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Abstract

Let S ⊆ Pd be an anticanonically embedded surface of degree d ≥ 3. In this note, we classify stable Ulrich
bundles on S of rank two. We also study their moduli spaces.
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1. Introduction and notation

Throughout the paper, PN denotes the projective space of dimension N over an
algebraically closed field k.

Let S ⊆ PN be a surface. We assume that S is smooth integral and closed,
without making explicit mention of these properties. The surface S is endowed with
a polarisation OS (h) := OPN (1) ⊗ OS . We are interested in the natural problem of
studying vector bundles supported by S . We can obviously restrict our attention to
indecomposable bundles, that is, bundles which do not split as a direct sum of bundles
of lower rank. Moreover, at least from a cohomological viewpoint, the simplest vector
bundles are the arithmetically Cohen–Macaulay (aCM for short) ones, that is, bundles
E such that h1(S , E(th)) = 0 for t ∈ Z. Such a property is trivially invariant up to
shifting degrees, and thus we focus on initialised bundles, that is, bundles E such
that h0(S ,E(−h)) = 0 and h0(S ,E) , 0.

Horrocks theorem (see [17] and the references therein) asserts that OS is the unique
initialised, indecomposable, aCM bundle when S ⊆ PN is a plane. Let S ⊆ PN be an
aCM surface with ideal sheaf IS |PN (that is, h1(PN ,IS |PN (t)) = 0, for t ∈ Z, and OS is
aCM) supporting finitely many aCM bundles. A consequence of a general result of
Eisenbud and Herzog (see [9]) then implies that S is necessarily either a plane, or a
smooth quadric, or a rational scroll of degree up to four, or the Veronese surface.

Indeed, the general surface S ⊆ PN is of wild representation type, that is, it
actually supports families of dimension p of pairwise nonisomorphic initialised,
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indecomposable aCM bundles for arbitrarily large p (see the very recent paper [12]).
One of the first examples of such behaviour is on cubic surfaces and the classification
of aCM bundles of ranks one and two is due to Faenzi (see [11]).

Each smooth cubic surface in P3 is anticanonically embedded: that is, the
embedding S ⊆ P3 satisfies ω−1

S � OS (h). The anticanonically embedded surfaces
S ⊆ Pd are exactly the del Pezzo surfaces S such that ω−1

S is very ample. It is well
known that the anticanonical map embeds S in Pd as a surface of degree d with
3 ≤ d ≤ 9.

Pons-Llopis and Tonini studied aCM line bundles on every anticanonically
embedded surface S in [18]. As an application, they prove that S is of wild
representation type when d ≤ 6 by constructing families of Ulrich bundles, that is,
bundles E on S whose minimal free resolution as sheaves on Pd is linear (and thus
initialised and aCM). For this reason, we say that anticanonically embedded surfaces of
degree d ≤ 6 are of Ulrich-wild representation type. Later, Miró-Roig and Pons-Llopis
in [16] proved the Ulrich-wildness of anticanonically embedded surfaces S � P1 × P1

of degree d ≤ 8 as a by-product of the construction of certain families of Ulrich bundles
on them.

In [1] and [2], Casanellas and Hartshorne dealt with aCM bundles of arbitrary
rank on smooth cubic surfaces, giving a complete description of the Ulrich ones.
Some partial results on rank two Ulrich bundles on anticanonically embedded surfaces
are also obtained by Coskun, Kulkarni and Mustopa in the context of the minimal
resolution conjecture (see [7]).

The aim of this paper is to completely classify indecomposable rank two Ulrich
bundles on anticanonically embedded surfaces. We recall some results on Ulrich
bundles on a variety in Section 2. In Section 3, we list the results on anticanonically
embedded surfaces that we need in the paper. In Section 4, we give the first results on
simple Ulrich bundles on S . In Section 5, we find which are the admissible values for
the first Chern class of an Ulrich bundle on S (see Proposition 5.1).

It is not difficult to construct Ulrich bundles of rank two on S with admissible
class c1 as direct sums of Ulrich line bundles. (A complete list can be found in [18,
Theorem 4.2.2].) It is not evident that each admissible class can be obtained for an
indecomposable Ulrich bundle. We show that this is the case in Theorem 6.7 (see
Section 6), where the bundle can even be chosen to be stable.

In Section 7, we use this existence theorem and the results of Costa and Miró-Roig
in [8] to describe the moduli spaces of rank two stable vector bundles with Chern
classes c1 and c2 = 2 − d + c2

1/2 for each admissible class c1. As a by-product, we
give two applications. First, we reprove the Ulrich-wildness of every anticanonically
embedded surface (see Proposition 7.2). Then we prove the rationality of a moduli
space of rank two Ulrich bundles on the Segre embedding F ⊆ P7 of P1 × P1 × P1

with some particular Chern classes (see Theorem 7.4), which improves the results of
[5, Section 8].

For all the notation and standard results we refer to [13].
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2. General results on Ulrich bundles

In this section, we summarise some general results on Ulrich bundles on a smooth,
irreducible, closed subscheme X ⊆ PN . In what follows, OX(h) := OPN (1) ⊗ OX .

Definition 2.1. Let X ⊆ PN be a smooth, irreducible, closed subscheme and let F be a
vector bundle on X.

(a) F is initialised if h0(X,F (−h)) = 0 , h0(X,F ).
(b) F is aCM if hi(X,F (th)) = 0 for each t ∈ Z and i = 1, . . . , dim(X) − 1.
(c) F is Ulrich if hi(X, F (−ih)) = h j(X, F (−( j + 1)h)) = 0 for each i > 0 and

j < dim(X).

