
7

Further Topics

We explained at the beginning of this book that we would restrict our focus on
a certain special type of results in probabilistic number theory: convergence in
law of arithmetically defined sequences of random variables. In this chapter,
we will quickly survey (with some references) some important and beautiful
results that either do not exactly fit our precise setting, or require rather deeper
tools than we wished to assume, or could develop from scratch.

7.1 Equidistribution Modulo 1

We have begun this book with the motivating “founding” example of the
Erdős–Kac Theorem, which is usually interpreted as the first result in prob-
abilistic number theory. However, one could arguably say that at the time
when this was first proved, there already existed a substantial theory that is
really part of probabilistic number theory in our sense, namely, the theory of
equidistribution modulo 1, due especially to Weyl [120]. Indeed, this concerns
originally the study of the fractional parts of various sequences (xn)n�1 of real
numbers, and the fact that in many cases, including many when xn has some
arithmetic meaning, the fractional parts become equidistributed in [0,1] with
respect to the Lebesgue measure.

We now make this more precise in probabilistic terms. For a real number
x, we will denote (as in Chapter 3) by 〈x〉 the fractional part of x, namely,
the unique real number in [0,1[ such that x − 〈x〉 ∈ Z. We can identify this
value with the point e(x) = e2iπx on the unit circle, or with its image in R/Z,
either of which might be more convenient. Given a sequence (xn)n�1 of real
numbers, we define random variables SN on �N = {1, . . . ,N} (with uniform
probability measure) by

SN(n) = 〈xn〉.
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7.1 Equidistribution Modulo 1 145

Then the sequence (xn)n�1 is said to be equidistributed modulo 1 if the random
variables SN converge in law to the uniform probability measure dx on [0,1],
as N →+∞.

Among other things, Weyl proved the following results:

Theorem 7.1.1 (1) Let P ∈ R[X] be a polynomial of degree d � 1 with
leading term ξXd where ξ /∈ Q. Then the sequence (P(n))n�1 is equidis-
tributed modulo 1.

(2) Let k � 1 be an integer, and let ξ = (ξ1, . . . ,ξd) ∈ (R/Z)d . The closure
T of the set {nξ | n ∈ Z} ⊂ (R/Z)d is a compact subgroup of (R/Z)d and the
T-valued random variables on �N defined by

KN(n) = nξ

converge in law as N →+∞ to the probability Haar measure on T.

The second part of this theorem is the same as Theorem B.6.5, (1). We
sketch partial proofs of the first property, which is surprisingly elementary,
given the Weyl Criterion (Theorem B.6.3).

We proceed by induction on the degree d � 1 of the polynomial P ∈ R[X],
using a rather clever trick for this purpose. We may assume that P(0) = 0 (as
the reader should check). If d = 1, then P = ξX for some real numbers ξ and
P(n) = nξ ; the assumption is that ξ is irrational, and the result then follows
from the 1-dimensional case of the second part, as explained in Example B.6.6.

Suppose that d = deg(P)� 2 and that the statement is known for polynomi-
als of smaller degree. We use the following:

Lemma 7.1.2 Let (xn)n�1 be a sequence of real numbers. Suppose that for
any integer h �= 0, the sequence (xn+h − xn)n is equidistributed modulo 1.
Then (xn) is equidistributed modulo 1.

Sketch of the proof We leave this as an exercise to the reader; the key step is
to use the following very useful inequality of van der Corput: for any integer
N � 1, for any family (an)1�n�N of complex numbers, and for any integer
H � 1, we have

∣∣∣∣∣
N∑
n=1

an

∣∣∣∣∣
2

�
(

1+ N+ 1

H

) ∑
|h|<H

(
1− |h|

H

) ∑
1�n�N

1�n+h�N

an+hān.

We also leave the proof of this inequality as an exercise. . .
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In the special case of KN(n) = 〈P(n)〉, this means that we have to consider
auxiliary sequences K′N(n) = 〈P(n + h) − P(n)〉, which corresponds to the
same problem for the polynomials

P(X+ h)− P(X) = ξ(X+ h)d − ξXd + · · · = dξXd−1 + · · · .

Since these polynomials have degree d−1, and leading coefficient dξ /∈ Q, the
induction hypothesis applies to prove that the random variables K′N converge
to the Lebesgue measure. By the lemma, so does KN.

