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Abstract

Background. Extensive research has shown abnormal cerebral blood flow (CBF) in patients
with major depressive disorder (MDD) that is a heritable disease. The objective of this
study was to investigate the genetic mechanisms of CBF abnormalities in MDD.
Methods. To achieve a more thorough characterization of CBF changes in MDD, we per-
formed a comprehensive neuroimaging meta-analysis of previous literature as well as exam-
ined group CBF differences in an independent sample of 133 MDD patients and 133
controls. In combination with the Allen Human Brain Atlas, transcriptome-neuroimaging
spatial association analyses were conducted to identify genes whose expression correlated
with CBF changes in MDD, followed by a set of gene functional feature analyses.
Results. We found increased CBF in the reward circuitry and default-mode network and
decreased CBF in the visual system in MDD patients. Moreover, these CBF changes were spa-
tially associated with expression of 1532 genes, which were enriched for important molecular
functions, biological processes, and cellular components of the cerebral cortex as well as sev-
eral common mental disorders. Concurrently, these genes were specifically expressed in the
brain tissue, in immune cells and neurons, and during nearly all developmental stages.
Regarding behavioral relevance, these genes were associated with domains involving emotion
and sensation. In addition, these genes could construct a protein-protein interaction network
supported by 60 putative hub genes with functional significance.
Conclusions. Our findings suggest a cerebral perfusion redistribution in MDD, which may be
a consequence of complex interactions of a wide range of genes with diverse functional
features.

Introduction

Major depressive disorder (MDD) is a highly prevalent and disabling mental disorder with
significant morbidity, mortality, and cost (Bromet et al., 2011; Greenberg et al., 2021;
Kessler & Bromet, 2013; Whiteford et al., 2013). The World Health Organization projected
that MDD will be the leading cause of global disease burden by 2030 (World Health
Organization, 2008). Although substantial efforts have been made in the past decades, the eti-
ology of MDD remains elusive. Advances in neuroimaging techniques have made it increas-
ingly feasible to investigate the neuropathology of MDD. Benefiting from the ability to
precisely map function to underlying neuroanatomy, functional neuroimaging is crucial for
studying brain function in health and disease. Cerebral blood flow (CBF), normally coupled
to brain metabolism and neuronal activity, is one of the most frequently used and physiolo-
gically relevant functional measures (Buxton, 2021; Lecrux, Bourourou, & Hamel, 2019).
Positron emission tomography (PET) and single photon emission computed tomography
(SPECT) have traditionally been adopted to measure CBF (Wintermark et al., 2005).
Arterial spin labeling (ASL), a noninvasive magnetic resonance imaging (MRI) technique,
can rapidly quantify CBF using magnetically labeled arterial blood water as an endogenous
tracer (Haller et al., 2016; Hernandez-Garcia, Lahiri, & Schollenberger, 2019). With use of
these techniques, numerous studies have shown CBF changes in MDD patients (Bench
et al., 1992; Cantisani et al., 2016; Chen et al., 2016; Cooper et al., 2020; Duhameau et al.,
2010; Ho et al., 2013; Jarnum et al., 2011; Kaichi et al., 2016; Krausz et al., 2007; Li et al.,
2018; Lui et al., 2009; Monkul et al., 2012; Ota et al., 2014; Périco et al., 2005; Sahib et al.,
2020; Savitz et al., 2012; Vardi et al., 2011; Vasic et al., 2015), establishing CBF as a potential
imaging biomarker of this disorder.
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Despite the extensive research on CBF alterations in MDD, the
results of those investigations vary considerably, with inconsist-
ency in both location and direction of effects. These heteroge-
neous results may be partially due to limited statistical power
from relatively small samples, clinical heterogeneity related to ill-
ness profile variation, and methodological differences. In this
framework, neuroimaging meta-analysis emerges as a potent
approach to synthesizing the multitude of results from published
imaging literature in an unbiased manner, with the advantages of
enlarging sample size, increasing power, and separating the con-
sistent findings from those occurring by chance (Muller et al.,
2018). Although there have been prior neuroimaging
meta-analyses examining CBF abnormalities in MDD (Chen
et al., 2015; Chithiramohan et al., 2022; Hamilton et al., 2012;
Li et al., 2017; Wang & Yang, 2022), a rapidly increasing number
of recent publications in the field along with continuing improve-
ments in meta-analytic methods (Albajes-Eizagirre, Solanes,
Vieta, & Radua, 2019b) have allowed us to attempt a more thor-
ough characterization of CBF changes in MDD.

MDD is a moderately heritable disease with an estimated gen-
etic heritability of ∼40% (Corfield, Yang, Martin, & Nyholt, 2017;
Sullivan, Neale, & Kendler, 2000). Identifying genetic risk factors
for MDD may not only improve our understanding of its patho-
genesis, but also inform earlier and more reliable disease detec-
tion. Large-scale human genome-wide association studies have
identified multiple risk variants, genes, and gene-sets in associ-
ation with MDD (Consortium, 2015; Howard et al., 2018, 2019;
Hyde et al., 2016; Ripke et al., 2013; Wray et al., 2018).
Furthermore, a recent transcriptome study found brain gene
expression alterations in MDD (Gandal et al., 2018), offering inte-
grated insight into how genetic variants interact with environ-
mental and epigenetic risk factors in the brain to confer risk for
MDD. Despite these promising findings, relatively little is
known about the exact genetic mechanisms of certain disease
phenotypes in MDD, such as CBF changes.

