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On Functions Whose Graph
is a Hamel Basis, II

To the memory of my Mother.

Krzysztof Płotka

Abstract. We say that a function h : R → R is a Hamel function (h ∈ HF) if h, considered as a subset

of R2, is a Hamel basis for R2. We show that A(HF) ≥ ω, i.e., for every finite F ⊆ RR there exists

f ∈ RR such that f + F ⊆ HF. From the previous work of the author it then follows that A(HF) = ω.

The terminology is standard and follows [C]. The symbols R and Q stand for

the sets of all real and all rational numbers, respectively. A basis of Rn as a linear

space over Q is called Hamel basis. For Y ⊂ Rn, the symbol LinQ (Y ) stands for the

smallest linear subspace of Rn over Q that contains Y . The zero element of Rn is

denoted by 0. All the linear algebra concepts are considered for the field of rational

numbers (for relevant definitions, see [MK]). The cardinality of a set X we denote

by |X|. In particular, c stands for |R|. Given a cardinal κ, we let cf(κ) denote the

cofinality of κ. We say that a cardinal κ is regular if cf(κ) = κ. For any set X, the

symbol [X]κ denotes the set {Z ⊆ X : |Z| < κ}. For A, B ⊆ Rn, A + B stands for

{a + b : a ∈ A, b ∈ B}.

We consider only real-valued functions. No distinction is made between a func-

tion and its graph. For any two partial real functions f , g we write f + g, f − g for

the sum and difference functions defined on dom( f )∩dom(g). The class of all func-

tions from a set X into a set Y is denoted by Y X . We write f |A for the restriction

of f ∈ Y X to the set A ⊆ X. For B ⊆ Rn, its characteristic function is denoted

by χ
B. For any function g ∈ RX and any family of functions F ⊆ RX , we define

g + F = {g + f : f ∈ F}. For any planar set P, we denote its x-projection by dom(P).

The cardinal function A(F), for F  RX , is defined as the smallest cardinality of a

family G ⊆ RX for which there is no g ∈ RX such that g + G ⊆ F (see [CM], [CN],

[CR]). Recall that f : Rn → R is a Hamel function ( f ∈ HF(Rn)) if f , considered as a

subset of Rn+1, is a Hamel basis for Rn+1. In [P], it was proved that 3 ≤ A(HF(Rn)) ≤
ω. In the same paper, the author asked whether A(HF(Rn)) = ω (Problem 3.5). The

following theorem gives a positive answer to this question.

Theorem 1 A(HF(Rn)) ≥ ω, i.e., for every finite F ⊆ RR
n

, there exists g ∈ RR
n

such

that g + F ⊆ HF(Rn).

Before we prove the theorem, we state and prove the following lemmas.
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Lemma 2 Let b1, . . . , bm ∈ R be arbitrary numbers. There exists a linear basis C of

LinQ (b1, . . . , bm) such that bi + C is also a basis of LinQ (b1, . . . , bm), for every i ≤ m.

Proof Without loss of generality we may assume that LinQ (b1, . . . , bm) 6= {0}. Let

C ′
= {c1

′, . . . , ck
′} be any linear basis of LinQ (b1, . . . , bn). So, for every i ≤ m there

are pi1
′, . . . , pik

′ ∈ Q such that
∑

j pi j
′c j

′
= bi . Now choose q ∈ Q \ {0} satisfying

the following condition for all i:

q
∑

j

pi j
′ 6= −1.

We claim that C = {c1, . . . , ck} =
1
q
C ′

= { 1
q
c1

′, . . . , 1
q
ck

′} is the desired basis. To

prove this, we need to show that bi + C is linearly independent for every i ≤ m.

