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1

It is well known that the problem of determining the most economical
covering of n-dimensional Euclidean space, by equal spheres whose centres
form a lattice, may be formulated in terms of positive definite quadratic
forms, as follows:

Let f(x) = f(z,, %5, ", %,) = X’Ax (A’ = A) be positive definite,
and d = d(f) = det A. For real a, set
(1.1) m(f; «) = min f(x+a)

X

(the minimum being taken over integral x),

(1.2) m(f) = max m(f; ),
(1.3) ulf) = m(p)jare.

If now 4 = P’'P, and 4 is the lattice spanned by the columns of P, then
spheres of radius (m(f))¥ centred at the points of A cover space minimally;

and, since
d(A) = |det P| = a},

the density 6(A4) of the covering is given by
6(4) = Ja(u())¥"

(where J, is the volume of the unit sphere).
Thus the problem of minimizing 6(A) is equivalent to that of
determining
(1.4) My = min u(f).
s
If u(f) is a local minimum, i.e. if u(g) = u(f) for all forms g sufficiently
close to f, we say that f is extreme; and if u(f) = u,, we say that f is ab-
solutely extreme. If f is extreme (absolutely extreme) so is any form equivalent
under integral unimodular transformation to a positive multiple of f, and
it is convenient to unite such forms into a single class.
115
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By a direct investigation of neighbouring forms, Bleicher [3] has

shown that the form

n
(1.5) nYy ai—23 z,a,

i=1 i<j
is extreme for all #; for » = 2 and # = 3, Barnes [2] showed that this is
the only class of extreme forms, which Bambah [1] had previously shown
to be absolutely extreme. Delone and Ryskov [4] have announced that
the above form is also absolutely extreme when »n = 4.

The first object of this paper is to establish a criterion for a form
to be extreme. The criterion, which is stated in Theorem 1, bears a marked
similarity to the condition for a form to be eutactic (which is part of the
necessary and sufficient condition for a form to be extreme for the cor-
responding packing problem). However, there is here no analogue of a
“perfect” form (see Voronoi [5]).

Our second main result (Theorems 2 and 3) is that a Voronoi domain
A (see § 2) contains at most one interior extreme form f (other than the
multiples of f), and the group of automorphisms of f is then the same as
that of 4. This result, together with the criterion for extremeness, provides
a systematic method of finding all extreme forms in any given dimension
when the Voronoi domains are known. One of us intends shortly to publish
complete results for » = 4, based on this method.

The evidence we have obtained to date supports the conjecture that
every Voronoi domain contains an interior extreme form; the truth of
this conjecture would, with Theorem 2, imply that every extreme form is
an interior form.

In § 2 we recall Voronoi’s results, establish some necessary notation
and state our theorems. In § 3, we analyze the neighbours of an interior
form f, whence we deduce our theorems in §§ 4 and 5. Finally, in § 6, we
use our results to show that the form (1.5) is extreme for all #, and further
that it represents the only class of extreme forms in Voronoi’s “principal
domain”’.

2
The Voronoi polytope I7 (Voronoi [6]) corresponding to a positive
form f is the set of points x such that
(2.1) f(x) < f(x—1) for all integral Il

A finite set +1I,, +1,, --, +1I, of integral points suffices to define 17,
which therefore has o pairs of opposite parallel faces, with equations
f(x) =f(xxl) (#=1,---,0). A given I = 0 belongs to this set. and so
defines a face of /7 if and only if
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f(I) = min f(x)

taken over all integral x = I (mod 2) and this minimum is attained only at
x = +1. In general, ¢ = 2"—1, and there is then one pair of faces for
each congruence class of I modulo 2 other than 0; in this case we shall
call f an interior form.

Voronoi [7] has shown that the £# (4 1)-dimensional space of positive
quadratic forms may be partitioned into polyhedral cones (4) with the
origin as vertex, possessing the following properties:

(i) no two cones have a common interior point;

(ii) an integral unimodular transformation of variables either leaves
a cone invariant or transforms it into another cone of the system;

(iii) there exists a finite number of the cones, say 4,, 4,,--, 4,,
such that any positive form is equivalent to a form lying in some A4,
0=:=sr7);

(iv) a cone 4 uniquely determines the set S of 2"—1 pairs 4-1 of
integral points which define the polytope IT of a form f lying in the in-
terior of 4, and also determines the sets of » faces of IF which intersect
in a vertex of II.

