A HOMOTOPY TYPE OF A p-GROUP WITH CYCLIC CENTRE

S. B. CONLON

(Received 14 April 1983)

Communicated by D. E. Taylor

Abstract

Let G be a p-group with cyclic centre $\mathscr{Z}(G) = Z$. Then $\mathscr{S}(G) = \{Z \le H \le G | H' \cap Z = (1)\}$, a poset ordered under inclusion. Then the associated simplicial complex $|\mathscr{S}(G)|$ is homotopic to a bouquet of spheres. A subgroup E of G is called a CES if $C_G(E) = Z = \mathscr{Z}(E)$ and if E/Z is elementary. Then $|\mathscr{S}(G)|$ is homotopic to the one-point union of the $|\mathscr{S}(E)|$ for all CES's E in G. If $|E/Z| = p^{2n}$, then $|\mathscr{S}(E)|$ is homotopic to a one-point union of p^{n^2} (n-1)-spheres.

1980 Mathematics subject classification (Amer. Math. Soc.): 20 D 15.

1. Introduction

A finite p-group G has a faithful irreducible representation ρ over the complex number field C if and only if its centre $\mathscr{Z}(G) = Z$ is cyclic. Indeed by Schur's lemma the restriction of ρ to Z consists of scalar matrices λI , where λ is a faithful linear representation of Z. Every representation of G is monomial and so one can ask if a "transitive" monomial representation with "stabiliser" H restricts to Z to give λI . The set of such H gives the poset

$$\mathscr{S}(G) = \{ Z < H \leqslant G | H' \cap Z = (1) \},$$

ordered under inclusion.

 $\mathcal{S}(G)$ is unchanged by extension of Z to a larger cyclic group (by central amalgamation or equivalently by the addition of further scalar matrices to the irreducible p-group). Indeed $\mathcal{S}(G)$ is preserved under isoclinism.

^{© 1985} Australian Mathematical Society 0263-6115/85 \$A2.00 + 0.00

To a poset X is associated a simplicial complex |X| whose vertices are the elements of X and simplices the nonempty chains in X. A morphism $f: X \to Y$ is an order preserving map and induces a simplicial map $|f|: |X| \to |Y|$ (more details are given in Quillen [2]). For $y \in Y$, we set $f/y = \{x \in X | f(x) \le y\}$. We have the following theorem due to Quillen [1]:

(1.1) If f/y is contractible $\forall y \in Y$, then |f| is a homotopy equivalence.

An elementary proof is given by Walker [3].

If instead of $\mathcal{S}(G)$, we consider those "transitive" monomial representations whose "stabilisers" are not contained in the centre Z, but which represent G faithfully, we are led to the poset

$$\mathscr{T}(g) = \{ H \leqslant G | H \nleq Z, H' \cap Z = (1) \}.$$

However $\mathcal{S}(G)$ and $\mathcal{T}(G)$ are homotopically equivalent. For consider the map $f: \mathcal{T}(G) \to \mathcal{S}(G)$, $H \mapsto HZ$. If $K \in \mathcal{S}(G)$, then f/K consists of all H in $\mathcal{T}(G)$ with $H \leq K$. But any simplex in |f/K| is joined to the vertex K. Hence |f/K| is a cone, contractible to K, and so by (1.1) |f| is a homotopy equivalence.

Thus we concentrate on $\mathcal{S}(G)$ and show that $|\mathcal{S}(G)|$ is a homotopic to a one-point union of spheres.

A p-group E is called an ES if $\mathscr{Z}(E)$ is cyclic and $E/\mathscr{Z}(E)$ is elementary. An ES is almost extraspecial and is extraspecial if its cyclic centre has order p. For such an E, commutation defines a symplectic form on $E/\mathscr{Z}(E)$ into \mathbf{F}_p . If $|E/\mathscr{Z}(E)| = p^{2n}$, E is called an n-ES. E is a central amalgamated product of n 1-ES's.

A subgroup E of G is called a CES (centralised ES) if $C_G(E) = \mathcal{Z}(E) = Z$ and E/Z is elementary. E is an n-CES of G if further E is an n-ES.

We will show that $|\mathcal{S}(E)|$ is homotopic to a one-point union of p^{n^2} (n-1)-spheres when E is an n-ES and that $|\mathcal{S}(G)|$ is homotopic to the one-point union of the $|\mathcal{S}(E)|$, and E runs through all CES's in G.

