EXTREME GOVERINGS OF n-SPACE BY SPHERES

E. S. BARNES and T. J. DICKSON

(Received 13 December 1965)

1

It is well known that the problem of determining the most economical covering of n-dimensional Euclidean space, by equal spheres whose centres form a lattice, may be formulated in terms of positive definite quadratic forms, as follows:

Let $f(x)=f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=x^{\prime} A \boldsymbol{x}\left(A^{\prime}=A\right)$ be positive definite, and $d=d(f)=\operatorname{det} A$. For real α, set

$$
\begin{equation*}
m(f ; \alpha)=\min _{x} f(x+\alpha) \tag{1.1}
\end{equation*}
$$

(the minimum being taken over integral \boldsymbol{x}),

$$
\begin{align*}
m(f) & =\max _{\boldsymbol{\alpha}} m(f ; \boldsymbol{\alpha}) \tag{1.2}\\
\mu(f) & =m(f) / d^{1 / n} \tag{1.3}
\end{align*}
$$

If now $A=P^{\prime} P$, and Λ is the lattice spanned by the columns of P, then spheres of radius $(m(f))^{\frac{1}{2}}$ centred at the points of Λ cover space minimally; and, since

$$
d(\Lambda)=|\operatorname{det} P|=d^{\frac{1}{2}},
$$

the density $\theta(\Lambda)$ of the covering is given by

$$
\theta(\Lambda)=J_{n}(\mu(f))^{\frac{1}{2}}
$$

(where J_{n} is the volume of the unit sphere).
Thus the problem of minimizing $\theta(\Lambda)$ is equivalent to that of determining

$$
\begin{equation*}
\mu_{n}=\min _{f} \mu(f) . \tag{1.4}
\end{equation*}
$$

If $\mu(f)$ is a local minimum, i.e. if $\mu(g) \geqq \mu(f)$ for all forms g sufficiently close to f, we say that f is extreme; and if $\mu(f)=\mu_{n}$, we say that f is $a b$ solutely extreme. If f is extreme (absolutely extreme) so is any form equivalent under integral unimodular transformation to a positive multiple of f, and it is convenient to unite such forms into a single class.

By a direct investigation of neighbouring forms, Bleicher [3] has shown that the form

$$
\begin{equation*}
n \sum_{i=1}^{n} x_{i}^{2}-2 \sum_{i<j} x_{i} x_{j} \tag{1.5}
\end{equation*}
$$

is extreme for all n; for $n=2$ and $n=3$, Barnes [2] showed that this is the only class of extreme forms, which Bambah [1] had previously shown to be absolutely extreme. Delone and Ryskov [4] have announced that the above form is also absolutely extreme when $n=4$.

The first object of this paper is to establish a criterion for a form to be extreme. The criterion, which is stated in Theorem 1, bears a marked similarity to the condition for a form to be eutactic (which is part of the necessary and sufficient condition for a form to be extreme for the corresponding packing problem). However, there is here no analogue of a "perfect" form (see Voronoī [5]).

Our second main result (Theorems 2 and 3) is that a Voronoì domain Δ (see § 2) contains at most one interior extreme form f (other than the multiples of f), and the group of automorphisms of f is then the same as that of Δ. This result, together with the criterion for extremeness, provides a systematic method of finding all extreme forms in any given dimension when the Voronoi domains are known. One of us intends shortly to publish complete results for $n=4$, based on this method.

The evidence we have obtained to date supports the conjecture that every Voronoil domain contains an interior extreme form; the truth of this conjecture would, with Theorem 2, imply that every extreme form is an interior form.

In § 2 we recall Voronoi's results, establish some necessary notation and state our theorems. In § 3, we analyze the neighbours of an interior form f, whence we deduce our theorems in §§ 4 and 5 . Finally, in § 6, we use our results to show that the form (1.5) is extreme for all n, and further that it represents the only class of extreme forms in Voronoi's "principal domain'".

2

The Voronoï polytope Π (Voronoï [6]) corresponding to a positive form f is the set of points \boldsymbol{x} such that

$$
\begin{equation*}
f(\boldsymbol{x}) \leqq f(\boldsymbol{x}-\boldsymbol{l}) \text { for all integral } \boldsymbol{l} \text {. } \tag{2.1}
\end{equation*}
$$

A finite set $\pm \boldsymbol{l}_{1}, \pm \boldsymbol{l}_{2}, \cdots, \pm \boldsymbol{l}_{\sigma}$ of integral points suffices to define Π, which therefore has σ pairs of opposite parallel faces, with equations $f(\boldsymbol{x})=f\left(\boldsymbol{x} \pm \boldsymbol{l}_{\boldsymbol{i}}\right) \quad(i=1, \cdots, \boldsymbol{\sigma})$. A given $\boldsymbol{l} \neq \mathbf{0}$ belongs to this set. and so defines a face of Π if and only if

$$
f(\boldsymbol{l})=\min f(\boldsymbol{x})
$$

taken over all integral $\boldsymbol{x} \equiv \boldsymbol{l}(\bmod 2)$ and this minimum is attained only at $\boldsymbol{x}= \pm \boldsymbol{l}$. In general, $\sigma=2^{n}-1$, and there is then one pair of faces for each congruence class of \boldsymbol{l} modulo 2 other than $\mathbf{0}$; in this case we shall call f an interior form.

