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Abstract

We state a conjecture that relates the derived category of smooth representations of a
p-adic split reductive group with the derived category of (quasi-)coherent sheaves on a
stack of L-parameters. We investigate the conjecture in the case of the principal block
of GLn by showing that the functor should be given by the derived tensor product with
the family of representations interpolating the modified Langlands correspondence over
the stack of L-parameters that is suggested by the work of Helm and of Emerton and
Helm.
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1. Introduction

We study the smooth representation theory of a split reductive group G over a non-archimedean
local field F . The classification of the irreducible smooth G-representations is one of the main
objectives of the local Langlands program. One aims to parametrize these representations by
so-called L-parameters, together with some additional datum (a representation of a finite group
associated to the L-parameter). Such a parametrization has been established in the case of
GLn(F ). For split reductive groups it has been established by Kazhdan and Lusztig for those
irreducible smooth representations of G that have a non-trivial fixed vector under an Iwahori
subgroup I ⊂ G (see [KL87]). In this case an L-parameter just becomes a conjugacy class of
(ϕ,N), where ϕ is a semi-simple element of the Langlands dual group Ǧ, and N ∈ Lie Ǧ, sat-
isfying Ad(ϕ)(N) = q−1N . Here q is the number of elements of the residue field of F . This
parametrization depends on an additional choice, called a Whittaker datum.

In this paper we formulate a conjecture that lifts the Langlands classification to a fully faithful
embedding of the category Rep(G) of smooth G-representations (on vector spaces over a field
C of characteristic zero) to the category of quasi-coherent sheaves on the stack of L-parameters.
It turns out that this conjecture has to be formulated at the level of derived categories. As one
of the main tools in the study of smooth representations is parabolic induction, we require this
fully faithful embedding to be compatible with parabolic induction in a precise sense. Moreover,
the conjectured functor should depend on the choice of a Whittaker datum. Similar conjectures
and results where obtained by Ben-Zvi, Chen, Helm and Nadler [BCHN20] and Zhu [Zhu20]. The
conjectures stated here can also be regarded as a special case of the conjectural geometrization
of the local Langlands correspondence of Fargues and Scholze [FS21].

The conjecture can be made more precise in the case of the principal Bernstein block
Rep[T,1](G) of Rep(G), that is, the block containing the trivial representation. This block coin-
cides with the full subcategory RepIG of smooth G-representations generated by their I-fixed
vectors for a choice of an Iwahori subgroup I ⊂ G. As RepIG is equivalent to the category of
modules over the Iwahori–Hecke algebra the conjecture comes down to a conjecture about the
derived category of the Iwahori–Hecke algebra.

In the main part of the paper we investigate the conjecture in the case of G = GLn(F ) and the
principal block by relating it to the construction of a family of G-representations interpolating
the (modified) local Langlands correspondence, following the work of Emerton and Helm [EH14].

We describe the conjecture and our results in more detail. Fix a finite extension F of Qp,
or of Fp((t)). Let G be a split reductive group over F and write G = G(F ). We fix a field C
of characteristic zero and shall always assume that C contains a square root q1/2 of q. We
denote by Ǧ the dual group of G, considered as a reductive group over C. More generally,
for every parabolic (or Levi) P (or M) of G we will write P = P(F ) (respectively, M = M(F ))
for its group of F -valued points and P̌ (respectively, M̌) for its dual group over C. For each
parabolic subgroup P ⊂ G with Levi M (normalized) parabolic induction defines a functor ιG

P
from M -representations to G-representations.

On the other hand, we denote by XWD
Ǧ

the space of Weil–Deligne representations with
values in Ǧ, that is, the space whose C-valued points are pairs (ρ,N) consisting of a
smooth representation WF → Ǧ(C) of the Weil group WF of F and N ∈ Lie Ǧ satisfying the
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usual relation
Ad(ρ(σ))(N) = q−‖σ‖N,

where ‖ − ‖ : WF → Z is the projection. We shall write [XWD
Ǧ

/Ǧ] for the stack quotient by the
obvious Ǧ-action.

Let us write Z(Ǧ) for the global sections of the structure sheaf on [XWD
Ǧ

/Ǧ], or equivalently
the coordinate ring of the geometric invariant theory (GIT) quotient XWD

Ǧ
//Ǧ. Moreover, we

write Z(G) for the Bernstein center of Rep(G). With this notation we state the following con-
jecture. For the sake of brevity we state the conjecture in a vague form and refer to the body of
the paper for a more precise formulation.

