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Abstract

Let G be a p-group with cyclic centre 2(G) = Z. Then¥(G) = {Z < H < G|H' N Z = (1)}, a poset
ordered under inclusion. Then the associated simplicial complex |%(G)] is homotopic to a bouquet of
spheres. A subgroup E of G is called a CES if C,(E) = Z = Z(E) and if E/Z is elementary. Then
|¥(G)| is homotopic to the one-point union of the |[#(E)| for all CES’s Ein G. If \E/Z| = p*", then
|’ ( E)} is homotopic to a one-point union of p"2 (n — 1)-spheres.
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1. Introduction

A finite p-group G has a faithful irreducible representation p over the complex
number field C if and only if its centre Z(G) = Z is cyclic. Indeed by Schur’s
lemma the restriction of p to Z consists of scalar matrices A I, where A is a faithful
linear representation of Z. Every representation of G is monomial and so one can
ask if a ““transitive” monomial representation with “stabiliser” H restricts to Z to
give A I. The set of such H gives the poset

F(G)={Z<H<GH nZ=(1)},

ordered under inclusion.

& (G) is unchanged by extension of Z to a larger cyclic group (by central
amalgamation or equivalently by the addition of further scalar matrices to the
irreducible p-group). Indeed (G ) is preserved under isoclinism.
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To a poset X is associated a simplicial complex | X| whose vertices are the
elements of X and simplices the nonempty chains in X. A morphism f: X —» Y is
an order preserving map and induces a simplicial map |f|: | X| — |Y| (more details
are given in Quillen [2]). For y € Y, we set f/y = {x € X|f(x) < y}. We have
the following theorem due to Quillen [1]:

(1.1) If f/y is contractibleVy € Y, then |f| is a homotopy equivalence.

An elementary proof is given by Walker [3].

If instead of ¥(G), we consider those “transitive” monomial representations
whose “stabilisers” are not contained in the centre Z, but which represent G
faithfully, we are led to the poset

J(g)={H<GH£Z H NnZ=(1)}.

However ¥ (G) and 7 (G) are homotopically equivalent. For consider the map
[ 9(G) - #(G), H— HZ. If K € #(G), then f/K consists of all H in 7(G)
with H < K. But any simplex in | f/K| is joined to the vertex K. Hence |f/K|is a
cone, contractible to K, and so by (1.1) |f | is a homotopy equivalence.

Thus we concentrate on &(G) and show that |¥(G)| is a homotopic to a
one-point union of spheres.

A p-group E is called an ES if Z°(FE) is cyclic and E/Z(E) is elementary. An
ES is almost extraspecial and is extraspecial if its cyclic centre has order p. For
such an E, commutation defines a symplectic form on E/Z(E) into F,. If
|E/Z(E)| = p?", E is called an n-ES. E is a central amalgamated product of n
1-ES’s.

A subgroup E of G is called a CES (centralised ES) if C;(E) = Z(E)= Z and
E/Z is elementary. E is an n-CES of G if further E is an n-ES.

We will show that |( E)| is homotopic to a one-point union of p™ (n — 1)-
spheres when E is an n-ES and that |%(G)| is homotopic to the one-point union
of the |.#(E)|, and E runs through all CES’s in G.

2. |#(G)| as a union of suspensions

For K such that Z < K < G, write
#(K)={HeS(G)H< K, H/Z elementary } .

If K = Z, then #/(K) is empty. In analogy to Proposition 2.1 of Quillen [2], we
have:

PROPOSITION 2.1. The inclusion i: 22 (G) — ¥ (G) is a homotopy equivalence.
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Proor. Take K € #(G). Then
i/K=9/(K)={H|Z<H< K, H/Z elementary, H abelian } .

Take L/Z < #(K/Z) with |L/Z| = p. If H € 2#(K), then we show that
LH € &/(K). For LH/Z is elementary and so (LH) < Z. But LH < K and
K'NZ=()and so (LH) = (1), i.e. LH € &/{K). Thus |i/K| is a cone with
vertex L and so is contractible. The result now follows from Quillen’s Theorem
(1.1).

We can now confine our attention to the homotopy type of &/(G). Take
A/Z < Z(G/Z), with A /Z of order p. Let

¢={Hew(G)-(Cs(A)||H/ZI=p}.