Voronoï [7] has shown that the $\frac{1}{2} n(n+1)$-dimensional space of positive quadratic forms may be partitioned into polyhedral cones (Δ) with the origin as vertex, possessing the following properties:
(i) no two cones have a common interior point;
(ii) an integral unimodular transformation of variables either leaves a cone invariant or transforms it into another cone of the system;
(iii) there exists a finite number of the cones, say $\Delta_{0}, \Delta_{1}, \cdots, \Delta_{\tau}$, such that any positive form is equivalent to a form lying in some Δ_{i} ($0 \leqq i \leqq \tau$);
(iv) a cone Δ uniquely determines the set S of $2^{n}-1$ pairs $\pm \boldsymbol{l}$ of integral points which define the polytope Π of a form t lying in the interior of Δ, and also determines the sets of n faces of Π which intersect in a vertex of Π.

Thus what we have called an interior form is simply a form lying in the interior of some Voronoi cone Δ. For an interior form, Π is primitive (i.e. each vertex of Π lies on just n faces). We shall denote generally by \boldsymbol{v} a vertex of Π and by $\boldsymbol{l}_{1}, \cdots, \boldsymbol{l}_{n}$ the points of S specifying the n faces on which v lies. Then the matrix

$$
\begin{equation*}
L=\left[\boldsymbol{l}_{1}, \cdots, \boldsymbol{l}_{n}\right] \tag{2.2}
\end{equation*}
$$

is non-singular, and \boldsymbol{v} is uniquely determined by the n linear equations

$$
\begin{equation*}
f(\boldsymbol{v})=f\left(\boldsymbol{v}-\boldsymbol{l}_{\boldsymbol{i}}\right) \quad(1 \leqq i \leqq n) \tag{2.3}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
2 \boldsymbol{l}_{i}^{\prime} A v=f\left(\boldsymbol{l}_{i}\right) \quad(1 \leqq i \leqq n) \tag{2.4}
\end{equation*}
$$

For each vertex v of Π, we define c by

$$
\begin{equation*}
c=L^{-1} \boldsymbol{v} \tag{2.5}
\end{equation*}
$$

and c_{0} by

$$
\begin{equation*}
\sum_{i=0}^{n} c_{i}=1 . \tag{2.6}
\end{equation*}
$$

Then

$$
\begin{equation*}
\boldsymbol{v}=\sum_{i=1}^{n} c_{i} \boldsymbol{I}_{\boldsymbol{i}} \tag{2.7}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
v=\sum_{i=0}^{n} c_{i} l_{i}, \text { where } l_{0}=0 \tag{2.8}
\end{equation*}
$$

so that $c_{0}, c_{1}, \cdots, c_{n}$ are barycentric coordinates of v with respect to the simplex $\boldsymbol{l}_{0}, \boldsymbol{l}_{1}, \cdots, \boldsymbol{l}_{n}$.

Now, from the convexity of Π, it follows easily that

$$
\begin{equation*}
m(f)=\max _{v} m(f ; v)=\max _{v} f(v) \tag{2.9}
\end{equation*}
$$

the maximum being taken over all vertices of Π. We shall say that a vertex v is maximal if $f(\boldsymbol{v})=m(f)$.

Theorem 1. Let $f(x)=x^{\prime} A x$ be an interior form, and $F(x)=x^{\prime} A^{-1} \boldsymbol{x}$ its inverse. Then f is extreme if and only if F is expressible in the form

$$
\begin{equation*}
F(x)=\sum_{v} \lambda_{v}\left[\sum_{i=1}^{n} c_{i}\left(l_{i}^{\prime} x\right)^{2}-\left(v^{\prime} x\right)^{2}\right] \tag{2.10}
\end{equation*}
$$

where v runs over all maximal vertices of Π,

$$
\begin{equation*}
\lambda_{v} \geqq 0 \text { for all } v \tag{2.11}
\end{equation*}
$$

and c, l_{i} are defined in (2.5), (2.3).
Theorem 2. If f is an extreme form in the interior of a Voronoi cone Δ, then every extreme form in Δ is a multiple of f.

Theorem 3. If f is an extreme form in the interior of a Voronoi cone Δ, then f and Δ have the same group of automorphisms.