A combined analysis of brain imaging data and brain-wide
gene expression atlases such as the Allen Human Brain Atlas
(AHBA) (Hawrylycz et al., 2012) has given rise to the emergent
domain of neuroimaging transcriptomics, which provides a work-
able route towards the identification of genes with spatial profiles
of regional expression that track anatomical variations in a certain
neuroimaging phenotype (Chen et al., 2022; Fornito,
Arnatkeviciute, & Fulcher, 2019; Liu et al., 2022; Zhang et al.,
2021), laying the foundation for bridging the gap between micro-
scale molecular function and macroscale brain organization. In
this domain, there has been growing interest in examining the
spatial associations between disease neuroimaging phenotypes
and brain gene expression, which may help shed light on the gen-
etic mechanisms underlying imaging biomarkers of mental disor-
ders (Ji et al., 2021; Liu, Tian, Li, Li, & Zhuo, 2019;
Romero-Garcia, Warrier, Bullmore, Baron-Cohen, & Bethlehem,
2019; Xie et al., 2020). By means of this powerful approach,
researchers have discovered several sets of genes whose expression
levels are linked to brain structural and functional abnormalities
in MDD (Althubaity et al., 2022; Anderson et al., 2020; Li
et al., 2021; Xue et al., 2020). Nonetheless, there is still a paucity
of transcription-neuroimaging association studies into the genetic
mechanisms of CBF changes in MDD.

To elucidate such mechanisms, we initially determined CBF
changes in MDD by performing a comprehensive neuroimaging
meta-analysis as well as examining group CBF differences in an
independent large sample of 133 MDD patients and 133 healthy

controls (HC). Notably, compared with the Wang et al.,
meta-analysis including only ASL studies (Wang & Yang, 2022),
our meta-analysis included studies from both ASL and PET/
SPECT. In combination with the AHBA, transcriptome-
neuroimaging spatial correlation analyses were then conducted
to identify genes whose expression patterns were associated with
CBF changes in MDD. Finally, a set of post hoc analyses [i.e.
functional enrichment, specific expression, behavioral relevance,
and protein-protein interaction (PPI) analyses] were carried out
for the identified genes to describe their functional features. A
schematic overview of the study design and analysis pipeline is
shown in Fig. 1.

Materials and methods

Literature search and selection

Our meta-analysis was conducted according to the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines (Moher, Liberati, Tetzlaff, Altman, &
Group, 2009). A systematic search was performed independently
by two investigators (X.S. and W.H.) to determine relevant studies
published in PubMed and Web of Science before 19 February 2021.
This meta-analysis protocol was pre-registered in PROSPERO
(https://www.crd.york.ac.uk/PROSPERO/, registration number:
CRD42021250728). The search terms along with the inclusion
and exclusion criteria can be found in the Supplementary materials.
The detailed study selection process is shown in online
Supplementary Fig. S1. For each included study, we recorded the
following information: scanner, sample size, sex, age, symptom
severity, diagnostic criteria, and illness duration.

Neuroimaging meta-analysis of group CBF differences

Voxel-wise meta-analysis of CBF differences between MDD
patients and HC was conducted using Seed-based d Mapping
with Permutation of Subject Images (SDM-PSI, version 6.21)
(https://www.sdmproject.com). In contrast to the traditional acti-
vation likelihood estimation (ALE) method, SDM-PSI enables
investigators to combine both peak coordinates and statistical
parametric maps and uses standard effect size and variance-based
meta-analytic calculations. The SDM method has been described
in detail elsewhere (Albajes-Eizagirre et al., 2019a). First, we
extracted peak coordinates and corresponding effect sizes (e.g. t
values) of clusters with significant CBF differences between
MDD patients and HC from each study. Coordinates reported
in the Talairach space were converted to the Montreal
Neurological Institute (MNI) space using the matrix transforma-
tions proposed by Lancaster (Lancaster et al., 2007); z or p values
were converted to t values using SDM online conversion utilities
(https://www.sdmproject.com/utilities/?show=Statistics). Then, a
standard MNI map of CBF differences between MDD patients
and HC was separately created for each study using a Gaussian
kernel of 20 mm full width at half maximum (Radua et al.,
2012). Next, these maps were combined using a standard
random-effects model accounting for sample size, intra-study
variability and between-study heterogeneity, resulting in a final
map of group CBF differences (z map) for all included studies.
Considering the relatively small number of included studies, we
reported results using a voxel-wise threshold of p < 0.005 com-
bined with a cluster size threshold of 10 voxels to optimally bal-
ance Types I and II error rates (Lieberman & Cunningham, 2009;
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Radua et al., 2012). Several supplementary analyses were pursued
to test the robustness and reliability of our meta-analysis results.
Detailed steps are described in the Supplementary materials.