Remark 7.1.3 The reader might ask what happens in Theorem B.6.3 if we
replace the integers n � N by primes taken uniformly from those that are � N.
The answer is that the same properties hold – for both assertions, we have the
same limit in law, under the same conditions on the polynomial for the first one.
The proofs are quite a bit more involved however, and depend on Vinogradov’s
fundamental insight on the “bilinear” nature of the prime numbers. We refer
to [59, 13.5, 21.2] for an introduction.

Exercise 7.1.4 Suppose that 0 < α < 1. Prove that the sequence (〈nα〉)n�1 is
equidistributed modulo 1.

Even in situations where equidistribution modulo 1 holds, there remain
many fascinating and widely open questions when one attempts to go “beyond”
equidistribution to understand fluctuations and variations that lie deeper. One
of the best known problem in this area is that of the distribution of the gaps in
a sequence that is equidistributed modulo 1.

Thus let (xn)n�1 be a sequence in R/Z that is equidistributed modulo 1.
For N � 1, consider the set of the N first values

{x1, . . . ,xN}
of the sequence. The complement in R/Z of these points is a disjoint union of
“intervals” (in [0,1[, all but one of them are literally subintervals, and the last
one “wraps-around”). The number of these intervals is � N (there might indeed
be less than N, since some of the values xi might coincide). The question
that arises is: what is the distribution of the lengths of these gaps? Stated in
a different way, the intervals in question are the connected components of
R/Z {x1, . . . ,xN}, and we are interested in the Lebesgue measure of these
connected components.

Let �N be the set of the intervals in R/Z {x1, . . . ,xN}, with uniform
probability measure. We define random variables by

GN(I) = N length(I)
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7.1 Equidistribution Modulo 1 147

for I ∈ �N. Note that the average gap is going to be about 1/N, so that the
multiplication by N leads to a natural normalization where the average of GN

is about 1.
In the case of purely random points located in S1 independently at random,

a classical probabilistic result is that the analogue random variables converge
in law to an exponential random variable E on [0, + ∞[, that is, a random
variable such that

P(a < E < b) =
∫ b

a

e−xdx

for any nonnegative real numbers a < b. This is also called the “Poisson”
behavior. For any (deterministic, for instance, arithmetic) sequence (xn) that
is equidistributed modulo 1, one can then ask whether a similar distribution
will arise.

Already the special case of the sequence (〈nξ 〉), for a fixed irrational
number ξ , leads to a particularly nice and remarkable answer, the “Three Gaps
Theorem” (conjectured by Steinhaus and first proved by Sós [113]). This says
that there are at most three distinct gaps between the fractional parts 〈nξ 〉 for
1 � n � N, independently of N and ξ /∈ Q.

Although this is in some sense unrelated to our main interests (there is no
probabilistic limit theorem here!) we will indicate in Exercise 7.1.5 the steps
that lead to a recent proof due to Marklof and Strömbergsson [86]. It is rather
modern in spirit, as it depends on the use of lattices in R2, and especially on
the space of lattices.

Very little is known in other cases, but numerical experiments are often easy
to perform and lead at least to various conjectural statements. For instance, let
0 < α < 1 be fixed and put xn = 〈nα〉. By Exercise 7.1.4, the sequence
(xn)n�1 is equidistributed modulo 1. In this case, it is expected that GN should
have the exponential limiting behavior for all α except for α = 1

2 . Remarkably,
this exceptional case is the only one where the answer is known! This is a result
of Elkies and McMullen that we will discuss below in Section 7.5.

Exercise 7.1.5 Throughout this exercise, we fix an irrational number ξ /∈ Q.
(1) For g ∈ SL2(R) and 0 � t < 1, show that

ϕ(g,t) = inf{y > 0 | there exists x such that − t < x �1− t and (x,y) ∈ Z2g}

exists. Show that the function ϕ that it defines satisfies ϕ(γg,t) = ϕ(g,t) for
all γ ∈ SL2(Z).
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(2) Let N � 1 and 1 � n � N. Prove that the gap between 〈nξ 〉 and the
“next” element of the set

{ 〈ξ 〉, . . . , 〈Nξ 〉 }
(i.e., the next one in “clockwise order”) is equal to

1

N
ϕ
(
gN,

n

N

)
,

where

gN =
(

1 ξ

0 1

)(
N−1 0

0 N

)
∈ SL2(R).