Thus what we have called an interior form is simply a form lying
in the interior of some Voronoi cone 4. For an interior form, I7 is primitive
(i.e. each vertex of IT lies on just # faces). We shall denote generally by
v a vertex of IT and by I, - - -, I, the points of S specifying the » faces on
which v lies. Then the matrix

(22) L= [l]_, T ln]

is non-singular, and v is uniquely determined by the # linear equations

(2.3) fv) = f(v—1) 1=i<n),

ie.

(2.4) 2l; Av = f(1,) 1=i=mn).
For each vertex v of II, we define ¢ by

(2.5) c=1L"1y

and ¢, by

(2.6) 2”: ;=1

Then =

(2.7) V= i ¢l

. i=1

i.e.
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n
(2.8) v =>cl;, where [, =0,
i=0
so that ¢, ¢, * * +, ¢, are barycentric coordinates of v with respect to the
simplex I, &, -+, L,.
Now, from the convexity of II, it follows easily that
(2.9) m(f) = max m(f; v) = max f(v),
the maximum being taken over all vertices of II. We shall say that a vertex
v is maximal if f(v) = m(f).

THEOREM 1. Let f(x) = x'Ax be an interior form, and F(x) =x'A"x
tts inverse. Then f is extreme if and only if F is expressible in the form

(2.10) F) = 34,0 3 el x)?—(v'x)?]
v fu=]

where v runs over all maximal vertices of I,

(2.11) A, =0 for all v,

and ¢, l; are defined in (2.5), (2.3).

THEOREM 2. If f is an extreme form in the interior of a Voronoi cone A,
then every extreme form in A is a multiple of f.

THEOREM 3. If f is an extreme form in the interior of a Voronoi cone 4,
then | and A have the same group of automorphisms.

Before proceeding to the proof of these results, we note some alternative
formulations of the criterion of Theorem 1.

First, defining two vertices of I to be congruent if their difference is
integral, it is easy to verify that each vertex v has #-}1 congruent vertices;
specifically, if v is determined by the simplex (4, 4, -+, 1,) (I,=0),
then v is congruent to

(2.12) v,=v-—l, 0==j=mn) (vo=1v)

and v; is determined by the simplex (I,—1L,, - - -, I,—1;). Further
(2.13) M=) ©O=jsn

and, from (2.8), (2.8),

(2.14) v, = i c;(,—1,).

=0

Thus congruent vertices have the same barycentric coordinates ¢y, ¢;, * - -, ¢,
(with the above ordering of the simplexes), and all are maximal if one is.
If now we set
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@19 wlx) = Selixr—(vx) = S eix—(vx)y

it is easy to verify that

(2.16) ?,X) =9(x) (0=]=n)

@17) ) =33 colx—Lxr= 3 colix—Lx).
1,4=0 osSi<isan

Since trivially v, (x) = y_,(x), we therefore have:

COROLLARY 1. It suffices in the sum (2.10), to consider only one vertex
v from the set of 2(n+1) vertices congruent to a given maximal vertex or its
negative.

COROLLARY 2. The summand in (2.10) may be replaced by
2 el x—Lx)

1, 2=0
s<s

3. Analysis of neighbouring forms

Let f(x) = x'Ax be an interior form and g(x) = x'Bx a neighbouring
form. Then

(3.1) B = A+eT

for some symmetric T" with, say, max |¢;;] = 1. We shall suppose throughout
that ¢ # 0, so that g 7 f, and that ¢ is so small that g is also an interior
form of the cone 4 in which f lies.

Then, to each vertex v of IT = II, with defining points 4,---, I,,
there corresponds uniquely a vertex w of II, with the same defining points,
so that

(3.2) 2l; Bw = g(b,) 1=i<n).
LeMMmA 3.1 (Minkowski). For all small e,
a(g) = a(f)(1+kye+k+0()),

Ry = tr (A7)

where

and
ke <O if Bi=0 and T #0.
ProOOF. Since 4 is positive definite, we may choose P so that

A= PP, T=PDP,
where
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D = diag (d,, d,, - - -, 4,,).

