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Abstract

We study the variational problem for N-parallel curves on a Finsler surface by means of exterior
differential systems using Griffiths’ method. We obtain the conditions when these curves are extremals
of a length functional and write the explicit form of Euler–Lagrange equations for this type of variational
problem.
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1. Introduction

The theory of variations is a central topic in optimization theory, mechanics,
differential geometry and other fields of mathematics [1]. In particular, the search
for the extremals of arc length functionals for curves is the archetypal problem in
Riemannian and Finsler geometry.

It is well known that the extremals of the energy functional or a Riemannian or
Finsler manifold are geodesics and that in fact these coincide with the extremals of
the arc length functional for unit speed curves. An equivalent characterization is that
a unit speed curve γ on a Riemannian or Finsler manifold is a geodesic if and only if
the tangent vector is parallel along γ with respect to a certain connection.

In the Riemannian case, this is equivalent to the fact that the normal vector along
the unit speed curve γ is also parallel with respect to the Levi-Civita connection, but
this property does not extend to Finsler manifolds due to the dependency on direction
of the Finslerian inner product.

We recall that, in a previous paper [10], we have encountered a family of curves
γ on a Finsler surface characterized by the property that the Finslerian normal vector
N is parallel along the curve γ with respect to the Chern connection with reference
vector N. We have called these curves N-parallels and have shown that these curves
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are deeply related to the Gauss–Bonnet-type theorems in Finsler geometry, proving in
this way the importance of them. However, due to the difficulties of the problem setting
and the complexity of computations, the study of such curves on Finsler manifolds is
not an easy task.

Motivated by these facts, we consider the following problem.
Are the N-parallel curves extremals of some length functional?
Let M be a two-dimensional differentiable manifold. We give a first answer to this

question by studying the functional

LN(γ) :=
∫ b

a

√
gN(T,T ) dt, (1.1)

where T (t) := γ̇(t) and N(t) are the tangent and normal vectors along the curve
γ : [a, b]→ M, respectively. Here gN := gi j(γ(t), N(t)) dxi ⊗ dx j is the fundamental
tensor of the Finsler surface (M, F) evaluated in the normal direction (see Section 2
for details). We determine the extremals, called N-extremals, of this functional for
variations γ : (−ε, ε) × [a, b]→ M, (u, t) 7→ γ(u, t), γ(0, t) = γ(t) subject to some end-
point condition.

One might be tempted to consider this variational problem on the surface M as in
the classical variational problem for the usual arc length variation (see [3, 12, 15]).
However, one can easily see that along the variation curve γ(u, t), the variation vector
field and the normal vector field both belong to the normal bundle

{w ∈ TγM : T (t) and w(t) are linearly independent}

and hence the treatment from the classical variational problem does not apply. Instead,
we consider this variational problem ‘upstairs’ on the indicatrix bundle Σ by Griffiths’
formalism and obtain in this way the Euler–Lagrange equations for this variational
problem.

The novelty of the present research lies in the following results.

(1) We have formulated the variational problem for the functional (1.1) and we have
computed the corresponding Euler–Lagrange equations.

(2) We have shown that the extremals of the functional (1.1) form a family of curves
on the base manifold M that are different from the usual geodesics and have
determined the conditions when they coincide with the N-parallels. This is one of
the main differences between the arc length variational problem in Riemannian
and Finsler settings.

(3) We have successfully used Griffiths’ formalism for variational problems based on
exterior differential systems in order to solve an intractable variational problem
in the classical setting.

We point out that this method can be applied in the study of other variational
problems in Riemannian geometry or in the general theory of calculus of variations.
In future we intend to use this approach in the study of other variational problems.
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Here is the structure of our paper. We review the basics of Finsler surfaces in
Section 2 and present Griffiths’ formalism in Section 3. In Section 4, we describe
the geometry of N-parallel curves on a Finsler surface and express these curves as
integral manifolds of an exterior differential system as well as second-order differential
equations.