Conjecture 1.1. There exist the following data.

(i) For each (G,B,T, ψ) consisting of a reductive group G, a Borel subgroup B, a split maximal
torus T ⊂ B, and a (conjugacy class of a) generic character ψ : N → C×, there exists an
exact and fully faithful functor

RψG : D+(Rep(G)) −→ D+
QCoh([X

WD
Ǧ

/Ǧ]).

(ii) For (G,B,T, ψ) as in (i) and a parabolic subgroup P ⊂ G containing B we denote by M the
Levi quotient of P. Then the functors RψG and RψMM satisfy a compatibility with parabolic
induction ιG

P
. Here ψM is the restriction of ψ to the unipotent radical of the Borel BM of

M via the splitting M→ P defined by T.

These data satisfy the following conditions.

(a) If G = T is a split torus, then RT = RψT is induced by the equivalence

Rep(T ) ∼= QCoh(XWD
Ť

)

given by local class field theory.
(b) Let (G,B,T, ψ) be as in (i). The morphism Z(Ǧ)→ Z(G) defined by full faithfulness of RψG

is independent of the choice of ψ and induces a surjection

ωG :
{

Bernstein components
of Rep(G)

}
−→

{
connected components

of XWD
Ǧ

}
.

(c) For (G,B,T, ψ) as in (i) there is an isomorphism

RψG((c-indGN ψ)) ∼= O[XWD
Ǧ

/Ǧ].

In this paper we mainly focus on the conjecture in the case of the principal block of Rep(G).
If T ⊂ G is a split maximal torus, we write Rep[T,1](G) for the Bernstein block of those rep-
resentations π such that all irreducible subquotients of π are subquotients of a representations
induced from an unramified T -representation. Then parabolic induction restricts to a functor

ιG
P

: Rep[TM ,1](M)→ Rep[T,1](G)

for any choice of maximal split tori T ⊂ G and TM ⊂M (as the categories do not depend on
these choices).

On the other hand, we denote by XǦ = {(ϕ,N) ∈ Ǧ× Lie Ǧ | Ad(ϕ)(N) = q−1N} the space
of L-parameters (corresponding to the representations in the principal block) and write [XǦ/Ǧ]
for the stack quotient by the action of Ǧ induced by conjugation. We obtain similar spaces
[XP̌ /P̌ ] etc. for parabolic subgroups P ⊂ G (or their Levi quotients). If T is a (maximal split)
torus, then XŤ is just the dual torus Ť .
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In this case the relation between the Bernstein center ZG = Z[T,1](G) of the category
Rep[T,1](G) and the GIT quotient XǦ//Ǧ can be made precise: the center ZG can naturally
be identified with the functions on the adjoint quotient of Ǧ and hence ZG acts on categories of
modules over XǦ as well as on Rep[T,1](G). The following conjecture is a slightly more precise
version of Conjecture 1.1 in the case of the block Rep[T,1](G). Equivalently, the conjecture can
be interpreted as a conjecture about the derived category of the Iwahori–Hecke algebra, and we
shall take this point of view in the last part of the paper when we discuss the case of GLn. In the
case of modules over an affine Hecke algebra (where q is an invertible indeterminate) a similar
conjecture1 is due to Ben-Zvi et al. [BCHN20] and Zhu [Zhu20].

Conjecture 1.2. There exist the following data.

(i) For each (G,B,T, ψ) consisting of a reductive group G, a Borel subgroup B, a maximal
split torus T ⊂ B and a (conjugacy class of a) generic character ψ : N → C×, there exists
an exact and fully faithful ZG-linear functor

RψG : D+(Rep[T,1](G)) −→ D+
QCoh([XǦ/Ǧ]).

(ii) For (G,B,T, ψ) as in (i) and each parabolic subgroup P ⊂ G containing B, there exists a
natural ZG-linear isomorphism

ξGP : RψG ◦ ιGP −→ (Rβ∗ ◦ Lα∗) ◦RψMM
of functors D+(Rep[TM ,1]M)→ D+

QCoh([XǦ/Ǧ]) such that the various ξGP are compatible
(in a precise sense). Here M is the Levi quotient of P, the character ψM is the restriction of
ψ to the unipotent radical of BM = B ∩M (using a splitting M ↪→ P of P →M), and

α : [XP̌ /P̌ ] −→ [XM̌/M̌ ],

β : [XP̌ /P̌ ] −→ [XǦ/Ǧ]

are the morphisms on stacks induced by the natural maps P̌ → M̌ and P̌ → Ǧ.