Ulrich bundles enjoy many important properties (see [10, Section 2]). They are
initialised, aCM and globally generated; every direct summand of an Ulrich bundle is
Ulrich, and F is Ulrich if and only if it has a linear minimal free resolution over PN .

Ulrich bundles also behave well with respect to the notions of (semi)stability and
µ-(semi)stability. Recall that, for each bundle F on X, the slope µ(F ) and the reduced
Hilbert polynomial pF (t) are defined as

µ(F ) = c1(F )hdim(X)−1/rk(F ), pF (t) = χ(F (th))/rk(F ).

The bundle F is µ-semistable (respectively, µ-stable) if for all subsheaves G with
0 < rk(G) < rk(F ) we have µ(G) ≤ µ(F ) (respectively, µ(G) < µ(F )).

The bundle F is called semistable (respectively, stable) if for all G, as above,
pG(t) ≤ pF (t) (respectively, pG(t) < pF (t)) for t� 0. We recall that, in order to check
the semistability and stability of a bundle, one can restrict attention only to subsheaves
such that the quotient is torsion free.

The following chain of implications holds for F .

F is µ-stable ⇒ F is stable ⇒ F is semistable ⇒ F is µ-semistable.

Theorem 2.2 [2, Theorem 2.9]. Let X ⊆ PN be a smooth, irreducible, closed
subscheme. If E is an Ulrich bundle on X, then the following assertions hold.

(a) E is semistable and µ-semistable.
(b) E is stable if and only if it is µ-stable.
(c) If

0 −→ L −→ E −→M −→ 0

is an exact sequence of coherent sheaves withM torsion free and µ(L) = µ(E),
then both L andM are Ulrich bundles.

Lemma 2.3 [6, Lemma 2.3]. Let X ⊆ PN be a smooth, irreducible, closed subscheme
with h1(X,OX) = 0. If E is an Ulrich bundle of rank two on X, then E is simple if and
only if it is indecomposable.
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3. General results on anticanonically embedded surfaces

We recall some facts on anticanonically embedded surfaces S ⊆ Pd of degree d ≥ 3.
We will denote by OS (h) the hyperplane line bundle of the surface S .

By definition, ωS � OS (−h), and hence q(S ) = pa(S ) = pg(S ) = 0. The first
important fact is that the Serre duality for each locally free sheaf F on S becomes

hi(S ,F ) = h2−i(S ,F ∨(−h)), i = 0, 1, 2.

Moreover, the Riemann–Roch theorem on S is

h0(S ,F ) + h2(S ,F ) = h1(S ,F ) + rk(F ) +
c1(F )2

2
+

c1(F )h
2

− c2(F ). (3.1)

The following result summarises the needed characterisations for anticanonically
embedded surfaces S ⊆ Pd. Recall that up to six points in P2 are in general position if
no three of them are collinear and six of them do not lie on the same conic.

Lemma 3.1 [15, Theorems IV.24.3, IV.24.4, IV.24.5]. Let S ⊆ Pd be an anticanonically
embedded surface. Then the degree of S is d and S is either isomorphic to the blow
up of P2 at 9 − d points in general position embedded in Pd via the linear system
of cubics through such points, or it is isomorphic to P1 × P1 embedded in P8 via
OP1 (2) � OP1 (2). Conversely, each surface in Pd obtained in the above way is an
anticanonically embedded surface of degree d.

Lemma 3.2 [18, Theorem 2.16]. Let S ⊆ Pd be an anticanonically embedded surface.
Then OS (h) is aCM.

The following results are classical. For their proofs when d = 3 see [13, Section
IV.4]. The proofs given there can be easily generalised to cover all the cases 3 ≤ d ≤ 9.

Lemma 3.3. Let S ⊆ Pd be an anticanonically embedded surface. If S ⊆ Pd is the
blow up of P2 at 9 − d points in general position and π : S → P2 is the corresponding
morphism, then the following assertions hold.

(a) Pic(S ) is freely generated by the class ` of π∗OP2 (1) and by the classes
e1, . . . , e9−d of the exceptional divisors of π, that is, the inverse images of the
blown-up points via π.

(b) `2 = 1, `ei = 0 and eie j = −δi, j (the Kronecker symbol) for i, j = 1, . . . , 9 − d.
(c) The hyperplane class h is 3` −

∑9−d
i=1 ei.

If S ⊆ P8 is isomorphic to P1 × P1, then the following assertions hold.

(d) Pic(S ) is freely generated by two effective classes `1, `2 such that `2
1 = `2

2 = 0 and
`1`2 = 1.

(e) The hyperplane class h is 2(`1 + `2).

It is important to have information on the lines contained in S . For the proofs of the
following results, see [18, Propositions 3.8 and 3.9] and the references quoted therein.
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Lemma 3.4. Let S ⊆ Pd be an anticanonically embedded surface.

(a) If S ⊆ Pd is the blow up of P2 at 9 − d points in general position, then the lines
on S are the following: e1, . . . , e9−d, ` − ei − e j for 1 ≤ i < j ≤ 9 − d, 2l −

∑5
i=1 ei

(if d = 3, 4) and 2l + e j −
∑6

i=1 ei for 2 ≤ j ≤ 6 (if d = 3).
(b) If S ⊆ P8 is isomorphic to P1 × P1, then it does not contain lines.

In particular, each line L ⊆ S (if any) satisfies L2 = −1, and thus h0(S ,OS (L)) = 1.
Hence S contains finitely many lines.

