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CM Periods, CM Regulators, and
Hypergeometric Functions, I

Masanori Asakura and Noriyuki Otsubo

Abstract. We prove theGross–Deligne conjecture onCMperiods for motives associatedwith H2 of
certain surfaces ûbered over the projective line. _enwe prove for the samemotives a formulawhich
expresses the K1-regulators in terms of hypergeometric functions 3F2 , and obtain a new example of
non-trivial regulators.

1 Introduction

Periods and regulators of amotive over a number ûeld are very important invariants,
whose arithmetic signiûcance can be seen from their conjectural relationswith values
of the L-function at integers. Such conjectures include those of Birch–Swinnerton-
Dyer, Deligne, Bloch, Beilinson and Bloch–Kato. If themotive has complexmultipli-
cation (CM) by a number ûeld, especially by an abelian ûeld, those invariants take a
special form.

If A is an abelian variety with CM by a subûeld of the N-th cyclotomic ûeld, its
periods arewritten in terms of values of the gamma function at 1

NZ. When A is an el-
liptic curve, the formula is due to Lerch [15] andwas rediscovered byChowla–Selberg
[8]. Gross [13] gave a geometric proof of a generalization of the formula and proposed
a conjecture for any motivic Hodge–de Rham structure with CM by an abelian ûeld,
whose precise form was given by Deligne. Using Shimura’s monomial relation [23],
Anderson [1] proved the formula for CM abelian varieties by reducing to the case of
Fermat curves.

In this paper, we study a surface X ûbered over P1 (t-line) with the general ûber
deûned by yp = xa(1 − x)b(t l − x)p−b , where l and p are distinct prime numbers.
It admits an action of µ l p and its second cohomology modulo the image of classes
supported at singular ûbers gives a Hodge–de Rham structure H = (HdR ,HB) with
multiplication by K ∶= Q(µpl) (see §2.2). We shall prove that HB is one-dimensional
over K (_eorem 4.12). For each embedding χ∶K ↪ C, let H χ be the eigencompo-
nent. We shall determine its period and theHodge type independently, and prove the
Gross–Deligne conjecture.

Received by the editors September 21, 2016; revised April 4, 2017.
Published electronically August 3, 2017.
_is work was supported by JSPS Grant-in-Aid for Scientiûc Research 24540001, 25400007 and by

Inamori Foundation.
AMS subject classiûcation: 14D07, 19F27, 33C20, 11G15, 14K22.
Keywords: period, regulator, complex multiplication, hypergeometric function.

https://doi.org/10.4153/CJM-2017-008-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-008-6


482 M. Asakura and N. Otsubo

_eorem 1.1 (Period formula, see_eorem 5.4) For each χ∶K ↪ C, let χ(ζp) = ζn
p ,

χ(ζ l) = ζm
l , and put α = { na

p }, β = { nb
p }, µ = {m

l }. _en we have

Per(H χ) ∼K′× B(β, µ)B(1 − β, β − α + µ),

where K′ ∶= Q(µ2 l p), and the Gross–Deligne conjecture holds.

On the other hand, regulators of the Fermat curve of degree N arewritten in terms
of values at 1 of hypergeometric functions 3F2 with parameters in 1

NZ [18]. _e con-
jectural relationwith L-values is veriûed for some cases in [19,20]. Recall that the beta
function is related to the value of Gauss’ hypergeometric function 2F1 at 1. It is also
suggestive that the classical polylogarithm can be written as

Lik(x) = x ⋅ k+1Fk (
1, 1, . . . , 1
2, . . . , 2

; x) ,

and hence special values of Dirichlet L-functions arewritten in terms of k+1Fk-values.
For the surface X, we consider the Beilinson regulator [7] from themotivic coho-

mology to the Deligne cohomology

rD ∶H3
M (X ,Q(2))Ð→ H3

D(XC ,Q(2)).

In terms of algebraic K-theory, we have H3
M (X ,Q(2)) = (K1(X)⊗Z Q)(2) (the sec-

ond eigenspace for the Adams operations). Let Z1 be the union of ûbers over µ l and
consider the image of H3

M ,Z1
(X ,Q(2)) → H3

M (X ,Q(2)). _e Deligne cohomology
can be regarded as functionals on F 1H2

dR(X) up to periods, and we restrict them to
F 1HdR.

_eorem 1.2 (Regulator formula, see_eorem 6.5) Let χ be an embedding such that
H χ
dR ⊂ F 1HdR. _en, for any z ∈ H3

M ,Z1
(X ,Q(2)) and ω ∈ H χ

dR, we have

rD(z)(ω) ∼K× B(1 − α, β) ⋅ 3F2 (
1 − α, β, β − α + µ

1 − α + β, β − α + µ + 1
; 1) ,

where α, β, µ are as before.

Moreover, we shall show the non-vanishing of the regulator image under a mild
assumption (_eorem 6.6).

Regarding these examples, it is tempting to ask if the regulators and hence the
L-values of amotive with CM by an abelian ûeld can be written in terms of values of
k+1Fk , with k depending on the weight. In a forthcoming paper [4], we shall study
more general ûbrations of varieties over P1 with multiplication by a number ûeld
whose relative H1 has a special type ofmonodromy.
Concerning the period conjecture, there is a result ofMaillot–Roessler [16] using

Arakelov theory on the absolute value of the period. Recently, Fresán [12] proved the
formula for the alternating product of the determinants for any smooth projective va-
riety with a ûnite order automorphism by reducing to a result of Saito–Terasoma [22].
Since we prove dimK HB = 1 and H1(X) = H3(X) = 0, the Gross–Deligne conjecture
for our H follows from Fresán’s result. However, we need our precise computations
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for the study of regulators. Our method is quite diòerent from previous works men-
tioned above. A crucial step is to compute explicitly Deligne’s canonical extension
He of the Gauss–Manin connection on the relative ûrst de Rham cohomology. Our
ûbration is smooth outside D ∶= {0,∞} ∪ µ l , and there is a connection

∇∶He Ð→ Ω1
P1(logD)⊗He .

We will describe it explicitly and determine the Hodge structure of H. _e 1-periods
of the ûber areGauss hypergeometric functions 2F1. By the integral representation of
Euler type, the 2-periods of X are ûrstwritten in terms of 3F2-values,which then turn
out to be 2F1-values. _e conjecture follows by comparing these computations.

It is more delicate in general to compute the regulators of given motivic elements,
even for a ûbration of curves. Here we use a new technique [3], originally unpub-
lished, but now included in the appendix of the present paper. Via the canonical ex-
tension, we shall represent elements of F 1HdR by certain rational 2-forms. _en the
regulators are expressed as integrals of those rational forms over Lefschetz thimbles,
which are again written in terms of 3F2-values.

_is paper proceeds as follows. In Section 2, we ûx the setting and compute the
1-periods of the ûber and 2-periods of X. In Section 3, we determine the Gauss–
Manin connection and the canonical extension. In Section 4,we determine theHodge
structure and show that HB is one-dimensional over K. In Section 5,we give a basis of
F 1HdR and verify the Gross–Deligne conjecture. In Section 6, we prove the regulator
formula anddiscuss thenon-vanishing. _e appendix, due to the ûrst author, provides
the technique to compute the regulators.

1.1 Notations

_roughout this paper, Q denotes the algebraic closure of Q in C. For each positive
integer N , µN denotes the group of N-th roots of unity and we put ζN = e2πi/N . For a
real number x,wewrite x = ⌊x⌋+{x}with ⌊x⌋ ∈ Z, 0 ≤ {x} < 1, and put ⌈x⌉ = −⌊−x⌋.
For α ∈ C and an integer n ≥ 0, (α)n = ∏

n−1
i=0 (α + i) is the Pochhammer symbol and

the generalized hypergeometric function is deûned by

pFq (
α1 , . . . , αp

β1 , . . . , βq
; x) =

∞

∑
n=0

∏
p
i=1(α i)n

∏
q
j=1(β j)n

xn

n!
.

We o�en drop the subscripts from pFq . It converges at x = 1whenRe(∑ j β j−∑i α i) >
0. We use the standard notation for the product of Γ-values

Γ(
α1 , . . . , αp

β1 , . . . , βq
) =
∏

p
i=1 Γ(α i)

∏
q
j=1 Γ(β j)

.

For a variety X over Q, Hn
dR(X) = Hn

dR(X/Q) denotes the algebraic de Rham coho-
mology and Hn(X ,Q) denotes the Betti cohomology of the analyticmanifold X(C),
or the associatedmixedHodge structure.
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2 Preliminaries

2.1 The Setting

Let p, l be distinct prime numbers and a, b, c be integers with 0 < a, b, c < p (we
shall soon assume that b + c = p). We deûne a ûbration of curves f ∶X → P1 as
follows. Let g∶Y → P1 be a proper �at morphism over Q whose ûber Yt at t ∈ P1 is
the normalization of the curve deûned by yp = xa(1− x)b(t − x)c . _en g is smooth
outside {0, 1,∞} and, by the Riemann–Hurwitz formula, the genus of the generic
ûber is p − 1. _e ûber Y1 is a union of P1 intersecting transversally with each other.
We have an automorphism σ of order p of Y over P1 deûned by σ(x , y) = (x , ζ−1

p y).
Let g(l)∶Y(l) → P1 be the base change of g by themorphism P1 → P1; t ↦ t l . _e

action of σ extendsnaturally toY(l). On the other hand, the automorphism τ(t) = ζ l t
of P1 induces an automorphism τ of Y(l) over Y . _ere is a desingularization X of
Y(l) such that σ and τ extend to automorphisms of X respectively over P1 and Y (for
example, if one takes a sequence of blow-ups only at the singular points, then σ and
τ extend automatically). As a result, we obtain a ûbration f ∶X → P1 of curves in the
commutative diagram

X //

f   

Y(l) //

g(l)

��
◻

Y

g
��

P1 // P1

and for t /∈ {0,∞} ∪ µ l , the ûber Xt is isomorphic to Yt l .

2.2 CM Hodge–de Rham structures

A Hodge–de Rham structure is a quadruple H = (HdR ,HB , ι, F●) consisting of
● a ûnite-dimensional Q-vector space HdR,
● a ûnite-dimensional Q-vector space HB ,
● an isomorphism

ι∶HdR ⊗Q C→ HB ⊗Q C,
and

● a descending ûltration F●HdR that induces aHodge structure on HB via ι.
For aproper smooth variety X overQ, its n-thdeRham andBetti cohomology groups,
the comparison isomorphism, and the Hodge ûltration deûne a Hodge–de Rham
structure Hn(X).

Let K be a ûnite extension of Q. We say that H admits a K-multiplication if we
are given K-actions on HdR and HB that are compatible with ι and F●. Moreover, we
say that H has CM by K if dimK HB = 1. For each embedding χ∶K ↪ C, let H χ

dR,
H χ
B ∶= (HB ⊗Q Q)χ denote the subspace on which K acts as themultiplication via χ.

If dimK HB = 1, then these subspaces are 1-dimensional over Q. Choosing any bases
ωdR ∈ H χ

dR andωB ∈ H χ
B ,we deûne the periodPer(H

χ) ∈ C× by ι(ωdR) = Per(H χ)ωB .
By the ambiguity of the choices, Per(H χ) is only well deûned up to Q

×
. If (HdR , F●)

is already deûned over K, the period is well deûned up to K×.
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Let X be as in Section 2.1 and let Z = X×P1({0,∞}∪µ l) be theunion of the singular
ûbers. Note that Z is stable under the actions of σ and τ. Put R = Q[σ , τ], K = Q(µ l p)
and regard K as an R-algebra by σ ↦ ζp , τ ↦ ζ l . _e Hodge–de Rham structure we
consider in this paper is H ∶= Coker(H2

Z(X) → H2(X)) ⊗R K . It admits a K-mul-
tiplication, and we shall show that rankK HB = 1 (_eorem 4.12). An embedding
χ∶K ↪ C is identiûed with an element h ∈ (Z/l pZ)× such that χ(ζ l p) = ζh

l p . If

Coker(H2
Z(X)→ H2(X)) = ⊕

m∈Z/lZ,
n∈Z/pZ

H(m ,n)

denotes the decomposition into the eigenspaces onwhich τ (resp. σ) acts by ζm
l (resp.

ζn
p ), we have H =⊕m/=0,n/=0 H(m ,n).

2.3 Periods of the Fiber

For n = 1, . . . , p − 1 and integers i, j, k, put a rational 1-form on Yt by

ω i jk
n =

x i(1 − x) j(t − x)k

yn dx .