For a maximal split torus T the functor RT = RψTT is induced by the identification

Rep[T,1](T ) ∼= C[T/T ◦]-mod ∼= QCoh(Ť ),

where T ◦ ⊂ T is the maximal compact subgroup. Moreover, for (G,B,T, ψ) as in (i) there is an
isomorphism

RψG((c-indGN ψ)[T,1]) ∼= O[XǦ/Ǧ].

In fact it turns out that in the formulation of the conjecture the stack [XP̌ /P̌ ] has to be
replaced by a derived variant. Again, we refer to the body of the paper for details and a more
precise formulation of the conjecture.

In the case G = GLn(F ) we consider a candidate for the conjectured functor. Emerton and
Helm [EH14] have suggested (in the context of -adic deformation rings rather than the stack
[XǦ/Ǧ]) the existence of a family VG of smooth G-representations on [XǦ/Ǧ] that interpolates
the modified local Langlands correspondence. A candidate for the family VG was constructed
by Helm in [Hel16]. The modified local Langlands correspondence assigns to (ϕ,N) ∈ XǦ(C)
a certain representation LLmod(ϕ,N) that is indecomposable, induced from a parabolic sub-
group, has a unique irreducible subrepresentation which is a generic representation, and its
unique irreducible quotient is the representation LL(ϕ,N) associated to (ϕ,N) by the local
Langlands correspondence. In the context of modules over the Iwahori–Hecke algebra HG the

1 The author was not aware of their project when formulating the conjecture and results in this paper.
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HG-modules corresponding to the representations LLmod(ϕ,N) are often referred to as the
standard modules.

We conjecture that, in the GLn case, the functor RG = RψG should be given by the derived
tensor product with VG (we omit the superscript ψ from the notation, as in the case of GLn there
is a unique Whittaker datum). For the precise formulation it is more convenient to pass from
G-representations to modules over the Iwahori–Hecke algebra HG. The family of HG-modules
associated to VG by taking I-invariants is in fact a HG ⊗ZG O[XǦ/Ǧ]-moduleMG that is coherent
as an O[XǦ/Ǧ]-module.

We consider the functor

RG : D+(HG-mod) −→ D+
QCoh([XǦ/Ǧ]) (1.1)

mapping π to tπ ⊗LHG
MG. Here tπ is π considered as a right module over HG by means of the

standard involution HG ∼= Hop
G , and we point out that the derived tensor product can easily be

made explicit, as HG has finite global dimension. Every (standard) Levi subgroup of GLn(F ) is
a product of some GLm(F ), and hence we can construct similar functors

RM : D+(HM -mod) −→ D+
QCoh([XM̌/M̌ ]) (1.2)

for every Levi M . Over a certain (open and dense) regular locus Xreg

Ǧ
of XǦ (see § 2.1 for the

definition) we can relate the functor RG to Conjecture 1.2 as follows.

Theorem 1.3. Let G = GLn. For each parabolic P ⊂ G with Levi M the restriction of (1.2) to
the regular locus is a ZM -linear functor

Rreg
M : D+(HM -mod) −→ D+

QCoh([X
reg

M̌
/M̌ ])

satisfying compatibility with parabolic induction as in Conjecture 1.2. Moreover,

RG((c-indGN ψ)I[T,1]) ∼= O[XǦ/Ǧ]

for any choice of a generic character ψ : N → C× of the unipotent radical N of a Borel subgroup
B ⊂ GLn(F ).

In the case of GL2(F ) we can also control the situation for non-regular (ϕ,N) and prove full
faithfulness.

Theorem 1.4. Let G = GL2(F ) and T ⊂ B ⊂ G denote the standard maximal torus and the
standard Borel, respectively. The functors RG and RT defined by (1.1) are fully faithful and
there is a natural ZG-linear isomorphism

ξGB : RG ◦ ιGB −→ (Rβ∗ ◦ Lα∗) ◦RT ,
where α and β are defined as in Conjecture 1.2(ii).