Then
d(g) = d(f) det (I+eD)
and
det (I+eD) = 14¢e> d;+&2 Y d,d;+0(e).
i<i
Hence

ky=2Xd;,=tr D = tr (P"'DP) = tr (AT).
Finally, if 3 d, = 0, then
2hy=2%dd; = (3d)—Xdi=—3d; <0
i<j
if D#0, ie. if T #0.
Write for convenience
$(x) = x'Tx,
so that
g(x) = f(x)+eg(x).
Lemma 3.2. If v, w are corresponding vertices of II,, II, respectively,
defined by the integral points L, -+ -, 1, then

(3.3) w = v+ea+e2f+0(s3)

where

(3.4) B=—A"Te,

(3.5) a=7y—A"1Ty,

and vy is defined by

(3.6) 2L Ay = ¢(1,) 115 n).
ProoF. We may write w in the form (3.3) and determine e, 8 from

(3.2), i.e.

2l (A+eT)(v+ea+e B+0(e2)) = L(A+eT), L=< n).
Equating coefficients of ¢ and of &? gives
(3.7) 2l Aa+2I;Tv = LTI, = ¢(1,) 1=:i<n),
(3.8) 2L AB+2l;Ta = 0 1=17=n).

Now (3.4) follows from (3.8), since L = [, -, I,] is non-singular, and,
defining y by (3.6), we obtain (3.5) from (3.7).

LeEMMA 3.3. With the notation of Lemma 3.2, we have

(3.9) g(w) = f(v)+e(2v'Ay—¢(v))+ /(@) +O(s).
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Proor. From (3.3) we obtain
g(w) =w(d+eT)w
= f(v)+e(2v'Ada+v'Tv)+?a' Ao+ 262 (v AB+v' Ta)+0(e3).
Inserting the expressions (3.4), (3.5) for 8 and @ gives (3.9).

4. Proof of Theorem 1
With the notation of § 3, we first prove

LeMMA 4.1. The interior form f is extreme if and only if there exists no
symmetric T such that

(4.1) tr (A7) =0
and, for every maximal vertex v of II,,

(4.2) 2viAy—¢(v) < 0
(where y is defined by (3.6)).

ProoF. (i) Suppose first that there exists a T satisfying the stated~
conditions.

Defining g(x) = x'(A-4-¢T)x = f(x)+ed(x) as in § 3, we take &
sufficiently small and positive. Then, by (4.1) and Lemma 3.1, esther

tr (A1T) >0 and d(g) >d(f), or
tr (A'T) =0 and d(g) = d(f)+0(e?).

Next, since the values of g(w) (at vertices w of II,) are arbitrarily
close to the corresponding f(v), we have

(4.3)

m(g) = max g(w),

where the maximum is taken over those w which correspond to maximal
vertices v of II,. From (3.9) and the inequalities (4.2), it follows that

(4.4) m(g) = m(f)—ke+4+0(e?)

for some & > 0.

From (4.3) and (4.4), it follows at once that for all sufficiently small
e> 0,

r(g) < ulfh),

whence f is not extreme.

(i) Suppose next that there exists no T satisfying (4.1), (4.2). With
the previous notation, any sufficiently close neighbour g of f can be written
as
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g(x) = x'(A+<T)x with £ > 0.

We may suppose that g is not a multiple of f.
Replacing g by a suitable multiple of g, we can ensure that!

tr (A T) =0,
and T s 0 since g is not a multiple of . Then, by Lemma 3.1,
(4.5) d(g) = d(f)(1—|kale*+0(%)), |kgl > 0.
Since T satisfies (4.1), it follows from our hypothesis that the inequality
2viAy—¢(v) = 0
holds for some maximal vertex v of IT,. Let w be the corresponding vertex
of IT,; w may not be maximal, but in any case
m(g) = g(w).

It now follows from (3.9), since f(a) = 0, that for all sufficiently small
e>0

(4.6) m(g) > m(f) or m(g) =m(f)+0(s).
From (4.5) and (4.6) we obtain at once

w(g) > plf),

showing that f is extreme.