Before proceeding to the proof of these results, we note some alternative formulations of the criterion of Theorem 1.

First, defining two vertices of Π to be congruent if their difference is integral, it is easy to verify that each vertex v has $n+1$ congruent vertices; specifically, if v is determined by the simplex $\left(\boldsymbol{l}_{0}, \boldsymbol{l}_{1}, \cdots, \boldsymbol{l}_{n}\right)\left(\boldsymbol{l}_{0}=0\right)$, then v is congruent to

$$
\begin{equation*}
v_{j}=v-l_{j} \quad(0 \leqq j \leqq n) \quad\left(v_{0}=v\right) \tag{2.12}
\end{equation*}
$$

and \boldsymbol{v}_{j} is determined by the simplex $\left(\boldsymbol{l}_{0}-\boldsymbol{l}_{j}, \cdots, \boldsymbol{l}_{n}-\boldsymbol{l}_{j}\right)$. Further

$$
\begin{equation*}
f(v)=f\left(v_{j}\right) \quad(0 \leqq j \leqq n) \tag{2.13}
\end{equation*}
$$

and, from (2.8), (2.6),

$$
\begin{equation*}
v_{j}=\sum_{i=0}^{n} c_{i}\left(l_{i}-l_{j}\right) \tag{2.14}
\end{equation*}
$$

Thus congruent vertices have the same barycentric coordinates $c_{0}, c_{1}, \cdots, c_{n}$ (with the above ordering of the simplexes), and all are maximal if one is.

If now we set

$$
\begin{equation*}
\psi_{v}(x)=\sum_{i=1}^{n} c_{i}\left(l_{i}^{\prime} x\right)^{2}-\left(v^{\prime} x\right)^{2}=\sum_{i=0}^{n} c_{i}\left(l_{i}^{\prime} x\right)^{2}-\left(v^{\prime} x\right)^{2} \tag{2.15}
\end{equation*}
$$

it is easy to verify that

$$
\begin{gather*}
\psi_{v j}(x)=\psi_{v}(x) \quad(0 \leqq j \leqq n) \tag{2.16}\\
\psi_{v}(x)=\frac{1}{2} \sum_{i, j=0}^{n} c_{i} c_{j}\left(l_{i}^{\prime} x-l_{j}^{\prime} x\right)^{2}=\sum_{0 \leqq i<j \leq n} c_{i} c_{j}\left(l_{i}^{\prime} x-l_{j}^{\prime} x\right)^{2} \tag{2.17}
\end{gather*}
$$

Since trivially $\psi_{\boldsymbol{v}}(x)=\psi_{-\boldsymbol{v}}(x)$, we therefore have:
Corollary 1. It suffices in the sum (2.10), to consider only one vertex v from the set of $2(n+1)$ vertices congruent to a given maximal vertex or its negative.

Corollary 2. The summand in (2.10) may be replaced by

$$
\sum_{\substack{i, j=0 \\ i<j}}^{n} c_{i} c_{j}\left(l_{i}^{\prime} x-l_{j}^{\prime} x\right)^{2}
$$

3. Analysis of neighbouring forms

Let $f(\boldsymbol{x})=\boldsymbol{x}^{\prime} A \boldsymbol{x}$ be an interior form and $g(\boldsymbol{x})=\boldsymbol{x}^{\prime} \boldsymbol{B x}$ a neighbouring form. Then

$$
\begin{equation*}
B=A+\varepsilon T \tag{3.1}
\end{equation*}
$$

for some symmetric T with, say, $\max \left|t_{i j}\right|=1$. We shall suppose throughout that $\varepsilon \neq 0$, so that $g \neq t$, and that ε is so small that g is also an interior form of the cone Δ in which f lies.

Then, to each vertex v of $\Pi=\Pi_{f}$ with defining points $\boldsymbol{l}_{1}, \cdots, \boldsymbol{l}_{n}$, there corresponds uniquely a vertex \boldsymbol{w} of Π_{g} with the same defining points, so that

$$
\begin{equation*}
2 l_{i}^{\prime} B w=g\left(b_{i}\right) \tag{3.2}
\end{equation*}
$$

$$
(1 \leqq i \leqq n)
$$

Lemma 3.1 (Minkowski). For all small ε,

$$
d(g)=d(f)\left(1+k_{1} \varepsilon+k_{2} \varepsilon^{2}+O\left(\varepsilon^{3}\right)\right),
$$

where

$$
k_{1}=\operatorname{tr}\left(A^{-1} T\right)
$$

and

$$
k_{2}<0 \quad \text { if } k_{1}=0 \text { and } T \neq 0
$$

Proof. Since A is positive definite, we may choose P so that

$$
A=P^{\prime} P, T=P^{\prime} D P
$$

where

$$
D=\operatorname{diag}\left(d_{1}, d_{2}, \cdots, d_{n}\right)
$$

Then

$$
d(g)=d(f) \operatorname{det}(I+\varepsilon D)
$$

and

$$
\operatorname{det}(I+\varepsilon D)=1+\varepsilon \sum d_{i}+\varepsilon^{2} \sum_{i<j} d_{i} d_{j}+O\left(\varepsilon^{3}\right) .
$$