We finally return to GLn for arbitrary n, but restrict to the case of (ϕ,N) with ϕ regular semi-
simple. Over the regular semi-simple locus the situation in fact can be controlled very explicitly
and we are able to compute examples. Given (ϕ,N) ∈ XǦ(C) with regular semi-simple ϕ, we
write XǦ,[ϕ,N ] for the Zariski closure of its Ǧ-orbit.

Theorem 1.5. Let (ϕ,N) ∈ XǦ(C) and assume that ϕ is regular semi-simple. Then

RG(LLmod(ϕ,N)) = O[XǦ,[ϕ,N ]/Ǧ].

Remark 1.6. We expect a similar statement in general (see Remark 3.3(b) for a statement for
more general reductive groups, and remark (d) in § 4.7 for the case of GLn and points (ϕ,N)
where ϕ is not regular semi-simple).
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Moreover (still in the GLn case), the conjectured functor RG should be uniquely determined
by the conditions in Conjecture 1.2 (see § 4.7 for more details). After formal completion we can
prove a result in that direction. For a character χ : ZG → C we write ĤG,χ for the completion
of the Iwahori–Hecke algebra HG with respect to the kernel of χ. Similarly, we can consider the
formal completion X̂Ǧ,χ of XǦ with respect to the pre-image of (the closed point of the adjoint
quotient defined by) χ in XǦ. Then (1.1) extends to a functor

R̂G,χ : D+(ĤG,χ-mod) −→ D+
QCoh([X̂Ǧ,χ/Ǧ]),

and similarly for (standard) Levi subgroups M ⊂ G.

Theorem 1.7. Let ϕ ∈ Ǧ(C) be regular semi-simple and let χ : ZG → C denote the character
defined by the image of ϕ in the adjoint quotient. The set of functors

R̂M,χ : D+(ĤM,χ-mod) −→ D+
QCoh([X̂M̌,χ/M̌ ]),

for standard Levi subgroups M ⊂ G, is uniquely determined (up to isomorphism) by requiring
that they are ẐM,χ-linear, compatible with parabolic induction, and that R̂T,χ is induced by the
identification

ĤT,χ-mod = QCoh(X̂Ť ,χ).

Finally, I would like to mention that I was led to Conjecture 1.2 by considerations about
p-adic automorphic forms and moduli spaces of p-adic Galois representations. In fact I hope
that the conjecture extends (in a yet rather vague sense) to a p-adic picture, which should have
implications on the computation of locally algebraic vectors in the p-adic Langlands program, as
in work of Pyvovarov [Pyv20c], which in fact inspired the computation in § 4.6. I do not pursue
this direction here, but will come back to it in the future.

2. Spaces of L-parameters

We fix a field C of characteristic zero and a prime p with power q = pr. Let G be a linear algebraic
group over C and let g denote its Lie algebra, considered as a C-scheme. We define the C-scheme
XG as the scheme representing the functor

R 
−→ {(ϕ,N) ∈ (G× g)(R) | Ad(ϕ)(N) = q−1N}
on the category of C-algebras.

The scheme XG comes with a canonical G-action, by conjugation on G and by the adjoint
action on g. We write [XG/G] for the stack quotient of XG by this action. For obvious reasons
this is an algebraic stack (or Artin stack). Given a homomorphism α : G→ H of linear algebraic
groups, we obtain canonical morphisms XG → XH of schemes and [XG/G]→ [XH/H] of stacks.

2.1 Basic properties
We study the basic properties of the spaces XG and [XG/G]. Some of the results in this section
were also obtained, in the more general situation of stacks of L-parameters, by Dat, Helm,
Kurinczuk and Moss [DHKM20] and Zhu [Zhu20].

Proposition 2.1.

(i) Assume that G is reductive. Then XG is a complete intersection inside G× g and has
dimension dimG.

(ii) If G = GLn, then XG is reduced and the irreducible components are in bijection with the
set of G-orbits in the nilpotent cone NG ⊂ g of G. Moreover, let η = (ϕη, Nη) ∈ XG be a
generic point of an irreducible component. Then ϕη is regular semi-simple.
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Proof. (ii) This is [HH20, Theorem 3.2] or [Hel20, Proposition 4.2].
(i) Helm’s argument from [Hel20] directly generalizes to the case of a reductive group: as

XG ⊂ G× g is cut out by dimG equations, it is enough to show that XG is equidimensional of
dimension dimG.