To see this consider a zero linear combination
∑

j pi j(bi + c j) = 0. We have that
∑

j pi jc j = −bi

∑

j pi j . If
∑

j pi j = 0, then obviously pi1 = · · · = pik = 0. So we

may assume that
∑

j pi j 6= 0. Next we divide both sides of
∑

j pi jc j = −bi

∑

j pi j

by −
∑

j pi j and obtain that
∑

j
pi j

−
P

j pi j
c j = bi . On the other hand,

∑

j

pi j
′c j

′
=

∑

j

pi j
′qc j = bi .

So we conclude that
pi j

−
P

j pi j
= qpi j

′ for all j ≤ k and consequently

q
∑

j

pi j
′
=

∑

j

pi j

−
∑

j pi j
= −1,

a contradiction.

Now, since dim(LinQ (bi + C)) = dim(LinQ (C)) and LinQ (bi + C) ⊆ LinQ (C), we

conclude that LinQ (bi + C) = LinQ (C) = LinQ (b1, . . . , bm).

Let us note here that the above lemma cannot be generalized to the infinite case.

As a counterexample take {b1, b2, b3, . . . } = Q and observe that there is no basis C

with the required properties.

Lemma 3 ([PR, Lemma 2]) Let H ⊆ Rn be a Hamel basis. Assume that h : Rn → R

is such that h|H ≡ 0. Then h is a Hamel function if and only if h|(Rn \H) is one-to-one

and h[Rn \ H] ⊆ R is a Hamel basis.

Lemma 4 Let X be a set of cardinality c and k ≥ 1. The following are equivalent:

(a) For all f1, . . . , fk : Rn → R, there exists f ∈ RR
n

such that f + fi ∈ HF(Rn)

(i = 1, . . . , k).

(b) For all g1, . . . , gk ∈ RX , there exists g ∈ RX such that g + gi is one-to-one and

(g + gi)[X] ⊆ R is a Hamel basis (i = 1, . . . , k).
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Proof (a) ⇒ (b) Choose a Hamel basis H ⊆ Rn and a bijection p : Rn \ H → X.

Put fi = (gi ◦ p) ∪ (0|H). By (a), there exists an f ∈ RR
n

such that f + fi ∈ HF(Rn)

for i = 1, . . . , k. Now, let A ∈ Add(Rn) be such that f |H = A|H and put f ′
=

f − A. Note that f ′ + fi = ( f + fi) − A ∈ HF(Rn) − Add(Rn) = HF(Rn) (see

[P, Fact 3.1]) and also ( f ′ + fi)|H ≡ 0, (i = 1, . . . , k). Hence, by Lemma 3 we claim

that ( f ′ + fi)|(Rn \ H) is a bijection onto a Hamel basis. Now define g = f ′ ◦ p−1

and note that it is the required function.

(b)⇒ (a) Let H be as above. Choose Ai ∈ Add(Rn) such that fi|H ≡ Ai |H for

every i = 1, . . . , k. Put X = Rn\H and gi = ( fi−Ai)|X for i = 1, . . . , k. By (b), there

exists a g : X → R such that g + gi is a bijection between X and a Hamel basis. Define

f = g ∪ (0|H) and observe that f + fi = [ f + ( fi −Ai)] + Ai = [(g + gi)∪ (0|H)] + Ai .

Since (g + gi) ∪ (0|H) ∈ HF(Rn) by Lemma 3, using [P, Fact 3.1] we conclude that

[(g + gi) ∪ (0|H)] + Ai ∈ HF(Rn) for each i = 1, . . . , k. Hence f is the required

function.

Lemma 5 Let X be a set of cardinality c, ω ≤ κ < c, and f1, . . . , fk ∈ RX be func-

tions such that | fi[X]| = c. Then there exist pairwise disjoint subsets A1, . . . , An ⊆ X

of cardinality κ+ each and satisfying the following property: for every i = 1, . . . , k

and j = 1, . . . , n the restriction fi|A j is one-to-one or constant, and | fi[
⋃

A j]| = κ+

( i.e., fi is one-to-one on at least one of the sets).