Hence

$$
k_{1}=\sum d_{i}=\operatorname{tr} D=\operatorname{tr}\left(P^{-1} D P\right)=\operatorname{tr}\left(A^{-1} T\right) .
$$

Finally, if $\sum d_{i}=0$, then

$$
2 k_{2}=2 \sum_{i<j} d_{i} d_{j}=\left(\sum d_{i}\right)^{2}-\sum d_{i}^{2}=-\sum d_{i}^{2}<0
$$

if $D \neq 0$, i.e. if $T \neq 0$.
Write for convenience

$$
\phi(x)=x^{\prime} T x,
$$

so that

$$
g(x)=f(x)+\varepsilon \phi(x) .
$$

Lemma 3.2. If $\boldsymbol{v}, \boldsymbol{w}$ are corresponding vertices of $\Pi_{f}, \Pi_{\boldsymbol{g}}$ respectively, defined by the integral points $\boldsymbol{l}_{1}, \cdots, \boldsymbol{l}_{n}$, then

$$
\begin{equation*}
w=v+\varepsilon \alpha+\varepsilon^{2} \beta+O\left(\varepsilon^{3}\right) \tag{3.3}
\end{equation*}
$$

where

$$
\begin{align*}
& \beta=-A^{-1} T a \tag{3.4}\\
& \alpha=\gamma-A^{-1} T v \tag{3.5}
\end{align*}
$$

and γ is defined by

$$
\begin{equation*}
2 l_{i}^{\prime} A \gamma=\phi\left(l_{i}\right) \quad(1 \leqq i \leqq n) \tag{3.6}
\end{equation*}
$$

Proof. We may write \boldsymbol{w} in the form (3.3) and determine $\boldsymbol{\alpha}, \boldsymbol{\beta}$ from (3.2), i.e.

$$
2 l_{i}^{\prime}(A+\varepsilon T)\left(v+\varepsilon \alpha+\varepsilon^{2} \beta+O\left(\varepsilon^{3}\right)\right)=l_{i}^{\prime}(A+\varepsilon T) l_{i} \quad(1 \leqq i \leqq n) .
$$

Equating coefficients of ε and of ε^{2} gives

$$
\begin{array}{ll}
2 \boldsymbol{l}_{i}^{\prime} A \alpha+2 \boldsymbol{l}_{i}^{\prime} T v=\boldsymbol{l}_{i}^{\prime} T \boldsymbol{l}_{i}=\phi\left(\boldsymbol{l}_{i}\right) & (1 \leqq i \leqq n), \\
2 \boldsymbol{l}_{i}^{\prime} A \beta+2 \boldsymbol{l}_{i}^{\prime} T \alpha=0 & (1 \leqq i \leqq n .
\end{array}
$$

Now (3.4) follows from (3.8), since $L=\left[\boldsymbol{l}_{1}, \cdots, \boldsymbol{l}_{n}\right]$ is non-singular, and, defining γ by (3.6), we obtain (3.5) from (3.7).

Lemma 3.3. With the notation of Lemma 3.2, we have

$$
\begin{equation*}
g(w)=f(v)+\varepsilon\left(2 v^{\prime} A \gamma-\phi(v)\right)+\varepsilon^{2} f(\alpha)+O\left(\varepsilon^{3}\right) \tag{3.9}
\end{equation*}
$$

Proof. From (3.3) we obtain

$$
\begin{aligned}
g(\boldsymbol{w}) & =\boldsymbol{w}^{\prime}(A+\varepsilon T) \boldsymbol{w} \\
& =f(\boldsymbol{v})+\varepsilon\left(2 \boldsymbol{v}^{\prime} A \alpha+\boldsymbol{v}^{\prime} T v\right)+\varepsilon^{2} \alpha^{\prime} A \alpha+2 \varepsilon^{2}\left(\boldsymbol{v}^{\prime} A \beta+\boldsymbol{v}^{\prime} T \boldsymbol{\alpha}\right)+O\left(\varepsilon^{3}\right) .
\end{aligned}
$$

Inserting the expressions (3.4), (3.5) for $\boldsymbol{\beta}$ and $\boldsymbol{\alpha}$ gives (3.9).