_en we have

(2.1) σ∗ω i jk
n = ζn

pω
i jk
n .

Let 0 < t < 1 and δ0 be a path on Yt from (0, 0) to (t, 0) deûned by

x = ts, y = p
√
xa(1 − x)b(t − x)c .

Let δ1 be a path on Yt from (t, 0) to (1, 0) deûned by

x = t + (1 − t)s, y = εc p
√
xa(1 − x)b(x − t)c ,

where we put

ε =
⎧⎪⎪
⎨
⎪⎪⎩

i if p = 2,
−1 if p is odd.

If we put κm = (1 − σ)∗δm , (m = 0, 1), these deûne 1-cycles on Yt , and we have

(2.2) ∫
κm

ω i jk
n = ∫

δm
(1 − σ)∗ω i jk

n = (1 − ζn
p)∫

δm
ω i jk

n .

Lemma 2.1 Fix integers i , j, k ≥ 0. For n = 1, . . . , p − 1, put

α = na
p
− i , β = nb

p
− j, γ = nc

p
− k.

_en we have

∫
δ0

ω i jk
n = B(1 − α, 1 − γ) ⋅ t1−α−γF (

1 − α, β
2 − α − γ

; t) ,

∫
δ1

ω i jk
n = εpγB(1 − β, 1 − γ) ⋅ (1 − t)1−β−γF (

α, 1 − β
2 − β − γ

; 1 − t) .
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Proof _e ûrst equality follows directly from Euler’s integral representation of the
Gauss hypergeometric function 2F1:

B(b, c − b) ⋅ F (
a, b
c

; t) = ∫
1

0
(1 − tx)−axb−1(1 − x)c−b−1 dx

(let a = β, b = 1 − α, c = 2 − α − γ). _e second one follows from the same formula
and the transformation formula

F (
a, c − b
c

; 1 −
1
t
) = ta ⋅ F (

a, b
c

; 1 − t) .

2.4 Cohomology of the Fiber

We have decompositions

H1(Yt ,C) =
p−1
⊕
n=1

H1(Yt ,C)(n) , H1(Yt ,Q(µp)) =
p−1
⊕
n=1

H1(Yt ,Q(µp))
(n) ,

where (n) denotes the subspace on which σ∗ (resp. σ∗) acts as the multiplication by
ζn
p . Note that H1(Yt ,C)(0) = 0 since Yt/µp is a rational curve. _e natural paring

induces a non-degenerate pairing H1(Yt ,C)(n) ⊗ H1(Yt ,Q(ζp))(n) → C. We shall
give bases of these spaces under a certain assumption.

Lemma 2.2 Let n = 1, . . . , p − 1 and i , j, k ≥ 0 be integers.
(i) If p ∤ a + b + c, then ω i jk

n is a diòerential form of the second kind.
(ii) Moreover, ω i jk

n is holomorphic if and only if

i ≥ na + 1
p

− 1, j ≥ nb + 1
p

− 1, k ≥ nc + 1
p

− 1,

i + j + k ≤ n(a + b + c) − 1
p

− 1.

Proof See [2, (18)] (but see [2, (13)] for the correct sign in the fourth inequality).

Henceforth,we assume b+ c = p. _en the condition p ∤ a+b+ c is automatically
satisûed. By Lemma 2.2, ω i jk

n is holomorphic if and only if

i = ⌈
na + 1

p
⌉ − 1, j = ⌈

nb + 1
p

⌉ − 1, k = ⌈
nc + 1

p
⌉ − 1,

and we write this ω i jk
n simply as ωn . _e α, β, γ in Lemma 2.1 become

α = {
na
p

} , β = {
nb
p

} , γ = {
nc
p
} = 1 − β.

In particular, 0 < α, β, γ < 1. Although these depend on n, we shall suppress n from
the notation. By Lemma 2.1, we have

(2.3)
∫
δ0

ωn = B(1 − α, β) ⋅ tβ−αF (
1 − α, β
1 − α + β

; t) ,

∫
δ1

ωn = −εpβB(1 − β, β) ⋅ F (
α, 1 − β

1
; 1 − t) .
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For each n, let i , j, k be as above and put ηn = ω i , j+1,k
n . _en β is replaced by β − 1

in Lemma 2.1 and we obtain

(2.4)
∫
δ0
ηn = B(1 − α, β) ⋅ tβ−αF (

1 − α, β − 1
1 − α + β

; t) ,

∫
δ1
ηn = −εpβB(1 − β, β) ⋅ (1 − β)(1 − t)F (

α, 2 − β
2

; 1 − t) .

Here we used B(2 − β, β) = (1 − β)B(1 − β, β).

Proposition 2.3 Let n = 1, . . . , p − 1 and 0 < t < 1. _en {ωn , ηn} is a basis of
H1(Yt ,C)(n).

Proof By (2.1), (2.2), (2.3), and (2.4),ωn , ηn arenon-trivial elementsofH1(Yt ,C)(n).
Since ωn is holomorphic and ηn is not, they are linearly independent. Since

dimH1(Yt ,C) = 2(p − 1),

the proposition follows.

Proposition 2.4 Let n = 1, . . . , p − 1 and 0 < t < 1.
(i) _e projections of κ0 , κ1 form a basis of H1(Yt ,Q(µp))

(n).
(ii) As aQ[σ]-module, H1(Yt ,Q) is generated by κ0 and κ1.

Proof _e periodmatrix is

Mn(t) = (∫κ0
ωn ∫κ0

ηn

∫κ1
ωn ∫κ1

ηn
) .

It suõces to show that detMn(t) /= 0. Since∏p−1
n=1 detMn(t) is constant, it coincides

with its limit as t → 1. Hence the proposition follows from the lemma below.

Lemma 2.5 We have

lim
t→1

detMn(t) = εpβ(1 − ζn
p)

2 ⋅
B(β, 1 − β)

1 − α
.

Proof By (2.2), (2.3), (2.4), we have

detMn(t) = − εpβ(1 − ζn
p)

2B(1 − α, β)B(1 − β, β)tβ−α

× det
⎛

⎝

F ( 1−α ,β
1−α+β ; t) F ( 1−α ,β−1

1−α+β ; t)

F ( α ,1−β1 ; 1 − t) (1 − β)(1 − t)F ( α ,2−β2 ; 1 − t)
⎞

⎠
.

First, we have

lim
t→1

(1 − t)F (
1 − α, β
1 − α + β

; t) = 0.

_is follows from the transformation formula (cf. [11, p. 74 (2)])

F (
1 − α, β
1 − α + β

; t) =
1

B(1 − α, β)

∞

∑
n=0

(1 − α)n(β)n

(n!)2 (kn − log(1 − t))(1 − t)n ,

kn ∶= 2ψ(n + 1) − ψ(1 − α + n) − ψ(β + n)

https://doi.org/10.4153/CJM-2017-008-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-008-6


488 M. Asakura and N. Otsubo

where ψ(t) = Γ′(t)/Γ(t) is the digamma function. On the other hand, by Euler’s
formula, we have

F (
1 − α, β − 1
1 − α + β

; 1) = Γ (
1 − α + β
2 − α, β

;) =
1

(1 − α)B(1 − α, β)
.

Hence the lemma follows.

2.5 Periods of X

Now we consider the ûbration f ∶X → P1. Recall that Xt ≃ Yt l . By abuse of notation,
for each s = 0, 1, let δs (resp. κs) be the path (resp. loop) on Xt which corresponds to
the one onYt l deûned in §2.3. For each s, let∆s be the 2-simplex obtained by sweeping
δs along 0 ≤ t ≤ 1. Since δs is vanishing as t → s, the Lefschetz thimble (1− σ)∗∆s has
boundary on the ûber X1−s . We shall use (1 − σ)∗∆1 (resp. (1 − σ)∗∆0) to compute
the periods (resp. regulators). Again by abuse of notation, let ωn denote the pullback
to X of the rational 1-form ωn on Y deûned in §2.4. For n = 1, . . . , p− 1 and an integer
m, deûne rational 2-forms on X by

ωm ,n = tm dt
t
∧ ωn , ηm ,n = tm dt

t
∧ ηn .

We have evidently, (τ iσ j)∗ωm ,n = ζmi
l ζn j

p ωm ,n and (τ iσ j)∗ηm ,n = ζmi
l ζn j

p ηm ,n .

Proposition 2.6 Let n = 1, . . . , p − 1 and α = { na
p }, β = { nb

p } as before. For an
integer m, put µ = m/l .

(i) If µ > α − β, then we have

∫
∆1

ωm ,n = −
εpβ

l
⋅ B(β, µ)B(1 − β, β − α + µ),

∫
∆1
ηm ,n = −

εpβ(1 − β)
l(1 − α + µ)

⋅ B(β, µ)B(1 − β, β − α + µ).

(ii) We have

∫
∆0

ωm ,n =
B(1 − α, β)
l(β − α + µ)

⋅ F (
1 − α, β, β − α + µ

1 − α + β, β − α + µ + 1
; 1) ,

∫
∆0
ηm ,n =

B(1 − α, β)
l(β − α + µ)

⋅ F (
1 − α, β − 1, β − α + µ
1 − α + β, β − α + µ + 1

; 1) .

Proof Recall the integral representation of 3F2 (cf. [24, (4.1.2)]):

Γ (
c, e − c
e

) F (
a, b, c
d , e

; t) = ∫
1

0
F (
a, b
d

; tx) x c−1(1 − x)e−c−1 dx .
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By (2.3), we have

∫
∆1

ωm ,n = −εpβB(β, 1 − β)∫
1

0
F (
α, 1 − β

1
; 1 − t l) tm−1 dt

= −εpβ B(β, 1 − β)
l ∫

1

0
F (
α, 1 − β

1
; 1 − t) tµ−1 dt

= −εpβ B(β, 1 − β)
l ∫

1

0
F (
α, 1 − β

1
; t) (1 − t)µ−1 dt

= −εpβ B(β, 1 − β)
l µ

F (
α, 1 − β, 1
1, µ + 1

; 1)

= −εpβ B(β, 1 − β)
l µ

F (
α, 1 − β
µ + 1

; 1) ,

which converges by the assumption. Using Euler’s formula

F (
a, b
c

; 1) = Γ (
c, c − a − b
c − a, c − b

) (Re(c − a − b) > 0)

and the functional equations

Γ(x + 1) = xΓ(x), B(x , y) = Γ (
x , y
x + y

) ,

we obtain the ûrst equality of (i). _e others follow similarly, using (2.4) for ηm ,n .

3 Canonical Extension

In this section, we compute the Gauss–Manin connection of the ûbration and deter-
mine its canonical extension to P1.

3.1 Gauss–Manin Connection

Let us start with the ûbration g∶Y → P1; for a while, t denotes the coordinate of the
base scheme of g. Put T = P1∖{0, 1,∞}, YT = Y×P1 T . _en the restriction g∶YT → T
is smooth. Put

H = R1g∗Ω●
YT/T , Ω1

T = Ω1
T/Q ,

and let ∇∶H → Ω1
T ⊗H be the Gauss–Manin connection. For each n = 1, . . . , p −

1, let H (n) ⊂ H be the subbundle on which σ∗ acts as the multiplication by ζn
p .

_en H (n) is locally generated by ωn , ηn as deûned in §2.4, and theHodge ûltration
F 1H (n) is generated by ωn .

Proposition 3.1 For n = 1, . . . , p − 1, the Gauss–Manin connection

∇∶H (n) → Ω1
T ⊗H (n)

is given by

(∇ωn ,∇ηn) =
dt
t
⊗ (ωn , ηn)(

1 − β 0
0 1 − α)(

−1 −1
(1 − t)−1 1 ) ,

where we put α = { na
p }, β = { nb

p } as before.
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Proof We use the following standard derivation relations among Gauss hypergeo-
metric functions [24, (1.4.1.1), (1.4.1.6)]:

d
dt
F (
a, b
c

; t) = ab
c
F (
a + 1, b + 1
c + 1

; t) ,(3.1)

d
dt

(tc−1F (
a, b
c

; t)) = (c − 1)tc−2F (
a, b
c − 1

; t) .(3.2)

We also use the following contiguous relations (see [24, (1.4.1), (1.4.3), (1.4.5), (1.4.9),
(1.4.13)]):

(c − 2a + (a − b)t)F + a(1 − t)F[a + 1] = (c − a)F[a − 1],(3.3)
(c − a − b)F + a(1 − t)F[a + 1] = (c − b)F[b − 1],(3.4)

(c − a − 1)F + aF[a + 1] = (c − 1)F[c − 1],(3.5)
(a − 1 + (1 + b − c)t)F + (c − a)F[a − 1] = (c − 1)(1 − t)F[c − 1],(3.6)

c(1 − t)F + (c − a)tF[c + 1] = cF[b − 1].(3.7)

Here, F = F ( a ,bc ; t) and the notation F[a + 1], for example,means F ( a+1,b
c ; t).