In order to deduce Theorem 1 from Lemma 4.1, we first note that,
using the definitions (3.6) of ¥ and (2.5) of ¢, we may write the expression
on the left of (4.2) as

2 Ady—d(v) =23 el Ay—(v)

= S ehl)—4(v)

= L (T), say.
Then

(4.7) L(T) =3 c¢l,Tl—v'Tv
1

is a linear form in the elements ¢,; (# < 7) of T. Thus (4.1), (4.2) form, in
the variables ¢,;, a system of linear inequalities

1 Geometrically, this amounts to projecting from the origin onto the tangent plane, at f,
to the determinantal surface d = d(f). Algebraically, wereplace Tby U =T—1/n tr (42 T)4,
and then A+4+#T is a mnultiple cf A +nU, where 5 is small with e.
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“8) { tr (A-1T) = 0

L(T)<O (ve #)
(where .# denotes the set of maximal vertices of II).

It follows from the classical theory of linear inequalities that the
system (4.8) has no solution T if and only if there exist numbers,

(4.9) A=0, A,=0 (ve.d), A, not all zero
satisfying
(4.10) Atr (AT) =3 A,L,(T).

ve M

Further, the relations (4.9), (4.10) imply that 4 > 0. For we have

n

L(4) =3 c.f (1) —f(v)

=2 i cly Av—f(v)
— 2 Av—f(v) = H);
hence, taking T = 4 in (4.10) gives
nid = Atr (A714) =3 A,f(v) =m(f) X 4, > 0.

vek

Hence, dividing through by A, we may replace (4.9), (4.10) by

(4.11) tr (A7) =3 A,L(T)
vel

where

(4.12) A, =0 for all ve.#.

Finally, (4.11) holds for all symmetric T if and only if it holds for all
T of the form xx’; inserting T = xx’ in (4.11) gives the required condition
(2.10) of Theorem 1.

5. Proof of Theorems 2 and 3

For the proof of Theorem 2, it suffices to show that a Voronoi cone 4
cannot contain two extreme forms f,, f,, of which £, is an interior form
and f, is either an interior or a boundary form (not a multiple of f;). Suppose
to the contrary that two such forms exist, and consider the line segment
joining them:

fe= (1=t)fo+ifs o=t= 1).

Then u(f,) is a continuous function of ¢ on the interval {0, 1] and so attains
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its maximum value at some point £, of the interval. Since f, and f, are
extreme, u(f,) = u(f,) for all sufficiently small ¢, and u(f,) = u(f,) for all
¢t sufficiently close to 1. Hence the maximum is attained at some #, with

0<t, <l

Writing f = f, , ¢ = fo—f;, it now follows that f is an interior form
of 4 and
(6.1) pu(f+ed) = p(f)
for all sufficiently small & (of either sign). As in the proof of Theorem 1,
write

fx) = x'Ax, $(x) = x'Tx, g(x) = f(x)+eh(x)
and suppose without loss of generality that
tr (A7) = 0;

then T 3 0, since ¢ is not a multiple of f.
By Lemma 2.1,

(6.2) a(g) = a(f)(1—[ksle*+0(e%), k| > 0;
and, in particular
(5.3) a(g) < d(f)

for all small & # 0.
Next, let v be any maximal vertex of II,, and adopt the notation of
§ 3. Then, for the corresponding vertex w of IT, we have, from Lemmas

3.2 and 3.3,

(5.4) w = vtea+e2f40(8)

(6.5) g(w) = [(v)+pie+5:2+0(&), P2 = f{@).
Also

(5.6) m(f) = {(v), m(g) =g(w).

We now show, from (5.2)— (5.6), that (5.1) cannot in fact hold for all
small ¢, whence Theorem 2 follows at once.

Suppose first that, in (5.5), p, # 0. Then, for all small ¢ of the same
sign as p;, we have

(5.7) g(w) > f(v);
hence, by (5.6), (5.3),
(5.8) w(g) > p(f),

contradicting (5.1).
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Next suppose that p, = 0, p, # 0. Then p, = f(a) > 0, and again
we obtain (5.7) and (5.8). Hence (5.1) is false for all small ¢ # 0.
Finally suppose that p, = p, = 0. Then

mig) = g(w) = m(f)+0(¢)
and this, with (5.2), again shows that

u(g) > u(f)

for all small & £ 0.