4. Proof of Theorem 1

With the notation of § 3, we first prove
Lemma 4.1. The interior form f is extreme if and only it there exists no symmetric T such that

$$
\begin{equation*}
\operatorname{tr}\left(A^{-1} T\right) \geqq 0 \tag{4.1}
\end{equation*}
$$

and, for every maximal vertex v of Π_{f},

$$
\begin{equation*}
2 v^{\prime} A \gamma-\phi(v)<0 \tag{4.2}
\end{equation*}
$$

(where γ is defined by (3.6)).
Proof. (i) Suppose first that there exists a T satisfying the stated conditions.

Defining $g(x)=x^{\prime}(A+\varepsilon T) x=f(x)+\varepsilon \phi(x)$ as in § 3, we take ε sufficiently small and positive. Then, by (4.1) and Lemma 3.1, either

$$
\begin{array}{lll}
\operatorname{tr}\left(A^{-1} T\right)>0 & \text { and } & d(g)>d(f), \quad \text { or } \tag{4.3}\\
\operatorname{tr}\left(A^{-1} T\right)=0 & \text { and } & d(g)=d(f)+O\left(\varepsilon^{2}\right) .
\end{array}
$$

Next, since the values of $g(\boldsymbol{w})$ (at vertices \boldsymbol{w} of Π_{g}) are arbitrarily close to the corresponding $f(v)$, we have

$$
m(g)=\max _{w} g(w),
$$

where the maximum is taken over those \boldsymbol{w} which correspond to maximal vertices v of Π_{f}. From (3.9) and the inequalities (4.2), it follows that

$$
\begin{equation*}
m(g)=m(f)-k \varepsilon+O\left(\varepsilon^{2}\right) \tag{4.4}
\end{equation*}
$$

for some $k>0$.
From (4.3) and (4.4), it follows at once that for all sufficiently small $\varepsilon>0$,

$$
\mu(g)<\mu(f)
$$

whence f is not extreme.
(ii) Suppose next that there exists no T satisfying (4.1), (4.2). With the previous notation, any sufficiently close neighbour g of f can be written as

$$
g(x)=x^{\prime}(A+\varepsilon T) x \text { with } \varepsilon>0
$$

We may suppose that g is not a multiple of f.
Replacing g by a suitable multiple of g, we can ensure that ${ }^{1}$

$$
\operatorname{tr}\left(A^{-1} T\right)=0,
$$

and $T \neq 0$ since g is not a multiple of f. Then, by Lemma 3.1,

$$
\begin{equation*}
d(g)=d(f)\left(1-\left|k_{2}\right| \varepsilon^{2}+O\left(\varepsilon^{3}\right)\right),\left|k_{2}\right|>0 . \tag{4.5}
\end{equation*}
$$

Since T satisfies (4.1), it follows from our hypothesis that the inequality

$$
2 v^{\prime} A \gamma-\phi(v) \geqq 0
$$

holds for some maximal vertex v of Π_{f}. Let \boldsymbol{w} be the corresponding vertex of Π_{g}; w may not be maximal, but in any case

$$
m(g) \geqq g(w) .
$$

It now follows from (3.9), since $f(\alpha) \geqq 0$, that for all sufficiently small $\varepsilon>0$

$$
\begin{equation*}
m(g)>m(f) \text { or } m(g)=m(f)+O\left(\varepsilon^{3}\right) . \tag{4.6}
\end{equation*}
$$

From (4.5) and (4.6) we obtain at once

$$
\mu(g)>\mu(f)
$$

showing that f is extreme.
In order to deduce Theorem 1 from Lemma 4.1, we first note that, using the definitions (3.6) of γ and (2.5) of c, we may write the expression on the left of (4.2) as

$$
\begin{aligned}
2 v^{\prime} A \gamma-\phi(v) & =2 \sum_{1}^{n} c_{i} l_{i}^{\prime} A \gamma-\phi(v) \\
& =\sum_{1}^{n} c_{i} \phi\left(l_{i}\right)-\phi(v) \\
& =L_{v}(T), \text { say. }
\end{aligned}
$$

Then

$$
\begin{equation*}
L_{v}(T)=\sum_{i}^{n} c_{i} \boldsymbol{l}_{i}^{\prime} T \boldsymbol{l}_{i}-v^{\prime} T v \tag{4.7}
\end{equation*}
$$

is a linear form in the elements $t_{i j}(i \leqq j$) of T. Thus (4.1), (4.2) form, in the variables $t_{i j}$, a system of linear inequalities

[^0]\[

\left\{$$
\begin{array}{l}
\operatorname{tr}\left(A^{-1} T\right) \geqq 0 \tag{4.8}\\
L_{0}(T)<0
\end{array}
$$(v \in \mathscr{M})\right.
\]