Proof We prove the lemma by induction on k. If k = 1, then the conclusion is

obvious (note that κ+ ≤ c). Now assume that the lemma holds for k ∈ ω and

let f1, . . . , fk+1 ∈ RX be functions such that | fi[X]| = c. Based on the inductive

assumption, let A1, . . . , An ⊆ X be sets with the required properties for the func-

tions f1, . . . , fk. If | fk+1[
⋃

Ai]| = κ+, then by reducing the original sets A1, . . . , An

we will obtain sets which work for all the functions f1, . . . , fk+1. In the case when

| fk+1[
⋃

Ai]| ≤ κ, we can find a subset An+1 ⊆ X disjoint with
⋃n

1 Ai such that

|An+1| = κ+ and fk+1|An+1 is injective. Now, by appropriately reducing the sets

A1, . . . , An+1 we will obtain the desired sets.

Lemma 6 Let X be a set of cardinality c, f1, . . . , fk ∈ RX be functions such that

| fi[X]| = c, B0, B1 ⊆ R be such that |B0 ∪B1| < c, and y ∈ R \ LinQ (B0). Then there

exist y1, . . . , yn ∈ R and x1, . . . , xn ∈ X such that

(a)
∑n

1 y j = y,

(b) {y1, . . . , yn}, {y j + fi(x j) : j = 1, . . . , n} are both linearly independent over Q

and

LinQ ({y1, . . . , yn}) ∩ LinQ (B0) =

LinQ ({y j + fi(x j) : j = 1, . . . , n}) ∩ LinQ (B1) = {0}

for all i = 1, . . . , k.

Proof Put κ = |B0 ∪ B1 ∪ ω| and let A1, . . . , An ⊆ X be the sets from Lemma 5 for

functions f1, . . . , fk. First we will define the values y1, . . . , yn. Let {b1, . . . , bs} be the
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set of all values such that fi|A j ≡ bl for some i, j, l. Choose y2, . . . , yn to be linearly

independent over Q such that

LinQ ({y2, . . . , yn}) ∩ LinQ (B0 ∪ B1 ∪ {b1, . . . , bs, y}) = {0}.

This can be easily done by extending the basis of LinQ (B0 ∪ B1 ∪ {b1, . . . , bs, y})

to a Hamel basis and selecting (n − 1) elements from the extension. Next define

y1 = y − (y2 + · · · + yn).

Obviously
∑n

1 y j = y. We claim that {y1, . . . , yn} is linearly independent over

Q and LinQ ({y1, . . . , yn}) ∩ LinQ (B0) = {0}. Assume that α1 y1 + · · · + αn yn = 0

for some rationals α1, . . . , αn. From the definition of y1 we get (α2 − α1)y2 + · · · +

(αn − α1)yn = −α1y. Based on the way y2, . . . , yn were selected, we conclude that

α1 = 0 and consequently α2 = · · · = αn = 0. Next assume that q1 y1 +· · ·+qn yn = b

for some rationals q1, . . . , qn and b ∈ LinQ (B0). Then, proceeding similarly as above,

we obtain that (q2 − q1)y2 + · · · + (qn − q1)yn ∈ LinQ (B0 ∪ {y}), which implies that

q1 = · · · = qn. Consequently, if q1 6= 0, then we could conclude that y ∈ LinQ (B0).

That would contradict one of the assumptions of the lemma. Hence q1 = · · · = qn =

0 and the sequence y1, . . . , yn satisfies the required conditions.

Before we define the sequence x1, . . . , xn, we observe some additional properties

of y1, . . . , yn. Fix 1 ≤ i ≤ k. Let Ai1
, . . . , Ai l

(i1 < · · · < i l) be all the sets on which

fi is constant and let bi1
, . . . , bi l

be the values of fi on these sets, respectively. Note

that properties of the sets A1, . . . , An imply that {i1, . . . , i l}  {1, . . . , n}. We will

show that

(1) (yi1
+ bi1

), . . . , (yi l
+ bi l

) are linearly independent,

(2) LinQ ({(yi1
+ bi1

), . . . , (yi l
+ bi l

)}) ∩ LinQ (B1) = {0}.