2. $|\mathcal{S}(G)|$ as a union of suspensions

For K such that $Z \leq K \leq G$, write

$$\mathscr{A}(K) = \{ H \in \mathscr{S}(G) | H \leqslant K, H/Z \text{ elementary } \}.$$

If K = Z, then $\mathscr{A}(K)$ is empty. In analogy to Proposition 2.1 of Quillen [2], we have:

PROPOSITION 2.1. The inclusion $i: \mathcal{A}(G) \to \mathcal{S}(G)$ is a homotopy equivalence.

PROOF. Take $K \in \mathcal{S}(G)$. Then

$$i/K = \mathcal{A}(K) = \{ H|Z < H \leq K, H/Z \text{ elementary}, H \text{ abelian} \}.$$

Take $L/Z \le \mathscr{Z}(K/Z)$ with |L/Z| = p. If $H \in \mathscr{A}(K)$, then we show that $LH \in \mathscr{A}(K)$. For LH/Z is elementary and so $(LH)' \le Z$. But $LH \le K$ and $K' \cap Z = (1)$ and so (LH)' = (1), i.e. $LH \in \mathscr{A}(K)$. Thus |i/K| is a cone with vertex L and so is contractible. The result now follows from Quillen's Theorem (1.1).

We can now confine our attention to the homotopy type of $\mathscr{A}(G)$. Take $A/Z \leq \mathscr{Z}(G/Z)$, with A/Z of order p. Let

$$\mathscr{C} = \left\{ H \in \mathscr{A}(G) - \mathscr{A}(C_G(A)) | |H/Z| = p \right\}.$$

LEMMA 2.2. $C_G(A)$ is maximal in G.

PROOF. Take $a \in A - Z$. Then $g \mapsto \{g, a\}$ is a group homomorphism from G onto the subgroup of Z of order p. Its kernel is $C_G(A)$ which is thus maximal.

PROPOSITION 2.3. $|\mathscr{A}(G)| \simeq \bigvee_{H \in \mathscr{C}} S|\mathscr{A}(C_G(A, H))|$ where \vee is the one-point union, S is the (two-point) suspension and $C_G(A, H) = C_G(\langle A, H \rangle)$.

PROOF. For $H \in \mathscr{C}$, set

$$\mathcal{D}(H) = \{H\} \cup \bigcup_{K \in \mathcal{A}(C_G(A, H))} \{\langle K, H \rangle\},\$$

a subposet of $\mathcal{A}(G)$. Then

$$\mathscr{A}(G) = \mathscr{A}(C_G(A)) \cup \bigcup_{H \in \mathscr{C}} \mathscr{D}(H).$$

This follows as every L in $\mathcal{A}(G)$ satisfies either

- (i) [L, A] = (1), whence $L \in \mathcal{A}(C_G(A))$ or
- (ii) [L, A] > (1), whence $K = C_G(A) \cap L$ is maximal in L and so $\exists H \in \mathscr{C}$ with $L = \langle K, H \rangle$ (we allow L = H and K = Z).

Set $\mathscr{B} = \mathscr{A}(C_G(A)) \dot{\cup} \dot{\cup}_{H \in \mathscr{C}} \mathscr{D}(H)$, $\dot{\cup}$ denoting abstract disjoint union. We consider \mathscr{B} as a poset where the order relation within each $\dot{\cup}$ -summand is that of inclusion; if $K \in \mathscr{A}(C_G(A, H)) \subseteq \mathscr{A}(C_G(A))$, then K in $\dot{\cup}$ -summand $\mathscr{A}(C_G(A))$ is $\leq \langle K, H \rangle$ in $\dot{\cup}$ -summand $\mathscr{D}(H)$.

It is claimed that the map $f: \mathcal{B} \to \mathcal{A}(G)$ obtained by removing dots, is a homotopy equivalence. For take $L \in \mathcal{A}(G)$ and look at f/L. If [L, A] = (1), then $L \in \mathcal{A}(C_G(A))$ and f/L is a cone with vertex L lying in the subspace $|\mathcal{A}(C_G(A))|$ of $|\mathcal{B}|$. If [L, A] > (1), then either |L/Z| = p and so $L \in \mathcal{C}$ and $f/L = \{L\}$, which is a point and so contractible, or $N = L \cap C_G(A) > Z$. In this latter case,

if $H \in \mathcal{C}$ and H < L, then $C_G(A, H) \cap L = N$ so that

$$f/L = \mathscr{A}(N) \cup \bigcup_{\substack{H \in \mathscr{C} \\ H < L}} \Big(\{H\} \cup \bigcup_{K \in \mathscr{A}(N)} \{\langle K, H \rangle \} \Big).$$

In $|\mathcal{B}|$ this is a cone with vertex N and so is contractible. By (1.1) f is then a homotopy equivalence.