Let us write f : XG → g for the projection to the Lie algebra. We first claim that f set-
theoretically factors over the nilpotent cone NG ⊂ LieG. In order to do so we choose an
embedding G ↪→ GLm for some m. Then XG embeds into XGLm and, given (ϕ,N) ∈ XG [HH20,
Lemma 2.3], implies that N is mapped to a nilpotent element of glm. This implies N ∈ NG.

The scheme NG is irreducible and a finite union of (locally closed) G-orbits for the adjoint
action, as G is reductive. Let Z ⊂ NG be such a G-orbit and let GZ ⊂ G× Z be the Z-group
scheme of centralizers of the points in Z, that is, the fiber Gz of GZ over z ∈ Z is the centralizer
of z in G. Then the translation action makes f−1(Z) (if non-empty) into a right GZ-torsor.
In particular, in this case we have dim f−1(Z) = dimZ + dimZ GZ = dimZ + dimGz = dimG,
where z ∈ Z is any (closed) point. The scheme XG now is the union of the locally closed subsets
f−1(Z), where Z runs over all the G-orbits in NG. As all these locally closed subsets (if �= ∅)
have dimension dimG, their closures are precisely the irreducible components of XG. It follows
that XG is equidimensional of dimension dimG as claimed. �

Remark 2.2. (a) The proof implies that the irreducible components ofXG are indexed by a subset
of the G-orbits in NG. We expect that the conclusion of (ii) holds true for a general reductive
group, that is, the scheme XG should be reduced and a complete intersection. The description of
the irreducible components should be slightly more involved in general. Namely, the irreducible
components should be in bijection with the G-orbits of pairs (N,α) consisting of an element N
in the nilpotent cone and a connected component α of the stabilizer of N (note that in the case
G = SL2 these stabilizers are not connected in general). Moreover, we expect that the element ϕ
should be regular semi-simple at the generic points of the irreducible components. The first part
(XG is reduced and a complete intersection) can be deduced from [DHKM20, Corollary 2.4 and
Proposition 2.7] (compare also [Zhu20, Proposition 3.1.6]) after noting that XG is a connected
component of the fiber over C of the scheme Z1(W ◦

F /PF , G) of [DHKM20].
(b) The only ingredient in the proof of (i) that uses the assumption that G is reductive is the

fact that G acts with only finitely many orbits on its nilpotent cone. More precisely, let G be an
arbitrary linear algebraic group and let G ↪→ GLm be a faithful representation. Then the proof
of (i) works if G acts with finitely many orbits on LieG ∩NGLm . This is not true in general, even
if G is a parabolic subgroup in GLm (see [BB19]): it follows from [BB19] that this fails in the
case of a Borel subgroup in GLm for m ≥ 6. The following example shows that the statement of
the proposition also fails for Borel subgroups of GLn for n ≥ 9. We have not checked that this
is the optimal bound. It is very likely that XB is not equidimensional if B is a Borel subgroup
in GL6.

Example 2.3. Let r, d > 0 and n = rd. Let B ⊂ GLn be the Borel subgroup of upper triangular
matrices and let

ϕ0 = diag(1, . . . , 1, q, . . . , q, . . . , qd−1, . . . , qd−1) ∈ B(C),

where each entry qi appears r times. Then a given element N = (nij)ij ∈ LieB satisfies Nϕ0 =
qϕ0N if and only if

nij = 0 for j /∈ {ir + 1, . . . , (i+ 1)r}.
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Scaling ϕ0 by multiplication with elements of the center Z ∼= Gm, we obtain a closed embedding
Gm ×

∏d−1
i=1 Ar2 ↪→ XB. The B-orbit of this closed subscheme is irreducible and of dimension

dim
(

Gm ×
d−1∏
i=1

Ar2
)

+ dimB − StabB(ϕ0) = 1 + dimB +
(

(d− 1)r2 − dr(r + 1)
2

)
= 1 + dimB +

r

2
(dr − (2r + d)).

In particular, we find that XB has an irreducible component of dimension strictly larger than
dimB if dr ≥ 2r + d. On the other hand, XB always has an irreducible component of dimension
dimB, namely B × {0} ⊂ B × LieB.