Participants in the independent dataset

Group CBF differences were also tested in an independent sample
of 133 MDD patients and 133 well-matched HC. MDD patients
were enrolled consecutively from the inpatient and outpatient
departments of Hefei Fourth People’s Hospital. HC were recruited
from the local community via poster advertisements. This study
was conducted in accordance with the Declaration of Helsinki

and was approved by the ethics committee of The First
Affiliated Hospital of Anhui Medical University (5101152).
Written informed consent was obtained from all participants
after they had been given a complete description of the study.
Inclusion and exclusion criteria for all participants are described
in the Supplementary materials.

MRI data acquisition and CBF analysis

MRI data were acquired on a 3.0-Tesla MR system (Discovery
MR750w, General Electric, Milwaukee, WI, USA). The resting-
state perfusion imaging was performed using a pseudo-

Fig. 1. A schematic overview of the study design and analysis pipeline. AHBA, Allen Human Brain Atlas; CBF, cerebral blood flow; HC, healthy controls; MDD, major
depressive disorder.
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continuous ASL sequence with a 3D fast spin-echo acquisition
and background suppression. Detailed scan sequences and para-
meters can be found in the Supplementary materials. Three
ASL difference images were calculated by subtracting the label
images from the control images and then averaged. Next, CBF
was quantified by applying a single-compartment model
(Buxton et al., 1998) to the mean ASL difference and
proton-density-weighted reference images (Xu et al., 2010; Zhu
et al., 2015, 2017; Zhuo et al., 2017). The Statistical Parametric
Mapping software (SPM12, http://www.fil.ion.ucl.ac.uk/spm) was
used to normalize the CBF images into the MNI space. The
detailed steps are described in the Supplementary materials. For
the independent dataset, CBF differences between MDD patients
and HC were examined using a two-sample t test in a voxel-wise
manner, resulting in a statistical t map. Multiple comparisons
were corrected using the cluster-level family-wise error (FWE)
method, resulting in a cluster defining threshold of p < 0.001
and a corrected cluster significance of p < 0.05.

Brain gene expression data processing

Brain gene expression data were obtained from the downloadable
AHBA dataset (http://www.brain-map.org) (Hawrylycz et al.,
2012, 2015). The dataset was derived from six human post-
mortem donors (online Supplementary Table S1). The original
expression data of more than 20 000 genes at 3702 spatially dis-
tinct brain tissue samples were processed using a newly proposed
pipeline (Arnatkeviciute, Fulcher, & Fornito, 2019). The detailed
steps can be found in the Supplementary materials. After these
processing procedures, we obtained normalized expression data
of 5013 genes for 1280 tissue samples. Because our neuroimaging
meta-analysis was performed within a gray matter mask provided
by the SDM-PSI, we further restricted our analyses to the samples
within this mask, resulting in a final sample × gene matrix of
894 × 5013.

Transcription-neuroimaging association analysis

To derive the group CBF difference in a given brain tissue sample,
we drew a spherical region (radius = 3 mm) centered at the MNI
coordinate of this sample and extracted the average z value of vox-
els within the sphere from the meta-analysis z map. Then, cross-
sample (894 samples) Pearson’s correlations between gene expres-
sion and z values were performed in a gene-wise manner (5013
genes), yielding 5013 correlation coefficients. Multiple compari-
sons were corrected using the Bonferroni method ( p < 0.05/
5013 = 9.974 × 10−6). Likewise, the above-described analysis pro-
cedure was conducted for the t map in the independent dataset.
Then, only genes with significant spatial correlations with both
the meta-analysis z map and the independent dataset t map
were considered as the genes whose expression levels were asso-
ciated with CBF changes in MDD patients. To further test
whether the number of the identified genes was significantly
greater than the random level, a spatially-constrained permutation
test was conducted to establish the significance of our results. The
detailed steps are described in the Supplementary materials.

Gene enrichment analysis

A series of enrichment analyses were conducted for the identified
genes associated with CBF changes in MDD patients. First, func-
tional annotation was carried out with use of the ToppGene