(3) Let g ∈ SL2(R) be fixed. Consider the set

Ag = gZ2 ∩
(

]−1,1[× ]0, +∞[
)

.

Show that there exists a = (x1,y1) ∈ Ag with y1 > 0 minimal.
(4) Show that either there exists b = (x2,y2) ∈ Ag , not proportional to a,

with y2 minimal, or ϕ(g,t) = y1 for all t .
(5) Assume that y2 > y1. Show that (a,b) is a basis of the lattice gZ2 ⊂ R2,

and that x1 and x2 have opposite signs. Let

I1 = ]0,1] ∩ ]−x1,1− x1] and I2 = ]0,1] ∩ ]−x2,1− x2] .

Prove that

ϕ(g,t) =

⎧⎪⎪⎨⎪⎪⎩
y2 if t ∈ I1,

y1 if t ∈ I2, t /∈ I1,

y1 + y2 otherwise.

(6) If y2 = y1, show that t �→ ϕ(g,t) takes at most three values by
considering similarly a′ = (x′1,y

′
1) ∈ Ag with x′1 � 0 minimal, and b′ =

(x′2,y
′
2) with x′2 < 0 maximal.

7.2 Roots of Polynomial Congruences and the Chinese
Remainder Theorem

One case of equidistribution modulo 1 deserves mention since it involves
some interesting philosophical points, and has been the subject of a number
of important works.
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7.2 Roots of Polynomial Congruences and the Chinese Remainder Theorem 149

Let f be a fixed integral monic polynomial of degree d � 1. For any integer
q � 1, the number �f (q) of roots of f modulo q is finite, and the function �f is
multiplicative (by the Chinese Remainder Theorem); moreover it is elementary
that the set Mf of integers q � 1 such that �f (q) � 1 is infinite. On the other
hand, we always have �f (p) � d for p prime, so �f (q) � dω(q) at least when
q is squarefree.

Exercise 7.2.1 Prove that Mf is infinite. [Hint: It suffices to check that the set
of primes p such that �f (p) � 1 is infinite; assuming that it is not, show that
the set of values f (n) for n � 1 would be “too small.”]

The question is then: is it true that the fractional parts 〈a/q〉 of the roots a ∈
Z/qZ of f modulo q, when �f (q) � 1, become equidistributed modulo 1?

This problem admits a number of variants, and the deepest is undoubtedly
the case of equidistribution of 〈a/p〉 when the modulus p is restricted to
be a prime number. Indeed, it is only when d = 2 and f is irreducible that
the equidistribution of roots modulo primes has been proven, first by Duke–
Friedlander–Iwaniec [29] for quadratic polynomials with negative discrimi-
nant, and by Toth [118] for quadratic polynomials with positive discriminant,
that is, with two real roots.

When all moduli q are taken into account, on the other hand, one can
prove equidistribution for any irreducible polynomial, as was first done by
Hooley [57]. However, although one might think that this provides evidence
for the stronger statement modulo primes, it turns out that this result has in
fact almost nothing to do with roots of polynomials!

More precisely, Kowalski and Soundararajan [80] show that equidistribu-
tion holds for the fractional parts of elements of sets modulo q obtained by
the Chinese Remainder Theorem, starting from subsets Apν of Z/pνZ, under
the sole condition that Ap should have at least two elements for a positive
proportion of the primes.

In other words, for p prime and ν � 1, let Apν ⊂ Z/pνZ be an arbitrary
subset of residue classes, and for q � 1, define Aq ⊂ Z/qZ to be the set
of x (mod q) such that, for all primes p dividing q, with exact exponent ν,
we have x (modpν) ∈ Apν . Define �(q) = |Aq |, which is a multiplicative
function, and let � be the set of all q � 1 such that Aq is not empty. For any
q ∈ �, let  q be the probability measure on R/Z given by

 q = 1

�(q)

∑
x∈Aq

δ〈 a
q
〉,
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where δx denotes a Dirac mass at x (the measure q is the image of the uniform
probability measure on Aq by the map a �→ 〈 a

q
〉). Then [80, Th. 1.1] implies

the following:

Theorem 7.2.2 Suppose that there exists α > 0 such that∑
p�Q
�(p)�2

1 � απ(Q)

for all Q large enough. Let N(Q) be the number of q � Q such that Aq is not
empty. Then the probability measures

1

N(Q)

∑
q�Q
q∈�

 q

converge to the Lebesgue measure on R/Z.