(where \mathscr{N} denotes the set of maximal vertices of Π_{f}).
It follows from the classical theory of linear inequalities that the system (4.8) has no solution T if and only if there exist numbers,
(4.9) $\quad \lambda \geqq 0, \quad \lambda_{v} \geqq 0 \quad(V \in \mathscr{M}), \quad \lambda_{v}$ not all zero
satisfying

$$
\begin{equation*}
\lambda \operatorname{tr}\left(A^{-1} T\right) \equiv \sum_{v \in \mathcal{M}} \lambda_{v} L_{v}(T) \tag{4.10}
\end{equation*}
$$

Further, the relations (4.9), (4.10) imply that $\lambda>0$. For we have

$$
\begin{aligned}
L_{v}(A) & =\sum_{1}^{n} c_{i} f\left(l_{i}\right)-f(v) \\
& =2 \sum_{1}^{n} c_{i} l_{i}^{\prime} A v-f(v) \\
& =2 v^{\prime} A v-f(v)=f(v)
\end{aligned}
$$

hence, taking $T=A$ in (4.10) gives

$$
n \lambda=\lambda \operatorname{tr}\left(A^{-1} A\right)=\sum_{v \in \mathscr{M}} \lambda_{v} f(v)=m(f) \sum \lambda_{v}>0
$$

Hence, dividing through by λ, we may replace (4.9), (4.10) by

$$
\begin{equation*}
\operatorname{tr}\left(A^{-1} T\right)=\sum_{v \in \mathcal{M}} \lambda_{v} L_{v}(T) \tag{4.11}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda_{v} \geqq 0 \text { for all } v \in \mathscr{M} \tag{4.12}
\end{equation*}
$$

Finally, (4.11) holds for all symmetric T if and only if it holds for all T of the form $\boldsymbol{x x ^ { \prime }}$; inserting $T=\boldsymbol{x} \boldsymbol{x}^{\prime}$ in (4.11) gives the required condition (2.10) of Theorem 1.

5. Proof of Theorems 2 and 3

For the proof of Theorem 2, it suffices to show that a Voronoi cone Δ cannot contain two extreme forms f_{0}, f_{1}, of which f_{0} is an interior form and f_{1} is either an interior or a boundary form (not a multiple of f_{0}). Suppose to the contrary that two such forms exist, and consider the line segment joining them:

$$
f_{t}=(1-t) f_{0}+t f_{1} \quad(0 \leqq t \leqq 1)
$$

Then $\mu\left(f_{t}\right)$ is a continuous function of t on the interval $[0,1]$ and so attains
its maximum value at some point t_{0} of the interval. Since f_{0} and t_{1} are extreme, $\mu\left(f_{t}\right) \geqq \mu\left(f_{0}\right)$ for all sufficiently small t, and $\mu\left(f_{t}\right) \geqq \mu\left(f_{1}\right)$ for all t sufficiently close to 1 . Hence the maximum is attained at some t_{0} with $0<t_{0}<1$.

Writing $f=f_{t_{0}}, \phi=f_{0}-f_{1}$, it now follows that f is an interior form of Δ and

$$
\begin{equation*}
\mu(f+\varepsilon \phi) \leqq \mu(f) \tag{5.1}
\end{equation*}
$$

for all sufficiently small ε (of either sign). As in the proof of Theorem 1 , write

$$
f(x)=x^{\prime} A x, \quad \phi(x)=x^{\prime} T x, \quad g(x)=f(x)+\varepsilon \phi(x)
$$

and suppose without loss of generality that

$$
\operatorname{tr}\left(A^{-1} T\right)=0
$$

then $T \neq 0$, since ϕ is not a multiple of f.
By Lemma 2.1,

$$
\begin{equation*}
d(g)=d(f)\left(1-\left|k_{2}\right| \varepsilon^{2}+O\left(\varepsilon^{3}\right)\right), \quad\left|k_{2}\right|>0 \tag{5.2}
\end{equation*}
$$

and, in particular

$$
\begin{equation*}
d(g)<d(f) \tag{5.3}
\end{equation*}
$$

for all small $\varepsilon \neq 0$.
Next, let \mathbf{v} be any maximal vertex of Π_{f}, and adopt the notation of § 3. Then, for the corresponding vertex \boldsymbol{w} of $\Pi_{\boldsymbol{q}}$ we have, from Lemmas 3.2 and 3.3,

$$
\begin{align*}
\boldsymbol{w} & =\boldsymbol{v}+\varepsilon \boldsymbol{\alpha}+\varepsilon^{2} \beta+O\left(\varepsilon^{3}\right) \tag{5.4}\\
g(\boldsymbol{w}) & =f(\boldsymbol{v})+p_{1} \varepsilon+p_{2} \varepsilon^{2}+O\left(\varepsilon^{3}\right), \tag{5.5}
\end{align*} \quad p_{2}=f(\boldsymbol{\alpha}) .
$$

Also

$$
\begin{equation*}
m(f)=f(\boldsymbol{v}), \quad m(g) \geqq g(\boldsymbol{w}) . \tag{5.6}
\end{equation*}
$$

We now show, from (5.2)-(5.6), that (5.1) cannot in fact hold for all small ε, whence Theorem 2 follows at once.