portal (https://toppgene.cchmc.org/) (Chen, Bardes, Aronow, &
Jegga, 2009). Gene ontology (GO) was used to determine the bio-
logical functions including molecular functions (MFs), biological
processes (BPs), and cellular components (CCs). The disease
database was adopted to determine the related diseases. Second,
we used online tissue-specific expression analysis (http://genet-
ics.wustl.edu/jdlab/tsea/) and cell type-specific expression analysis
(http://genetics.wustl.edu/jdlab/csea-tool-2/) (Dougherty, Schmidt,
Nakajima, & Heintz, 2010) tools to conduct tissue, cell type, and
temporal specific expression analyses, with the aim of determining
the specific tissues, cortical cell types, and developmental stages in
which these genes were overrepresented. A specificity index prob-
ability (pSI) was used to determine how likely a gene was to be spe-
cifically expressed (Xu, Wells, O’Brien, Nehorai, & Dougherty,
2014) and four pSI thresholds (0.05, 0.01, 0.001, and 0.0001)
were employed in this analysis. Finally, we examined the overlap
between the genes associated with CBF changes in MDD patients
found in the current study and MDD-associated genes in the
MalaCards database (https://www.malacards.org/) (Rappaport
et al., 2017), using 20 737 genes with unique Entrez IDs in the
AHBA as the background list. For the aforementioned enrichment
analyses, Fisher’s exact tests were used to test their significance.
Multiple testing was corrected using the Benjamini and
Hochberg method for false discovery rate (FDR-BH correction)
with a corrected p value (q) of 0.05.

Behavioral relevance analysis

To capture the behavioral relevance of the genes related to CBF
changes in MDD patients, we tested their associations with behav-
ioral domains from the Neurosynth (https://neurosynth.org/), a
well-validated and publicly available platform for meta-analysis
of neuroimaging literature (Yarkoni, Poldrack, Nichols, Van
Essen, & Wager, 2011). Detailed steps are provided in the
Supplementary materials.

Protein-protein interaction analysis

PPI analysis was performed with STRING v11.0 (https://string-db.
org/) to determine whether the genes associated with CBF
changes in MDD patients could construct a PPI network with a
highest confidence interaction score of 0.9. Genes with the top
10% highest degree values (i.e. the number of edges connected
to a gene) were defined as hub genes. In addition, the Human
Brain Transcriptome database (http://hbatlas.org/) was employed
to delineate the spatial-temporal expression trajectory of hub
genes with the highest degree values.

Results

Meta-analysis of CBF changes in MDD patients

After a comprehensive literature search and selection, our neuroi-
maging meta-analysis included 600 MDD patients and 448 HC
from 17 studies. The demographic and clinical characteristics of
these participants are shown in Table 1. Compared with HC,
MDD patients exhibited increased CBF in the right caudate and
decreased CBF in the left insula and right calcarine sulcus
(Fig. 2a and online Supplementary Table S2). Moreover, jackknife
sensitivity analysis (82–88% consistency) (online Supplementary
Table S3), publication bias analysis including small-study effect
and excess significance tests ( p > 0.05) (online Supplementary

Psychological Medicine 6471

https://doi.org/10.1017/S0033291722003750 Published online by Cambridge University Press

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
http://www.brain-map.org
http://www.brain-map.org
https://toppgene.cchmc.org/
https://toppgene.cchmc.org/
http://genetics.wustl.edu/jdlab/tsea/
http://genetics.wustl.edu/jdlab/tsea/
http://genetics.wustl.edu/jdlab/tsea/
http://genetics.wustl.edu/jdlab/csea-tool-2/
http://genetics.wustl.edu/jdlab/csea-tool-2/
https://www.malacards.org/
https://www.malacards.org/
https://neurosynth.org/
https://neurosynth.org/
https://string-db.org/
https://string-db.org/
https://string-db.org/
http://hbatlas.org/
http://hbatlas.org/
https://doi.org/10.1017/S0033291722003750


Table 1. Demographic and clinical characteristics of the 17 studies in the meta-analysis

Study Type

Subjects (males) Mean age (years)

Symbol severity (scale type)
Diagnostic
criteria-MDD Scanner

Illness duration
(years)MDD HC MDD HC

Ho et al. (2013) ASL 25 (7) 26 (7) 15.98 16.42 73.3 (Children’s Depression Rating Scale) DSM-IV 3T GE 1.9

Lui et al. (2009) ASL 37 (26) 42 (27) 33 37 23 (HRSD) DSM-IV 3T GE 2

Duhameau et al.
(2010)

ASL 6 (4) 6 (3) 52.5 47.17 22.5 (HRSD) DSM-IV 3T Philips NA

Monkul et al. (2012) PET 20 (5) 21 (7) 37.2 34.8 22 (HAMD) DSM-IV GE NA

Bench et al. (1992) PET 33 (21) 23 (10) 56.8 63.4 25 (HAMD) NA NA NA

Vasic et al. (2015) CASL 43 (17) 29 (11) 37.1 34.5 20.9 (HAMD) DSM-IV 3T Siemens 7.2

Krausz et al. (2007) SPECT 10 (1) 10 (1) 49.1 49.7 NA DSM-IV NA NA

Kaichi et al. (2016) pCASL 53 (27) 36 (17) 42.27 39.87 20.4 (HRSD) DSM-IV 3T GE NA

Cooper et al. (2020) ASL 106 (39) 36 (12) 37.65 37.49 18.92 (HAMD) DSM-IV 3T (Siemens GE
Philips)

NA

Cantisani et al.
(2016)