Let G be a reductive group and let P be a parabolic subgroup. We will write X̃P for the
scheme representing the sheafification of the functor

R 
→
⎧⎨⎩(ϕ,N, g) ∈ (G× g)(R)×G(R)/P (R)

∣∣∣∣∣∣
(ϕ,N) ∈ XG(R) and

ϕ ∈ g−1Pg,
N ∈ Ad(g−1)(LieP )

⎫⎬⎭ . (2.1)

This is a closed G-invariant subscheme of XG ×G/P (where G acts on G/P by left
translation). Then (ϕ,N) 
→ (ϕ,N, 1) induces a closed embedding XP ↪→ X̃P which descends
to an isomorphism

[XP /P ]
∼=−→ [X̃P /G]. (2.2)

Moreover, the canonical projection X̃P → XG is G-equivariant and the induced morphism
[X̃P /G]→ [XG/G] agrees under the isomorphism (2.2) with the morphism [XP /P ]→ [XG/G]
induced by P ↪→ G. The following lemma is a direct consequence of this discussion.

Lemma 2.4. Let G be a reductive group and P ⊂ G be a parabolic subgroup. Then the canonical
map [XP /P ]→ [XG/G] induced by the inclusion P ↪→ G is proper.

We continue to assume that G is reductive. We say that a point (ϕ,N) ∈ G× g is regular, if
there are only finitely many Borel subgroups B′ ⊂ G such that ϕ ∈ B′ and N ∈ LieB′, that is,
if (for one fixed choice of a Borel B) the point (ϕ,N) has only finitely many pre-images under{

(ϕ,N, gB) ∈ G× g×G/B
∣∣∣∣ ϕ ∈ g−1Bg,
N ∈ Ad(g−1)(LieB)

}
−→ G× g.

As this morphism is proper and the fiber dimension is upper semi-continuous on the source,
the regular elements form a Zariski open subset (G× g)reg ⊂ G× g. Similarly, we can define a
Zariski open subset

Xreg
G = XG ∩ (G× g)reg ⊂ XG.

If P ⊂ G is a parabolic subgroup, we write

(P × LieP )reg = (G× LieG)reg ∩ (P × LieP )

and Xreg
P = XP ∩Xreg

G . Moreover, we write X̃reg
P for the pre-image of Xreg

G under X̃P → XG.
Then [Xreg

P /P ] = [X̃reg
P /G] as stacks and the morphism X̃reg

P → Xreg
G is by construction a finite

morphism. Moreover, if we write M for the Levi quotient of P , it is a direct consequence of the
definition that the canonical projection [XP /P ]→ [XM/M ] restricts to [Xreg

P /P ]→ [Xreg
M /M ].

Lemma 2.5. The scheme Xreg
P is equidimensional of dimension dimP and a complete intersec-

tion inside (P × LieP )reg. Moreover, the map X̃reg
P → Xreg

G is surjective and each irreducible
component of X̃reg

P dominates an irreducible component of Xreg
G .
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Proof. Following the opening lines of the proof of Proposition 2.1, the first claim follows if we
show that every irreducible component of Xreg

P has dimension at most dimP . Equivalently, we
can show that every irreducible component of X̃reg

P has dimension at most dimG. This is a direct
consequence of the fact that X̃reg

P → Xreg
G is finite. It follows that every irreducible component

of X̃reg
P has dimension equal to dimG. As X̃reg

P → Xreg
G is finite and XG is equidimensional of

dimension dimG it follows that every irreducible component of X̃reg
P dominates an irreducible

component of Xreg
G .

It remains to show that X̃reg
P → Xreg

G is surjective. In fact we even show that X̃P → XG is
surjective. We easily reduce to the case P = B a Borel subgroup, and, choosing an embedding
G ↪→ GLn, we can reduce to the case of GLn. There we can check the claim on k-valued points
for algebraically closed fields k, where it easily follows by looking at the Jordan canonical forms
of ϕ and N . �
Remark 2.6. We remark that Xreg

P ⊂ XP is open, but not dense in general, as can be deduced
from Lemma 2.5 and Example 2.3. If G is reductive then we expect that Xreg

G is dense in XG.
In the case of GLn this is a consequence of Proposition 2.1.

IfG = GLn and P ⊂ G is a parabolic subgroup, thenG/P can be identified with the variety of
flags of type P . In particular, we can identify X̃P with the variety of triples (ϕ,N,F) consisting of
(ϕ,N) ∈ XG and a (ϕ,N)-stable flag of type P . From now on we will often use this identification.

Lemma 2.7. Let G = GLn and let P ⊂ G be a parabolic. Then X̃reg
P is reduced.