Section 5 contains the study of variational problems for the functional (1.1). Here
we obtain the Euler–Lagrange equations for this functional (Theorem 5.4) and we
prove that these equations are necessary and sufficient conditions for the extremals of
our functional (Theorem 5.3). The relation of the extremal curves with the geodesic
curvature is given and this leads us to a new class of Finsler surfaces for which the
N-parallels and extremals of the functional (1.1) coincide.

Finally we discuss the N-extremals for some special Finsler surfaces in Section 6.

2. Finsler surfaces

A Finsler surface is a pair (M, F), where M is a two-dimensional differentiable
manifold and F : T M → [0,∞) is a function, called the fundamental function,
that is positive and smooth away from the zero section, has the homogeneity
property F(x, λv) = λF(x, v) for all λ > 0 and all v ∈ TxM, having also the strong
convexity property that the Hessian matrix, called the fundamental tensor, gi j(x, y) :=
1/2(∂2F2(x, y)/(∂yi∂y j)) is positive definite at every point of T̃ M = T M \ {0}.

The restriction of a Finsler norm to a tangent plane TxM gives a Minkowski norm
on TxM. For an arbitrary fixed x ∈ M, this Minkowski norm induces a flat Riemannian
metric on the punctured tangent plane T̃xM by

ĝ := gi j(y) dyi ⊗ dy j, (2.1)

where y = (yi) are the global coordinates in TxM.
A Finsler surface (M, F) is equivalent to giving a smooth hypersurface Σ ⊂ T M for

which the canonical projection π : Σ→ M is a surjective submersion and having the
property that for each x ∈ M, the π-fiber Σx = π−1(x) is a strictly convex smooth curve
including the origin Ox ∈ TxM.

In order to study the geometry of the Finsler surface (M, F), we consider the pull-
back bundle π∗T M with base manifold Σ and fibers (TxM)|u, where u ∈ Σ is such that
π(u) = x (see [3, Ch. 2] for details). It is known (see [3, page 30]) that the vector bundle
π∗T M has a distinguished global section l := (yi/F(y))(∂/∂xi). Using this section,
one can construct a positively oriented g-orthonormal frame {e1, e2} for π∗T M, where
g := gi j(x, y) dxi ⊗ dx j is the naturally induced Riemannian metric on the fibers of
π∗T M by means of the fundamental tensor gi j. The frame {u; e1, e2} for any u ∈ Σ is a
globally defined g-orthonormal frame field for π∗T M called the Berwald frame.

We introduce the following notation. For N(t) ∈ Tγ(t)M, we denote by

gN := gi j(γ(t),N(t)) dxi ⊗ dx j
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the inner product induced on the tangent space Tγ(t)M by the fundamental tensor gi j

evaluated in the direction N. A concrete choice for this N will be made later (see
Section 4).

By duality, one defines a moving coframe (u;ω1, ω2, ω3) on Σ, orthonormal with
respect to the Riemannian metric on Σ induced by the Finsler metric F, where u ∈ Σ

and {ω1, ω2, ω3} ∈ T ∗Σ. The moving equations on this frame lead to the so-called
Chern connection. This is an almost metric compatible, torsion-free connection of the
vector bundle (π∗T M, π,Σ).

Indeed, by a theorem of Cartan, it follows that the coframe (ω1, ω2, ω3) must satisfy
the following structure equations:

dω1 = −Iω1 ∧ ω3 + ω2 ∧ ω3,

dω2 = −ω1 ∧ ω3,

dω3 = Kω1 ∧ ω2 − Jω1 ∧ ω3.

(2.2)

The functions I, J,K are smooth functions on Σ called the invariants of the Finsler
surface (M, F) in the sense of Cartan’s equivalence problem [3, 5].

The scalar functions I and K are called the Cartan scalar and the Gauss curvature
of the Finsler surface, respectively. In the case when F is Riemannian, I = J = 0 and
K coincides with the usual Gauss curvature of a Riemannian surface.

Differentiating again (2.2), one obtains the Bianchi identities

J = I2, K3 + KI + J2 = 0,

where the indices in I2, K3, J2 etc indicate differential terms with respect to ω1, ω2,
ω3. For example, dK = K1ω

1 + K2ω
2 + K3ω

3. The scalars K1, K2, K3 are called the
directional derivatives of K.

More generally, given any function f : Σ→ R, one can write its differential in the
form d f = f1ω1 + f2ω2 + f3ω3.