Lemma 3.5. Let S ⊆ Pd be an anticanonically embedded surface. If L1, . . . , L9−d are
pairwise mutually disjoint lines, then there is a blow up morphism πL• : S → P2 of
9 − d points in general position such that L1, . . . , L9−d are the exceptional divisors of
πL• .

4. Ulrich bundles on anticanonically embedded surfaces

In this section, we prove some general preliminary results about Ulrich bundles on
anticanonically embedded surfaces S ⊆ Pd of degree d ≥ 3, collected from [1, 2, 7].
The proof of the following result is completely analogous to the proof of [6, Lemma
4.1]. It slightly generalises [7, Propositions 2.10 and 2.11].

Lemma 4.1. Let S ⊆ Pd be an anticanonically embedded surface. The following
assertions are equivalent for a vector bundle E of rank r on S .

(a) E is Ulrich.
(b) E∨(2h) is Ulrich.
(c) E is aCM and

c1(E)h = dr, c2(E) =
c1(E)2 − (d − 2)r

2
. (4.1)

(d) h0(S ,E(−h)) = h0(S ,E∨(h)) = 0 and the equalities (4.1) hold.

Lemma 4.2 [2, Corollary 2.13]. Let E1 and E2 be Ulrich bundles on an anticanonically
embedded surface S ⊆ Pd. Then

χ(E1 ⊗ E
∨
2 ) = (d − 1)rk(E1)rk(E2) − c1(E1)c1(E2). (4.2)

Let E be a simple vector bundle of rank r on S . Then h0(S , E ⊗ E∨) = 1 and
h2(S , E ⊗ E∨) = h0(S , E ⊗ E∨(−h)). If H is any hyperplane section of S , then it is
clear that the natural restriction map H0(S ,E ⊗ E∨)→ H0(H,E ⊗ E∨ ⊗OH) is injective.
Thus

h2(S ,E ⊗ E∨) = h0(S ,E ⊗ E∨(−h)) = 0.

TakingH = E in (4.2) gives

h1(S ,E ⊗ E∨) = 1 − χ(E) = c1(E)2 − (d − 1)r2 + 1. (4.3)
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Proposition 4.3. Let E be an Ulrich bundle of rank r on an anticanonically embedded
surface S ⊆ Pd. Then c1(E)2 is an even integer satisfying

(d − 2)r2 ≤ c1(E)2 ≤ dr2,

where c1(E)2 = dr2 if and only if c1(E) = rh. If E is simple, then (d − 1)r2 − 1 ≤ c1(E)2.

Proof. Trivially, c1(E)2 must be even because (see Lemma 4.1)

c2(E) =
c1(E)2 − (d − 2)r

2

is an integer. For the first chain of inequalities, see [7, Proposition 2.21].
If c1(E)2 = dr2, the Hodge index theorem implies that the divisors h and c1(E) are

numerically dependent in Pic(S ). Thus they are linearly dependent and c1(E) = ±rh.
Since E is globally generated, the same is true for det(E), and so c1(E) = ±rh. The
converse is also trivial. Finally, if E is simple, it follows from (4.3) that

c1(E)2 − (d − 1)r2 + 1 = h1(S ,E ⊗ E∨) ≥ 0,

that is, (d − 1)r2 − 1 ≤ c1(E)2. �

5. Admissible Chern classes for indecomposable Ulrich bundles of rank two

Let E be an Ulrich bundle on S of rank two. If E is indecomposable, it is simple (see
Lemma 2.3), and thus Proposition 4.3 implies that c1(E)2 ≥ 4(d − 1). In particular, if
c1(E)2 ≤ 4(d − 1) − 1, then E � OS (A) ⊕ OS (B), and hence OS (A) and OS (B) are both
Ulrich. We will now deal with indecomposable Ulrich bundles of rank two on S .

Proposition 5.1. Let E be an indecomposable Ulrich bundle of rank two on an
anticanonically embedded surface S ⊆ Pd, S � P1 × P1. Then, for each d, its
first Chern class c1 := c1(E) is either 2h = 6` −

∑9−d
i=1 ei (if c2

1 = 4d) or, up to an
automorphism of S , it is in the following list (if 4d − 4 ≤ c2

1 ≤ 4d − 2).

d = 3: 5` − 2
∑3

i=1 ei −
∑6

i=4 ei if c2
1 = 10; 5` − 2

∑4
i=1 ei − e5 if c2

1 = 8.
d = 4: 5` − 2

∑2
i=1 ei −

∑5
i=3 ei if c2

1 = 14; 5` − 2
∑3

i=1 ei − e4 if c2
1 = 12.

d = 5: 5` − 2e1 −
∑4

i=2 ei if c2
1 = 18; 5` − 2

∑2
i=1 ei − e3 if c2

1 = 16.
d = 6: 5` −

∑3
i=1 ei or 6` − 3e1 − 2e2 − e3 if c2

1 = 22; 5` − 2e1 − e2 if c2
1 = 20.

d = 7: 6` − 3e1 − e2 if c2
1 = 26: 5` − e1 if c2

1 = 24.

In all the above cases
c2(E) = 2 − d + 1

2 c1(E)2.