To see (1) assume that α1(yi1
+ bi1

) + · · · + αl(yi l
+ bi l

) = 0 for some rationals

α1, . . . , αl. This implies

α1 yi1
+ · · · + αl yi l

= −(α1bi1
+ · · · + αlbi l

) ∈ LinQ (B0 ∪ B1 ∪ {b1, . . . , bs, y}).

If i1 6= 1, then it easily follows that α1 = · · · = αl = 0. If i1 = 1, then we can write

α1 yi1
+ · · · + αl yi l

= α1 y1 + α2 yi2
+ · · · + αl yi l

= α1[y − (y2 + · · · + yn)] + α2 yi2
+ · · · + αl yi l

∈ LinQ (B0 ∪ B1 ∪ {b1, . . . , bs, y}).

Consequently,−α1(y2+· · ·+yn)+α2 yi2
+· · ·+αl yi l

∈ LinQ (B0∪B1∪{b1, . . . , bs, y}).

Since {i1, . . . , i l}  {1, . . . , n}, after simplifying the expression −α1(y2 + · · ·+ yn) +

α2 yi2
+ · · ·+ αl yi l

, there will be at least one term y j with the coefficient being exactly

−α1. Hence, we conclude that α1 = 0 and as a consequence of that α2 = · · · = αl =

0. This finishes the proof of (1). A similar argument proves (2).

Next we will define the elements x1, . . . , xn ∈ X (by induction). Choose

x1 ∈ A1 \
⋃

i≤k
fi is 1-1 on A1

f −1
i [LinQ (B1 ∪ {b1, b2, . . . , bs, y1, . . . , yn})].
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This choice is possible since

|A1| = κ+ > κ ≥ |LinQ (B1 ∪ {b1, b2, . . . , bs, y1, . . . , yn})|

and together with condition (2) assures that

LinQ ({y1 + fi(x1) : fi|A1 is 1-1}) ∩ LinQ (B1 ∪ {b1, b2, . . . , bs, y1, . . . , yn}) ⊆ {0}

and LinQ ({y1 + fi(x1)}) ∩ LinQ (B1) = {0} for all i ≤ k.

Now assume that x1 ∈ A1, . . . , xm−1 ∈ Am−1 (m < n) have been defined and they

satisfy the following property:

(⋆) {y j + fi(x j) : j = 1, . . . , m − 1} is linearly independent, LinQ ({y j + fi(x j) : j ≤
m − 1 and fi|A j is 1 − 1}) ∩ LinQ (B1 ∪ {b1, b2, . . . , bs, y1, . . . , yn}) ⊆ {0}, and

LinQ ({y j + fi(x j) : j = 1, . . . , m − 1}) ∩ LinQ (B1) = {0} for all i = 1, . . . , k.

Choose xm ∈ Am such that

xm 6∈
⋃

i≤k
fi is 1-1 on Am

f −1
i [LinQ (B1 ∪ {b1, b2, . . . , bs, y1, . . . , yn, fi(x1), . . . , fi(xm−1)})].

The choice of xm implies that

ym + fi(xm) 6∈ LinQ (B1 ∪ {b1, b2, . . . , bs, y1, . . . , yn, fi(x1), . . . , fi(xm−1)})

for all i ≤ k such that fi is 1-1 on Am. This combined with the inductive assump-

tion (⋆) and conditions (1) and (2) leads to the conclusion that {y j + fi(x j) : j =

1, . . . , m} is linearly independent,

LinQ ({y j + fi(x j) : j ≤ m and fi|A j is 1-1})∩

LinQ (B1 ∪ {b1, b2, . . . , bs, y1, . . . , yn}) ⊆ {0},

and LinQ ({y j + fi(x j) : j = 1, . . . , m}) ∩ LinQ (B1) = {0} for all i = 1, . . . , k. Based

on the induction we claim that the sequence x1, . . . , xn ∈ X has been constructed and

it satisfies the following condition: {y j + fi(x j) : j = 1, . . . , n} is linearly independent

and LinQ ({y j + fi(x j) : j = 1, . . . , n}) ∩ LinQ (B1) = {0} for all i = 1, . . . , k.