It suffices to look at \mathscr{B} . The picture of $|\mathscr{B}|$ is first of all a cone $|\mathscr{A}(C_G(A))|$ with vertex A, together with a separate cone cap with vertex H and section $|\mathscr{A}(C_G(A, H))| (\subseteq |\mathscr{A}(C_G(A))|)$ for each $H \in \mathscr{C}$.

We now contract the cone $|\mathscr{A}(C_G(A))|$ to its vertex A. For each $H \in \mathscr{C}$, the corresponding cone cap of section $|\mathscr{A}(C_G(A, H))|$ becomes the suspension $S(|\mathscr{A}(C_G(A, H))|)$ of this section from the two vertices A and B. Thus we obtain the one-point union of suspensions

$$|\mathscr{B}| \simeq \bigvee_{H \in \mathscr{C}} S(|\mathscr{A}(C_G(A, H))|),$$

with common point A, as required.

3. Case when G is an ES

Suppose that G is an n-ES and so G is the central amalgamated product of n 1-ES's. In applying (2.3), we choose $A/Z \le \mathcal{Z}(G/Z)$ of order p. $C_G(A)/Z$ has order p^{2n-1} and $|\mathscr{C}| = p^{2n-1} =$ number of points in a projective space of dimension 2n-1 over \mathbf{F}_p lying outside a hypersurface. Hence there are $p^{2n-1} \lor$ -summands in (2.1). For $H \in \mathscr{C}$, $C_G(A, H)/Z$ has order $p^{2(n-1)}$ and $C_G(A, H)$ is an (n-1)-ES. By induction on n we can suppose that $|\mathscr{A}(C_G(A, H))|$ is homotopic to a one-point union of p^{2n-1} (n-2)-spheres. Each (n-2)-sphere suspends to give a (n-1)-sphere. Thus the total number of (n-1)-spheres in $|\mathscr{A}(G)|$ is $p^{2n-1} \times p^{(n-1)^2} = p^{n^2}$ and the induction proceeds. The induction starts when n=0, G=Z and $\mathscr{A}(G)$ is void. $S(\varnothing)$ is the pair of suspending points and so is a 0-sphere. Summarizing, we have

PROPOSITION 3.1. If G is an n-ES, then $|\mathcal{S}(G)|$ is homotopically equivalent to a one-point union of $p^{n^2}(n-1)$ -spheres.

This structure of p^{n^2} (n-1)-spheres is the Tits' building for the symplectic group $Sp(2n, \mathbb{F}_p)$ acting on G/Z with the symplectic form being given by commutation. The (n-1)-dimensional homology group has rank p^{n^2} and the induced action of $Sp(2n, \mathbb{F}_p)$ on this gives a realisation of the Steinberg character.

4. $\mathcal{S}(G)$ as a one-point union of spheres

THEOREM 4.1. Let G be a p-group with cyclic centre Z and set $\mathcal{S}(G) = \{Z < H \le G | H' \cap Z = (1)\}$, ordered under inclusion. Then $|\mathcal{S}(G)|$ is homotopically equivalent to a one-point union of spheres.

PROOF. By (2.1),
$$|\mathscr{S}(G)| \simeq |\mathscr{A}(G)|$$
 and by (2.3) we have (4.2) $|\mathscr{A}(G)| \simeq \bigvee_{H \in \mathscr{C}} S(|\mathscr{A}(C_G(A, H))|),$

where $\mathscr{C} = \{ H \in \mathscr{A}(G) - \mathscr{A}(C_G(A)) | |H/Z| = p \}$. We apply this same result (4.2) to each \vee -summand $\mathscr{A}(C_G(A, H))$ in turn and so on. We thus obtain \vee -sums over sequences $(A, H; A_1, H_1; \ldots)$ and we look at how these sequences terminate. For a particular choice of A, H we look at $S(|\mathscr{A}(C_G(A, H))|)$.

- (i) Case $\mathscr{Z}(C_G(A, H)) > Z$. Take $B \le \mathscr{Z}(C_G(A, H))$ with |B/Z| = p. Then $|\mathscr{A}(C_G(A, H))|$ is contractible to the vertex B. As S(point) = point, such an ending gives no contribution to final one-point union.
- (ii) Case $G_1 = C_G(A, H) > Z$ and $\mathscr{Z}(G_1) = Z$. Choose $A_1/Z \leqslant \mathscr{Z}(G_1/Z)$ with $|A_1/Z| = p$. If $\mathscr{A}(G_1) \not\subseteq \mathscr{A}(C_{G_1}(A_1))$, then a choice of H_1 is possible and sequence proceeds. If however we have $\mathscr{A}(G_1) \subseteq \mathscr{A}(C_{G_1}(A_1))$, then every element of $\mathscr{A}(G_1)$ commutes with A_1 and $|\mathscr{A}(G_1)|$ is homotopic to a cone with vertex A_1 and so is contractible to a point. As in (i), this gives no contribution to the final one-point union.
- (iii) Case $C_G(A, H) = Z$. Thus $\mathscr{A}(C_G(A, H))$ is void and $S(\emptyset)$ is the two-point 0-sphere. Continuing suspensions give higher dimensional spheres (as in Section 3).