ASL 20 (10) 19 (8) 43.3 41.05 25.45 (HAMD) 26.65 (MADRS) DSM-IV 3T Siemens 10.7

Savitz et al. (2012) PET 66 (25) 79 (34) 36.3 34.2 24.2 (MADRS) DSM-IV NA 16.9

Vardi et al. (2011) SPECT 37 (16) 27 (13) 49.81 55.04 31.53 (HAMD) DSM-IV Elscint 1.8

Jarnum et al. (2011) pCASL 23 (7) 26 (13) 43.2 42 23.3 (HRSD) DSM-IV 3T GE NA

Chen et al. (2016) pCASL 10 (7) 15 (6) 38.7 38.42 35.3 (HAMD) DSM-IV 3T Philips NA

Périco et al. (2005) SPECT 15 (3) 15 (6) 34.5 33.27 26.9 (HRSD) DSM-IV Elscint 2.3

Sahib et al. (2020) pCASL 22 (16) 18 (8) 36.11 35.27 NA DSM-V 3T Siemens 18.91

Li et al. (2018) SPECT 74 (21) 20 (8) 41.9 38 25.49 (HAMD) DSM-IV GE NA

ASL, arterial spin labeling; CASL, continuous arterial spin labeling; DSM, diagnostic statistical manual of mental disorders; GE, General Electric Company; HAMD, Hamilton Rating Scale for Depression; HC, healthy controls; HRSD, Hamilton Rating Scale
for Depression; MADRS, Montgomery-Asberg Depression Rating Scale; MDD, major depressive disorder; NA, not available; pCASL, pseudo-continuous arterial spin labeling; PET, positron emission tomography; SPECT, single photon emission computed
tomography
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Table S4), and heterogeneity analysis (I2 < 50%) (online
Supplementary Table S5) demonstrated the robustness and reli-
ability of our meta-analysis results.

CBF changes in MDD patients in the independent dataset

The demographic and clinical characteristics of the independent
sample are presented in Table 2. There were no significant differ-
ences in age, gender, and education between MDD patients and
HC. The voxel-wise two-sample t test revealed a mix of increased
and decreased CBF in MDD patients (Fig. 2b and online
Supplementary Table S6). Specifically, MDD patients showed
increased CBF in the bilateral middle cingulate gyrus/bilateral
supplementary motor area/left posterior cingulate gyrus/left pre-
cuneus, left putamen, right temporal pole, left middle temporal
gyrus, right superior temporal gyrus, bilateral thalamus, and left
middle frontal gyrus relative to HC ( p < 0.05, cluster-level FWE

corrected). In addition, MDD patients showed decreased CBF in
the bilateral occipital cortex extending to bilateral parietal cortex
in comparison with HC ( p < 0.05, cluster-level FWE corrected).

Genes associated with CBF changes in MDD patients

Leveraging transcriptome-neuroimaging spatial correlation ana-
lyses, we found that the meta-analysis z map and the independent
dataset t map were respectively associated with expression mea-
sures of 1587 and 3751 genes ( p < 0.05, Bonferroni corrected),
with 1532 overlap genes (Supplementary file 1). These overlap
genes, whose expression levels were considered to associate with
CBF changes in MDD patients, were used for further analyses.
The spatially-constrained permutation test showed that none
out of 5000 permutations resulted in more genes than those iden-
tified using the real data (Pperm < 0.0002), indicating that our
results were different from random. Moreover, we observed sig-
nificant overlaps between the genes in the main analysis and
those identified using two other differential stability (DS) thresh-
olds of 40% (overlap ratio: 97.80%) and 60% (overlap ratio:
96.42%) (online Supplementary Table S7 and file 2).

Gene functional enrichment

To characterize the biological functions and diseases of the genes
associated with CBF changes in MDD patients, we performed
functional enrichment analyses using the ToppGene portal. The
results of functional enrichment are listed in Supplementary file
3 and are depicted in Fig. 3. With regard to GO, these genes
were enriched for MFs including syntaxin binding, neurotrans-
mitter receptor activity, GABA receptor activity, ion channel
inhibitor activity, transmembrane transporter activity, and ion
gated channel activity; for BPs including regulation of nervous
system development, neuron differentiation, neurotransmitter
transport, neurotransmitter secretion, and signal release from syn-
apse; and for CCs including neuron projection, neuronal cell
body, axon, dendritic tree, synapse, and GABA-ergic synapse.
As to diseases, these genes were found to be enriched for several
common mental disorders including depressive disorder, autistic
disorder, bipolar disorder, and schizophrenia.

Tissue, cell type, and temporal specific expression

The specific expression results of the 1532 genes related to CBF
changes in MDD patients are listed in Supplementary file 4 and
are illustrated in Fig. 4. Tissue specific expression analysis

Fig. 2. (a) Brain regions with CBF differences between MDD patients and HC identi-
fied by the neuroimaging meta-analysis. (b) Brain regions with CBF differences
between MDD patients and HC in the independent dataset. Warm and cold colors
denote increased and decreased CBF in MDD patients, respectively. CBF changes in
the subcortical regions are not shown. CBF, cerebral blood flow; HC, healthy controls;
MDD, major depressive disorder; L, left; R, right.

