme. Delone and Ryskov [4] have announced that
the above form is also absolutely extreme when n = 4.

The first object of this paper is to establish a criterion for a form
to be extreme. The criterion, which is stated in Theorem 1, bears a marked
similarity to the condition for a form to be eutactic (which is part of the
necessary and sufficient condition for a form to be extreme for the cor-
responding packing problem). However, there is here no analogue of a
"perfect" form (see Voronoi [5]).

Our second main result (Theorems 2 and 3) is that a Voronoi domain
A (see § 2) contains at most one interior extreme form / (other than the
multiples of /), and the group of automorphisms of / is then the same as
that of A. This result, together with the criterion for extremeness, provides
a systematic method of finding all extreme forms in any given dimension
when the Voronoi domains are known. One of us intends shortly to publish
complete results for n = 4, based on this method.

The evidence we have obtained to date supports the conjecture that
every Voronoi domain contains an interior extreme form; the truth of
this conjecture would, with Theorem 2, imply that every extreme form is
an interior form.

In § 2 we recall Voronoi's results, establish some necessary notation
and state our theorems. In § 3, we analyze the neighbours of an interior
form /, whence we deduce our theorems in §§ 4 and 5. Finally, in § 6, we
use our results to show that the form (1.5) is extreme for all n, and further
that it represents the only class of extreme forms in Voronoi's "principal
domain".

The Voronoi polytope II (Voronoi [6]) corresponding to a positive
form / is the set of points x such that

(2.1) /(*•) <f{x-l) for all integral I.

A finite set ±llt ±/2> * '» ±'er °f integral points suffices to define II,
which therefore has a pairs of opposite parallel faces, with equations
J(x) = f(x±li) (i — 1, • • •, a). A given I ^ 0 belongs to this set. and so
defines a face of fl if and only if
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taken over all integral x = I (mod 2) and this minimum is attained only at
x = ±J. In general, a = 2"—1, and there is then one pair of faces for
each congruence class of / modulo 2 other than 0; in this case we shall
call / an interior form.

Voronoi [7] has shown that the ^n(«+l)-dimensional space of positive
quadratic forms may be partitioned into polyhedral cones (A) with the
origin as vertex, possessing the following properties:

(i) no two cones have a common interior point;
(ii) an integral unimodular transformation of variables either leaves

a cone invariant or transforms it into another cone of the system;
(iii) there exists a finite number of the cones, say Ao, Alt • • •, AT,

such that any positive form is equivalent to a form lying in some At

(O^i^r);
(iv) a cone A uniquely determines the set S of 2n—1 pairs ± 1 of

integral points which define the polytope 77 of a form / lying in the in-
terior of A, and also determines the sets of n faces of 77 which intersect
in a vertex of 77.

Thus what we have called an interior form is simply a form lying
in the interior of some Voronoi cone A. For an interior form, 77 is primitive
(i.e. each vertex of 77 lies on just n faces). We shall denote generally by
v a vertex of 77 and by llt • • •, ln the points of S specifying the n faces on
which v lies. Then the matrix

(2-2) L=[llt--; In]

is non-singular, and v is uniquely determined by the n linear equations

(2.3) f(v) = f(v-lt) (1 ^ i£»),

i.e.

(2.4) 2l[Av = f(lt) (l^i^n).

For each vertex v of 77, we define c by

(2.5) c = L~1v

and c0 by

(2.6) JU=L
t=0

Then

(2.7) v^IcJi
<=i

i.e.
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(2.8) v = £e , I , , where Io = 0,

so that c0, cx, • • •, cn are barycentric coordinates of v with respect to the
simplex l0, Jj, • • •, ln.

Now, from the convexity of II, it follows easily that

(2.9) m(f) = max m(J; v) — max /(v),
V V

the maximum being taken over all vertices of II. We shall say that a vertex
v is maximal if f(v) = m(f).

THEOREM 1. Let f{x) = x'Ax be an interior form, and F(x) = x'A~1x
its inverse. Then f is extreme if and only if F is expressible in the form

(2.10) F(x) ^SUi^W-K*)2]
0 < - l

where v runs over all maximal vertices of II,

(2.11) X, ̂  0 for all v,

and c, /,• are defined in (2.5), (2.3).

THEOREM 2. If f is an extreme form in the interior of a Voronoi cone A,
then every extreme form in A is a multiple of f.

THEOREM 3. / / / is an extreme form in the interior of a Voronoi cone A,
then f and A have the same group of automorphisms.