We are reduced to show

(3.8) t d
dt

Mn(t) = Mn(t)(
1 − β 0
0 1 − α)(

−1 −1
(1 − t)−1 1 ) .

We prove this for each row vector. For the ûrst row vector, put

( f (t), g(t)) = (tβ−αF (
1 − α, β
1 − α + β

; t) , tβ−αF (
1 − α, β − 1
1 − α + β

; t)) .

First, consider the case α /= β. By (3.2), we have

t d
dt

( f (t), g(t)) = ((β − α)tβ−αF (
1 − α, β
−α + β

; t) , (β − α)tβ−αF (
1 − α, β − 1
−α + β

; t)) .

Applying (3.6) to F ( β ,1−α
1−α+β ; t), we obtain

t d
dt
f (t) = −(1 − β) f (t) + (1 − α)(1 − t)−1g(t).

Applying (3.5) to F ( β−1,1−α
1−α+β ; t), we obtain t dd t g(t) = −(1 − β) f (t) + (1 − α)g(t).

Hence we are done. Now consider the case α = β. _en

( f (t), g(t)) = (F (
1 − α, α

1
; t) , F (

1 − α, α − 1
1

; t)) .

By (3.1), we have

d
dt

( f (t), g(t)) = ((1 − α)αF (
2 − α, 1 + α

2
; t) ,−(1 − α)2F (

2 − α, α
2

; t)) .

Applying (3.7) to F ( 2−α ,1+α
1 ; t), we have

(3.9) t d
dt
f (t) = α(1 − t)F (

2 − α, 1 + α
1

; t) − αF (
2 − α, α

1
; t) .
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Applying (3.4) to F ( 1−α ,1+α
1 ; t), we have

(3.10) (1 − α)(1 − t)F (
2 − α, 1 + α

1
; t) = F (

1 − α, 1 + α
1

; t) − α f (t).

Applying (3.3) to F ( α ,1−α1 ; t), we have

(3.11) α(1 − t)F (
1 − α, 1 + α

1
; t) = (2α − 1)(1 − t) f (t) + (1 − α)g(t).

Applying (3.4) to F ( 1−α ,α
1 ; t), we have

(3.12) (1 − t)F (
2 − α, α

1
; t) = g(t).

Combining (3.9)–(3.12),we obtain t dd t f (t) = (1−α) (− f (t) + (1 − t)−1g(t)). Apply-
ing (3.7) to F ( α ,2−α1 ; t), we have

t d
dt

g(t) = (1 − α) (−F (
1 − α, α

1
; t) + (1 − t)F (

2 − α, α
1

; t))

(3.12)
= (1 − α)(− f (t) + g(t)).

In both cases α /= β and α = β, we have proved (3.8) for the ûrst row vector. For the
second row vector, put

(u(t), v(t)) = (F (
α, 1 − β

1
; 1 − t) , (1 − β)(1 − t)F (

α, 2 − β
2

; 1 − t)) .

_en by (3.1) and (3.2) we have

d
dt

(u(t), v(t)) = −(1 − β) (αF (
α + 1, 2 − β

2
; 1 − t) , F (

α, 2 − β
1

; 1 − t)) .

Applying (3.7) to F ( α ,2−β1 ; 1 − t), we obtain

(3.13) t d
dt

v(t) = −(1 − β)u(t) + (1 − α)v(t).

Applying (3.4) to F ( α ,2−β2 ; 1 − t), we have

(3.14) t d
dt

u(t) = (β − α)(1 − t)−1v(t) − (1 − β)β ⋅ F (
α, 1 − β

2
; 1 − t) .

Applying (3.6) to F ( 2−β ,α
2 ; 1 − t), we have

(1 − β)β ⋅ F (
α, 1 − β

2
; 1 − t) = (−(1 − β)(1 − t)−1 + 1 − α) v(t) − t d

dt
v(t)

(3.13)
= (1 − β) (u(t) − (1 − t)−1v(t)) .(3.15)

Combining (3.14) and (3.15), we obtain

t d
dt

u(t) = −(1 − β)u(t) + (1 − α)(1 − t)−1v(t).

Hence we have proved (3.8) for the second row vector.
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3.2 Canonical Extension

Now we return to the ûbration f ∶X → P1, and from now on t denotes the coordinate
of the base scheme of f . Put D = {0,∞} ∪ µ l , T = P1 ∖ D, U = X ×P1 T , H =
R1 f∗Ω●

U/T , and let∇∶H → Ω1
T⊗H be theGauss–Manin connection. _e following

is immediate from Proposition 3.1.

Proposition 3.2 For n = 1, . . . , p − 1, the Gauss–Manin connection ∇∶H (n) →

Ω1
T ⊗H (n) is given by

(∇ωn ,∇ηn) = l dt
t
⊗ (ωn , ηn)(

1 − β 0
0 1 − α)(

−1 −1
1

1−t l 1 )

= l ds
s
⊗ (ωn , ηn)(

1 − β 0
0 1 − α)(

1 1
s l

1−s l −1
) , s = 1/t.

Let j∶T → P1 denote the embedding. Let Ω1
P1(logD) be the sheaf of diòerentials

on P1 with logarithmic poles along D. _en Deligne’s canonical extension ([9, 5.1])
∇∶He → Ω1

P1(logD)⊗He is deûned to be the unique sub-bundle of j∗H satisfying
the following properties:
● ∇(He) ⊂ Ω1

P1(logD)⊗He ,
● for each t ∈ D, all the eigenvalues ofRest(∇) lie in the interval [0, 1),whereRest(∇)
denotes the residue at t of the connection matrix.

In fact, we have He = R1 f∗Ω●
X/P1(log Z) (recall Z = X ×P1 ({0,∞} ∪ µ l)) by Steen-

brink [25, (2.18), (2.20)]. _is is determined as follows.

Proposition 3.3 For n = 1, . . . , p−1, local bases ofH (n)
e at t ∈ D are given as follows.

H (n)
e ∣0 =

⎧⎪⎪
⎨
⎪⎪⎩

⟨ωn − ηn , t⌈(α−β)l⌉((1 − β)ωn − (1 − α)ηn)⟩ if α /= β,
⟨ωn , ηn⟩ if α = β,

H (n)
e ∣∞ =

⎧⎪⎪
⎨
⎪⎪⎩

⟨t⌊(1−β)l⌋((1 − α − β)ωn + (1 − α)t−lηn), t⌊α l⌋−lηn)⟩ if α + β /= 1,
⟨t⌊α l⌋ωn , t⌊α l⌋−lηn⟩ if α + β = 1,

H (n)
e ∣ζ = ⟨ωn , ηn⟩ (ζ ∈ µ l).

_e residuematrices with respect to these bases are

Res0(∇) =

⎧⎪⎪
⎨
⎪⎪⎩

( 0 0
0 {(β−α)l} ) if α /= β,

l(1 − α)( −1 −1
1 1 ) if α = β,

Res∞(∇) =

⎧⎪⎪
⎨
⎪⎪⎩

( {(1−β)l} 0
0 {α l} ) if α + β /= 1,

( {α l} 0
(α−1)l {α l} ) if α + β = 1,

Resζ(∇) = −(1 − α)( 0 0
1 0 ) .

Proof Let A be the matrix of the connection from Proposition 3.2. For each t ∈ D,
we shall ûnd amatrix P with coeõcients in local sections of j∗OU such that (ωn , ηn)P
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is a local basis ofHe at t. _e connection matrix with respect to this basis is given by
the gauge transformation AP ∶= P−1AP + P−1P′, where P′ = d

d t P. For t = 0, we let

P = (
1 1 − β
−1 −(1 − α))(

1 0
0 t⌈(α−β)l⌉)

if α /= β, and P = I (the unit matrix) if α = β. For t = ζ ∈ µ l , we let P = I. Finally for
t =∞, we let

P = (
1 0
0 t−l)(

1 − α − β 0
1 − α 1)(

t⌊(1−β)l⌋ 0
0 t⌊α l⌋)

if α + β /= 1, and

P = (
t⌊α l⌋ 0
0 t⌊α l⌋−l)

if α + β = 1. _en one veriûes that AP satisûes the desired properties and its residue
is given as stated.

To see theHodge ûltration, we rewrite the above bases as follows.

Corollary 3.4 Let n = 1, . . . , p − 1.

H (n)
e ∣t=0 =

⎧⎪⎪
⎨
⎪⎪⎩

⟨ωn , t−⌊(β−α)l⌋((1 − β)ωn − (1 − α)ηn)⟩ if α ≤ β,
⟨t⌈(α−β)l⌉ωn ,ωn − ηn⟩ if α > β.

H (n)
e ∣t=∞ =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

⟨t⌊(1−β)l⌋ωn , t⌊α l⌋−lηn)⟩ if ⌊α l⌋ ≥ ⌊(1 − β)l⌋,
⟨t⌊α l⌋ωn , t⌊(1−β)l⌋((1 − α − β)ωn + (1 − α)t−lηn)⟩

if ⌊α l⌋ < ⌊(1 − β)l⌋.

H (n)
e ∣t=ζ = ⟨ωn , ηn⟩ (ζ ∈ µ l).

WriteO = OP1 and deûne F 1He = He ∩ j∗(F 1H ). _enwe immediately have the
following corollary.

Corollary 3.5 Let n = 1, . . . , p − 1.
(i) We have F 1H

(n)
e = O(i)t jωn with

(i , j) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(⌊(1 − β)l⌋, 0) if ⌊α l⌋ ≥ ⌊(1 − β)l⌋, α ≤ β,
(⌊(1 − β)l⌋ − ⌈(α − β)l⌉, ⌈(α − β)l⌉) if ⌊α l⌋ ≥ ⌊(1 − β)l⌋, α > β,
(⌊α l⌋, 0) if ⌊α l⌋ < ⌊(1 − β)l⌋, α ≤ β,
(⌊α l⌋ − ⌈(α − β)l⌉, ⌈(α − β)l⌉) if ⌊α l⌋ < ⌊(1 − β)l⌋, α > β.

(ii) According to the four cases as above, we have

Gr0F H (n)
e =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

O(−⌈(1 − α)l⌉ + ⌊(β − α)l⌋)t−⌊(β−α)l⌋((1 − β)ωn − (1 − α)ηn),
O(−⌈(1 − α)l⌉)(ωn − ηn),
O(⌊(β − α)l⌋ − ⌈βl⌉)t−⌊(β−α)l⌋

× ((1 − α − β)t lωn − (1 − β)ωn + (1 − α)ηn) ,
O(−⌈βl⌉) ((1 − α − β)t lωn − (1 − α)(ωn − ηn)) .
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Here, by abuse of notation, the images of ωn , ηn in Gr1F H
(n)
e are denoted by the

same letters.

Corollary 3.6 For each ζ ∈ µ l , Xζ is a normal crossing divisor in X with rational
irreducible components.

Proof By Proposition 3.3, the local monodromy of H1(Xt ,Q) at t = ζ is unipotent,
hence Xζ is normal crossing [21,_eorem 1]. By the Clemens–Schmid exact sequence
[17, §4 (a)], H1(Xζ ,Q) is the kernel of the log local monodromy N ∶H1(Xt ,Q) →

H1(Xt ,Q). _e cohomology group H1(Xt ,Q) carries a limiting mixedHodge struc-
ture and N is amorphismofmixedHodge structures of type (−1,−1). Since rankN =
1
2 dimH1(Xt ,Q)byProposition 3.3,wehaveGrW1 H1(Xt ,Q) = 0 andW0H1(Xt ,Q) =

Ker(N). Hence H1(Xζ) is of pure weight 0, and all the irreducible components of Xζ
are rational.

4 Hodge Numbers

In this section, we determine the Hodge numbers of the eigencomponents of our H
and prove that it has CM by K, i.e., dimK HB = 1.