Theorem 3 is now easily deduced from Theorem 2. Let f be an extreme
form interior to a Voronoi cone 4, and let G(f), G(4) be the groups of
(integral unimodular) automorphisms of f, 4 respectively.

Suppose that U € G(f). Then U transforms 4 into a Voronoi cone 4';
since f = UfeA’, A and A’ have a common interior form f and so are
identical. Hence U e G(4).

Conversely, suppose that U e G(4) and let Uf = f'. Then ' is an
interior form of 4; and since f' is equivalent to f, f' is an extreme form.
It now follows from Theorem 2 that f' is a multiple of f, whence /' = f
and so U € G(f).

6. The principal domain

For all » = 2, the set of forms ¢ expressible in the form
n
(6.1) $(x) =‘le,.x§+‘2j pis(@i—as)?, pi 20, py =0 (5,7=1,---,n)
= <

is a Voronoi cone 4, called by Voronoi the “principal domain’ and dis-
cussed fully in [7] We may write it more symmetrically as

(6.2) $(x) = Z pis(®i—2;)% 2, =0, p,; =0 (0=i<j=mn)
o
The set S of integral points defining I7 for any interior form consists of the
2"—1 points with all coordinates 0 or 1 (other than 0), and their negatives.
The group G(4) of automorphisms of 4 has order 2(rn+1)! and is
transitive on the edge-forms (z,—2,)2 (0 <7 <j<n) of 4. G(4) is in
fact generated by (i) all permutations of =z, z,,* -, «,; (i) z; > —=,
(1=:i=mn); (i) 2, > 2, 2, >2,—=x; 2517 < n).
It follows from Theorem 3 that any interior extreme form of 4 has
all p;; equal, and so is a multiple of 2

* The principal domain appears to be exceptional in having a sufficiently large group
of antomorphisms to determine the extreme form f completely.
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(6.3) (@) =3 @—z)=n3ai—-2 3 2z,
=0 =1 15i<isn

As we remarked in § 1, this form is indeed extreme; we now give an alter-
native proof of this, using Theorem 1.
The integral points

(6.4) l,=etey+ -+ +e 1=i1=n)

(where e, is the sth unit vector) determine the vertex

6.5 =1 ( 1 2,1)’
(.) V—ﬂ—l—l nn—I1, ) &y
of IT,; and, from (2.5), we obtain
1
c=——(,1,---1),

n41
whence

1 .
(6.6) c‘=n—ﬁ for 01 <Sm.

By permuting coordinates in (6.5), we obtain a set of »! distinct vertices,
which contains just 1 vertex from each set of congruent vertices. It follows
that every vertex of IT is maximal, and, in applying the criterion of Theorem
1, we may take . to be this set of n! vertices.

It is here a little more convenient in applying Theorem 1, to use the
expression (2.17). With the I, ¢, given by (6.4), (6.6) (and I, = 0) we
have for the vertex (6.5)

@)= 3 collix—Lx)
0si<isn

n—1 n—y

(n+1)2p, () =‘21 x?+21 (@ t2ig)i4- - + 21 G . 77 LE LRl
R S COF 3% SRR o M L8

Summing this over all permutations of the x,, we obtain

6.7) (n+1)2 ¥ y (z) = ér!(n+l—r) !{ > (x,.l+x,.’+ ces +x")a}

veM IS < <i,8n

(6.8) = L (n+2)1{2 i xf+2iz zz,},

i=1

since, on the right of (6.7), the coefficient of each 2? is

'glr!(n+1—r)! (’::i) — 1(n42)l,
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and the coefficient of each 2z, ( <) is

ér! (n+1—7)! (7::2) = {5(n+2)!

Since the form in braces in (6.8) is just F (x), the inverse of f(x), we have
therefore expressed F(x) in the form (2.10) (with the 4, all equal), whence
[ is extreme.

.
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