Recall that a Finsler surface is called Landsberg if the invariant J vanishes. Bianchi
identities imply that in this case I2 = 0 and K3 = −KI. A Finsler surface having I1 = 0
and I2 = 0 is called a Berwald surface (see [3, Lemma 10.3.1, page 267] for details). It
is known that a Berwald surface is in fact Riemannian if K , 0 or locally Minkowski
flat if K = 0 (see [16] and [3, page 278]).

3. The variational problem in Griffiths’ formulation

We will review and fix the notation for the variational problem in Griffiths’
formulation. This is a natural generalization of the classical variational problem
formulated in the language of exterior differential systems (see [4, 7, 8, 11, 12]).

A variational problem (I, ω;ϕ) is the study of the functional

Φ :V(I, ω)→ R, Φ(γ|(a,b)) =

∫
γ

ϕ =

∫ b

a
γ∗ϕ, (3.1)
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where (I, ω) is a Pfaffian differential system of rank s with independence condition ω
on a manifold X, γ is a typical integral manifold of (I, ω), that is,

γ|(a,b) ∈ V(I, ω) := {γ : (a, b)→ X | γ∗(I) = 0, γ∗(ω) , 0},

and ϕ is a one-form on X (here the curves that differ only by parametrization will be
identified).

The main problem of the calculus of variations is the same as in the classical case:
describe the extremals of the functional Φ, that is, determine the Euler–Lagrange
equations of Φ.

More precisely, if we denote by TγV(I, ω) the ‘tangent space’ ofV(I, ω) at γ, then
we can consider the differential of (3.1), that is,

δΦγ : TγV(I, ω)→ R, δΦγ(v) =
d

du

(∫
γu

ϕ
)∣∣∣∣∣

u=0
,

where γu ∈ V(I, ω) is any compactly supported variation of γ with γ0 = γ and
v ∈ TγV(I, ω) is the associated infinitesimal variation vector field defined along γ
corresponding to the variation u 7→ γu.

With this notation, the Euler–Lagrange equations of Φ are

δΦγ(v) = 0, ∀v ∈ TγV(I, ω)

and the integral curves γ satisfying these equations are called the extremals of Φ.
The ‘tangent space’ TγV(I, ω), that is, the space of smooth variation vector fields

of γ, can be described to first order by the variational equations of an integral curve
of the Pfaffian system (I, ω) (see [8, 9] for details). The variational equations of the
integral curves of (I, ω) are given by

Dγ(v) = 0, v ∈ Tγ(t)X \ 〈γ′(t)〉,

where
Dγ(v) := eα ⊗ (v dθα + d(v θα))|γ.

Here {θ1, θ2, . . . , θs} is a local basis for I and {e1, e2, . . . , es} its dual frame field along
γ. Locally, the tangent space TγV(I, ω) is described by the equations

(v dθα + d(v θα)|γ = 0, α = 1, 2, . . . , s,

called the variational equations of (I, ω).
For the variational problem (I, ω; ϕ), rank I = s > 0, on a manifold X, one can

associate the Euler–Lagrange Pfaffian differential system (J , ω) on a new manifold Y
such that its variational equations coincide with the Euler–Lagrange equations for Φ.
The integral manifolds of this system give the extremals of Φ.

For this we follow [8, 9] and construct the affine sub-bundle

Z := I + ϕ ⊂ T ∗X,

that is, Zx = Ix + ϕx is an affine subspace of T ∗x X for any x ∈ X.
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Locally, ZU ' U × Rs, where U ⊂ X is an open set; in other words, we identify the
pair (x, λ) ∈ U × Rs with the one-form

ψx := ϕx +

s∑
α=1

λiθ
i
x ∈ T ∗x X,

where {θ1, θ2, . . . , θs} is a local basis for I over U. By this identification, it results that
ψ is the canonical one-form on Z obtained by the restriction of the canonical one-form
on T ∗X to Z.