Suppose first that, in (5.5), $p_{1} \neq 0$. Then, for all small ε of the same sign as p_{1}, we have

$$
\begin{equation*}
g(w)>f(v) ; \tag{5.7}
\end{equation*}
$$

hence, by (5.6), (5.3),

$$
\begin{equation*}
\mu(g)>\mu(f) \tag{5.8}
\end{equation*}
$$

contradicting (5.1).

Next suppose that $p_{1}=0, p_{2} \neq 0$. Then $p_{2}=f(\alpha)>0$, and again we obtain (5.7) and (5.8). Hence (5.1) is false for all small $\varepsilon \neq 0$.

Finally suppose that $p_{1}=p_{2}=0$. Then

$$
m(g) \geqq g(w)=m(f)+O\left(\varepsilon^{3}\right)
$$

and this, with (5.2), again shows that

$$
\mu(g)>\mu(f)
$$

for all small $\varepsilon \neq 0$.
Theorem 3 is now easily deduced from Theorem 2. Let f be an extreme form interior to a Voronoì cone Δ, and let $G(f), G(\Delta)$ be the groups of (integral unimodular) automorphisms of t, Δ respectively.

Suppose that $U \in G(f)$. Then U transforms Δ into a Voronoĭ cone Δ^{\prime}; since $t=U f \in \Delta^{\prime}, \Delta$ and Δ^{\prime} have a common interior form f and so are identical. Hence $U \in G(\Lambda)$.

Conversely, suppose that $U \in G(\Delta)$ and let $U f=f^{\prime}$. Then f^{\prime} is an interior form of Δ; and since f^{\prime} is equivalent to f, f^{\prime} is an extreme form. It now follows from Theorem 2 that f^{\prime} is a multiple of f, whence $f^{\prime}=t$ and so $U \in G(f)$.

6. The principal domain

For all $n \geqq 2$, the set of forms ϕ expressible in the form

$$
\begin{equation*}
\phi(x)=\sum_{i=1}^{n} \rho_{i} x_{i}^{2}+\sum_{i<j} \rho_{i j}\left(x_{i}-x_{j}\right)^{2}, \quad \rho_{i} \geqq 0, \quad \rho_{i j} \geqq 0 \quad(i, j=1, \cdots, n) \tag{6.1}
\end{equation*}
$$

is a Voronoi cone Δ, called by Voronoir the "principal domain" and discussed fully in [7] We may write it more symmetrically as

$$
\begin{equation*}
\phi(\boldsymbol{x})=\sum_{\substack{i, j=0 \\ i<j}}^{n} \rho_{i j}\left(x_{i}-x_{j}\right)^{2}, \quad x_{0}=0, \quad \rho_{i j} \geqq 0 \quad(0 \leqq i<j \leqq n) . \tag{6.2}
\end{equation*}
$$

The set S of integral points defining Π for any interior form consists of the $2^{n}-1$ points with all coordinates 0 or 1 (other than 0), and their negatives.

The group $G(\Delta)$ of automorphisms of Δ has order $2(n+1)$! and is transitive on the edge-forms $\left(x_{i}-x_{j}\right)^{2}(0 \leqq i<j \leqq n)$ of $\Delta . G(4)$ is in fact generated by (i) all permutations of $x_{1}, x_{2}, \cdots, x_{n}$; (ii) $x_{i} \rightarrow-x_{i}$ ($1 \leqq i \leqq n$); (iii) $x_{1} \rightarrow x_{1}, x_{i} \rightarrow x_{1}-x_{i}(2 \leqq i \leqq n)$.

It follows from Theorem 3 that any interior extreme form of Δ has all $\rho_{i j}$ equal, and so is a multiple of ${ }^{2}$

[^1]\[

$$
\begin{equation*}
f(x)=\sum_{\substack{i, j=0 \\ i<i}}^{n}\left(x_{i}-x_{j}\right)^{2}=n \sum_{i=1}^{n} x_{i}^{2}-2 \sum_{1 \leq i<i \leq n} x_{i} x_{j} . \tag{6.3}
\end{equation*}
$$

\]

As we remarked in § 1 , this form is indeed extreme; we now give an alternative proof of this, using Theorem 1.