Proof. The equality c2(E) = 2 − d + c2
1/2 follows from (4.1). We give the details of

the proof in the case d = 3, suggesting the necessary changes for the cases d ≥ 4.
Let c1 = α` −

∑9−d
i=1 βiei. Since E is globally generated, the same is true for OS (c1),

and hence βi = c1ei ≥ 0, i = 1, . . . , 9 − d. Thus we can assume that (β1, . . . , β9−d) is a
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nonincreasing sequence of positive integers. Moreover,

c1(E∨(2h)) = (12 − α)` −
9−d∑
i=1

(4 − βi)ei,

and thus bundles with α ≥ 7 are in one-to-one correspondence with bundles with α ≤ 5.
Hence we can also restrict our attention to α ≤ 6. The Cauchy–Schwartz inequality for
the two vectors (β1, . . . , β9−d) and (1, . . . , 1) gives(9−d∑

i=1

βi

)2
≤ (9 − d)

(9−d∑
i=1

β2
i

)
. (5.1)

From (4.1) and Proposition 4.3,

3α −
9−d∑
i=1

βi = 2d, 4(d − 1) ≤ c2
1 = α2 −

9−d∑
i=1

β2
i ≤ 4d. (5.2)

Thus
∑9−d

i=1 βi = 3α − 2d and
∑9−d

i=1 β
2
i = α2 − c2

1. When d = 3, 4(d − 1) = 8 and 4d = 12,
and so substituting the above identities in (5.1) yields

3(α − 6)2 − 72 + 6c2
1 ≤ 0. (5.3)

If c2
1 = 12, then α = 6, and thus (5.2) becomes

∑6
i=1 βi = 12 and

∑6
i=1 β

2
i = 24.

In particular, the second equality implies that β1 ≤ 4. By writing all the possible
sequences, one checks that (α, β1, . . . , β6) = A := (6, 2, . . . , 2). Thus c1 = 2h in this
case.

If c2
1 = 10, then (5.3) becomes (α − 6)2 − 4 ≤ 0, and thus 4 ≤ α ≤ 6. If α = 4, then∑6

i=1 βi = 6 and
∑6

i=1 β
2
i = 6, and thus β1 ≤ 2. The unique solution is B := (4, 1, . . . , 1).

If α = 5, then
∑6

i=1 βi = 9 and
∑6

i=1 β
2
i = 15, and thus β1 ≤ 3. The solution is B′ :=

(5, 2, 2, 2, 1, 1, 1). Finally, if α = 6, then
∑6

i=1 βi = 12 and
∑6

i=1 β
2
i = 26. Arguing as

before, (α, β1, . . . , β6) = B′′ := (6, 3, 2, 2, 2, 2, 1).
If c2

1 = 8, then (5.3) becomes (α − 6)2 − 8 ≤ 0, and thus again 4 ≤ α ≤ 6. If α = 4,
then

∑6
i=1 βi = 6 and

∑6
i=1 β

2
i = 8, and the unique solution is C := (4, 2, 1, 1, 1, 1, 0).

If α = 5, then
∑6

i=1 βi = 9 and
∑6

i=1 β
2
i = 17: in this case, we have the two solutions

C′ := (5, 3, 2, 1, 1, 1, 1) and C′′ := (5, 2, 2, 2, 2, 1, 0). If α = 6, then
∑6

i=1 βi = 12 and∑6
i=1 β

2
i = 28, and we have the solution C′′′ := (6, 3, 3, 2, 2, 1, 1).

We now choose the pairwise mutually disjoint lines

e1 := ` − e2 − e3, e2 := ` − e1 − e3, e3 := ` − e1 − e2,

e4 := e4, e5 := e5, e6 := e6.

Lemma 3.5 guarantees the existence of a blow up S → P2 such that the above lines are
its exceptional divisors. Thus Pic(S ) is freely generated by the classes of the above
lines and by a further divisor ` which must satisfy the equality

3` −
6∑

i=1

ei = h = 3` −
6∑

i=1

ei
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(see Lemma 3.3). A substitution yields ` = 2` − e1 − e2 − e3. The idempotent matrix

M :=



2 −1 −1 −1 0 0 0
1 0 −1 −1 0 0 0
1 −1 0 −1 0 0 0
1 −1 −1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


is the basis change matrix from B := (`,−e1, . . . ,−e6) to B := (`,−e1, . . . ,−e6): that
is, if X are the components of c1 with respect to B, then the components of c1 with
respect to B are Xt M.

It is straightforward to check that B′t M and B′′t M are, up to permutations of the last
six components, B and B′. Thus, up to a proper choice of the blow up base, we can
always assume that c1 = 5` − 2

∑3
i=1 ei −

∑6
i=4 ei if c2

1 = 10. Similarly, C′t M, C′′t M and
C′′′t M are C up to permutations of the last six components. As in the previous case,
we can thus assume that c1 = 5` − 2

∑4
i=1 ei − e5 if c2

1 = 8.
If d = 4, then the same argument as above using the basis

e1 := ` − e2 − e3, e2 := ` − e1 − e3, e3 := ` − e1 − e2, e4 := e4, e5 := e5,

leads to c1 = 6` − 2
∑5

i=1 ei = 2h if c2
1 = 16, c1 = 5` − 2e1 − 2e2 −

∑5
i=3 ei if c2

1 = 14,
and c1 = 5` − 2

∑3
i=1 ei − e4 if c2

1 = 12.
If d = 5, then using the basis

e1 := ` − e2 − e3, e2 := ` − e1 − e3, e3 := ` − e1 − e2, e4 := e4,

we can restrict to the cases c1 = 6` − 2
∑5

i=1 ei = 2h if c2
1 = 20, c1 = 5` − 2e1 −

∑4
i=2 ei

if c2
1 = 18, and c1 = 5` − 2

∑2
i=1 ei − e3 if c2

1 = 16.
When d ≥ 6, the change of basis does not shorten the list of possible c1. Indeed, if

d = 6, c1 = 6` − 2
∑3

i=1 ei = 2h if c2
1 = 24, c1 is either 5` −

∑3
i=1 ei or 6` − 3e1 − 2e2 − e3

if c2
1 = 22, and c1 = 5` − 2e1 − e2 if c2

1 = 20. If d = 7, then c1 = 6` − 2e1 − 2e2 = 2h
if c2

1 = 28, c1 = 6` − 3e1 − e2 if c2
1 = 26, and c1 = 5` − e1 if c2

1 = 24. If d = 8, then
only the case c1 = 2h is admissible and c2

1 = 32. Finally, when d = 9, Pic(S ) � Z is
generated by h, and thus c1 = αh. Now c1h = 18 trivially implies c1 = 2h, and hence
c2

1 = 36. �

Now we turn our attention to the remaining anticanonically embedded surface, that
is, S � P1 × P1 which has degree eight.