Example 7.2.3 Let f ∈Z[X] be monic and without repeated roots. If
deg(f ) � 2, then this theorem applies to the case where Apν is the set of
roots of f modulo pν , because a basic theorem of algebraic number theory
(the Chebotarev Density Theorem; see, for instance, [91, Th. 13.4]) implies
that there is a positive proportion of primes p for which f has deg(f ) � 2
distinct roots in Z/pZ. However, the theorem shows that we can replace
Apν by any other subset A′pν of Z/pνZ with the same cardinality, without
changing the conclusion concerning the fractional parts modulo all q, whereas
(of course) we could select A′p in such a way that there is no equidistribution
modulo primes, in the sense that the measures

1

P(Q)

∑
p�Q
p∈�

 p,

where P(Q) is the number of primes p � Q in �, do not converge to the
Lebesgue measure.

Remark 7.2.4 Theorem 7.2.2 does not correspond exactly to the setting con-
sidered in [57], which concerns (implicitly) the slightly different probability
measures

1

M(Q)

∑
q�Q
q∈�

�(q) q, (7.1)

where

M(Q) =
∑
q�Q

�(q).
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Interestingly, these two ways of making precise the idea of equidistribution
modulo q are not equivalent: it is shown in [80, Prop. 2.8] that there exist
choices of subsets (Ap) to which Theorem 7.2.2 applies, but for which the
measures (7.1) do not converge to the uniform measure.

7.3 Gaps between Primes

The Prime Number Theorem

π(x) ∼ x

log x

indicates that the average gap between successive prime numbers of size x is
about log x. A natural problem, especially in view of the many conjectures that
exist concerning the distribution of primes (such as the Twin Prime conjecture),
is to understand the distribution of these gaps.

One way to do this, which is consistent with our general framework, is the
following. For any integer N � 1, we define the probability space �N to be
the set of integers n such that 1 � n � N (as in Chapter 2), with the uniform
probability measure. Fix λ > 0. We then define the random variables

Gλ,N(n) = π(n+ λ log n)− π(n),

which measures how many primes exist in the interval starting at n of length
equal to λ times the average gap.

A precise conjecture exists concerning the limiting behavior of Gλ,N as
N →+∞:

Conjecture 7.3.1 The sequence (Gλ,N)N converges in law as N → +∞ to a
Poisson random variable with parameter λ, that is, for any integer r � 0, we
have

PN(Gλ,N = r)→ e−λ
λr

r!
.

To the author’s knowledge, this conjecture first appears in the work of
Gallagher [45], who in fact proved that it would follow from a suitably uniform
version of the famous Hardy-Littlewood k-tuple conjecture. (Interestingly,
the same assumption would imply also a generalization of Conjecture 7.3.1
where one considers suitably normalized gaps between simultaneous prime
values of a family of polynomials, e.g., between twin primes; see [73], where
Gallagher’s argument is presented in a probabilistic manner very much in the
style of this book.)
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Part of the interest of Conjecture 7.3.1 is that the distribution obtained
for the gaps is exactly what one expects from “purely random” sets (see the
discussion by Feller in [37, I.3, I.4]).

7.4 Cohen–Lenstra Heuristics

In this section, we will assume some basic knowledge concerning algebraic
number theory. We refer, for instance, to the book [58] of Ireland and Rosen
for an elementary introduction to this subject, in particular to [58, Ch. 12], and
to the book [91] of Neukirch for a complete account.

Beginning with a famous paper of Cohen and Lenstra [25], there is by
now an impressive body of work concerning the limiting behavior of certain
arithmetic measures of a rather different nature than all those we have
described up to now. For these, the underlying arithmetic objects are families
of number fields of certain kinds, and the random variables of interest are given
by the ideal class groups of the number fields, or some invariants of the ideal
class groups, such as their p-primary subgroups (recall that, as a finite abelian
group, the ideal class group C of a number field K can be represented as a
direct product of groups of order a power of p, which are zero for all but
finitely many p).