Summarizing, the sequences x1, . . . , xn ∈ X and y1, . . . , yn ∈ R have been con-

structed satisfying conditions (a) and (b).

Remark 7. Let A ′ ⊆ A and f1, f2 : A → R. If ( f1 − f2)[A] ⊆ LinQ ( f1[A ′]) ∩
LinQ ( f2[A ′]), then LinQ ( f1[A]) = LinQ ( f2[A]).

The remark easily follows from the equality

l
∑

1

αi f1(xi) =

l
∑

1

αi f2(xi) +
l

∑

1

αi[ f1(xi) − f2(xi)].
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Proof of Theorem 1 Let X be a set of cardinality c. By Lemma 4, it suffices to show

that for arbitrary f1, . . . , fk : X → R there exists a function g : X → R such that

g + fi is one-to-one and (g + fi)[X] is a Hamel basis (i = 1, . . . , k). The proof

in the general case will be by transfinite induction with the use of the previously

stated auxiliary results. However, in the special case when | fi[X]| < c for all i, it

can be presented without the use of induction. The method is interesting and also

used in part of the proof of the general case, so we present it here. Assume that

| fi[X]| < c for all i, let V = LinQ

(
⋃

fi[X]
)

, and λ < c be the cardinality of a

linear basis of V . Choose Z ⊆ X such that |Z| = λ and fi|Z is a constant function

for every i and let {b1, . . . , bm} =

⋃

fi[Z]. Next we define a Hamel basis H. Let

C be a basis of LinQ (b1, . . . , bm) from Lemma 2, H1 be an extension of C to a basis

of V , and finally H be an extension of H1 to a Hamel basis. Define g : X → H

as a bijection with the property that g[Z] = H1. We claim that g + fi is 1-1 and

(g + fi)[X] is a Hamel basis (i = 1, . . . , k). To see this recall that b j + C is linearly

independent, LinQ (b j + C) = LinQ (C) = LinQ ({b1, . . . , bm}) (see Lemma 2), and

C ⊆ H1. This implies that LinQ (b j + H1) = LinQ (H1), b j + (H1 \ C) is linearly

independent, and as a consequence, b j + H1 is linearly independent. Therefore, since

fi[Z] = {b j} for some j, we have that (g + fi)[Z] = b j + H1. Thus (g + fi)[Z]

is linearly independent and LinQ ((g + fi)[Z]) = LinQ (H1). Finally, since fi[X] ⊆
LinQ (H1) = LinQ ((g + fi)[Z]), we can similarly conclude that (g + fi)[X] is linearly

independent and LinQ ((g + fi)[X]) = LinQ (g[X]) = LinQ (g[X]) = R. This finishes

the proof of the special case.

Now we prove the result for arbitrary functions f1, . . . , fk : X → R. We start

by dividing { f1, . . . , fk} into abstract classes according to the relation defined by:

fi ≈ f j if and only if |( fi − f j)[X]| < c. (It is easy to verify that this is an equivalence

relation). Put K =

⋃

i

⋃

f j≈ fi
( fi − f j)[X], κ = |ω ∪ K|, and note that κ < c. There

exists a set Z ⊆ X such that |Z| = κ+ and for all i, j the function ( fi − f j)|Z is one-

to-one or constant. (The existence of such a set can be shown by using an argument

similar to the one from the proof of Lemma 5; obviously, if fi ≈ f j, then ( fi − f j)|Z is

constant.) Our goal is to define g : Z ′ → R for some Z ′ ⊆ Z such that for every i ≤ k

g + fi is injective, (g + fi)[Z ′] is linearly independent, and K ⊆ LinQ ((g + fi)[Z ′]).