Proposition 5.2. Let E be an indecomposable Ulrich bundle of rank two on
the anticanonically embedded surface S ⊆ P8 isomorphic to P1 × P1. Up to an
automorphism of S , c1 := c1(E) is either 3`1 + 5`2 or 2h.
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Proof. We know that c1 = α1`1 + α2`2 for suitable integers αi, i = 1, 2, which must be
nonnegative because E is globally generated, and hence the same is true for OS (c1).
Moreover, h = 2(`1 + `2) and c1h = 16, and thus α1 + α2 = 8. By computing c2

1,
Proposition 4.3 yields the statement. �

Each Chern class listed in the above statements will be called an admissible class.

Remark 5.3. The existence of rank two Ulrich bundles with c1 = 2h is already known
(see [10, Corollary 6.5]). In [7, Proposition 3.7], the authors prove the existence on
each anticanonically embedded surface S ⊆ Pd with d ≤ 7 of Ulrich bundles of rank
two whose first Chern class is h + C, where C is a rational normal curve of degree
d. The adjunction formula on S implies that C2 = d − 2: thus c2

1 = 4d − 2 for such
bundles.

In the next section we will reprove these facts when d ≤ 8. We also prove the
existence of Ulrich bundles of rank two such that c2

1 = 4d − 4.

6. Existence of indecomposable Ulrich bundles of rank two

In this section, we construct stable Ulrich bundles of rank two on an anticanonically
embedded surface S ⊆ Pd of degree d ≤ 8 whose first Chern class is admissible.

We will make use of the Hartshorne–Serre correspondence on surfaces.

Theorem 6.1 [14, Theorem 5.1.1]. Let S ⊆ Pd be an anticanonically embedded surface
and let Z ⊆ S be a locally complete intersection subscheme of dimension zero. IfOS (A)
is initialised, then there exists a vector bundle F of rank two on S with det(F ) = OS (A)
and with a section s such that Z = (s)0.

Remark 6.2. Let Z and S be as in Theorem 6.1. The theorem implies the existence of
an exact Koszul complex

0 −→ OS −→ F −→ IZ(A) −→ 0, (6.1)

where F is a vector bundle and IZ denotes the ideal sheaf of Z inside S . The proof
in [14] shows that each general choice of ξ ∈ Ext1S (IE(A),OS ) � H1(S ,IE(A − h))∨

returns a bundle in the above way: thus the extensions are parameterised by an open
subset of P(H1(S ,IE(A − h))).

For each divisor A on S , the adjunction formula implies that A2 − Ah is an even
integer.

Proposition 6.3. Let S ⊆ Pd be an anticanonically embedded surface and let OS (A),
OS (D) be initialised line bundles on S with h1(S , OS (D − h)) = 0, Ah = 2a and
Dh = d − a. Let Z ⊆ S be a locally complete intersection subscheme of dimension
zero and degree z := AD + (A2 − Ah)/2 that is not contained in any curve of degree a
on S . Then there is an Ulrich bundle E of rank two on S with c1(E) = A + 2D. Further,
E(−D) has a section with Z as its zero-locus. The bundle E is stable if and only if a > 0.
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Proof. The line bundle OS (D) is initialised, so it is effective, and h2(S ,OS (D − h)) =

h0(S ,OS (−D)) = 0. Since h0(S ,OS (D − h)) = h1(S ,OS (D − h)) = 0 (by hypothesis), it
follows that D2 = d − a − 2 from (3.1). By hypothesis h0(S ,OS (A − h)) = 0, thus there
is a rank two bundle F on S that fits into the sequence (6.1). Trivially, c1(F ) = A and
c2(F ) = z. The bundle E := F (D) fits into the sequence

0 −→ OS (D) −→ E −→ IZ(D + A) −→ 0. (6.2)

We have c1(E) = c1(F ) + 2D = A + 2D, and hence c1(E)h = Ah + 2Dh = 2d. Thus

c2(E) = c2(F ) + c1(F )D + D2 = AD +
A2 − Ah

2
+ AD + D2

=
(A + 2D)2

2
+ 2 − d =

c1(E)2

2
+ 2 − d.

We deduce that both the equalities (4.1) hold.
Since (D + A − h)h = a, the hypotheses on Z imply that h0(S ,IZ(D + A − h)) = 0.

The cohomology of sequence (6.2) tensored by OS (−h) implies that h0(S ,E(−h)) = 0.
Tensoring sequence (6.2) by OS (h − A − 2D) and noting E(−A − 2D) � E∨ gives

0 −→ OS (h − A − D) −→ E∨(h) −→ IZ(h − D) −→ 0.

We have (h − D − A)h = −a, and hence h0(S , OS (h − D − A)) = 0. Moreover,
(h − D)h = a. The hypotheses on Z again imply that h0(S ,IZ(h − D)) = 0, and hence
h0(S ,E∨(h)) = 0. We conclude that the above construction yields an Ulrich bundle E
of rank two on S with c1(E) = A + 2D.