The basic idea of Cohen and Lenstra is that the ideal class groups, in suitable
families, should behave (in general) in such a way that a given finite abelian
group C appears as an ideal class group with “probability” proportional to
the inverse 1/Aut(C) of the order of the automorphism group of C, so that,
for instance, obtaining a group of order p2 of the form Z/pZ × Z/pZ, with
automorphism group of size about p4, is much more unlikely than obtaining
the cyclic group Z/p2Z, which has automorphism group of size p2 − p.

Imaginary quadratic fields provide a first basic (and still very open!) special
case. Using our way of presenting probabilistic number theory, one could
define the finite probability spaces �D of negative “fundamental discrimi-
nants” −d (that is, either −d is a squarefree integer congruent to 3 modulo 4,
or −d = 4δ where δ is squarefree and congruent to 1 or 2 modulo 4) with
1 � d � D and the uniform probability measure, and one would define for
each D and each prime p a random variable Pp,D taking values in the set Ap
of isomorphism classes of finite abelian groups of order a power of p, such that
Pp,D(−d) is the p-part of the class group of Q(

√−d). One of the conjectures
(“heuristics”) of Cohen and Lenstra is that if p � 3, then Pp,D should converge
in law as D →+∞ to the probability measure μp on Ap such that
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μp(A) = 1

Zp

1

|Aut(A)|

for any group A ∈ Ap, where Zp is the constant required to make the measure
thus defined a probability measure (the existence of this measure – in other
words, the convergence of the series defining Zp – is something that of course
requires a proof).

Very few unconditional results are known toward these conjectures, and
progress often requires significant ideas. There has however been striking
advances by Ellenberg, Venkatesh and Westerland [32] in some analogue
problems for quadratic extensions of polynomial rings over finite fields, where
geometric methods make the problem more accessible, and in fact allow the
use of essentially topological ideas (see the Bourbaki report [98] of O. Randal-
Williams).

7.5 Ratner Theory

Although all the results that we have described up to now are beautiful and
important, maybe the most remarkably versatile tool that can be considered to
lie within our chosen context is Ratner theory, named after the fundamental
work of M. Ratner [99]. We lack the expertise to present anything more than a
few selected statements of applications of this theory; we refer to the survey of
É. Ghys [47] and to the book of Morris [89] for an introduction (Section 1.4 of
that book lists more applications of Ratner Theory), and to that of Einsiedler
and Ward [30] for background results on ergodic theory and dynamical systems
(some of which also have remarkable applications in number theory).

We illustrate the remarkable power of this theory with the beautiful result
of Elkies and McMullen [31] which was already mentioned in Section 7.1. We
consider the sequence of fractional parts of

√
n for n � 1 (viewed as elements

of R/Z). As in the previous section, for any integer N � 1, we define the space
�N to be the set of connected components of R/Z {〈1〉, . . . ,〈√N〉}, with
uniform probability measure, and we define random variables on �N by

GN(I) = N length(I).

Elkies and McMullen found the limiting distribution of GN as N →+∞. It is
a very nongeneric probability measure on R!
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Theorem 7.5.1 (Elkies–McMullen) As N →+∞, the random variables GN

converge in law to a random variable on [0,+∞[ with probability law μEM =
6
π2 f (x)dx, where f is continuous, analytic on the intervals [0,1/2], [1/2,2]

and [2, +∞[, is not of class C3, and satisfies f (x) = 1 if 0 � x � 1/2.

This is [31, Th. 1.1]. The restriction of the density f to the two intervals
[1/2,2] and [2, +∞[ can be written down explicitly and it is an “elementary”
function. For instance, if 1/2 � x � 2, then let r = 1

2x
−1 and

ψ(r) = arctan

(
2r − 1√
4r − 1

)
− arctan

(
1√

4r − 1

)
;

we then have

f (x) = 2

3
(4r − 1)3/2ψ(r)+ (1− 6r) log r + 2r − 1

(see [31, (3.53)]).
We give the barest outline of the proof, in order to simply point out what

kind of results are meant by Ratner Theory. The paper of Elkies and McMullen
also gives a detailed and highly readable introduction to this area.