Before proceeding to the proof of these results, we note some alternative
formulations of the criterion of Theorem 1.

First, defining two vertices of II to be congruent if their difference is
integral, it is easy to verify that each vertex v has n-\-\ congruent vertices;
specifically, if v is determined by the simplex (l0, l^, • • -,ln) (l0 = 0),
then v is congruent to

(2.12) v, = v - i , ( 0 ^ / ^ « ) (vo = v)

and Vj is determined by the simplex (l0—ljt • • •, ln—lf). Further

(2.13) /(v)=/(v,) ( 0 ^ / ^ « )

and, from (2.8), (2.6),

(2.14) Vj = 2^-*,).

Thus congruent vertices have the same barycentric coordinates c0, clt • • •, cn

(with the above ordering of the simplexes), and all are maximal if one is.
If now we set
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(2.15) v,(x) =2ct&x?-(v'x)* = lci{l'ixy-{y'xy,
i - l <=0

it is easy to verify that

(2.16) VV,(*) = V,W (O^j^n)

(2.17) V,W=iIV,(^-^)8= I CtcMx

Since trivially y>v(x) = ¥>_„(-*), we therefore have:

COROLLARY 1. It suffices in the sum (2.10), to consider only one vertex
v from the set of 2(«+l) vertices congruent to a given maximal vertex or its
negative.

COROLLARY 2. The summand in (2.10) may be replaced by

3. Analysis of neighbouring forms

Let f(x) = x'Ax be an interior form and g{x) = x'Bx a neighbouring
form. Then

(3.1) B = A+eT

for some symmetric T with, say, max |tf,7| = 1. We shall suppose throughout
that s # 0, so that g^f, and that e is so small that g is also an interior
form of the cone A in which / lies.

Then, to each vertex v of 77 = IIf with defining points fi, • • •, l»,
there corresponds uniquely a vertex w of 77B with the same defining points,
so that

(3.2) 2l'iBw = g(bi) (l^i^n).

LEMMA 3.1 (Minkowski). For all small s,

where
*! = tr (A~lT)

and
k2<0 if kx = 0 and T # 0.

PROOF. Since A is positive definite, we may choose P so that

A = P'P, T = P'DP,
where
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D = diag {dlt d2, • • -, dn).
Then

d(g) = d(J) det (I+sD)
and

det (I+sD) = 1+e % di+e*?, *<*,+()((?).

Hence
kx = 2 dt = tr D = tr (P^DP) = tr (A~XT).

Finally, if 2 d< = °. then

if Z) ^ 0, i.e. if T ^ 0.
Write for convenience

^(A-) = XTA-,

so that
g(x) = f(x)+e<f>(x).

LEMMA 3.2. / / v, w are corresponding vertices of TIt, IIQ respectively,
defined by the integral points /^ • • •, ln, then

(3.3) w =

where

(3.4)

(3.5) a = y—A^Tv,

and y is defined by

(3.6) 2l'tAy = <f>(li) (l^i^n).

PROOF. We may write w in the form (3.3) and determine a, j) from
(3.2), i.e.

2l'i(A+eT)(v+ea+e*p+O{i?)) = I'^A+eT)^ (1 ^ i ^ n).

Equating coefficients of s and of e2 gives

(3.7) 2l'iAa+2l'iTv = /; 7/, = <f>{l{) (1 ^ * ̂  n),

(3.8) 2i;^y3+2/;ra = 0 (l^t'^w).

Now (3.4) follows from (3.8), since L = [llf • • •, ln] is non-singular, and,
defining y by (3.6), we obtain (3.5) from (3.7).

LEMMA 3.3. With the notation of Lemma 3.2, we have

(3.9) g(w) = f(v)+s{2v'Ay-<f>(v))+eif(a)+O{^).
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PROOF. From (3.3) we obtain

g(w) = w'{A+sT)w
= f(v)+e(2v'Aa+v'Tv)+e2a'Aa+2e*(v'AJJ+v'Ta)+O(e3).

Inserting the expressions (3.4), (3.5) for /? and a gives (3.9).

4. Proof of Theorem 1

With the notation of § 3, we first prove

LEMMA 4.1. The interior form f is extreme if and only if there exists no
symmetric T such that

(4.1) tr {A-iT) ^ 0

and, for every maximal vertex v of 77/(

(4.2) 2v'Ay—<f>{y) < 0

[where y is defined by (3.6)).

PROOF, (i) Suppose first that there exists a T satisfying the stated ~
conditions.