If we denote Ψ := dψ and C(Ψ) := {v Ψ : v vector field on Z} the Cartan system of
Ψ, then the Pfaffian system (J := C(Ψ), ω), typically restricted to a submanifold Y ⊂ Z,
is called the Euler–Lagrange system associated to the variational problem (I, ω;ϕ) on
X. Any variational problem for curves can be formulated in this setting.

The solutions of the Euler–Lagrange equations are in natural one-to-one
correspondence with the integral manifolds of the Euler–Lagrange differential system
(J , ω) on Y .

A variational problem (I, ω; ϕ) is called nondegenerate if there exists a positive
integer m such that dim Y = 2m + 1,

ψ ∧ Ψm , 0,

where Ψm = Ψ ∧ · · · ∧ Ψ︸        ︷︷        ︸
m times

. Here we denote ψ|Y and Ψ|Y with the same letters ψ and Ψ,

respectively, for simplicity.
Remark 3.1. The characteristic direction of Ψ living on Y generates a global foliation
$ : Y → Q := Y/Ψ⊥ .

Here Q is a (2m)-dimensional symplectic manifold with the two-form Ω̄ satisfying
$∗Ω̄ = Ψ.

For a nondegenerate variational problem, it is easy to formulate the end-point
conditions (see [7] for a general theory).
Remark 3.2. However, one must pay attention to the following problems when
working in this formalism.

(1) In general, the differential system (C(Ψ), ω) is not a Pfaffian system with
independence condition on Z, so we need to construct an involutive prolongation
of (C(Ψ), ω) on a submanifold Y ⊂ Z [7, 8]. The integral elements of (C(Ψ), ω)
are the lines E ⊂ TzZ such that η(z)|E = 0 for all η ∈ C(Ψ) and ω(z)|E , 0. The
set of integral elements form the set V(C(Ψ), ω) ∈ PT (Z), where π : PT (Z)→ Z
is the projectivized tangent bundle of Z. Inductively define

Z1 = π(V(C(Ψ), ω)),
V1(C(Ψ), ω) = {E ∈ V(C(Ψ), ω) : E is tangent to Z1},

Z2 = π(V1(C(Ψ), ω)),
V2(C(Ψ), ω) = {E ∈ V1(C(Ψ), ω) : E is tangent to Z2},
...
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We obtain Z1 ⊃ Z2 ⊃ · · · and, under reasonable assumptions, that there exists a
positive integer k such that Zk = Zk+1 = · · · = Y and

J := {η(z) ∈ T ∗z (Y) : η ∈ C(Ψ)|Y }

gives a sub-bundle of T ∗(Y), and obviously the integral manifolds of (C(Ψ), ω)
and (J , ω) coincide. The Pfaffian system (J , ω) on Y ⊂ Z is called the involutive
prolongation of (C(Ψ), ω).

(2) The Euler–Lagrange equations for the variational problem (I, ω; ϕ), that we
describe above, are sufficient conditions for γ to be extremals. However, in
the case rank I > 0 these are not always necessary conditions. Indeed, it is
known that any regular extremal curve of Φ is a solution of the Euler–Lagrange
equations [9], where γ regular means that it is a generic integral curve of a
bracket-generating differential system.

4. The normal lift of a curve

In this section we recall the normal lift of a curve from [10, 14].
Let us consider a smooth (or piecewise C∞) curve γ : [a, b]→ M with the tangent

vector γ̇(t) = T (t), parametrized such that F(γ(t), γ̇(t)) = 1.
We construct the normal vector field N along γ, that is,

gN(N,N) = 1, gN(N,T ) = 0, gN(T,T ) = σ2(t), (4.1)

where σ(t) is a scalar function nonconstant along γ and gN is the Riemannian metric
of Tγ(t)M induced by the Finsler fundamental tensor evaluated in the normal direction
(see (2.1)). Obviously, {T,N} is a g-orthonormal frame of Tγ(t)M and, since we are in
the two-dimensional case, the existence of such an N is guaranteed.