The proof studies the gap distribution by means of the function LN defined
for x ∈ R/Z so that LN(x) is the measure of the gap interval containing x (with
LN(x) = 0 if x is one of the boundary points of the gap intervals for 〈√1〉, . . . ,
〈√N〉). We can then check that for t ∈ R, the total measure in R/Z of the
points lying in a gap interval of length < t , which is equal to the Lebesgue
measure

μ({x ∈ R/Z | LN(x) < t}),
is given by∫ t

0
td(PN(GN < t)) = t PN(GN < t)−

∫ t

0
PN(GN < t)dt .

Concretely, this means that it is enough to understand the limiting behavior of
LN in order to understand the limit gap distribution. Note that there is nothing
special about the specific sequence considered in that part of the argument.

Fix t � 0. The key insight that leads to questions involving Ratner theory
is that if N is a square of an integer, then the probability

μ({x ∈ R/Z | LN(x) < t})
can be shown (asymptotically as N →+∞) to be very close to the probability
that a certain affine lattice �N,x in R2 intersects the triangle  t with vertices
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(0,0), (1,0) and (0,2t) (with area t). The lattice has the form�N,x = gN,x ·Z2

for some (fairly explicit) affine transformation gN,t .
Let ASL2(R) be the group of affine transformations

z �→ z0 + g(z)

of R2 whose linear part g ∈ GL2(R) has determinant 1, and ASL2(Z) the
subgroup of those affine transformations of determinant 1 where both the
translation term z0 and the linear part have coefficients in Z. Then the lattices
�N,x can be interpreted as elements of the quotient space

M = ASL2(Z)\ASL2(R),

which parameterizes affine lattices � ⊂ R2 with R2/� of area 1. This space
admits a unique probability measure μ̃ that is invariant under the right action
of ASL2(R) by multiplication.

Now we have, for each N � 1, a probability measure μN on M, namely, the
law of the random variable R/Z → M defined by x �→ �N,x . What Ratner
Theory provides is a very powerful set of tools to prove that certain probability
measures on M (or on similar spaces constructed with groups more general
than ASL2(R) and suitable quotients) are equal to the canonical measure μ̃.
This is applied, essentially, to all possible limits of subsequences of (μN), to
show that these must coincide with μ̃, which leads to the conclusion that the
whole sequence converges in law to μ̃. It then follows that

μ({x ∈ R/Z | LN(x) < t})→ μ̃({� ∈ M | M ∩ t �= ∅}).

This gives, in principle, an explicit form of the gap distribution. To compute it
exactly is an “exercise” in euclidean geometry – which is by no means easy!

7.6 And Even More . . .

And there are even more interactions between probability theory and number
theory than what our point of view considers. . . Here are some examples, which
we order, roughly speaking, in terms of how close they are from the perspective
of this book:

• Applications of limit theorems for arithmetic probability measures to other
problems of analytic number theory: we have given a few examples in
exercises (see Exercises 2.3.5 or 3.3.4), but there are many more of
course.
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• Using probabilistic ideas to model arithmetic objects, and make conjectures
or prove theorems concerning those; in contrast with our point of view, it is
not always expected in such cases that there should exist actual limit
theorems comparing the model with the actual arithmetic phenomena.
A typical example is the so-called “Cramér model” for the distribution of
primes, which is known to lead to wrong conclusions in some cases, but is
often close enough to the truth to be used to suggest how certain problems
might behave (see, for instance, the survey of Pintz [94]).

• Using number-theoretic ideas to derandomize certain constructions or
algorithms. There are indeed a number of very interesting results that use
the “randomness” of specific arithmetic objects to give deterministic
constructions, or deterministic proofs of existence, for mathematical objects
that might have first been shown to exist using probabilistic ideas.
Examples include the construction of expander graphs by Margulis (see,
e.g., [74, §4.4]), or of Ramanujan graphs by Lubotzky, Phillips and
Sarnak [84], or in a different vein, the construction of explicit “ultraflat”
trigonometric polynomials (in the sense of Kahane) by Bombieri and
Bourgain [13], or the construction of explicit functions modulo a prime
with smallest possible Gowers norms by Fouvry, Kowalski and Michel [42].
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