Defining g(x) = x'(A->rsT)x = f(x)+e<f>{x) as in § 3, we take e
sufficiently small and positive. Then, by (4.1) and Lemma 3.1, either

tr(A^T)>0 and d(g) > d(f), or
( ' ' tr (A-iT) = 0 and d(g) =

Next, since the values of g(w) (at vertices w of 77J are arbitrarily
close to the corresponding f(v), we have

m[g) = max g(w),
w

where the maximum is taken over those w which correspond to maximal
vertices v of I7f. From (3.9) and the inequalities (4.2), it follows that

(4.4) m(g) = m(f)-ke+O(e*)

for some k > 0.
From (4.3) and (4.4), it follows at once that for all sufficiently small

e > 0 ,

whence / is not extreme.
(ii) Suppose next that there exists no T satisfying (4.1), (4.2). With

the previous notation, any sufficiently close neighbour g of / can be written
as
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g(x) = x'(A+eT)x with e > 0.

We may suppose that g is not a multiple of /.

Replacing g by a suitable multiple of g, we can ensure that*

tr {A-*T) = 0,

and T ^ 0 since g is not a multiple of /. Then, by Lemma 3.1,

(4.5) d(g) = d{f){l-\k^+O(^)), |*2| > 0.

Since T satisfies (4.1), it follows from our hypothesis that the inequality

2v'Ay—<f>(v) ^ 0

holds for some maximal vertex v of 77r. Let w be the corresponding vertex
of 77,; w may not be maximal, but in any case

It now follows from (3.9), since /(a) ^ 0, that for all sufficiently small
s > 0

(4.6) nt(g)>m{f) or m{g) = m

From (4.5) and (4.6) we obtain at once

showing that / is extreme.
In order to deduce Theorem 1 from Lemma 4.1, we first note that,

using the definitions (3.6) of y and (2.5) of c, we may write the expression
on the left of (4.2) as

I

= L,(T), say.
Then

(4.7) Lv{T)=ZctriTli-v'Tv
I

is a linear form in the elements ti} (i ̂  /) of T. Thus (4.1), (4.2) form, in
the variables tit, a system of linear inequalities

1 Geometrically, this amounts to projecting from the origin onto the tangent plane, at /,
to the determinantal surf ace d = d(f). Algebraically, we replace 7" by ?/ = T—1/n tr (A~lT)A,
and then A+"T is a multiple cf A+r)U, where r\ is small with e.
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U,(r)<0
(where uf denotes the set of maximal vertices of IIt).

It follows from the classical theory of linear inequalities that the
system (4.8) has no solution T if and only if there exist numbers,

(4.9) A ^ O , A, ̂ 0 ( v e J ' ) , Ar not all zero

satisfying

(4.10) Xtx{A
veJt

Further, the relations (4.9), (4.10) imply that A > 0. For we have

= 2v'Av-f{v) = f{v);

hence, taking T = A in (4.10) gives

nk = A tr (A-iA) = 2 A,/(v) = m{J) 2 A, > 0.
veJt

Hence, dividing through by A, we may replace (4.9), (4.10) by

(4.11) ti(A
veM

where

(4.12) A, ^ 0 for all v e Ji.

Finally, (4.11) holds for all symmetric T if and only if it holds for all
T of the form xx'; inserting T = xx' in (4.11) gives the required condition
(2.10) of Theorem 1.

5. Proof of Theorems 2 and 3

For the proof of Theorem 2, it suffices to show that a Voronoi cone A
cannot contain two extreme forms /„, fx, of which /0 is an interior form
and fx is either an interior or a boundary form (not a multiple of /0). Suppose
to the contrary that two such forms exist, and consider the line segment
joining them:

ft = O-t)fo+*fi (0 ̂  < £ 1).

Then fi(ft) is a continuous function of t on the interval [0, 1] and so attains
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its maximum value at some point t0 of the interval. Since /„ and f1 are
extreme, p(ft) |2 /i(f0) for all sufficiently small t, and p.(ft) ^ M/i) for all
t sufficiently close to 1. Hence the maximum is attained at some t0 with
0 < t0 < 1.