This leads us to the normal lift γ̂⊥ of γ to Σ defined by

γ̂⊥ : [a, b]→ Σ, t 7→ γ̂⊥(t) = (γ(t),N(t)). (4.2)

It follows that

gN(D(N)
T N,N) = 0,

gN(D(N)
T T,N) + gN(T,D(N)

T N) = 0,

gN(D(N)
T T,T ) = σ(t)

dσ
dt
− A(N)(T,T,D(N)

T N),

where

D(N)
T U = (D(N)

T U)i ·
∂

∂xi
|γ(t)

=

[dU i

dt
+ T jUkΓi

jk(x,N)
]
·
∂

∂xi
|γ(t)

for any U = U i(x)(∂/∂xi) vector field along γ; Γi
jk are the Chern connection

coefficients, that is, ω
j
i = Γ

j
ik dxk, that is, the covariant derivative along γ with

reference vector N, and A(N)(U,V,W) := Ai jk(x,N)U iV jWk, for V = V i(x)(∂/∂xi) and
W = W i(x)(∂/∂xi), are vector fields along γ. Here Ai jk := (1/4)(∂3F2/∂yi∂y j∂yk).

We can define the notion of an N-parallel of a Finsler surface.
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Definition 4.1. A curve γ on the surface M, in Finsler natural parametrization, is called
an N-parallel of the Finsler surface (M, F) if and only if the normal vector field is
parallel along γ, namely,

D(N)
T N = 0.

If γ is an N-parallel, then

gN(D(N)
T T,N) = 0, gN(D(N)

T T,T ) = σ(t)
dσ
dt
.

In case of an arbitrary curve γ on M, from

gN(D(N)
T N,N) = 0, gN(T,N) = 0,

it follows that the vector D(N)
T N is proportional to T , that is, there exists a nonvanishing

function k(N)
T (t) such that

D(N)
T N = −

k(N)
T (t)
σ2(t)

T, σ(t) , 0.

The function k(N)
T (t) will be called the N-parallel curvature of γ. The minus sign is

put only in order to obtain the same formulas as in the classical theory of Riemannian
surfaces.

In other words,
gN(D(N)

T N,T ) = −k(N)
T (t).

Proposition 4.2. A curve γ on M is N-parallel if and only if its N-parallel curvature
k(N)

T vanishes.

By making use of the cotangent map of γ̂⊥∗,

γ̂⊥∗ω1 = σ(t) dt, γ̂⊥∗ω2 = 0, γ̂⊥∗ω3 = −
k(N)

T

σ(t)
dt (4.3)

(see [10] for details).

5. Variational problem for the N-lift

We will formulate a variational problem in Griffiths’ formalism for our setting by
specifying the manifold X and the Pfaffian with independence condition (I, ω) by
means of the 3-manifold Σ with the coframe {ω1, ω2, ω3} generated by the Finsler
surface (M, F).

First, we remark that Equations (4.3) imply the following result.

Proposition 5.1. Let γ : [a, b]→ M be a smooth curve on M. Then its normal lift γ̂⊥

to Σ given by (4.2) is an integral manifold of the Pfaffian system with independence
condition (I, ω1) on the manifold Σ, where I = {ω2}.
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Clearly, the projection to M of any integral curve of (I, ω1) is a curve on M.
We will consider the variational problem in Griffiths’ formalism (I, ω1; ϕ) on the

manifold Σ, with
ϕ = ω1.

More precisely, we consider the functional

Φ :V(I, ω1)→ R, Φ(γ̂⊥) =

∫
γ̂⊥
ω1, (5.1)

where γ̂⊥ : (a, b)→ Σ is a typical integral manifold of the rank-one Pfaffian system
(I, ω1).

The extremals of this functional are called the N-extremals of the Finsler surface
(M, F).

In order to compute the Euler–Lagrange equations of this variational problem, we
follow Griffiths’ recipe in Section 3 and consider the manifold Z := Σ × R, where R
has the coordinate λ, and put

ψ := ϕ + λω2

on Z.
The exterior derivative Ψ = dψ is given by

Ψ = dω1 + dλ ∧ ω2 + λdω2 = −(I + λ)ω1 ∧ ω3 + ω2 ∧ ω3 + dλ ∧ ω2.