Proof. To prove that X̃reg
P is reduced, it remains to show that it is generically reduced. Let

ξ = (ϕξ, Nξ,Fξ) ∈ X̃reg
P be a generic point. Under β̃P : X̃reg

P → XG the point ξ maps to a generic
point η = (ϕξ, Nξ) of XG and hence ϕξ is regular semi-simple. It is enough to show that β̃−1

P (η)
is reduced. But as ϕξ is regular semi-simple the space of ϕξ-stable flags is a finite disjoint union
of reduced points. Hence, its closed subspace of flags that are in addition stable under Nξ has to
be reduced as well. �
Remark 2.8. Let n ≤ 5 and P ⊂ GLn a parabolic subgroup. We point out that the argument in
Remark 2.2(b) implies that XP is a complete intersection in P × LieP . But if n ≥ 4, it is not true
that every irreducible component of X̃P dominates an irreducible component of XGLn . Indeed,
one can compute that if n = 4 and P = B is a Borel, then there is an irreducible component of X̃B

on which the Frobenius ϕ is semi-simple with eigenvalues λ, qλ, qλ, q2λ for some indeterminate
λ. This component clearly cannot dominate an irreducible component of XGL4 . However, for
n ≤ 3 one can compute that every irreducible component of XP is the closure of an irreducible
component of Xreg

P . In particular, we deduce that XP is reduced if n ≤ 3. In the general case
(P ⊂ G a parabolic subgroup of a reductive group) we do not know whether XP is reduced.

Lemma 2.9. Let G be reductive and P ⊂ G be parabolic with Levi quotient M .

(i) The morphism Xreg
P → Xreg

M has finite Tor dimension.
(ii) Let P ′ ⊂ P be a second parabolic subgroup. Let M ′ denote the Levi quotient of P ′ and

P ′
M ⊂M denote the image of P ′ in M . Then the diagrams

XP ′ ��

��

XP

��
XP ′

M
�� XM

and

Xreg
P ′ ��

��

Xreg
P

��
Xreg
P ′
M

�� Xreg
M

(2.3)

are cartesian and the fiber product on the right-hand side is Tor-independent.
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Proof. (i) Let U ⊂ P denote the unipotent radical of P and fix a section M ↪→ P of the canonical
projection. We write u ⊂ p for the Lie algebras of U and P and m for the Lie algebra of M . Then
we obtain a commutative diagram

(M × U)× (m× u)
∼=
ψ

��

�������������������
P × p

π

��
M ×m

where the horizontal arrow ψ is induced by multiplication and the other two morphisms are
the canonical projections. Let r = dimM and s = dimU . Let I ⊂ Γ(P × LieP,OP×LieP ) be
the ideal defining XP ↪→ P × LieP , that is, the ideal generated by the entries of the matrix
Ad(ϕ)(N)− q−1N , where ϕ and N are the universal elements over P and LieP . Then we deduce
from the diagram that I can be generated by elements f1, . . . , fr, g1 . . . , gs such that

f1, . . . , fr ∈ Γ(M ×m,OM×m) ⊂ Γ(P × LieP,OP×LieP ),

where (f1, . . . , fr) is the ideal defining XM ⊂M ×m. It follows that the ideal (g1, . . . , gs) is the
ideal defining XP as a closed subscheme of π−1(XM ) ∼= A2s

XM
.

Let us now write K(g1, . . . , gs) for the Koszul complex defined by g1, . . . , gs on the
open subscheme π−1(XM )reg = π−1(XM ) ∩ (P × LieP )reg of π−1(XM ). This is a finite com-
plex of flat OXM -modules and we claim that it is a resolution of OXreg

P
. Indeed, g1, . . . , gs

cut out the closed subscheme Xreg
P ⊂ π−1(XM )reg which is of codimension s by Lemma 2.5.

As π−1(XM )reg is Cohen–Macaulay (it is an open subscheme of an affine space over XM

and XM is Cohen–Macaulay as a consequence of Proposition 2.1) it follows from [EGAIV.1,
Corollaire 16.5.6] that g1 . . . , gs is a regular sequence and hence the Koszul complex is a resolution
of its zeroth cohomology which is OXreg

P
.

(ii) The fact that the squares are fiber products follows from the fact that P ′ is the pre-image
of P ′

M under P →M . We show that the square on the right is Tor-independent. As in (i) we
have a Koszul complex K(g1, . . . , gs) on π−1(XM )reg which is a OXreg

M
-flat resolution of OXreg

P
.