Table 2. Demographic and clinical characteristics of the independent sample

Characteristics MDD HC Statistics p value

Number of subjects 133 133 – –

Age (years) 43.5 ± 11.3 45.6 ± 11.2 t = −1.57 0.12

Gender (female/male) 87/46 95/38 χ2 = 1.11 0.29

Education (years) 9.0 ± 3.6 9.6 ± 3.6 t =−1.49 0.14

Illness duration (years) 5.4 NA – –

HAMD 28.6 ± 12.0 2.0 ± 3.3 t = 24.78 <0.001

HAMA 19.7 ± 8.0 2.1 ± 3.5 t = 23.40 <0.001

HAMA, Hamilton Rating Scale for Anxiety; HAMD, Hamilton Rating Scale for Depression; HC, healthy controls; MDD, major depressive disorder; NA, not available
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demonstrated that these genes were specifically expressed in the
brain tissue (Fig. 4a). Cell type specific expression analysis
revealed that these genes were specifically expressed in immune
cells and multiple types of neurons including Pnoc+, Ntsr+,
Glt25d2, and Cort+ (Fig. 4b). Temporal specific expression ana-
lysis showed that these genes were preferentially expressed during
early mid-fetal, late mid-fetal, late fetal, neonatal and early
infancy, early childhood, middle and late childhood, adolescence,
and young adulthood (Fig. 4c).

Overlap with MDD-associated genes

Fisher’s exact test revealed that the 1532 genes associated with
CBF changes in MDD patients found in the current study signifi-
cantly overlapped with the 110 MDD-associated genes in
the Malacards database (17 overlap genes, odds ratio = 2.10,
p = 6.26 × 10−3).

Behavioral relevance

By linking gene expression with behavioral domains via the
Neurosynth, we found that the genes associated with CBF changes
in MDD patients were correlated with multiple behavioral terms
including visual, emotion, affective, fear, stress, sensory, depres-
sion, and anxiety (Fig. 5).

PPI network and hub genes

PPI analysis revealed that 604 genes from the 1532 genes could
construct an interconnected PPI network (online Supplementary

Fig. S3A). This network consisted of 3582 edges, which was signifi-
cantly higher than expected ( p = 9.6 × 10−12). 60 genes with the
top 10% highest degree values were defined as hub genes
(Supplementary file 5). In addition, we delineated the spatial-
temporal expression trajectory of three hub genes with the highest
degree values (i.e. GNG2, GNB4, and GNG4) (online
Supplementary Fig. S3B).

Discussion

To our knowledge, this is the first study to investigate the genetic
mechanisms of CBF changes in MDD using a combined analysis
of brain imaging and gene expression data. Neuroimaging
meta-analysis of previous literature and group comparison analysis
in an independent dataset consistently demonstrated that MDD
patients had increased CBF in the reward circuitry and default-
mode network and decreased CBF in the visual system. Moreover,
transcriptome-neuroimaging correlation analysis revealed that
these CBF changes were spatially associated with expression of
1532 genes, which were enriched for important MFs, BPs, and
CCs of the cerebral cortex as well as several common mental disor-
ders. Concurrently, these genes were specifically expressed in the
brain tissue, in immune cells and neurons, and during nearly all
developmental stages. Regarding behavioral relevance, these genes
were associated with domains involving emotion and sensation.
In addition, these genes could construct a PPI network supported
by 60 putative hub genes with functional significance. Altogether,
our findings suggest that CBF changes in MDD may be a conse-
quence of complex interactions of a wide range of genes with diverse
functional features, confirming the polygenic nature of this illness.

Fig. 3. Functional enrichment of the genes associated with CBF changes in MDD patients. For the bubble chart, the x-axis represents the rich factor and the y-axis
represents items from the GO and disease databases. The rich factor refers to the ratio of the number of the significant genes annotated to the item to the number
of all genes annotated to the item. The bubble size denotes the number of genes overlapping with those belonging to each item, and the bubble color represents
the −log10(q). BP, biological process; CBF, cerebral blood flow; CC, cellular component; GO, gene ontology; MDD, major depressive disorder; MF, molecular function.
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The neuroimaging meta-analysis revealed that MDD patients
presented with increased CBF in the caudate and decreased
CBF in the insula and calcarine sulcus relative to HC. In the inde-
pendent dataset, MDD patients showed increased CBF in the
middle cingulate gyrus, supplementary motor area, posterior cin-
gulate gyrus/precuneus, putamen, temporal cortex, thalamus and
middle frontal gyrus, as well as decreased CBF predominantly in
the occipital cortex. These results can be summarized as hyper-
perfusion in the reward circuitry [the caudate, putamen, and mid-
dle frontal gyrus (Clery-Melin, Jollant, & Gorwood, 2019)] and
default-mode network (the posterior cingulate gyrus/precuneus,
lateral temporal cortex, and thalamus [Buckner & DiNicola,
2019; Raichle, 2015)] and hypo-perfusion in the visual system
(the occipital cortex), indicating a perfusion redistribution in
the brain of MDD patients. It is well established that MDD is a
clinically heterogeneous disorder characterized by a mixture of
emotional, cognitive, and neurovegetative symptoms (Malhi &
Mann, 2018). Anhedonia represents one of the fundamental emo-
tional symptoms in patients suffering from MDD, which is
thought to associate with impaired reward processing possibly
arising from dysfunction in the reward circuitry (Hoflich,
Michenthaler, Kasper, & Lanzenberger, 2019; Li et al., 2018;
Nestler & Carlezon, 2006; Pizzagalli et al., 2009; Russo &