4.1 Localization Sequence

Let the notations be as in Section 3.2 and put Z = X ∖ U . We have the localization
sequence H2

Z(X) → H2(X) → H2(U) → H3
Z(X) → H3(X) both for the de Rham

and Betti cohomologies. Let ⟨Z⟩ denote the image of the ûrst map. Recall that we
deûned (§2.2) theHodge–de Rham structure H = H2(X)/⟨Z⟩⊗R K.

Proposition 4.1 H1(X) = H3(X) = 0.

Proof By Poincaré duality, it suõces to show H1(X ,Q) = 0. Since H1(X ,Q) ↪
W1H1(U ,Q),whereW● denotes theweight ûltration, it suõces to show the vanishing
of the latter. Using the Leray spectral sequence, we have an exact sequence

0Ð→ H1(T ,Q)Ð→ H1(U ,Q)Ð→ H0(T , R1 f∗Q)Ð→ 0.

By the computation of Res∞(∇) in Proposition 3.3, for n = 1, . . . , p − 1, the local
monodromy around t =∞ of H1(Xt ,C)(n) does not have 1 as an eigenvalue. Hence
we have H0(T , R1 f∗Q) = 0 (recall that H1(Xt ,C)(0) = 0). Since H1(T ,Q) is of
weight 2, we haveW1H1(U ,Q) = 0.

As a result, we have an exact sequence on the de Rham side [14, Chapter II,_eo-
rem (3.3), Proposition (3.4)]

0Ð→ H2
dR(X)/⟨Z⟩Ð→ H2

dR(U)
∂
Ð→ HdR

1 (Z)Ð→ 0.

_emiddle term is described by the canonical extension as follows. _e Leray spectral
sequence yields an exact sequence

0Ð→ H1(T ,H )Ð→ H2
dR(U)Ð→ H0(T , R2 f∗Ω●

U/T)Ð→ 0.
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Since σ∗ acts on R2 f∗Ω●
U/T trivially, we have H1(T ,H (n)) ≃ H2

dR(U)(n) for n =

1, . . . , p − 1. Put a complex of sheaves on P1 as E = [He
∇
→ Ω1

P1(logD)⊗He]. _en
themap of complexes

He //

��

Ω1
P1(logD)⊗He

��
j∗H // j∗(Ω1

T ⊗H )

induces an isomorphism H1(P1 ,E ) ≃ H1(T ,H ), and the ûrst group carries amixed
Hodge structure [26, _eorem (4.1)] and its Hodge ûltration is given as follows [26,
(4.10)]:

F0H1(P1 ,E ) = H1(P1 ,E ),

F 1H1(P1 ,E ) = H1(P1 , F 1He → Ω1
P1(logD)⊗He),

F2H1(P1 ,E ) = H0(P1 ,Ω1
P1(logD)⊗ F 1He).

(4.1)

It follows that
Gr0F H1(P1 ,E ) = H1(P1 ,Gr0F He),

Gr1F H1(P1 ,E ) = Coker(H0(P1 , F 1He)
∇
→ H0(P1 ,Ω1

P1(logD)⊗Gr0F He)) ,

(4.2)

where ∇ is the map induced from the composition of ∇ and the projection He →
Gr0F He .

4.2 Residues

For each t ∈ D, let ∂t ∶H2
dR(U) → HdR

1 (Xt) be the t-component of the coboundary
map ∂. Let Nt ⊂ He ,t be the image of the composite

Γ(Ut ,He)
∇
Ð→ Γ(Ut ,Ω1

P1(log t)⊗He)
Rest
Ð→He ,t ,

where Ut is a small open neighborhood of t. _en it is not diõcult to show that the
diagram

H1(P1 ,E )
⊂ //

Rest
��

H2
dR(U)

∂ t

��
He ,t/Nt

≃ // HdR
1 (Xt)

commutes,where the lowermap is an isomorphism. _e following is immediate from
Proposition 3.3.

Proposition 4.2 For n = 1, . . . , p − 1, we have

N(n)
0 = ⟨ t⌈(α−β)l⌉((1 − β)ωn − (1 − α)ηn)⟩ ,

N(n)
∞ = He ,∞ ,

N(n)
ζ = ⟨ηn⟩ for ζ ∈ µ l .
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_erefore, we have

dimHdR
1 (Xt)

(n) =

⎧⎪⎪
⎨
⎪⎪⎩

1 if t = 0 or t ∈ µ l ,
0 if t =∞.

Later, we shall use the following.

Lemma 4.3 Let n = 1, . . . , p − 1.

(i) If α ≤ β, then tmωn ∣t=0 ∈ N(n)
0 if m > 0, and /∈ N(n)

0 if m = 0.
(ii) If α > β, then tmωn ∣t=0 ∈ N(n)

0 if m ≥ ⌈(α − β)l⌉.

Proof By Corollary 3.4 and Proposition 4.2, this is trivial except when α > β and
m = ⌈(α − β)l⌉. In this case, we have

tmωn ∣t=0 = tmωn ∣0+
1 − α
α − β

tm(ωn−ηn)∣t=0 =
tm((1 − β)ωn − (1 − α)ηn)∣t=0

α − β
∈ N(n)

0 .

4.3 Hodge Numbers

For each n = 1, . . . , p − 1, we obtained an exact sequence

(4.3) 0Ð→ (H2
dR(X)/⟨Z⟩)(n) Ð→ H1(P1 ,E (n))

Res
Ð→H

(n)
e ,0 /N(n)

0 ⊕ ⊕
ζ∈µ l

H
(n)
e ,ζ /N(n)

ζ Ð→ 0.

First, we give a basis of F2. By (4.1), we have an embedding

ι∶ F2(H2
dR(X)/⟨Z⟩)(n) ↪ Γ(P1 ,Ω1

P1(logD)⊗ F 1H (n)
e ).

By this, we identify F2(H2
dR(X)/⟨Z⟩)(n) with the elements of the right-hand side

having trivial residues. Recall the rational 2-forms ωm ,n = tm d t
t ⊗ ωn .

Proposition 4.4 For each n = 1, . . . , p− 1, a basis of F2(H2
dR(X)/⟨Z⟩)(n) is given by

{ωm ,n ∣ m ∈ I2n}, where

I2n ∶= {m ∣ max{1, ⌈(α − β)l⌉} ≤ m ≤ min{⌊α l⌋, ⌊(1 − β)l⌋}} .

In particular, dim F2(H2
dR(X)/⟨Z⟩)(n) = min{⌊α l⌋, ⌊(1−β)l⌋}−max{0, ⌊(α−β)l⌋}.

Proof Let F 1H
(n)
e = O(i)t jωn be as inCorollary 3.5 (i). One easily sees that a basis

of H0(P1 ,Ω1
P1(logD)⊗ F 1H

(n)
e ) is given by

ωm ,n ( j ≤ m ≤ i + j), t j dt
t − ζ

⊗ ωn (ζ ∈ µ l).

For the ûrst type, the residues at ζ ∈ µ l are trivial. By Lemma 4.3, Res0(ωm ,n) = tmωn
is trivial for m ≥ j unless α ≤ β and m = 0. For the second type, it has trivial residues
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except at ζ and

Resζ( t j dt
t − ζ

⊗ ωn) = t jωn ,

which is non-trivial by Proposition 4.2. _ese show that a basis of

F2(H2
dR(X)/⟨Z⟩)(n)

is given by ωm ,n with j ≤ m ≤ i + j and m /= j = 0 if α ≤ β. Hence the proposition
follows from Corollary 3.5 (i).

Since (He ,0/N0)
(n) and (He ,ζ/Nζ)

(n) are all 1-dimensional, the above proof im-
plies the following.

Corollary 4.5 For n = 1, . . . , p − 1, we have

Res(F2H1(P1 ,E (n))) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

(He ,0/N0)
(n) ⊕ ⊕

ζ∈µ l

(He ,ζ/Nζ)
(n) if α ≤ β,

⊕
ζ∈µ l

(He ,ζ/Nζ)
(n) if α > β.

Corollary 4.6 Suppose that p < l . _en we have F2(H2
dR(X)/⟨Z⟩)(n) /= 0 for any

n = 1, . . . , p − 1.

Proof Since α, 1 − β ≥ 1/p, we have lα, l(1 − β) > 1. Since β ≥ 1/p and α ≤ 1 − 1/p,
we have (α − β)l < α l − 1, (1 − β)l − 1. Hence we have I2n /= ∅.

Now we determine the other Hodge numbers.

Lemma 4.7 Let n = 1, . . . , p − 1.
(i) If α ≤ β, then we have Gr1F(H2

dR(X)/⟨Z⟩)(n) = Gr1F H1(P1 ,E (n)).
(ii) If α > β, then we have an exact sequence

0Ð→ Gr1F(H2
dR(X)/⟨Z⟩)(n) Ð→ Gr1F H1(P1 ,E (n))

Res0
Ð→ (He ,0/N0)

(n) Ð→ 0.

Proof By (4.3) and Corollary 4.5,we are le� to show the non-triviality of Res0 in the
case (ii). If ⌊α l⌋ ≥ ⌊(1 − β)l⌋, consider

dt
t(1 − t l)

⊗ (ωn − ηn).

ByCorollary 3.5 (ii), this is an element ofH0(P1 ,Ω1
P1(logD)⊗Gr0F H

(n)
e ). Its residue

at 0 is ωn − ηn /≡ 0 (mod N0) by Proposition 4.2. If ⌊α l⌋ < ⌊(1 − β)l⌋, consider
similarly

dt
t(1 − t l)

⊗ ((1 − α − β)t lωn − (1 − α)(ω − ηn)),

whose residue at 0 is −(1 − α)(ωn − ηn) /≡ 0 (mod N0).

Proposition 4.8 For each n = 1, . . . , p − 1, we have

dimGr1F(H2
dR(X)/⟨Z⟩)(n) = ∣ ⌊α l⌋ − ⌊(1 − β)l⌋∣ + ⌊∣α − β∣l⌋.
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Proof First we show that themap

∇∶H0(P1 , F 1H (n)
e )→ H0(P1 ,Ω1

P1(logD)⊗Gr0F H (n)
e )

is injective. Let F 1H
(n)
e = O(i)t jωn as in Corollary 3.5 (i). _en H0(P1 , F 1H

(n)
e )

has a basis {ωm ,n ∣ j ≤ m ≤ i + j}, and

∇ωm ,n =
dt
t
tm{(m − l(1 − β))ωn +

l(1 − α)
1 − t l

ηn} ≡ l(1 − α) dt
t(1 − t l)

tmηn /≡ 0

modulo H0(P1 ,Ω1
P1(logD)⊗ F 1H

(n)
e ). Since 0 ≤ i < l in every case, ωm ,n belong to

diòerent eigenspaces with respect to the τ-action. Hence the non-vanishing implies
the injectivity.
By Corollary 3.5 (ii), we have Gr0F H

(n)
e ≃ O(k), where

k ∶=

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−⌈(1 − α)l⌉ + ⌊(β − α)l⌋ if ⌊α l⌋ ≥ ⌊(1 − β)l⌋, α ≤ β,
−⌈(1 − α)l⌉ if ⌊α l⌋ ≥ ⌊(1 − β)l⌋, α > β,
⌊(β − α)l⌋ − ⌈βl⌉ if ⌊α l⌋ < ⌊(1 − β)l⌋, α ≤ β,
−⌈βl⌉ if ⌊α l⌋ < ⌊(1 − β)l⌋, α > β.

Note that k < 0 in any case. One sees that H0(P1 ,Ω1
P1(logD)⊗O(k)) has a basis

tm

1 − t l
dt
t
⊗ ωn (0 ≤ m ≤ l + k).

By (4.2) and the above injectivity, we have

dimGr1F H1(P1 ,E (n)) = dimH0(P1 ,Ω1
P1(logD)⊗O(k)) − dimH0(P1 ,O(i))

= (l + k + 1) − (i + 1) = l + k − i .

By Corollary 3.5 (i) and Lemma 4.7, we obtain the desired formula.

Corollary 4.9 Assume that p < l and p > 2 when a = b. _en we have

Gr1F(H2
dR(X)/⟨Z⟩)(n) /= 0

for any n = 1, . . . , p − 1.

Proof If a /= b, then ⌊∣α − β∣l⌋ ≥ ⌊ l
p ⌋ ≥ 1. If a = b, then α /= 1 − α since p > 2, and

hence ∣ ⌊α l⌋ − ⌊(1 − α)l⌋∣ ≥ 1.