We have to prove that it is stable or, equivalently (see Theorem 2.2), µ-stable if
and only if a > 0. If a = 0, then µ(D) = d = µ(E), and hence E is not µ-stable because
OS (D) is a subbundle of E (see sequence (6.2)).

Assume that a > 0. If E is not µ-stable, by Theorem 2.2(a), it is strictly µ-semistable,
and thus it fits into a sequence

0 −→ L −→ E −→M −→ 0,

where µ(L) = µ(E) = d and M is nonzero and torsion free. Thus Theorem 2.2(c)
implies that L � OS (B) is an Ulrich line bundle on S . Suppose the injection OS (B)→
E induces a nonzero morphism OS (B)→ IZ(D + A). Then h0(S ,IZ(D + A − B)) , 0,
which contradicts the choice of Z because (D + A − B)h = a.

Thus OS (B)→ IZ(D + A) must be zero. It follows that we can lift the injection
OS (B) → E to a nonzero map OS (B) → OS (A). In particular, we should have
h0(S ,OS (A − B)) , 0, which is not possible because Bh = d and Ah = d − a < d. It
follows that there are no nonzero morphisms OS (B)→ E, and hence E is µ-stable. �

Example 6.4. We prove the existence of stable rank two Ulrich bundles E with c1(E) =

2h on each anticanonically embedded surface S � P1 × P1 based on Proposition 6.3.
Assume first that d ≤ 8 and let

D := 3` − 2e1 −

9−d∑
i=2

ei, A := 2e1.
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Then a = 1, A2 − Ah + 2AD = 2 and the divisor A is trivially initialised. Also, D =

h − e1, and thus D is initialised and (3.1) for D − h yields h1(S ,OS (D − h)) = 0. The
complement S 0 ⊆ S of the union of lines is dense in S (see Lemma 3.4). Thus, for each
point P ∈ S 0, the choice of the scheme Z := {P} allows us to apply Proposition 6.3,
showing the existence of stable Ulrich bundles E on S such that

c1(E) = 6` − 2
9−d∑
i=1

ei, c2(E) = d + 2.

Now let d = 9 and choose A = D = 2`. Trivially, OS (A) � OS (D) is initialised
and, from (3.1), h1(S ,OS (A − h)) = 0. In this case, a = 3 and A2 − Ah + 2AD = 6.
Since each curve of degree three in S is necessarily in the linear system |`|, which
has dimension two, a general choice of a reduced scheme Z ⊆ S of degree six and
dimension zero leads again to a rank two stable Ulrich bundle E on S such that
c1(E) = 2h and c2(E) = 11.

When d = 9, each Ulrich bundle E of rank two on S with c1(E) = 2h satisfies
c2(E) = 11. By Lemma 4.1, these bundles are exactly aCM bundles. It follows from [3,
Example 5.6] that E � F (h), where F is a stable bundle of rank two on P2 with
c1(F ) = 0 and c2(F ) = 2.

Example 6.5. We will now complete our list of examples of stable Ulrich bundles
on each anticanonically embedded surface S � P1 × P1 for the remaining admissible
classes. The second table of [18, Theorem 4.2.2] gives the complete list of initialised
aCM bundles on S . In particular, the line bundles OS (D) listed in the Table 1 below are
initialised and aCM of degree Dh = d − 1 on each anticanonically embedded surface S
of degree d. It is easy to check that the line bundles OS (A) listed below are initialised
of degree Ah = 2. Finally A2 − Ah + 2AD = 2. Choosing Z := { P }, as in Example 6.4,
one can immediately check that all the hypotheses of Proposition 6.3 are satisfied. As
in Example 6.4, let P ∈ S be a point not lying on any line in S .We again obtain a stable
Ulrich bundle E of rank two such that c1(E) = c1.

Example 6.6. Now consider the anticanonically embedded surface S ⊆ P8 isomorphic
to P1 × P1. By Proposition 5.2, the admissible classes are 3`1 + 5`2 and 4(`1 + `2).

If D := `1 + 2`2, then the line bundle OS (D) is trivially initialised with respect
to OS (h) � OS (2`1 + 2`2). The surface S � P1 × P1 can be embedded in P3 via
OQ(`1 + `2) as a smooth quadric. Via such an embedding, the curve D is a rational
cubic. It is well known that h1(P3,ID|P3 (t)) = 0 for t ∈ Z for such a curve. Since
IS |P3 � OP3 (−2), it follows from the exact sequence

0 −→ IS |P3 (t) −→ ID|P3 (t) −→ ID|S (th) −→ 0

that h1(S ,ID|S (th)) = 0 for t ∈ Z. In particular, OS (−D) � ID|S is aCM with respect to
OS (`1 + `2), and thus it is trivially aCM also with respect to OS (h) � OS (2`1 + 2`2).
Serre duality finally implies that OS (D) is aCM as a line bundle on S ⊆ P8.