Hence nontrivial contributions to $|\mathscr{A}(G)|$ come from sequences $A_1, H_1; \ldots; A_n, H_n$, where, if we set $E = \langle A_1, H_1, \ldots, A_n, H_n, Z \rangle$, then $C_G(E) = Z$ and so E is an n-CES for some n. Each such \vee -summand is homotopic to the n-fold suspension $S^n(\emptyset)$ which is a (n-1)-sphere and so $|\mathscr{A}(G)|$ is a one-point union of spheres, as required.

5. Critical roles of the CES's

(5.1) An (n-1)-spherical \vee -summand in (4.1) corresponds to a sequence $A_1, H_1; \ldots; A_n, H_n$. These subgroups together with Z generate an n-CES E of G.

We now collect together summands in (4.1) according to the CES that they generate.

LEMMA 5.2. If A/Z lying in $\mathcal{Z}(G/Z)$ has exponent p and if E is CES in G, then $A \leq E$.

PROOF. As an elementary group is generated by its subgroups of order p, it is sufficient to show the result when A/Z has order p.

Suppose E is an n-CES and so E/Z has order p^{2n} . If $A \not \leq E$, then AE/Z is elementary of order p^{2n+1} . Commutation defines a symplectic form on AE/Z into \mathbb{F}_p and as this has odd dimension over \mathbb{F}_p it has a singular subspace Y/Z. Then $Z < Y \leqslant C_G(E)$, contrary to the fact that E is a CES. Hence $A \leqslant E$, as required.

THEOREM 5.3. Let G be a p-group with cyclic centre Z. Then $|\mathcal{S}(G)|$ is homotopic to a one-point union

$$|\mathscr{S}(G)| \simeq \mathsf{V}|\mathscr{S}(E)|$$

where E runs through the CES's of G. If E is an n-CES, then $|\mathcal{S}(E)|$ is homotopic to a one-point union of $p^{n^2}(n-1)$ -spheres.

PROOF. Let E be an n-CES of G. As $|\mathcal{S}(G)|$ and $|\mathcal{S}(E)|$ are one-point unions of spheres, it is sufficient to see that there are sufficient (i.e. p^{n^2}) \vee -summands in (4.1), indexed by sequences $(A_1, H_1; \ldots; A_n, H_n)$, such that $E = \langle A_1, \ldots, H_n, Z \rangle$.

Take r with 0 < r < n and write $M_r = \langle A_1, \ldots, H_r, Z \rangle$ and $N_r = \langle A_{r+1}, \ldots, H_n, Z \rangle$. Then E is the central amalgamated product of the ES's M_r and N_r . At the (r+1)st stage of analysing and forming the summands in (4.1) we have to look at $C_G(A_1, H_1, \ldots, A_r, H_r) = C_G(M_r)$ and choose A_{r+1}/Z in $\mathscr{Z}(C_G(M_r))$ of order p. Now N_r is a CES in $C_G(M_r)$ and so by (5.2) $A_{r+1} \leq N_r$. A union is then taken over all H_{r+1}/Z of order p in $C_G(M_r)$ with $[A_{r+1}, H_{r+1}] > (1)$. Considering only those H_{r+1}/Z which lie in a given n-CES E, we see that their number is independent of the rest of G as is the same as if E were considered in isolation. Hence that part of the one-point union $|\mathscr{S}(G)|$ in 4.1 coming from all sequences A_1, \ldots, H_n , E which generate E is homotopic to $|\mathscr{S}(E)|$. This completes the proof.

References

- [1] D. Quillen, 'Higher algebraic K-theory I', pp. 85-147, (Lecture Notes in Mathematics, 341, Springer-Verlag, Berlin, 1973).
- [2] D. Quillen, 'Homotopy properties of the poset of nontrivial p-subgroups of a group', Adv. in Math. 28 (1978), 101-128.
- [3] James J. Walker, 'Homotopy type and Euler characteristic of partially ordered sets', European J. Combin. 2 (1981), 373-384.

Department of Pure Mathematics University of Sydney Sydney, N.S.W. 2006 Australia