LEmMMA 2.2. C;(A) is maximal in G.

PrOOF. Take a € A — Z. Then g — {g, a] is a group homomorphism from G
onto the subgroup of Z of order p. Its kernel is C;(A4) which is thus maximal.

PROPOSITION 2.3. (G| = V e S| (Cs(A, H))| where V is the one-point
union, S is the (two-point) suspension and C;(A, H) = C;({A, H}).

ProOOF. For H € ¥, set

2(H)={H} U U {(K, H)},

KeA(Cy(A, HY)
a subposet of & (G). Then
HZ(G)=(Cs(4)) v U 2(H).

He®%
This follows as every L in .o/ (G) satisfies either

() {L, A] = (1), whence L € &/ (C;(A)) or

(i) [L, A] > (1), whence K = C;(A) N L is maximal in L and so 3H € ¥ with
L=(K,H)(weallowL =Hand K = Z).

Set B =A(CAANU UycoP(H), U denoting abstract disjoint union. We
consider % as a poset where the order relation within each U-summand is that of
inclusion; if K € #(C,;(A4, H)) € #(C;(A)), then K in U-summand K (Ci;(A))
is < (K, H)in U-summand 2(H).

It is claimed that the map f: # — &/(G) obtained by removing dots, is a
homotopy equivalence. For take L € &#/(G) and look at f/L. If [L, A] = (1), then
L € &/(C;(A)) and f/L is a cone with vertex L lying in the subspace | .o/ (C;( A4))|
of |#|. If [L, A] > (1), then either |L/Z|=p and so L € € and f/L = {L},
which is a point and so contractible, or N = L N C;(A) > Z. In this latter case,
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if H € and H < L, then C;(A4, H) N L = N so that

yL=s(N)v U ((mu U (K1),
HE® KeH(N)

In || this is a cone with vertex N and so is contractible. By (1.1) f is then a
homotopy equivalence.

It suffices to look at #. The picture of | %] is first of all a cone |27 (C;( A))} with
vertex A, together with a separate cone cap with vertex H and section
| (Cx(A, H)H(C | (Cz(A)))) foreach H € €.

We now contract the cone | {C;(A))| to its vertex A. For each H € ¥, the
corresponding cone cap of section |&/(C;(A4, H))| becomes the suspension
S(|Z(C;(A, H)))) of this section from the two vertices 4 and H. Thus we obtain
the one-point union of suspensions

|8 ~ HVgS(W(CG(A, H))|),

with common point A, as required.

3. Case when G is an ES

Suppose that G is an #-ES and so G is the central amalgamated product of n
1-ES’s. In applying (2.3), we choose A/Z < Z(G/Z) of order p. C;(A)/Z has
order p?"~! and |¥|= p?"~! = number of points in a projective space of
dimension 2n — 1 over F, lying outside a hypersurface. Hence there are p2rt
Vv -summands in (2.1). For H € €, C;(A4, H)/Z has order p>" = and C (A4, H)
is an (n — 1)-ES. By induction on n we can suppose that |/ (Cs(A4, H))| is
homotopic to a one-point union of p>"~! (n — 2)-spheres. Each (n — 2)-sphere
suspends to give a (n — 1)-sphere. Thus the total number of (n — 1)-spheres in
|#Z(G)|is p2*~1 X p»~1* = p"” and the induction proceeds. The induction starts
when n = 0, G = Z and #(G) is void. S(@) is the pair of suspending points and
so is a O-sphere. Summarizing, we have

PROPOSITION 3.1. If G is an n-ES, then | (G)| is homotopically equivalent to a
one-point union of p™ (n — 1)-spheres.

This structure of p” (n — 1)-spheres is the Tits’ building for the symplectic
group Sp(2n,F,) acting on G/Z with the symplectic form being given by
commutation. The (n — 1)-dimensional homology group has rank p” and the
induced action of Sp(2n,F,) on this gives a realisation of the Steinberg character.
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4. %(G) as a one-point union of spheres

THEOREM 4.1. Let G be a p-group with cyclic centre Z and set ¥ (G)={Z < H
< G|H' N Z = (1)}, ordered under inclusion. Then | (G)| is homotopically equiva-
lent to a one-point union of spheres.