Proposition 4.10 For each n = 1, . . . , p − 1, we have

dimGr0F(H2
dR(X)/⟨Z⟩)(n) = min{⌊(1 − α)l⌋, ⌊βl⌋} −max{0, ⌊(β − α)l⌋}.

Proof By (4.2), Corollary 4.5, and Lemma 4.7, we have

Gr0F(H2
dR(X)/⟨Z⟩)(n) = H1(P1 ,Gr0F H (n)

e ) = H1(P1 ,O(k)),

where k is as in the proof of Proposition 4.8. Since k < 0, we have

dimH1(P1 ,O(k)) = dimH0(P1 ,O(−k − 2)) = −k − 1.

Hence the proposition follows.
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Remark 4.11 In fact, Proposition 4.10 is equivalent to the dimension formula in
Proposition 4.4. Note that the complex conjugation switches n (resp. α, β) and p − n
(resp. 1 − α, 1 − β).

_eorem 4.12 _e Hodge–de Rham structure H = (H2(X)/⟨Z⟩) ⊗R K has CM by
K, i.e., dimK HB = 1.

Proof Combining Propositions 4.4, 4.8, and 4.10, one veriûes that

dim(H2
dR(X)/⟨Z⟩)(n) = l − 1

for each n = 1, . . . , p − 1. It follows that dimQ HB ≤ (l − 1)(p − 1) = [K ∶Q]. It
remains to show that H /= 0, for which it suõces to show that τ is not the identity
on H2

dR(X)/⟨Z⟩. If p < l , this follows from Proposition 4.4 and Corollary 4.6. _e
general case follows from Proposition 5.2 below.

5 Periods

We compute the periods of our H and verify theGross–Deligne conjecture, forwhich
it will suõce to consider F 1HdR.

5.1 Basis of F 1HdR

Recall that, by (4.3), we can identify F 1(H2
dR(X)/⟨Z⟩)(n) with the elements of

F 1H1(P1 ,E (n))

having trivial residues. Furthermore, they are identiûed with rational 2-forms by the
following lemma. Put T1 = P1 ∖ {0,∞}.

Lemma 5.1 For each n = 1, . . . , p − 1, there is a natural injection

ι∶ F 1(H2
dR(X)/⟨Z⟩)(n) ↪ Γ(T1 ,Ω1

P1(logD)⊗ F 1H (n)
e ).

Proof By (4.1) and (4.3), it suõces to show the existence of an injection

H1(P1 , F 1E (n))↪ Γ(T1 ,Ω1
P1(logD)⊗ F 1H (n)

e ),

whereweput F 1E = [F 1He → Ω1
P1(logD)⊗He]. Consider the commutative diagram

in Figure 1, where the right vertical sequence is exact. By Proposition 3.3, ∇ is an
isomorphism on T1. _erefore, we have an isomorphism

Γ(T1 ,Ω1
P1(logD)⊗ F 1H (n)

e )
≃
Ð→ H1(T1 , F 1E (n)).

It remains to show the injectivity of H1(P1 , F 1E (n)) → H1(T1 , F 1E (n)). _is follows
from the fact that H1(P1 , F 1E )→ H1(P1 ,E ) is injective and H1(P1 ,E )→ H1(T1 ,E )
is an isomorphism.
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0

��
Ω1

P1(logD)⊗ F 1H
(n)
e

��
F 1H

(n)
e

=

��

∇ // Ω1
P1(logD)⊗H

(n)
e

��
F 1H

(n)
e

∇ // Ω1
P1(logD)⊗Gr0F H

(n)
e

��
0

Figure 1

Under the identiûcation via ι, we have the following.

Proposition 5.2 For each n = 1, . . . , p− 1, a basis of F 1(H2
dR(X)/⟨Z⟩)(n) is given by

{ωm ,n ∣ m ∈ I1n}, where

I1n ∶=
⎧⎪⎪
⎨
⎪⎪⎩

{−⌊(β − α)l⌋, . . . ,−1} ∪ { 1, . . . ,max{⌊α l⌋, ⌊(1 − β)l⌋}} if α < β,
{ 1, . . . ,max{⌊α l⌋, ⌊(1 − β)l⌋}} if α ≥ β.

Recall that α = { na
p }, β = { nb

p }.

Proof It is routine to verify that ∣I1n ∣ = dim F 1(H2
dR(X)/⟨Z⟩)(n) using Propositions

4.4 and 4.8. _erefore, it suõces to show that

ωm ,n ∈ F 1(H2
dR(X)/⟨Z⟩)(n)

ifm ∈ I1n . We construct Čech cocycles representing elements of H1(P1 , F 1E (n)) with
trivial residues which correspond to ωm ,n . Take a covering P1 = U0 ∪ U∞, where
U0 ∶= P1 ∖{∞},U∞ ∶= P1 ∖{0}; note that T1 = U0 ∩U∞. A Čech cocycle in this case
is a triple

(ψ, φ0 , φ∞) ∈ Γ(T1 , F 1H (n)
e )⊕ ⊕

t=0,∞
Γ(Ut ,Ω1

P1(logD)⊗H (n)
e )
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satisfying ∇ψ = φ0∣T1 − φ∞∣T1 . We construct such cocycles in four ways. By Proposi-
tion 3.2, we have

l−1∇(tmωn)

= (µ − 1 + β)ωm ,n +
1 − α
1 − t l

ηm ,n(5.1)

= ( µ − α − 1 − α − β
1 − t l

)ωm ,n +
t l

1 − t l
((1 − α − β)ωm ,n +

1 − α
t l

ηm ,n)(5.2)

= ( µ + (1 − β) t l

1 − t l
)ωm ,n −

1
1 − t l

((1 − β)ωm ,n − (1 − α)ηm ,n)(5.3)

=( µ − α + β + (1 − α) 1 − t l

1 − t l
)ωm ,n −

1 − α
1 − t l

(ωm ,n − ηm ,n).(5.4)

Put j = max{0, ⌈(α − β)l⌉}, k = min{⌊α l⌋, ⌊(1 − β)l⌋}.
(i) Suppose that ⌊α l⌋ ≥ ⌊(1 − β)l⌋. Let ψ = l−1 tmωn ,

φ0 = (µ − 1 + β)ωm ,n , φ∞ = −
1 − α
1 − t l

ηm ,n .

By (5.1) and Corollary 3.4, these deûne a cocycle if j ≤ m ≤ ⌊α l⌋. By Proposition 4.2,
it has no residues unless m = 0, and hence deûnes an element of F 1(H2

dR(X)/⟨Z⟩)(n)
if

j ≤ m ≤ ⌊α l⌋, m /= 0.
(ii) Suppose that ⌊α l⌋ < ⌊(1 − β)l⌋. _en by (5.2) and Corollary 3.4, ψ = l−1 tmωn ,

φ0 = ( µ − α − 1 − α − β
1 − t l

)ωm ,n ,

φ∞ = −
t l

1 − t l
((1 − α − β)ωm ,n + (1 − α)t−lηm ,n)

deûne a cocycle if j ≤ m ≤ ⌊(1 − β)l⌋. To kill the residues, we use Lemma 5.3 below.
_en by letting

φ0 = (µ − α)ωm ,n , φ∞ = (1 − α − β)ωm ,n −
1 − α
1 − t l

ηm ,n ,

we obtain an element of F 1(H2
dR(X)/⟨Z⟩)(n) for j ≤ m ≤ ⌊(1 − β)l⌋, m /= 0.

(iii) Suppose that α ≤ β. _en by (5.3) and Corollary 3.4, ψ = −l−1 tmωn ,

φ0 =
1

1 − t l
((1 − β)ωm ,n − (1 − α)ηm ,n), φ∞ = ( µ + (1 − β) t l

1 − t l
)ωm ,n

deûne a cocycle if −⌊(β − α)l⌋ ≤ m ≤ k. If m < 0, we can kill the residues using
Lemma 5.3, and φ0 = (1 − β)ωm ,n −

1−α
1−t l ηm ,n , and φ∞ = µωm ,n deûne an element of

F 1(H2
dR(X)/⟨Z⟩)(n) for −⌊(β − α)l⌋ ≤ m < 0.

(iv) Finally suppose that α > β. _en, by (5.4) and Corollary 3.4, −l−1 tmωn ,

φ0 =
1 − α
1 − t l

(ωm ,n − ηm ,n), φ∞ = ( µ − α + β + (1 − α) t l

1 − t l
)ωm ,n

deûne a cocycle if 0 ≤ m ≤ k. If m /= 0, we can use Lemma 5.3 to kill the residues and

φ0 = (1 − α)ωm ,n −
1 − α
1 − t l

ηm ,n , φ∞ = (µ − 1 + β)ωm ,n
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deûne an element of F 1(H2
dR(X)/⟨Z⟩)(n) for 0 < m ≤ k. Combining (iii) and (i) (or

(ii)),we obtain the ûrst case of the proposition. For the second case, combine (iv) and
(i) (or (ii)), just noting that k ≥ j − 1 = ⌊(α − β)l⌋.

Lemma 5.3 If j ≤ m < l , m /= 0, then
1

1 − t l
⊗ ωm ,n ∈ Γ(P1 ,Ω1

P1(logD)⊗H (n)
e ),

and it has trivial residues at t = 0,∞.

Proof _is is immediate from Corollary 3.4 and Lemma 4.3.

5.2 Period Formula

We prove the period formula which veriûes the conjecture of Gross–Deligne [13, §4]
(but see Remark 5.6 below). We identify an embedding χ∶K ↪ C with the element
h ∈ (Z/l pZ)× such that χ(ζ l p) = ζh

l p , and write H(h) instead of H χ . For each h ∈

(Z/l pZ)×, let (p(h), 2− p(h)) be theHodge type ofH(h). Put K′ = Q(µ2 l p) (K = K′

if l p is odd).

_eorem 5.4 Deûne a function ε∶Z/l pZ→ Z by

ε(i) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 if i ≡ lb, p, l(p − b), l(b − a) + p (mod l p),
−1 if i ≡ lb + p, l(p − a) + p (mod l p),
0 otherwise.

_en, for any h ∈ (Z/l pZ)×, we have

p(h) = ∑
i∈Z/l pZ

ε(i){− hi
l p

} and Per(H(h)) ∼K′× ∏
i∈Z/l pZ

Γ({
hi
l p

})
ε(i)

.

Proof For real numbers x, y with 0 < x , y < 1, x + y /= 1, put

δ(x , y) ∶= {−x} + {−y} − {−(x + y)} =
⎧⎪⎪
⎨
⎪⎪⎩

1 if x + y < 1,
0 if x + y > 1.

_en we have φ(h) ∶= ∑i ε(i){− hi
l p} = δ(β, µ)+ δ(1− β, {β− α + µ}), where we put

α = {ha/p}, β = {hb/p}, µ = {h/l}. First, we have φ(h) = 2 if and only if

β + µ < 1, 1 − β + {β − α + µ} < 1.

Lettingm = l µ, the ûrst condition becomesm < (1−β)l , i.e.,m ≤ ⌊(1−β)l⌋. Similarly,
the second condition is equivalent to

(α ≤ β,m < α l) or (α > β, (α − β)l < m < α l) .
Comparing with Proposition 4.4, we have p(h) = 2 if and only if φ(h) = 2. Secondly,
since p(h) + p(−h) = φ(h) + φ(−h) = 2, we have p(h) = 0 if and only of φ(h) = 0.
Since p(h), φ(h) ∈ {0, 1, 2}, we have p(h) = φ(h) for any h.
For the second statement, we compute the periods over the 2-cycle

(1 − τ)∗(1 − σ)∗∆1 .
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Since (1 − ζ l)(1 − ζp) is invertible in K, it reduces to the periods over ∆1 (Proposi-
tion 2.6 (i)). First consider the two cases:
(i) α ≤ β and p(h) ≥ 1,
(ii) α > β and p(h) = 2.
By Propositions 4.4 and 5.2, H(h) is generated by ωm ,n satisfying ⌈(α − β)l⌉ ≤ m
in both cases, which is equivalent to α − β < µ ∶= m/l . _is is the assumption of
Proposition 2.6 (i) and we obtain the desired formula.