Set A := `1 + `2 (respectively, 2`1) if c1 = 3`1 + 5`2 (respectively, c1 = 4(`1 + `2)),
so that a = 2. It is clear that OS (A) is initialised, and A2 − Ah + 2AD = 4. Notice that
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Table 1. Line bundles in Example 6.5.

d A D c1 = A + 2D
3 ` + e4 − e5 − e6 2` − e1 − e2 − e3 − e4 5` − 2

∑3
i=1 ei −

∑6
i=4 ei

3 ` − e5 2` − e1 − e2 − e3 − e4 5` − 2
∑4

i=1 e1 − e5

4 ` + e3 − e4 − e5 2` − e1 − e2 − e3 5` − 2
∑2

i=1 ei −
∑5

i=3 ei

4 ` − e4 2` − e1 − e2 − e3 5` − 2
∑3

i=1 ei − e4

5 ` + e2 − e3 − e4 2` − e1 − e2 5` − 2e1 −
∑4

i=2 ei

5 ` − e3 2` − e1 − e2 5` − 2
∑2

i=1 ei − e3

6 ` + e1 − e2 − e3 2` − e1 5` −
∑3

i=1 ei

6 2` − e1 − 2e2 − e3 2` − e1 6` − 3e1 − 2e2 − e3

6 ` − e2 2` − e1 5` − 2e1 − e2

7 e1 + e2 3` − 2e1 − e2 6` − 3e1 − e2

7 ` − e1 2` 5` − e1

the curves of degree two on S ⊆ P8 are exactly the ones in |`1| ∪ |`2|, and thus
each point on S is contained in exactly two curves of degree two. Thus there is a
subscheme Z of degree two not contained in any curve of degree two on S . Again, by
Proposition 6.3, we obtain the existence of rank two stable Ulrich bundles E on S such
that c1(E) = 3`1 + 5`2 (respectively, 4(`1 + `2)) and c2 = 9 (respectively, c2 = 10).

Examples 6.4–6.6 provide a proof of the following result.

Theorem 6.7. Let S ⊆ Pd be an anticanonically embedded surface. For each
admissible class c1, there exists a stable Ulrich bundle E of rank two such that
c1(E) = c1.

7. Moduli spaces

In this section, we will deal with the moduli spaces of the bundles constructed in
Theorem 6.7. We start with the following proposition.

Proposition 7.1. Let S ⊆ Pd be an anticanonically embedded surface. For each
admissible class c1, the moduli spaceMs

S (2; c1, c2) of rank two vector bundles E on S
with Chern classes

c1(E) = c1, c2(E) =
c2

1

2
+ 2 − d,

which are stable with respect to ω−1
S , is nonempty, rational and irreducible of

dimension c2
1 + 5 − 4d. The general point inMs

S (2; c1, c2) is Ulrich.

Proof. The moduli spaceMs
S (2; c1, c2) is nonempty and it contains at least one Ulrich

bundle by Theorem 6.7. By [8, Theorems 4.2.4 and 4.3.8], it is rational and irreducible
of dimension c2

1 + 5 − 4d. (The hypothesis c2 � 0 in [8, Theorem 4.3.8] is used only
at the end of the proof of Proposition 4.3.6. Nevertheless, it is actually unnecessary
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for proving that statement and hence also [8, Theorem 4.3.8].) Finally, the property
of a bundle to be Ulrich is open in the moduli space by semicontinuity, and thus the
general point inMs

S (2; c1, c2) is Ulrich. �

As a first application of the above proposition we deal with the Ulrich-wildness of
anticanonically embedded surfaces. More precisely, we give the following very short
proof of a result proved in [18] when d ≤ 6 and in [16] when d ≤ 8.

Proposition 7.2. Let S ⊆ Pd be an anticanonically embedded surface. Then S is of
Ulrich-wild representation type.

Proof. We take two nonisomorphic stable Ulrich bundles of rank two, say, E1 and E2,
on S with Chern classes c1 = 2h and c2 = d + 2. Since they are nonisomorphic and
stable, it follows from [14, Proposition 1.2.7] that

h0(S ,E1 ⊗ E
∨
2 ) = h0(S ,E∨1 ⊗ E2) = 0,

and hence

h2(S ,E1 ⊗ E
∨
2 ) = h0(S ,E∨1 ⊗ E2(−h)) ≤ h0(S ,E∨1 ⊗ E2) = 0.

Thus (4.2) implies that h1(S , E1 ⊗ E
∨
2 ) = −χ(E1 ⊗ E

∨
2 ) = 4. We conclude that S is

Ulrich-wild, by [12, Theorem 1 and Corollary 1]. �

As a second application of Proposition 7.1, we deal with certain rank two Ulrich
bundles on the image F ⊆ P7 of the Segre embedding P1 × P1 × P1. In what follows,
we set OF(H) := OF ⊗ OP7 (1). The group Pic(F) is freely generated by the classes of
the fibres h1, h2 and h3 of the three projections F → P1. Moreover, OF(h1 + h2 + h3) �
OF(H) and ωF � OF(−2h1 − 2h2 − 2h3) � OF(−2H).

From now on, we will assume that the characteristic of k is zero in order to make
use of the results proved in [4] and [5]. In those papers, both the complete description
of aCM vector bundles of rank two on F and the construction of their moduli spaces
are given. In particular, it is shown that if E is an Ulrich bundle on F, then the pair
(c1(E), c2(E)) is necessarily one of the following (up to permutations of the hi).

(2H, 2h2h3 + 2h1h3 + 4h1h2), (2H, 2h2h3 + 3h1h3 + 3h1h2),
(h1 + 2h2 + 3h3, 3h2h3 + 3h1h3 + h1h2), (h1 + 2h2 + 3h3, 4h2h3 + h1h3 + 2h1h2).