Fig. 4. Specific expression of the genes associated with CBF changes in MDD patients. (a) Tissue specific expression. (b) Cell specific expression. (c) Temporal spe-
cific expression. Astro, astrocytes; CBF, cerebral blood flow; Cort+, corticosterone-expressing neurons; Glt25d2, corticopontine neurons; Immu, immune cells; MDD,
major depressive disorder; Myeli, myelinating oligodendrocytes; Ntsr+, corticothalamic neurons; OPC, oligodendrocyte progenitor cells; Pnoc+,
prepronociceptin-expressing neurons.

Fig. 5. Behavioral relevance of the genes associated with CBF changes in MDD
patients. The radial array numbers represent average absolute correlation coeffi-
cients between expression measures of the identified genes and activation values
of behavioral terms from the Neurosynth. CBF, cerebral blood flow; MDD, major
depressive disorder.
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Nestler, 2013). For example, Pizzagalli et al., found caudate dys-
function during reward processing as well as a link between caud-
ate volume and anhedonia in MDD patients (Pizzagalli et al.,
2009). Tao and colleagues reported that MDD patients exhibited
abnormal function in the ‘hate circuit’ involving the putamen and
prefrontal cortex, which may reflect reduced cognitive control
over negative feelings toward both self and others (Tao et al.,
2013). Rumination, defined as repetitive thinking about negative
information, is a characteristic of MDD (Whitmer & Gotlib,
2013). The default-mode network is classically considered an
‘intrinsic’ system, specializing in internally oriented cognitive pro-
cesses such as daydreaming, reminiscing and future planning
(Yeshurun, Nguyen, & Hasson, 2021). There is empirical evidence
from functional neuroimaging pointing to an intimate link
between rumination and activations of the default-mode network
(Zhou et al., 2020). Our observation of decreased CBF in the vis-
ual system is coherent with previous reports (Bonte et al., 2001;
Nagafusa et al., 2012). It is largely known that the visual system
is not only implicated in visual processing (Prasad & Galetta,
2011), but also engaged by higher level cognitive processes
(Roelfsema & de Lange, 2016). Earlier research indicates that
functional deficit in the visual system may be an initiating factor
for cognitive impairment in MDD patients (Li et al., 2013). In
addition, we observed decreased CBF in the insula, which plays
a pivotal role in interoceptive awareness, emotional responses,
and empathic processes (Menon & Uddin, 2010). This finding
complements and extends prior literature on structural and func-
tional impairments in this region in MDD (Liu et al., 2010;
Stratmann et al., 2014). Collectively, our data suggest that there
exists a cerebral perfusion redistribution across the reward cir-
cuitry, default-mode network, and visual system that might
account for the clinical heterogeneity of MDD.

More importantly, leveraging transcription-neuroimaging spa-
tial association analysis, we identified 1532 genes whose expres-
sion patterns were correlated with CBF changes in MDD.
Functional enrichment analyses demonstrated that these genes
were mainly enriched for ion channel (ion channel inhibitor
activity and ion gated channel activity), synapse (syntaxin bind-
ing, signal release from synapse, and GABA-ergic synapse), neu-
ron (neuron differentiation, neuronal cell body, and neuron
projection), and neurotransmitter system (neurotransmitter
receptor activity, GABA receptor activity, neurotransmitter trans-
port, and neurotransmitter secretion). Ion channels are important
for generating membrane potential, neuronal growth and differ-
entiation, signal transduction, and neurotransmitter release
(Kumar, Kumar, Jha, Jha, & Ambasta, 2016; Moody & Bosma,
2005; Smith & Walsh, 2020). Previous studies have suggested
that ion channels, such as low-voltage-sensitive T-type calcium
channel and potassium channel Kir4.1, hold promise as thera-
peutic targets for depression (Hashimoto, 2019). It is generally
accepted that brain function relies on the ability of neurons to
communicate with each other; inter-neuronal communication
primarily takes place at synapses, where information from one
neuron is rapidly conveyed to a second neuron (Pereda, 2014).
Basic studies have documented that ketamine, a rapid antidepres-
sant, can induce synaptogenesis and reverse synaptic deficits
caused by chronic stress, highlighting the role of synaptic dys-
function in depression and its potential as a therapeutic target
(Duman & Aghajanian, 2012). It is quite apparent that neuronal
impairment and maldevelopment may be central to the neurology
of depression (Krishnan & Nestler, 2008; Willner, Scheel-Krüger,
& Belzung, 2013). Besides, neurons are a key component of the