_e other cases are reduced to the ones above. If we replace χ with χ−1, then h
(resp. α, β, p(h)) is replaced with −h (resp. 1− α, 1− β, 2− p(h)). By Lemma 5.5, the
cup-product H2(X)⊗H2(X) → Q(−2) induces an auto-duality on H, under which
H χ is dual to H χ−1

. Hence we have Per(H(h)) ⋅Per(H(−h)) ∼K× (2πi)2. On the other
hand, recall the re�ection formula

Γ(x)Γ(1 − x) = π
sin πx

∼K′× 2πi ,

for any x ∈ 1
l pZ ∖ Z. _erefore, the case where α ≤ β and p(h) = 0 (resp. α > β and

p(h) ≥ 1) is equivalent to case (ii) (resp. (i)).

Lemma 5.5 Put H2(X)Z = Ker(H2(X)→ H2(Z)). _en the composition

H2(X)Z ↪ H2(X)↠ H2(X)/⟨Z⟩

induces an isomorphism of Hodge–de Rham structures H2(X)Z ⊗R K ≃ H.

Proof _is follows from the fact that the kernel of the composite

H2
Z(X ,C)→ H2(X ,C)→ H2(Z ,C)

is one-dimensional by Zariski’s lemma [6, III, (8.2)].

Remark 5.6 Our deûnition of ε is slightly diòerent from [13]; ε(i) here is ε(−i),
where Gross looks at the values Γ(1− {hi/l p})ε(i). _e former conforms to the deû-
nition of the Stickelberger element as

∑
h∈(Z/NZ)×

{−
h
N

}σ−1
h ,

where σh ∈ Gal(Q(µN)/Q) sends an N-th root of unity to its h-th power.

6 Regulators

A�er explaining the regulator map we are considering, we prove _eorem 1.2 from
the introduction and its consequences on the non-vanishing.

6.1 Formulation

_e Deligne cohomology of XC ∶= X ×SpecQ SpecC with coeõcients in Q(2) is de-
ûned to be the hypercohomology of the complex Q(2) → OXC → Ω1

XC/C, where
Q(2) ∶= (2πi)2Q is placed in degree 0. Consider the Beilinson regulator map [7]
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from themotivic cohomology rD ∶H3
M (X ,Q(2))→ H3

D(XC ,Q(2)). We have anatu-
ral isomorphism H3

D(XC ,Q(2)) ≃ H2(X ,C)/(F2+H2(X ,Q(2))) , and the Carlson
isomorphism

H2(X ,C)/(F2 +H2(X ,Q(2))) ≃ Ext1MHS(Q,H2(X ,Q(2))).

Here MHS denotes the abelian category of Q-mixed Hodge structures. By Poincaré
duality H2(X ,Q(2)) ≃ H2(X ,Q), we obtain an identiûcation

H3
D(XC ,Q(2)) ≃ Ext1MHS(Q,H2(X ,Q)).

Let Z ⊂ X be as before and consider the regulator map

rD ,Z ∶H3
M ,Z(X ,Q(2))→ H3

D ,Z(X ,Q(2)) ≃ H1(Z ,Q)

from themotivic cohomology supportedon Z. SinceH1(X ,Q) = 0byProposition 4.1,
we have an exact sequence ofmixedHodge structures

H2(Z ,Q)Ð→ H2(X ,Q)Ð→ H2(X , Z;Q)
∂
Ð→ H1(Z ,Q)Ð→ 0.

If we denote the image of the ûrst map by ⟨Z⟩, we have the connecting homomor-
phism ρ∶H1(Z ,Q) ∩ H0,0 → Ext1MHS(Q,H2(X ,Q)/⟨Z⟩), where H0,0 denotes the
Hodge (0, 0)-component of H1(Z ,C). By the lemma and Remark 6.2, ρ describes
the restriction of rD to the image of H3

M ,Z(X ,Q(2)).

Lemma 6.1 _e diagram below is commutative up to sign.

H3
M ,Z(X ,Q(2))

rD ,Z //

��

H1(Z ,Q) ∩H0,0 ρ // Ext1MHS(Q,H2(X ,Q)/⟨Z⟩)

H3
M (X ,Q(2))

rD // H3
D(XC ,Q(2)) ≃ // Ext1MHS(Q,H2(X ,Q))

OO

where the vertical maps are the natural ones.

Proof See [5,_eorem 11.2].

Remark 6.2 _e right vertical arrow is surjective since Ext2MHS = 0. Its kernel is
topologically generated by decomposable elements, i.e., the image of

(CH1(Z)⊗Q
×
)⊗Z Q→ H3

M ,Z(X ,Q(2)).

Also, it is not diõcult to show that rD ,Z is surjective.

6.2 Regulator Formula

Now we regard the extension classes as functionals (up to period functionals). Let
H2(X)Z = Ker(H2(X) → H2(Z)) as before. Since H2(X ,Q)Z ≃ (H2(X ,Q)/⟨Z⟩)∗,
we have

Ext1MHS(Q,H2(X ,Q)/⟨Z⟩) ≃ (F 1H2(X ,C)Z)
∗/ ImageH2(X ,Q),

where ∗ denotes the C-linear dual. By Lemma 5.5, ρ induces amap

ρ∶ (H1(Z ,Q) ∩H0,0)⊗R K → (F 1HC)
∗/H∨

B ,
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where HC ∶= HB ⊗Q C and H∨ denotes the dual Hodge–de Rham structure of H.
Put Z1 = ⊔ζ∈µ l Xζ . We shall describe the restriction of ρ to H1(Z1 ,Q)⊗R K. Recall

that H1(Z1 ,Q) ⊂ H0,0 (Corollary 3.6). We have, in fact, the following.

Lemma 6.3 We have an isomorphism H1(Z1 ,Q)⊗R K ≃
→ H1(Z ,Q)⊗R K.

Proof By Proposition 4.2, τ acts trivially on H1(X0 ,Q) and H1(X∞ ,Q) = 0.

Let (1 − σ)∗∆0 ∈ H2(X , Z1 ; Q) be the Lefschetz thimble deûned in Section 2.5,
and let H2(X , Z1 ; Q)Lef ⊂ H2(X , Z1 ; Q) denote the R-submodule generated by this
element.

Lemma 6.4 _e restriction of the boundary map

∂∶H2(X , Z1;Q)Lef ⊗R K Ð→ H1(Z1 ,Q)⊗R K

is surjective and H1(Z1 ,Q)⊗R K is one-dimensional over K.

Proof By Proposition 4.2, dimQ H1(Xζ ,Q) = p − 1 for ζ ∈ µ l . Since τ permutes the
components of Z1, H1(Z1 ,Q) ⊗R K is one-dimensional over K. Whereas κ0 and κ1
generate H1(Xt ,Q) (Proposition 2.4 (ii)), κ1 vanishes as t → 1 by deûnition. _ere-
fore κ0 does not vanish, i.e., ∂((1 − σ)∗∆0) is non-trivial in H1(X1 ,Q), hence is in
H1(Z1 ,Q)⊗R K.

Now we state our main theorem. For x ∈ K, let x∗ (resp. x∗) denote its action on
homology (resp. cohomology). Since 1 − ζp is invertible in K, we write

((1 − ζp)−1)∗(1 − σ)∗∆0 ∈ H1(X , Z1 ; Q)⊗R K

simply as ∆0. For each m and n, deûne an embedding χm ,n ∶K ↪ C by

χm ,n(ζ l) = ζm
l , χm ,n(ζp) = ζn

p .

_eorem 6.5 Let γ ∈ H1(Z1 ,Q) ⊗R K and take x ∈ K such that γ = x∗∂∆0. Let
{ωm ,n ∣ n = 1, . . . , p − 1,m ∈ I1n} be the basis of F 1HdR given in Proposition 5.2. _en
we have

ρ(γ)(ωm ,n) = χm ,n(x)
B(1 − α, β)
l(β − α + µ)

⋅ F (
1 − α, β, β − α + µ

1 − α + β, β − α + µ + 1
; 1) ,

where α = { na
p }, β = { nb

p }, µ = m
l .

Proof We apply _eorem A.3 of the appendix to our situation, where D = Z1 and
X○ = X ∖ (X0 ∪ X∞) (see the proof of Lemma 5.1). Note that HC ≃ H2

dR(XC)0 ⊗R K
by Lemma 5.5 since τ acts trivially on H2

dR(e(P1
C)) (see §A.2 for the notations).

Put Γ = (1 − τ)∗(1 − σ)∗∆0. Since Γ ∈ H2(X , Z1 ; Q) does not necessarily come
from H2(X○ , Z1 ; Q), we take a detour. Let Γ′ be the Lefschetz thimble given by
sweeping (1 − σ)∗δ0 along the path κ1 + κ2 + κ3 in T ∖ {0,∞}, where κ1 is the line
segment from ζ to εζ (ε > 0), κ2 is the arc from εζ to ε, and κ3 is the line segment
from ε to 1. _en Γ′ ∈ H2(X○ , Z1 ; Q) and γ ∶= ∂(Γ) = ∂(Γ′). _eorem A.3 yields
ρ(γ)(ωm ,n) = ∫Γ′ ωm ,n . _e right integral is computed similarly as Proposition 2.6
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(ii), and letting ε → 0,we obtain the theorem for x = (1− ζ l)(1− ζp). _e general case
follows by the cyclicity of H1(Z1 ,Q)⊗R K.

6.3 Non-vanishing

We prove the non-vanishing of ρ under amild assumption. _e situation is diòerent
depending on whether a + b = p or not.

If a + b /= p, the regulator does not vanish even in the Deligne cohomology with
R-coeõcients, or equivalently, the extension group of R-mixedHodge structures

Ext1RMHS(R,HR) ≃ (F 1HC)
∗/H∨

R ,

whereHR = HB⊗QR,HC = HB⊗QC. Note that dimR(F 1HC)
∗/H∨

R = dimQ Gr1F HdR.
Let ρR∶H1(Z1 ,Q) ⊗R K → (F 1HC)

∗/H∨
R be the composition of ρ and the natural

surjection.

_eorem 6.6 Suppose that p < l and a + b /= p (so p > 2). _en ρR is non-trivial. In
particular, dimQ ρR(H1(Z1 ,Q)⊗R K) = (l − 1)(p − 1).

Proof By restricting the functionals to F 1HR ∶= F 1HC∩HR and taking the imaginary
part,we obtain a K∩R-linear map ρ′R∶H1(Z1 ,Q)⊗R K → Hom(F 1HR , iR). For each
n = 1, . . . , p − 1, we have α /= 1 − β by the assumption. Hence ∣α − (1 − β)∣ ≥ 1/p > 1/l
and there exists an m satisfying

min{⌊α l⌋, ⌊(1 − β)l⌋} < m ≤ max{⌊α l⌋, ⌊(1 − β)l⌋}.(6.1)

_en we have ωm ,n ∈ Gr1F HdR by Propositions 4.4 and 5.2. Since m > ⌊(α − β)l⌋, we
have µ ∶= m/l > α − β, hence we can apply Proposition 2.6 (i) to compute the period

Ωm ,n ∶= ∫
∆1

ωm ,n = −
(−1)pβ

l
B(β, µ)B(1 − β, β − α + µ).

Put a normalization as ω̃m ,n = Ω−1
m ,nωm ,n . _en we have

∫
x∗∆1

ω̃m ,n = ∫
∆1
x∗ω̃m ,n = χm ,n(x),

for any x ∈ K. If we let n′ = p − n, α′ = {n′a/p} = 1 − α, β′ = {n′b/p} = 1 − β,
m′ = l −m, and µ′ = {m′/l} = 1 − µ, then these satisfy the assumption (6.1). Hence,
ω̃m′ ,n′ is deûned and we have ∫x∗∆1

ω̃m′ ,n′ = χm ,n(x), for any x ∈ K. Since H∨
B is

generated as a K-module by ((1− ζ l)−1(1− ζp)−1)∗(1− τ)∗(1− σ)∗∆1, that we simply
denote ∆1 as before, we have ω̃m ,n = ω̃m′ ,n′ and hence

ω̃m ,n + ω̃m′ ,n′ ∈ F 1HR .

Deûne the regulator as

Rm ,n ∶= ∫
∆0

ωm ,n =
B(1 − α, β)
l(β − α + µ)

⋅ F (
1 − α, β, β − α + µ

1 − α + β, β − α + µ + 1
; 1) .
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By _eorem 6.5, for any γ ∈ H1(Z1 ,Q) corresponding to x ∈ K as in _eorem 6.5 we
have

ρ′R(γ)(ω̃m ,n + ω̃m′ ,n′) = Im (χm ,n(x)Ω−1
m ,nRm ,n + χm ,n(x)Ω−1

m′ ,n′Rm′ ,n′)

= Im(χm ,n(x)) (Ω−1
m ,nRm ,n −Ω−1

m′ ,n′Rm′ ,n′) .