A coframe on Z is given by

{ω1, ω2, ω3; dλ}

and the corresponding frame is {
ê1, ê2, ê3,

∂

∂λ

}
,

where we use {ê1, ê2, ê3} for the dual frame of {ω1, ω2, ω3} on Σ.
It follows that the Cartan system C(Ψ) is given by

C(Ψ) :=
{
∂

∂λ
Ψ, ê2 Ψ, ê3 Ψ

}
= {ω2,−dλ + ω3, (λ + I)ω1 − ω2}

= {ω2, dλ − ω3, (λ + I)ω1}.

However, we remark that (C(Ψ), ω1) is not a Pfaffian system with independence
condition on Σ because (λ + I)ω1 ∈ C(Ψ).

Hence, we need an involutive prolongation of (C(Ψ), ω1) on a submanifold on Z.
Following the first part of Remark 3.2, we consider the submanifold Z1 := {λ = −I} ⊂
Z, and therefore

C(Ψ)|Z1 = {ω2, dI + ω3}. (5.2)

We can see that the iterative construction stops for k = 1 and, therefore, if we put
Y := {λ = −I}, then (C(Ψ)|Y , ω|Y ) is a Pfaffian system with independence condition on
Z1 = Z2 = · · · = Y .
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We remark that by identifying the graph of a function with its domain of definition,
we can see that actually Y = Σ.

We obtain the following results.

Theorem 5.2.

(1) The Euler–Lagrange differential system of the variational problem (I, ϕ;ω) is

(dI + ω3)|γ̂⊥ = 0.

(2) The corresponding Euler–Lagrange equation is

(I3 ◦ γ̂
⊥ + 1)k(N)

T = (I1 ◦ γ̂
⊥)σ2. (5.3)

Proof. From (5.2), we obtain (1). Moreover, using now the Equations (4.3), the Euler–
Lagrange equation (2) follows. �

Moreover, we have the following result.

Theorem 5.3. The Euler–Lagrange equation (5.3) is a necessary and sufficient
condition for the extremals of the functional (5.1).

Proof. The sufficiency is obvious from construction. In order to prove the necessity,
since any curve on a contact manifold is regular, it is enough to show that the
distribution D = I⊥ is bracket generating. Since I = {ω2} on Σ, it follows that
D = 〈ê1, ê3〉. The Cartan formula dω(X, Y) = X(ω(Y)) − ω([X, Y]) − Y(ω(X)) implies
that

[ê1, ê2] = −Kê3, [ê2, ê3] = −ê1, [ê3, ê1] = −Iê1 − ê2 − Jê3.

It follows immediately that D1 := [D,D] = 〈ê1, ê2, ê3〉 = TΣ and therefore D is bracket
generating. �

We remark that

ψ|Y = ω1 − Iω2, Ψ|Y = −I1ω
1 ∧ ω2 + (I3 + 1)ω2 ∧ ω3.

Since dim Y = 2 × 1 + 1 = 3, it follows that m = 1 and hence

ψ|Y ∧ Ψm
|Y = (I3 + 1)ω1 ∧ ω2 ∧ ω3 , 0

for I3 , 1. That is, in this case, the variational problem (I, ω1;ϕ) is nondegenerate.
Following Remark 3.1, the end-point conditions are given by

K = {ω1, ω2} (5.4)

and the variational problem is well posed with reduced momentum space

Q = Σ/{ω1=0,ω2=0} = M.

In our case an admissible variation is a map

γ̂⊥ : [a, b] × [0, ε]→ Σ, (t, u) 7→ γ̂⊥(t, u)
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such that each u-curve in the variation, namely γ̂⊥u : [a, b]→ Σ, is an integral manifold
of (I, ω).

Then the admissible variations satisfying the end-point conditions (5.4) mean that

γ̂⊥∗(ω1) = γ̂⊥∗(ω2) = 0 on {a, b} × [0, ε].

That is, this corresponds to varying a curve γ in Q = M keeping its end points fixed in
the usual sense.

In other words, we have the following results.

Theorem 5.4.