neurovascular unit, which serves as the structural basis of the
coupling between CBF and neuronal activity. Central to brain
health, neurovascular interactions have emerged as essential con-
tributors to brain development and are vital for maintaining the
homeostasis of the brain internal milieu (Iadecola, 2017).
Accumulating data have indicated the occurrence of neurovascu-
lar coupling disruption in major psychiatric disorders including
MDD (Segarra, Aburto, Hefendehl, & Acker-Palmer, 2019).
Extensive research indicates that dysfunction of neurotransmitter
systems (e.g. GABA, glutamate, and dopamine) has been impli-
cated in the pathophysiology of MDD (Choudary et al., 2005;
Grace, 2016; Klempan et al., 2009). Moreover, SAGE-217, a posi-
tive allosteric modulator of GABA type A receptors, has been pro-
ven to be effective for the treatment of MDD (Gunduz-Bruce
et al., 2019). With respect to diseases, the genes related to CBF
changes in MDD were found to be enriched for several mental
disorders including depressive disorder, autistic disorder, bipolar
disorder and schizophrenia, indicative of some common genetic
mechanisms contributing to these illnesses.

Specific expression analyses showed that the genes associated
with CBF changes in MDD were specifically expressed in the
brain tissue, in immune cells and neurons, and during nearly
all developmental stages. It is often assumed that immune cells
(e.g. microglia) have the potential to regulate the development,
structure, and function of neuronal networks in the brain
(Garaschuk & Verkhratsky, 2019). In addition, immune cells
have been evidenced to involve the establishment of the MDD
model, emphasizing the neuroimmune mechanisms of depression
(Hodes, Kana, Menard, Merad, & Russo, 2015). The specific
expression in neurons echoes the aforementioned functional
enrichment results. The temporal specific expression indicates
that these genes exert an enduring effect on MDD-related CBF
changes throughout nearly all cortical developmental stages.
Regarding behavioral relevance, the genes related to CBF changes
in MDD were associated with domains involving emotion and
sensation. Deficits in these behavioral domains have been widely
reported in MDD (Fam, Rush, Haaland, Barbier, & Luu, 2013;
Rottenberg, 2017; Salmela et al., 2021). Of note, these genes
could construct a PPI network supported by 60 putative hub
genes with functional significance for understanding the path-
ology and treatment of MDD. For example, several G protein
related genes (i.e. GNG2, GNB4, and GNG4) encode G protein
coupled receptors (GPCRs), which could mediate the eukaryotic
repertoire for cell communication and signal transduction.
GPCRs are considered to be implicated in MDD (Mantas,
Saarinen, Xu, & Svenningsson, 2022) and several novel antide-
pressants targeting GPCRs have been developed
(Borroto-Escuela et al., 2021; Mantas et al., 2022).

Several limitations should be taken into account when inter-
preting our findings. First, most of the MDD patients in both
the neuroimaging meta-analysis and the independent dataset
were antidepressant-medicated and chronic, which may introduce
confounds of antidepressant medication and illness duration.
Future studies with drug-naïve first-episode patients with MDD
are needed to eliminate these confounds and verify the prelimin-
ary findings. Second, the meta-analysis z map cannot reflect the
nature and extent of whole-brain CBF differences between
MDD patients and HC, because only peak coordinates and corre-
sponding effect sizes of significant clusters reported in the previ-
ous literature were used. Third, the gene expression data were
obtained from post-mortem brains, while the neuroimaging
data were collected from living brains. Given the mounting
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evidence of conservative gene expression across individuals
(Hawrylycz et al., 2015; Zeng et al., 2012), we set a DS threshold
to focus on the genes with more conserved expression patterns,
such that our transcription-neuroimaging spatial association ana-
lysis is feasible. However, some genes with great inter-subject vari-
ability in expression profiles would be missed. Fourth, considering
limited gene expression data in the right hemisphere and substan-
tial gene expression divergence between cortical and subcortical
regions, we only included the tissue samples in the left cerebral
cortex, which may have introduced potential biases. Finally, our
neuroimaging meta-analysis results cannot survive multiple com-
parison correction. Instead, we reported our results by using a
voxel-wise threshold of p < 0.005 combined with a cluster size
threshold of 10 voxels to optimally balance Types I and II error
rates following prior recommendation (Radua et al., 2012).

In conclusion, our data showed a cerebral perfusion redistribu-
tion in MDD, characterized by increased CBF in the reward cir-
cuitry and default-mode network and decreased CBF in the
visual system. Further transcriptome-neuroimaging correlation
analyses demonstrated that these CBF changes were spatially asso-
ciated with expression of 1532 genes with diverse functional fea-
tures. Our findings may not only offer unique insight into the
genetic mechanisms of CBF changes in MDD, but also inform
novel treatment approaches targeting the molecular substrates
underlying brain phenotypes of this disorder.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291722003750.
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