Since Ωm ,nΩm′ ,n′ < 0 and Rm ,n , Rm′ ,n′ > 0, the above does not vanish for x ∈ K ∖R.
Hence ρR is non-trivial. Since ρR is K-linear, the second assertion follows.

_e non-vanishing of ρ is amore subtle problem. For the case a + b = p, we have
the following criterion.

Proposition 6.7 Let p, l be distinct prime numbers and suppose that a + b = p. If
ρ is trivial, then there exists an x ∈ K such that Rm ,n = χm ,n(x)Ωm ,n , for any n =

1, . . . , p − 1, and m ∈ I1n such that m
l > { na

p } − { nb
p }.

Proof Let γ = ∂∆0 and suppose that ρ(γ) = 0. Since H∨
B is generated by ∆1 over K,

there exists an x ∈ K such that ρ(γ) is represented by the functional ∫x∗∆1
. Ifm, n are

as in the statement, then ∫x∗∆1
ωm ,n = ∫∆1

x∗ωm ,n = χm ,n(x)Ωm ,n by the deûnition.
Hence the proposition follows.

Example 6.8 If p = 2, then α = β = 1/2 and Y is nothing but the Legendre family of
elliptic curves. By Proposition 4.8,we haveGr1F HdR = 0 and the Deligne cohomology
withR-coeõcients is trivial. Since the condition m

l > { na
p }− { nb

p } (= 0) is automati-
cally satisûed, Proposition 6.7 is, in fact, an equivalence. If, for example, l = 3, then ρ
is trivial if and only if

√
3(

Γ( 56 )
Γ( 1

3 )
)

2

⋅ F
⎛

⎝

1
2 ,

1
2 ,

1
3

1, 4
3

; 1
⎞

⎠
∈ Q.

Here we usedQ(ζ3) ∩ iR =
√

3iQ.

A Appendix: (M. Asakura) Fibration of Curves and Extension of Mo-
tives

In this appendix, we develop a technique that was used in the proof of the regulator
formula (_eorem 6.5) to compute regulators for a ûbration of curves and motivic
elements constructed from degenerating ûbers [3].

A.1 Relative Cohomology

Let V be a quasi-projective smooth surface over C. Let D ⊂ V be a chain of curves.
Let π∶ D̃ → D be the normalization and Σ ⊂ D be the set of singular points. Let
s∶ Σ̃ ∶= π−1(Σ)↪ D̃ be the inclusion. _ere is an exact sequence

0Ð→ OD
π∗
Ð→ OD̃

s∗
Ð→ CΣ̃/CΣ Ð→ 0,
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whereCΣ̃ = Maps(Σ̃,C) = Hom(ZΣ̃,C) and π∗, s∗ are the pull-backs. For a smooth
manifold M, let A q(M) denote the space of smooth diòerential q-forms on M with
coeõcients inC. We deûneA ●(D) to be themapping ûber of s∗∶A ●(D̃)→ CΣ̃/CΣ :

A 0(D̃)
s∗⊕d
ÐÐ→ CΣ̃/CΣ ⊕A 1(D̃)

0⊕d
ÐÐ→ A 2(D̃),

where the ûrst term is placed in degree 0. _en Hq
dR(D) = Hq(A ●(D)) is the

de Rham cohomology of D, which ûts into the exact sequence

⋅ ⋅ ⋅Ð→ H0
dR(D̃)Ð→ CΣ̃/CΣ Ð→ H1

dR(D)Ð→ H1
dR(D̃)Ð→ ⋅ ⋅ ⋅ .

We have the natural pairing

⟨ ⋅ , ⋅ ⟩D ∶H1(D,Z)⊗H1
dR(D)Ð→ C, γ ⊗ z z→ ∫

γ
η − c(∂(π−1γ)),

where z is represented by (c, η) ∈ CΣ̃/CΣ ⊕A 1(D̃) with dη = 0 and ∂ denotes the
boundary of homology cycles.

We deûne A ●(V ,D) to be the mapping ûber of ĩ∗∶A ●(V) → A ●(D̃), the pull-
back by ĩ∶ D̃ → V :

A 0(V)
D0
Ð→ A 0(D̃)⊕A 1(V)

D1
Ð→ CΣ̃/CΣ ⊕A 1(D̃)⊕A 2(V)

D2
Ð→ ⋅ ⋅ ⋅ .

_en the relative de Rham cohomology is deûned by Hq
dR(V ,D) = Hq(A ●(V ,D))

and ûts into the exact sequence

(A.1) ⋅ ⋅ ⋅Ð→ Hq−1
dR (D)Ð→ Hq

dR(V ,D)Ð→ Hq
dR(V)Ð→ Hq

dR(D)Ð→ ⋅ ⋅ ⋅ .

An element of H2
dR(V ,D) is represented by

(A.2) (c, η,ω) ∈ CΣ̃/CΣ ⊕A 1(D̃)⊕A 2(V)

that satisûes ĩ∗ω = dη and dω = 0. _e natural pairing

⟨ , ⟩V ,D ∶H2(V ,D;Z)⊗H2
dR(V ,D)Ð→ C

is given by

⟨Γ, z⟩V ,D = ∫
Γ
ω − ⟨∂Γ, (c, η)⟩D = ∫

Γ
ω − ∫

∂Γ
η + c(∂(π−1(∂Γ))).

_e complexes A ●(V) and A ●(D) are canonically equipped with Hodge and
weightûltrations; then (QV ,A ●(V), F● ,W●) and (QD ,A ●(D), F● ,W●) become co-
homological mixed Hodge complexes in the sense of [10, (8.1.2)]. _e Hodge and
weight ûltrations on A ●(V ,D) are induced from them and the data

(QV ,D ,A ●(V ,D), F● ,W●)

becomes a cohomological mixed Hodge complex as well. Hence we have an exact
sequence

⋅ ⋅ ⋅Ð→ Hq−1(D,Q)Ð→ Hq(V ,D;Q)Ð→ Hq(V ,Q)Ð→ Hq(D,Q)Ð→ ⋅ ⋅ ⋅

ofmixedHodge structures which is compatible with (A.1). Taking its dual, we obtain
an exact sequence

0Ð→ H2(V ,Q)/H2(D)Ð→ H2(V ,D;Q)
∂
Ð→ H1(D,Q)Ð→ H1(V ,Q).
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Since H1(V ,Q) ∩H0,0 = 0, we obtain the coboundary map

(A.3) ρV ,D ∶H1(D,Q) ∩H0,0 Ð→ Ext1MHS(Q,H2(V ,Q)/H2(D))

to the extension group ofmixedHodge structures. If we put

H2
dR(V)D ∶= Ker[H2

dR(V)Ð→ H2
dR(D)],

then we have the Carlson isomorphism

(A.4) Ext1MHS(Q,H2(V ,Q)/H2(D)) ≃ Coker [H2(V ,Q)Ð→ (F 1H2
dR(V)D)

∗] ,

where ∗ denotes the C-linear dual and the map is the natural pairing. Under this
identiûcation, themap ρV ,D is described as follows. For γ ∈ H1(D,Q) ∩ H0,0, take a
Γ ∈ H2(V ,D ; Q) such that ∂(Γ) = γ. _en we have

(A.5) ρV ,D(γ) = [ω z→ ⟨Γ,ωV ,D⟩V ,D],

where ωV ,D ∈ F 1H2
dR(V ,D) is a li�ing of ω, on which the pairing does not depend.

A.2 Rational Forms

For a given ω, it is usually complicated to compute an analytic li�ing ωV ,D explicitly.
In the following situation, we shall be able to associate a rational 2-form via Deligne’s
canonical extension, which gives a simple expression of ρV ,D .

Let C be a projective smooth curve over C and f ∶X → C be a ûbration of curves
with connected general ûber that admits a section e∶C → X. Henceforth, we use the
algebraic de Rham cohomology groups [14] and identify them with the analytic ones
in the previous paragraph. For a Zariski open set S ⊂ C, let V = f −1(S) and put

H2
dR(V)0 = Ker[H2

dR(V)→ ∏
s∈S

H2
dR( f −1(s)) ×H2

dR(e(S))] ,

H2
dR(V ,D)0 = Ker[H2

dR(V ,D)→ H2
dR(V)/H2

dR(V)0] .

_en we have an exact sequence ofmixedHodge structures

(A.6) H1
dR(V)Ð→ H1

dR(D)Ð→ H2
dR(V ,D)0 Ð→ H2

dR(V)0 Ð→ 0.

_e arrows are strictly compatiblewith theHodge andweight ûltrations. In particular,
F 1H2

dR(V ,D)0 → F 1H2
dR(V)0 is surjective. Later, we shall use the following.

Lemma A.1 Let g∶V ′ → V be a birational transformation that is an isomorphism
outside D and put D′ = g−1(D). _en the pull-back g∗ induces isomorphisms

H2
dR(V)0 ≃ H2

dR(V ′)0 and H2
dR(V ,D)0 ≃ H2

dR(V ′ ,D′)0 .

Proof By (A.6) it is enough to show isomorphisms

H1
dR(V) ≃ H1

dR(V ′), H1
dR(D) ≃ H1

dR(D′), H2
dR(V)0 ≃ H2

dR(V ′)0 .
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_e ûrst one is an easy exercise. Let X′ be a smooth compactiûcation of V ′ such that
X′ ∖ D′ ≃ X ∖ D and consider the commutative diagram with exact rows

H2
dR(X′)

g∗
��

a2 // H2
dR(X′ ∖ D′) // HdR

1 (D′)

g∗
��

// H3
dR(X

′)

g∗ ≃

��

a3 // H3
dR(X

′ ∖ D′)

H2
dR(X)

b2 // H2
dR(X ∖ D) // HdR

1 (D) // H3
dR(X)

b3 // H3
dR(X ∖ D).

_e second isomorphism follows from the fact that

Image(an) = Image(bn) =WnHn
dR(X ∖ D).

_e last isomorphism follows from the commutative diagram

0 // H2
dR(V)0 //

g∗

��

H2
dR(V ∖ D)0 // HdR

1 (D)

g∗ ≃

��
0 // H2

dR(V ′)0 // H2
dR(V ′ ∖ D′)0 // HdR

1 (D′)

with exact rows.

Now ûx a Zariski open set S ⊂ C such that U ∶= f −1(S) → S is smooth. Put T =
C∖S and Z = X∖U . Let∇∶He → Ω1

C(logT)⊗He be theDeligne canonical extension
of the Gauss–Manin connection (H = R1 f∗Ω●

U/S ,∇). Put F 1He = j∗F 1H ∩ He ,
where j∶ S ↪ C and Gr0F He = He/F 1He . Let ∇∶ F 1He → Ω1

C(logT) ⊗ Gr0F He be
the OC-linear map induced from ∇. In what follows, we assume the following.

(∗) _emap ∇ is generically bijective.

Let C○ ⊂ C be a Zariski open set on which∇ is bijective and put X○ ∶= f −1(C○). Note
that S /⊂ C○ in general and X○ → C○ is not necessarily smooth. _en the commutative
diagram

0

��
Ω1
C(logT)⊗ F 1He

��
F 1He

∇ //

=

��

Ω1
C(logT)⊗He

��
F 1He

∇ // Ω1
C(logT)⊗Gr0F He

��
0
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induces an isomorphism

Λ○ ∶= Γ(C○ ,Ω1
C(logT)⊗ F 1He)

≃
Ð→ H1(C○ , F 1He Ð→ Ω1

C(logT)⊗He).

Note that Λ○ ⊂ Γ(X○ ,Ω2
X(log Z)).

Lemma A.2 _ere are natural injections F 1H2
dR(X)0 ↪ F 1H2

dR(U)0 ↪ Λ○.

Proof _e ûrst injectivity follows from Zariski’s lemma [6, III, (8.2)]. Since

H2
dR(U)0 ≃ H1(S ,H → Ω1

S ⊗H ) ≃ H1(C ,He → Ω1
C(logT)⊗He)

and
F 1H1(S ,H → Ω1

S ⊗H ) = H1(C , F 1He → Ω1
C(logT)⊗He)

[26, §5], the second injectivity follows from that of F 1H2
dR(U)0 → F 1H2

dR(U ∩ X○)0.