The integral points

$$
\begin{equation*}
l_{i}=e_{1}+e_{2}+\cdots+e_{i} \tag{6.4}
\end{equation*}
$$

$$
(1 \leqq i \leqq n)
$$

(where e_{i} is the i th unit vector) determine the vertex

$$
\begin{equation*}
v=\frac{1}{n+1}(n, n-1, \cdots, 2,1)^{\prime} \tag{6.5}
\end{equation*}
$$

of Π_{f}; and, from (2.5), we obtain

$$
c=\frac{1}{n+1}(1,1, \cdots, 1)^{\prime}
$$

whence

$$
\begin{equation*}
c_{i}=\frac{1}{n+1} \quad \text { for } \quad 0 \leqq i \leqq n \tag{6.6}
\end{equation*}
$$

By permuting coordinates in (6.5), we obtain a set of $n!$ distinct vertices, which contains just 1 vertex from each set of congruent vertices. It follows that every vertex of Π is maximal, and, in applying the criterion of Theorem 1 , we may take \mathscr{M} to be this set of n ! vertices.

It is here a little more convenient in applying Theorem 1 , to use the expression (2.17). With the $\boldsymbol{l}_{i}, c_{i}$ given by (6.4), (6.6) (and $\boldsymbol{l}_{0}=0$) we have for the vertex (6.5)

$$
\begin{gathered}
\psi_{v}(x)=\sum_{0 \leq i<j \leqq n} c_{i} c_{i}\left(l_{i}^{\prime} x-l_{j}^{\prime} x\right)^{2} \\
(n+1)^{2} \psi_{v}(x)=\sum_{i=1}^{n} x_{i}^{2}+\sum_{i=1}^{n-1}\left(x_{i}+x_{i+1}\right)^{2}+\cdots+\sum_{i=1}^{n-r}\left(x_{i}+x_{i+1}+\cdots+x_{i+r}\right)^{2}+\cdots \\
\cdots+\left(x_{1}+x_{2}+\cdots+x_{n}\right)^{2}
\end{gathered}
$$

Summing this over all permutations of the x_{i}, we obtain

$$
\begin{align*}
(n+1)^{2} \sum_{v \in M} \psi_{v}(x) & =\sum_{r=1}^{n} r!(n+1-r)!\left\{\sum_{1 \leqq i_{1}<\cdots<i_{r} \leqq n}\left(x_{i_{1}}+x_{i_{2}}+\cdots+x_{i_{r}}\right)^{2}\right\} \tag{6.7}\\
& =\frac{1}{12}(n+2)!\left\{2 \sum_{i=1}^{n} x_{i}^{2}+2 \sum_{i<j} x_{i} x_{j}\right\}, \tag{6.8}
\end{align*}
$$

since, on the right of (6.7), the coefficient of each x_{i}^{2} is

$$
\sum_{r=1}^{n} r!(n+1-r)!\binom{n-1}{r-1}=\frac{1}{6}(n+2)!
$$

and the coefficient of each $2 x_{i} x_{j}(i<j)$ is

$$
\sum_{r=2}^{n} r!(n+1-r)!\binom{n-2}{r-2}=\frac{1}{12}(n+2)!
$$

Since the form in braces in (6.8) is just $F(x)$, the inverse of $f(\boldsymbol{x})$, we have therefore expressed $F(x)$ in the form (2.10) (with the λ_{v} all equal), whence f is extreme.

References

[1] Bambah, R. P., 'On lattice coverings by spheres', Proc. Nat. Inst. Sci. India 20 (1954),多-52.
[2] Barries, E. S., 'The covering of space by spheres', Can. J. Math. 8 (1956), 293-304.
[3] Bleicher, M. N., 'Lattice coverings of n-space by spheres', Can. J. Math. 14 (1962), 632-650.
[4] Delone, B. N. and Ryskov, S. S., 'Solution of the problem of the least dense lattice covering of a 4-dimensional space by equal spheres', Dokl. Akad. Nauk. SSSR. 152 (1963), 523.
[6] Voronoi, G., 'Sur quelques propriétés des formes quadratiques positives parfaites', J. reine angew. Math. 133 (1907), 97-178.
[6] Voronoi, G., 'Recherches sur les paralléloèdres primitifs', (Part 1), ibid 134 (1908), 198-287.
[7] Voronoi, G., (Part 2), ibid 136 (1909), 67-181.
University of Adelaide, South Australia
South Australian Institute of Technology

[^0]: ${ }^{1}$ Geometrically, this amounts to projecting from the origin onto the tangent plane, at f, to the determinantal surface $d=d(f)$. Algebraically, we replace T by $U=T-1 / n \operatorname{tr}\left(A^{-1} T\right) A$, and then $A+ء T$ is a multiple of $A+\eta U$, where η is small with ε.

[^1]: :The principal domain appears to be exceptional in having a sufficiently large group of automorphisms to determine the extreme form f completely.