Define V = LinQ (K) and introduce another equivalence relation among the

functions f1, . . . , fk: fi
∼
= f j if and only if ( fi − f j)|Z is constant. Note that

≈ ⊆ ∼
=. Let fi1

, . . . , fi l
be representatives of the abstract classes of the relation

∼
=. Consider

⋃l
s=1

⋃

f j
∼
= fis

( f j − fis
)[Z] = {b1, . . . , bm}. By Lemma 2, there ex-

ists a linear basis C of LinQ ({b1, . . . , bm}) such that br + C (r ≤ m) is also a

linear basis for LinQ ({b1, . . . , bm}). Let H1 be a linear basis of V extending C.

Choose a set Z1 ⊆ Z such that |Z1| = |H1| and ( f j − fi1
)[Z1] is linearly in-

dependent and LinQ (( f j − fi1
)[Z1]) ∩ V = {0} for all f j 6∼= fi1

. This can

be done since |Z| = κ+ > |V | ≥ |H1| and ( f j − fi1
)|Z is injective for every

f j 6∼= fi1
. Let g ′

1 : Z1 → H1 be a bijection and define g : Z1 → R by g = g ′
1 − fi1

.

Then g + f j is one-to-one for all j, (g + f j)[Z1] is linearly independent for all j,

LinQ ((g + f j)[Z1]) = V for f j
∼
= fi1

(see the argument in the special case in

the beginning of the proof), and LinQ ((g + f j)[Z1]) ∩ V = {0} for f j 6∼= fi1

(the latter follows from the fact that if Y1 and Y2 are both linearly independent

https://doi.org/10.4153/CMB-2009-032-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2009-032-x


On Functions Whose Graph is a Hamel Basis II 301

and LinQ (Y1) ∩ LinQ (Y2) = {0}, then Y1 + Y2 is also linearly independent and

LinQ (Y1) ∩ LinQ (Y1 + Y2) = LinQ (Y1) ∩ LinQ (Y1 + Y2) = {0}) .

Next choose a set Z2 ⊆ Z \ Z1 such that |Z2| = |H1|, ( f j − fi2
)[Z2] is linearly

independent, and LinQ (( f j − fi2
)[Z2]) ∩ LinQ (

⋃k
1(g + fi)[Z1]) = {0} for all f j 6∼= fi2

(note that V ⊆
⋃k

1(g + fi)[Z1] since LinQ ((g + fi1
)[Z1]) = V ). This choice is possible

for similar reasons as in the case of Z1. Let g ′
2 : Z2 → H1 be a bijection and extend g

onto Z1 ∪ Z2 by defining it on Z2 as g = g ′
2 − fi2

. Then g + f j is one-to-one for all j,

(g + f j)[Z1 ∪ Z2] is linearly independent for all j, V ⊆ LinQ ((g + f j)[Z1 ∪ Z2]) for

f j
∼
= fi1

or f j
∼
= fi2

, and LinQ ((g + f j)[Z1 ∪Z2])∩V = {0} for f j 6∼= fi1
and f j 6∼= fi2

.

By continuing this process (or more formally, by using mathematical induction),

we construct a sequence of pairwise disjoint sets Z1, Z2, . . . , Zl ⊆ Z and a partial real

function g : Z ′ → R (Z ′
= Z1∪· · ·∪Zl) such that for each j = 1, . . . , k, g + f j is one-

to-one, (g + f j)[Z ′] is linearly independent, and V ⊆ LinQ ((g + f j)[Z ′]). Observe

also that |Z ′| ≤ κ. Therefore |X \ Z ′| = c.