PROOF. By (2.1), | #(G)| = |«/(G)| and by (2.3) we have

(42) (6= V 5l (a4, M),

He¥
where €= {H € o/ (G) — A (C;(A)||H/Z| = p}. We apply this same result
(4.2) to each V-summand #(C;(A4, H)) in turn and so on. We thus obtain
V -sums over sequences (A, H; A;, H,;...) and we look at how these sequences
terminate. For a particular choice of A, H we look at S(|#Z(C;(A4, H)))).

(1) Case Z(Cz(A, H)) > Z. Take B < Z(Cy(A, H)) with |B/Z| = p. Then
| (C;(A, H))| is contractible to the vertex B. As S(point) = point, such an
ending gives no contribution to final one-point union.

(i) Case G, = Cz(A, H) > Z and Z(G,) = Z. Choose A, /Z < Z(G,/Z) with
|4,/Z| = p. 1 Z(G,) £ L (C;,(A4,)), then a choice of H is possible and sequence
proceeds. If however we have #/(G,) C &/ (C; (4,)), then every element of #(G,)
commutes with 4, and |#/(G,)| is homotopic to a cone with vertex A4, and so is
contractible to a point. As in (i), this gives no contribution to the final one-point
union.

(iii) Case C;(A, H) = Z. Thus & (C;( A, H)) is void and S(&) is the two-point
0-sphere. Continuing suspensions give higher dimensional spheres (as in Section
3).

Hence nontrivial contributions to |/(G)] come from sequences
A, Hy;...;A,, H, where,if weset E = (A4, H,...,A,, H,, Z), then C;(E) =
Z and so E is an n-CES for some n. Each such V-summand is homotopic to the
n-fold suspension S"(7) which is a (n — 1)-sphere and so |.#/(G)| is a one-point
union of spheres, as required.

5. Critical roles of the CES’s

(5.1) An (n — 1)-spherical V-summand in (4.1) corresponds to a sequence
A\, Hy; ... A,, H, These subgroups together with Z generate an n-CES E of G.
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We now collect together summands in (4.1) according to the CES that they
generate.

LEMMA 5.2. If A/Z lying in Z(G/Z) has exponent p and if E is CES in G, then
A<E. ‘

PROOF. As an elementary group is generated by its subgroups of order p, it is
sufficient to show the result when 4 /Z has order p.

Suppose E is an n-CES and so E/Z has order p?". If A £ E, then AE/Z is
elementary of order p?"*!. Commutation defines a symplectic form on AE/Z
into F, and as this has odd dimension over F, it has a singular subspace Y/Z.
Then Z < Y < C;(E), contrary to the fact that E is a CES. Hence 4 < E, as
required.

THEOREM 5.3. Let G be a p-group with cyclic centre Z. Then |.¥(G)| is homotopic
to a one-point union

[#(G)| = VIZ(E)|,

where E runs through the CES’s of G. If E is an n-CES, then | ¥ ( E)| is homotopic
to a one-point union of p"2 (n — 1)-spheres.

PROOF. Let F be an n-CES of G. As |.¥(G)} and |.£( E)| are one-point unions
of spheres, it is sufficient to see that there are sufficient (i.e. p™’) V-summands in
(4.1), indexed by sequences (A, Hy; ...;A4,, H,),such that E = {(A,,... . H,, Z).

Take r with 0 <r <n and write M, = (A,,...,H,Z) and N, =
(A, ,...,H,, Z). Then E is the central amalgamated product of the ES’s M,
and N,. At the (r + 1)st stage of analysing and forming the summands in (4.1) we
have to look at Cgi(A4,, H,,...,A,, H)= C;(M,) and choose A4,,,/Z in
Z (C;(M,)) of order p. Now N,is a CES in C;(M,)and soby (5.2)4,,, < N. A
union is then taken over all H,,,/Z of order p in C;(M,) with[4, ., H, ;] > (1).
Considering only those H, . ,/Z which lie in a given n-CES E, we see that their
number is independent of the rest of G as is the same as if E were considered in
isolation. Hence that part of the one-point union [ (G)| in 4.1 coming from all
sequences A,,. .., H,, Z which generate E is homotopic to | ( £)|. This completes
the proof.
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