Deûne Λ(X) ⊂ Λ(U) ⊂ Λ○ to be the images of F 1H2
dR(X)0, F 1H2

dR(U)0, respec-
tively. By the commutative diagram

F 1H2
dR(X)0

≃

��

// F 1H2
dR(U)0 //

≃

��

// HdR
1 (Z)

��
Λ(X) // Λ(U) // H0(X○ ,Ω2

X(log Z)/Ω2
X)

we have Λ(X) ⊂ Γ(X○ ,Ω2
X). For any cohomology class ω ∈ F 1H2

dR(X)0, let ω○ ∈
Λ(X) denote the corresponding rational 2-form.

A.3 Main Result

Now let D ⊂ X○ be a ûnite union of ûbers. We give a description of themap

ρX ,D ∶H1(D,Q) ∩H0,0 Ð→ Coker[H2(X ,Q)→ (F 1H2
dR(X)0)

∗]

induced from (A.3), (A.4), and the inclusion F 1H2
dR(X)0 ⊂ F 1HdR(X)D . Note that

this factors through ρX○ ,D . We regard an element η ∈ Λ○ as an element of A 2(X○).
For the dimension reasons, we have ĩ∗η = 0 and dη = 0. Hence (0, 0, η) as in (A.2)
deûnes a cohomology class η̂ ∈ H2

dR(X○ ,D). Note that η̂ does not necessarily belong
to F 1. For any ω ∈ F 1H2

dR(X)0, write ω̂ instead of ω̂○.

_eorem A.3

(i) For any ω ∈ F 1H2
dR(X)0, we have ω̂ ∈ F 1H2

dR(X○ ,D)0 and it li�s ω∣X○ .
(ii) For any γ ∈ H1(D,Q) ∩ H0,0, choose Γ ∈ H2(X○ ,D) such that ∂(Γ) = γ. _en

we have ρX ,D(γ) = [ω ↦ ∫Γ ω○].

Proof By (A.5), assertion (ii) follows immediately from (i). By Lemma A.1, wemay
assume that Dred and Zred are divisors with normal crossings. It suõces to prove the
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casewhereD = f −1(P), P ∈ C○. For aZariski sheafF , let (Č●(F ), δ) denote itsČech
complex. First, H2

dR(X) is given by the cohomology in themiddle of the complex

Č1(OX) × Č0(Ω1
X)

D1
Ð→ Č2(OX) × Č1(Ω1

X) × Č0(Ω2
X)

D2
Ð→ Č3(OX) × Č2(Ω1

X) × Č1(Ω2
X).

A description ofH2
dR(U) = H2(X ,Ω●

X(log Z)) is given similarly. Finally, H2
dR(X ,D)

is given by the complex

Č1(OX) × Č0(OD̃ ⊕Ω1
X)

D3
Ð→ Č2(OX) × Č1(OD̃ ⊕Ω1

X) × Č0(OΣ̃/OΣ ⊕Ω1
D̃ ⊕Ω2

X)

D4
Ð→ Č3(OX) × Č2(OD̃ ⊕Ω1

X) × Č1(OΣ̃/OΣ ⊕Ω1
D̃ ⊕Ω2

X).

Let ω ∈ F 1H2
dR(X)0 and take its representative z = (0) × (α i j) × (β i) ∈ Ker(D2).

Since ω ∈ F 1H2
dR(X)D , there exists (є i) ∈ Č0(Ω1

D̃) such that α i j ∣D̃ = є j − є i . If we
put zX ,D = (0) × (0, α i j) × (0, є i , β i), then zX ,D ∈ Ker(D4). By the deûnition of the
Hodge ûltration, it represents a class ωX ,D ∈ F 1H2

dR(X ,D) that li�s ω. Let ωX ,D ∣X○

be its image in H2
dR(X○ ,D).

Let ω̂ ∈ H2
dR(X○ ,D) be the class of the Čech cocycle ẑ ∶= (0) × (0, 0) × (0, 0,ω○).

_e group H1(C○ , F 1He → Ω1
C(logT)⊗He) is given by the complex

Č0(F 1He ∣C○)
D5
Ð→ Č1(F 1He ∣C○) × Č0(Ω1

C(logT)⊗He ∣C○)

D6
Ð→ Č2(F 1He ∣C○) × Č1(Ω1

C(logT)⊗He ∣C○).

By the deûnition of ω○, there exists y = (ν i) ∈ Č0(F 1He ∣C○) such that D5(y) =
(α i j) × (β i) − (0) × (ω○), i.e., ν j − ν i = α i j , dν i = β i − ω○. Hence we have

zX ,D ∣X○ − ẑ = (0) × (0, ν j − ν i) × (0, ε i , dν i).

It is clear that this vanishes in H2
dR(X○), hence ω̂ li�s ω∣X○ .

We are le� to show that the class of ω̂ lies in F 1. Let V be a suõciently small
neighborhood of D so that we have an exact sequence

0Ð→ Ω1
V Ð→ Ω1

V(logD)
Res
Ð→ ĩ∗OD̃ Ð→ 0.

Since H2
dR(X○ ,D)/F 1 → H2

dR(V ,D)/F 1 is injective, it suõces to show the claim a�er
restricting to V . Since Res(ν j) − Res(ν i) = Res(α i j) = 0, (Res(ν i)) deûnes a class
e ∈ H0(D̃,OD̃). Consider the composite

H0(D̃,OD̃)
δ
→ H1(V ,Ω1

V)
ĩ∗
→ H1(D̃,Ω1

D̃) ≃ H2
dR(D̃),

where δ is the connecting map. _en (ĩ∗ ○ δ)(e) is represented by (α i j ∣D̃) ∈ Č
1(ΩD̃).

_erefore, under the above isomorphism, (ĩ∗ ○ δ)(e) corresponds to ĩ∗(ω) = 0. Let
t ∈ OC ,P be a uniformizer at P. By Zariski’s lemma [6, III, (8.2)], Ker(ĩ∗ ○ δ) is one-
dimensional and generated by Res( d tt ). Hence there exists a constant c such that
θ i ∶= ν i − c d tt has no pole along D. By replacing ν i with θ i and taking ε i = θ i ∣D̃ , we
see that ωX ,D ∣V − ω̂∣V is in the image of F 1H1

dR(V) → H2
dR(V ,D). Hence we obtain

ω̂ ∈ F 1 and the proof is complete.

https://doi.org/10.4153/CJM-2017-008-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-008-6


CM periods, CM Regulators, and Hypergeometric Functions, I 513

Acknowledgements _is work was begun when the authors stayed at University of
Toronto. We would like to thank Kumar Murty for his hospitality. _e second author
would like to thank Bruno Kahn for helpful discussions. Finally, we would like to
thank Spencer Bloch for valuable comments on an earlier version.

References

[1] G. W. Anderson, Logarithmic derivatives of Dirichlet L-functions and the periods of Abelian
varieties. Compositio Math. 45, Fasc. 3 (1982), 315–332.

[2] N. Archinard, Hypergeometric abelian varieties. Canad. J. Math. 55(2003), 897–932.
http://dx.doi.org/10.4153/CJM-2003-037-4

[3] M. Asakura, A formula for Beilinson’s regulator map on K1 of a ûbration of curves having a totally
degenerate semistable ûber. arxiv:1310.2810.

[4] M. Asakura and N. Otsubo, CM periods, CM regulators and hypergeometric functions. II.
arxiv:1503.08894.

[5] M. Asakura and K. Sato, Chern classes and Riemann–Roch theorem for cohomology without
homotopy invariance. arxiv:1301.5829

[6] W. Barth, K. Hulek, C. Peters, and A. Van de Ven, Compact complex surfaces. Second. ed.
Springer-Verlag, Berlin, 2004.

[7] A. A. Beilinson, Higher regulators and values of L-functions. J. Soviet Math. 30(1985), 2036–2070.
[8] S. Chowla and A Selberg, On Epstein’s zeta-function. J. Reine Angew. Math. 227(1967), 86–110.
[9] P. Deligne, Equations diòérentielles à points singuliers réguliers, Lect. Notes Math. 163, Springer,

1970.
[10] P. Deligne,_éorie de Hodge. III. Publ. Math. Inst. Hautes Études Sci. Publ. Math. 44(1974), 5–77.
[11] A. Erdélyi et al. ed., Higher transcendental functions. Vol. 1. California Inst. Tech, 1981.
[12] J. Fresán, Periods of Hodge structures and special values of the gamma function. Invent. Math.

208(2017), 247–282. http://dx.doi.org/10.1007/s00222-016-0690-4

[13] B. H. Gross (with an appendix by D. E. Rohrlich), On the periods of Abelian integrals and a
formula of Chowla-Selberg. Invent. Math. 45(1978), 193–211. http://dx.doi.org/10.1007/BF01390273

[14] R. Hartshorne, On the de Rham cohomology of algebraic varieties. Publ. Math. IHES 45(1975),
5–99.

[15] M. Lerch, Sur quelques formules relatives au nombre des classes. Bull. Sci. Math. 21(1897), prem.
partie, 290–304.

[16] V. Maillot and D. Roessler, On the periods ofmotives with complex multiplication and a conjecture
of Gross–Deligne. Ann. Math. 160(2004), 727–754. http://dx.doi.org/10.4007/annals.2004.160.727

[17] D. R. Morrison,_e Clemens–Schmid exact sequence and applications. In: Topics in
transcendental algebraic geometry, P. Griõths, ed. Ann. Math. Studies, 106. Princeton Univ.
Press, Princeton NJ, 1984, pp. 101–119.

[18] N. Otsubo, On the regulator of Fermat motives and generalized hypergeometric functions. J. Reine
Angew. Math. 660(2011), 27–82.

[19] , Certain values of Hecke L-functions and generalized hypergeometric functions. J. Number
_eory 131(2011), 648–660. http://dx.doi.org/10.1016/j.jnt.2010.10.002

[20] , On special values of Jacobi-sum Hecke L-functions. Exper. Math. 24(2015), no. 2, 247–259.
http://dx.doi.org/10.1080/10586458.2014.971199

[21] T. Saito, Vanishing cycles and geometry of curves over a discrete valuation ring. Amer. J. Math.
109(1987), no. 6, 1043–1085. http://dx.doi.org/10.2307/2374585

[22] T. Saito and T. Terasoma, Determinant of period integrals. J. Amer. Math. Soc. 10(1997), 865–937.
http://dx.doi.org/10.1090/S0894-0347-97-00243-9

[23] G. Shimura, Automorphic forms and periods of abelian varieties. J. Math. Soc. Japan 31(1979),
561–592. http://dx.doi.org/10.2969/jmsj/03130561

[24] L. J. Slater, Generalized hypergeometric functions. Cambridge University Press, Cambridge, 1966.

https://doi.org/10.4153/CJM-2017-008-6 Published online by Cambridge University Press

http://dx.doi.org/10.4153/CJM-2003-037-4
http://arxiv.org/abs/1310.2810
http://arxiv.org/abs/1503.08894.
http://arxiv.org/abs/1301.5829
http://dx.doi.org/10.1007/s00222-016-0690-4
http://dx.doi.org/10.1007/BF01390273
http://dx.doi.org/10.4007/annals.2004.160.727
http://dx.doi.org/10.1016/j.jnt.2010.10.002
http://dx.doi.org/10.1080/10586458.2014.971199
http://dx.doi.org/10.2307/2374585
http://dx.doi.org/10.1090/S0894-0347-97-00243-9
http://dx.doi.org/10.2969/jmsj/03130561
https://doi.org/10.4153/CJM-2017-008-6


514 M. Asakura and N. Otsubo

[25] J. Steenbrink, Limits of Hodge structures. Invent. Math. 31(1976), 229–257.
http://dx.doi.org/10.1007/BF01403146

[26] J. Steenbrink and S. Zucker, Variation ofmixed Hodge structure. I. Invent. Math. 80(1985),
489–542. http://dx.doi.org/10.1007/BF01388729

Department ofMathematics, Hokkaido University, Sapporo, 060-0810 Japan
e-mail: asakura@math.sci.hokudai.ac.jp

Department ofMathematics and Informatics, Chiba University, Chiba, 263-8522 Japan
e-mail: otsubo@math.s.chiba-u.ac.jp

https://doi.org/10.4153/CJM-2017-008-6 Published online by Cambridge University Press

http://dx.doi.org/10.1007/BF01403146
http://dx.doi.org/10.1007/BF01388729
mailto:asakura@math.sci.hokudai.ac.jp
mailto:otsubo@math.s.chiba-u.ac.jp
https://doi.org/10.4153/CJM-2017-008-6