In the following part of the proof, we will use transfinite induction to extend the

partial function g onto the whole set X making sure it possesses the desired proper-

ties. We will make use of Lemma 6 and Remark 7. First notice that if Z ′ ⊆ A ⊆ X

and g : A → R is any extension of g : Z ′ → R, then for f j ≈ fi we have that

((g + f j) − (g + fi))[A] = ( f j − fi)[A] ⊆ ( f j − fi)[X]

⊆ V ⊆ LinQ ((g + fi)[Z ′]) ∩ LinQ ((g + f j)[Z ′]).

Hence the remark implies that LinQ ((g + fi)[A]) = LinQ ((g + f j)[A]). Thus, when

extending the function g it will suffice to consider only the representatives of the ab-

stract classes of the relation ≈. Let f j1
, . . . , f jt

be those functions. Let H = {hξ : ξ <

c} be a Hamel basis and {xξ : ξ < c} be an enumeration of X \ Z ′. We will define

a sequence of pairwise disjoint finite sets {Xξ : ξ < c} such that
⋃

ξ<c
Xξ = X \ Z ′,

xξ ∈
⋃

β≤ξ Xβ and an extension of g onto X such that for each ξ < c the following

condition holds

(Pξ) g + f jr
is one-to-one, (g + f jr

)[Z ′∪
⋃

β≤ξ Xβ is linearly independent,

and hξ ∈ LinQ ((g + f jr
)[Z ′ ∪

⋃

β≤ξ Xβ]) for all r = 1, . . . , t .

Notice that this will finish the proof of our main theorem. To perform the induc-

tive construction, fix α < c and assume that the sets Xξ have been defined for all

ξ < α and the function g extended onto Z ′ ∪
⋃

ξ<α Xξ in such a way that (Pξ) is

satisfied for each ξ < α.

If xα 6∈ Z ′ ∪
⋃

ξ<α Xξ , then define g(xα) 6∈
⋃t

r=1 LinQ ((g + f jr
)[Z ′ ∪

⋃

ξ<α Xξ] ∪
{ f jr

(xα)}). This assures that g + f jr
is one-to-one and (g + f jr

)[Z ′ ∪
⋃

ξ<α Xξ ∪{xα}]

is linearly independent (r = 1, . . . , t). Next, if hα ∈ (g + f j1
)[Z ′ ∪

⋃

ξ<α Xξ ∪ {xα}],

then put Xα1 = ∅. Otherwise, we apply Lemma 6 to functions f jr
− f j1

: X \ (Z ′ ∪
⋃

ξ<α Xξ ∪ {xα}) → R(r = 2, . . . , t), B0 = LinQ ((g + f j1
)[Z ′ ∪

⋃

ξ<α Xξ ∪ {xα}]),

B1 = LinQ (
⋃t

r=2(g + f jr
)[Z ′ ∪

⋃

ξ<α Xξ ∪ {xα}]), and y = hα. Hence there exist

y1 j1
, . . . , yn1 j1

∈ R and x1 j1
, . . . , xn1 j1

∈ X\ (Z ′∪
⋃

ξ<α Xξ ∪{xα}) such that the con-

ditions (a) and (b) from the lemma are satisfied. We define Xα1 = {x1 j1
, . . . , xn1 j1

}
and g(xi j1

) = yi jr
− f j1

(xi j1
)(i = 1 . . . , n1). By repeating the above steps for the other
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functions f j2
, . . . , f jt

(the sets B0 and B1 need to be appropriately extended in each

step) we obtain pairwise disjoint sets Xα1, . . . , Xαt ⊆ X \ (Z ′ ∪
⋃

ξ<α Xξ ∪ {xα}) and

an extension of g onto Z ′ ∪
⋃

ξ≤α Xξ (where Xα = Xα1 ∪ · · · ∪ Xαt ∪ {xα}). Observe

that the conditions (a) and (b) from Lemma 6 imply that (Pα) holds. This completes

the inductive construction and also the proof of Theorem 1.
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