In the first three cases, the moduli spaceMs,U
F (2; c1(E), c2(E)) of stable Ulrich bundles

with respect to H is nonempty, unirational and irreducible and it has dimension
(4c2(E) − c2

1(E))h − 3 (see [5, Propositions 6.4 and 6.5]). In the fourth case, all the
rank two Ulrich bundles E are strictly semistable and form a family isomorphic to
P3 (see [5, Proposition 6.2]). Moreover, all such bundles are S -equivalent (see [14]
for the definition of S -equivalence). In [5, Section 8], the rationality of the moduli
spaceMs,U

F (2; 2H, 2h2h3 + 2h1h3 + 4h1h2) is proved by constructing a rational map to
a suitable moduli space of bundles of rank two on a quadric surface which is known to
be nonempty and rational due to an old result (see [19]).
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We reproduce such an argument forMs,U
F (2; h1 + 2h2 + 3h3, 3h2h3 + 3h1h3 + h1h2),

starting from the analogous properties ofMs
S (2; 3`1 + 5`2, 9) listed in Proposition 7.1.

Let ϕ : F → P1 be the projection onto the second factor and ψ : F → S := P1 × P1 be
the projection on the remaining two factors. If `1 and `2 are the two standard generators
of Pic(S ), then ψ∗OS (`1) = OF(h1), ψ∗OS (`2) = OF(h3). Moreover, ϕ∗OP1 (1) = OF(h2).

For each general E ∈ Ms
S (2; 3`1 + 5`2, 9), we set

e(E) := ψ∗E(−`1 − `2) ⊗ OF(h2) � ψ∗E ⊗ OF(−h1 + h2 − h3).

Lemma 7.3. If E ∈ Ms
S (2; 3`1 + 5`2, 9) is general, then e(E) is in the moduli space

M
s,U
F (2; h1 + 2h2 + 3h3, 3h2h3 + 3h1h3 + h1h2).

Proof. By definition, E is stable with respect to the natural polarisation on S , namely,
ω−1

S � OS (−2`1 − 2`2). It is also Ulrich, and hence aCM, with respect to the same
polarisation. In particular,

h0(S ,E(−2`1 − 2`2)) = h1(S ,E(−2`1 − 2`2))
= h1(S ,E(−4`1 − 4`2)) = h2(S ,E(−4`1 − 4`2)) = 0. (7.1)

Notice that

c2(e(E)) = ψ∗c2(E) + (3h1 + 5h3)(−h1 + h2 − h3) + (−h1 + h2 − h3)2

= 3h2h3 + 3h1h3 + h1h2

because ψ∗c2(E) = ψ∗(9`1`3) = 9h1h3. The Künneth formulas imply that

hp(F, e(E)(−tH)) = hp(F, ψ∗E(−(t + 1)`1 − (t + 1)`2) ⊗ OF((1 − t)h2))

=

p∑
i=0

hi(S ,E(−(t + 1)`1 − (t + 1)`2))hp−i(P1,OP1 (1 − t)),

because ϕ∗OP1 (1) = OF(h2). From h0(P1,OP1 (−1)) = h1(P1,OP1 (−1)) = 0 and (7.1),

h0(F, e(E)(−H)) = h1(F, e(E)(−H)) = h1(F, e(E)(−2H))

= h2(F, e(E)(−2H)) = h2(F, e(E)(−3H)) = h3(F, e(E)(−3H)) = 0.

Thus, by definition, e(E) is Ulrich. Ulrich bundles are always semistable (see
Theorem 2.2), and thus e(E) ∈ Mss,U

F (2; h1 + 2h2 + 3h3, 3h2h3 + 3h1h3 + h1h2). But
this last space coincides with Ms,U

F (2; h1 + 2h2 + 3h3, 3h2h3 + 3h1h3 + h1h2), by [5,
Proposition 6.4]. �

The above lemma implies that

e : Ms
S (2; 3`1 + 5`2, 9) dMs,U

F (2; h1 + 2h2 + 3h3, 3h2h3 + 3h1h3 + 1h1h2)

is a well-defined rational map. The map ψ : F → S has a section σ : S → F. Thus
σ∗ψ∗ = (ψσ)∗ is the identity, and hence ψ∗ is injective. From the definition of e, we
deduce that e is injective as well. Since both the moduli spaces have dimension three,
we deduce that e is also dominant, and hence birational.
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Theorem 7.4. Let F ⊆ P7 and h1, h2, h3 be as specified above. Then the moduli space
M

s,U
F (2; h1 + 2h2 + 3h3, 3h2h3 + 3h1h3 + 1h1h2) is rational.

Proof. The statement follows from the birationality of e and Proposition 7.1. �

Remark 7.5. For each d other than six, there is at most one admissible class c1 with
c2

1 = 4d − 2. The existence of two different admissible classes c1 with c2
1 = 22 when

d = 6 can be motivated as follows.
As pointed out above, on the image F ⊆ P7 of the Segre embedding of P1 × P1 × P1,

there exist two families of rank two Ulrich bundles G with c1(G) = h1 + 2h2 + 3h3. For
each G in these families, c2(G) represents a rational normal curve in P7. Such an F is
the unique del Pezzo threefold supporting rank two Ulrich bundles Gwith c1(G) , 2H.

Let S ∈ |OF(H)| be general. Then S ⊆ P6 is an anticanonically embedded surface.
We can assume the classes of `, e1, e2, e3 ∈ Pic(F) inside A(F) are h2h3 + h1h3 + h1h2,
h2h3, h1h3, h1h2, respectively (see the proof of [4, Lemma 6.4]). The restriction
E := G ⊗ OS satisfies

c1(E) = c1(G)H = 6` − 3e1 − 2e2 − e3, c2(E) = c2(G)H = 7.

In particular, bundles on S with c1(E) = 6` − 3e1 − 2e2 − e3 come by restriction from
the aforementioned families on F.
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