(1) If I1 ◦ γ̂
⊥ = 0, then the Euler–Lagrange equation implies that k(N)

T = 0, provided
I3 ◦ γ̂

⊥ + 1 , 0, that is, in this case the N-extremals are the N-parallels.
Conversely, if the N-parallels are the N-extremals, then I1 ◦ γ̂

⊥ = 0.
(2) If I1 ◦ γ̂

⊥ , 0, then the Euler–Lagrange equation implies that

k(N)
T =

I1 ◦ γ̂
⊥

I3 ◦ γ̂⊥ + 1
, (5.5)

provided I3 ◦ γ̂
⊥ + 1 , 0, that is, in this case the N-extremals are those curves on

Σ whose geodesic curvature is given above.

6. Special Finsler surfaces

6.1. Berwald surfaces. We discuss the Berwald surfaces case. It is known that there
are only two cases.

(1) K , 0, that is, (M, F) is a Riemannian surface.
(2) K = 0, that is, (M, F) is a locally Minkowski plane.

We discuss first the Riemannian case (M, a). Indeed, in this case, I = 0 and the
Euler–Lagrange equations (5.3) read k(N)

T = 0. In other words, the solutions of the
Euler–Lagrange equations (5.3) are the N-parallel curves or, equivalently, the solutions
of the following second order differential equation:

d2γi

dt2 + γi
jk(γ(t))

dγ j

dt
dγk

dt
=

d
dt

[logα(t)]
dγi

dt
,

where α(t) =
√

a(T,T ), that is, the usual equation of Riemannian geodesics in arbitrary
parametrization.

In the locally Minkowski case, we have I1 = 0, I2 = 0,K = 0.

Lemma 6.1. Let (M, F) be a Finsler surface. If I3 = constant everywhere on Σ, then I3

must vanish on Σ.

Proof. If I3 = constant everywhere on Σ, it follows that the scalar I must be constant
along every indicatrix curve Σx ⊂ TxM. On the other hand, it is known that the average
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value of the Cartan scalar over the indicatrix Σx must be zero (see for example [3, page
85]), that is, ∫ L

0
I(t) dt = 0, (6.1)

where I(t) is the Cartan scalar evaluated over the indicatrix and L is the Riemannian
length of Σx.

If I(t) = c = constant, then (6.1) implies cL = 0, that is, c = 0 since the indicatrix
length L cannot be zero. �

In this case, we have the following result.

Proposition 6.2. If (M, F) is a Minkowski surface, then the solutions of the Euler–
Lagrange equations (5.3), that is, the N-extremals, coincide with the N-parallel curves
and they differ from the usual geodesics.

Proof. From Theorem 5.4 and Lemma 6.1, it follows that N-extremals and N-parallels
must coincide for a Minkowski surface.

One can see that Finsler geodesics and the N-extremals cannot coincide on Σ

because their tangent vectors ê2 and ê1, respectively, are linearly independent. �

6.2. A new class of Finsler spaces. We define a new class of special Finsler spaces
as follows.

Definition 6.3. A Finsler surface (M, F) that satisfies the following conditions:

I1 = 0, I3 , 0

is called an S -Finsler surface.

Remark 6.4. Any Berwald manifold is an S -Finsler surface.

Let us remark that on an S -Finsler surface we have the equations

dI = I2ω
2 + I3ω

3,

dK = K1ω
1 + K2ω

2 − (KI + I22)ω3,

dI2 = −KI3ω
1 + I22ω

2 + I23ω
3.

(6.2)

The tableau of the free derivatives has Cartan characters s1 = 3, s2 = 2, s3 = 0;
the Cartan test yields 7 = s1 + 2s2 + 3s3 and therefore the system is involutive. The
Cartan–Kähler theory implies that, modulo diffeomorphism, such structures depend
on two functions of two variables.

Returning to our variational problem, we have the following result.

Proposition 6.5. If (M, F) is an S -Finsler surface, then the integral lines of the
codimension-one foliation {ω2 = 0, ω3 = 0} coincide with the N-extremals.

Remark 6.6. The geometrical meaning of the S -Finsler surfaces it is now clear. These
are those Finsler surfaces where the N-parallels coincide with the N-extremals.

Finding more examples and applications of the present theory is the subject of
forthcoming research.
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