Writing / = /«0, <j> = /o—A. it now follows that / is an interior form
of A and

(5.1)

for all sufficiently small e (of either sign). As in the proof of Theorem 1,
write

f(x)=x'Ax, <f>(x)=x'Tx, g(x) = f(x)+s<f,(x)

and suppose without loss of generality that

tr (A-i-T) = 0;

then T y£ 0, since <f> is not a multiple of /.
By Lemma 2.1,

(5.2) d(g) = d(f){l-\k2\e*+O(,?)), |*,| > 0;

and, in particular

(5.3) d(g) < d(f)

for all small e # 0.
Next, let v be any maximal vertex of TIt, and adopt the notation of

§ 3. Then, for the corresponding vertex w of IIg we have, from Lemmas
3.2 and 3.3,

(5.4) w = v+ea+e»/M-0(e»)

(5.5) gM = f{v)+Pie+pt*+O(#), P, = f{a).

Also

(5.6) m(f)=f(v), m(g)^g(w).

We now show, from (5.2) —(5.6), that (5.1) cannot in fact hold for all
small e, whence Theorem 2 follows at once.

Suppose first that, in (5.5), px ^ 0. Then, for all small e of the same
sign as plt we have

(5.7) g(yy)>f(v);

hence, by (5.6), (5.3),

(5-8) pig) > M(f),

contradicting (5.1).
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Next suppose that px = 0, p2 =£• 0. Then p2 = f(a) > 0, and again
we obtain (5.7) and (5.8). Hence (5.1) is false for all small e ^ 0.

Finally suppose that px = p% = 0. Then

and this, with (5.2), again shows that

for all small e =£ 0.
Theorem 3 is now easily deduced from Theorem 2. Let / be an extreme

form interior to a Voronol cone A, and let G{f), G(A) be the groups of
(integral unimodular) automorphisms of /, A respectively.

Suppose that UeG(f). Then U transforms A into a Voronol cone A';
since f = Uf e A', A and A' have a common interior form / and so are
identical. Hence UeG(A).

Conversely, suppose that U e G(A) and let Uf = /'. Then /' is an
interior form of A; and since / ' is equivalent to /, /' is an extreme form.
It now follows from Theorem 2 that / ' is a multiple of /, whence /' = /
and so U eG(/).

6. The principal domain

For all n Si 2, the set of forms <j> expressible in the form

(6.1) <l>(x) = £ Pix*+ 2 />„(*,-*,)«. Pi ^ 0, Pii ^ 0 (i, j = 1, • • •, n)

is a Voronoi cone A, called by Voronol the "principal domain" and dis-
cussed fully in [7] We may write it more symmetrically as

(6.2) <f>{x) = 2 Pll{xt-xt)\ x0 = 0, Pil ^ 0 (0 ^ * < / =g n).
i,i=0
i<i

The set S of integral points defining 77 for any interior form consists of the
2n—1 points with all coordinates 0 or 1 (other than 0), and their negatives.

The group G(A) of automorphisms of A has order 2(n+l)\ and is
transitive on the edge-forms (a;<—x})

2 (0 ^ i < j ^ «) of A. G(A) is in
fact generated by (i) all permutations of xx, x2, • • •, xn; (ii) x{ -> — xi

(1 <; i <: n); (iii) â  ^ a^, a;, -> x1—xi (2 ^ j ^ w).
It follows from Theorem 3 that any interior extreme form of A has

all Pii equal, and so is a multiple of 2

1 The principal domain appears to be exceptional in having a sufficiently large group
of automorphisms to determine the extreme form / completely.
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(6.3) /(*)= 2 (*,-*,)• = » i * J -
i<i

As we remarked in § 1, this form is indeed extreme; we now give an alter-
native proof of this, using Theorem 1.

The integral points

(6.4) J, = ex+e2+ • • •+« , (1 ^ i ^ n)

(where e( is the »th unit vector) determine the vertex

(6.5) v = ——(» ,« - l , '",2, 1)'

of 77,; and, from (2.5), we obtain

whence

(6.6) c< = - i - for 0 ^ * ^ » .

By permuting coordinates in (6.5), we obtain a set of w! distinct vertices,
which contains just 1 vertex from each set of congruent vertices. It follows
that every vertex of 77 is maximal, and, in applying the criterion of Theorem
1, we may take J( to be this set of «! vertices.

It is here a little more convenient in applying Theorem 1, to use the
expression (2.17). With the l(, c( given by (6.4), (6.6) (and l0 = 0) we
have for the vertex (6.5)

(n+l)hp.(z) =

Summing this over all permutations of the xit we obtain

(6.7) («

(6.8) =^s

since, on the right of (6.7), the coefficient of each x\ is
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and the coefficient of each 2xixj (i < /) is

r-2

Since the form in braces in (6.8) is just F(x), the inverse of f(x), we have
therefore expressed F(x) in the form (2.10) (with the A, all equal), whence
/ is extreme.
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