Consider the closed embedding

Xreg
P ′ ↪→ π−1(XP ′

M
) ∩ (P × p)reg. (2.4)

As (2.3) is cartesian, the restrictions of g1, . . . , gs to π−1(XP ′
M

) ∩ (P × LieP )reg generate the
ideal defining the closed embedding (2.4), and it remains to show that the pullback of the
Koszul complex K(g1, . . . , gs) along (2.4) is a resolution of its zeroth cohomology group; that is,
we need to show that g1, . . . , gs is a regular sequence in

Oπ−1(Xreg

P ′
M

)∩(P×LieP )reg,x for all x ∈ Xreg
P ′ ⊂ π−1(Xreg

P ′
M

) ∩ (P × LieP )reg.

Now
π−1(Xreg

P ′
M

) ∩ (P × LieP )reg ⊂ π−1(Xreg
P ′
M

) ∼= A2s
Xreg

P ′
M

is an open subscheme and hence it is Cohen–Macaulay asXreg
P ′
M

is Cohen–Macaulay by Lemma 2.5.
The claim now follows again from [EGAIV.1, Corollaire 16.5.6] and the fact that Xreg

P ′ is
equidimensional of dimension dimπ−1(Xreg

P ′
M

)− s. �

Example 2.10. Let us point out that the left cartesian diagram of (2.3) is not necessarily
Tor-independent without restricting to the regular locus. Let us consider r = d = 3 (so that

1051

https://doi.org/10.1112/S0010437X23007145 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007145


E. Hellmann

dr = 2r + d) in Example 2.3. Let B ⊂ GLn be the Borel subgroup of upper triangular matri-
ces, where n = rd = 9. Then the above example shows that XB is not equidimensional, and
hence the defining ideal is not generated by a regular sequence. Let P ⊂ GL9 be a standard
parabolic containing B with Levi M = GL5×GL4. Then the classification of [BB19] shows
that P as well as the Borel BM of M have the property that they act only via finitely many
orbits on LieP ∩NGL9 or LieBM ∩NM . In particular, XP and XBM are complete intersec-
tions in P × LieP or BM × LieBM by Remark 2.2. As in the proof above, we can construct
generators f1, . . . , fdimB of the ideal defining XB ⊂ B × LieB such that Tor-independence of
(2.3) is equivalent to exactness of the Koszul complex K(f1, . . . , fdimB) in negative degrees.
Let x ∈ XB ⊂ B × LieB be a point that lies on an irreducible component of XB of dimen-
sion strictly larger than dimB. Then (the germs of) f1, . . . , fdimB lie in the maximal ideal
mB×LieB,x ⊂ OB×LieB,x and the Koszul complex defined by these elements is not exact, as they
do not form a regular sequence (because OXB ,x is not equidimensional of dimension dimB).

We reformulate the first claim of the lemma in terms of stacks.

Corollary 2.11. Let P ′ ⊂ P ⊂ G be parabolic subgroups of G and let M be the Levi quotient
of P and P ′

M the image of P ′ in M. Then the diagram

[XP ′/P ′] ��

��

[XP /P ]

��
[XP ′

M
/P ′

M ] �� [XM/M ]

of stacks is cartesian.

Proof. Note that P →M induces an isomorphism P/P ′ ∼= M/P ′
M . As in (2.1), we define a closed

M -invariant subscheme YP ′
M
⊂ XM ×M/P ′

M as the scheme representing the sheafification of the
functor

R 
→
{

(ϕ,N, g) ∈ XM (R)×M(R)/P ′
M (R)

∣∣∣∣ ϕ ∈ g−1P ′
Mg and

N ∈ Ad(g−1)(LieP ′
M )

}
.

Then we have a canonical isomorphism [XP ′
M
/P ′

M ] ∼= [YP ′
M
/M ]. Similarly, we define a P -invariant

closed subscheme YP ′ ⊂ XP ′ × P/P ′ such that [XP ′/P ′] ∼= [YP ′/P ]. Then the diagram

YP ′ ��

��

XP

��
YP ′

M
�� XM

is cartesian by the above lemma. Let U ⊂ P denote the unipotent radical of P , then it follows
that

[YP ′/U ] ��

��

[XP /U ]

��
YP ′

M
�� XM

is cartesian diagram of stacks with M -action and with M -equivariant morphisms. The claim
follows by taking the quotient by the M -action everywhere. �
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The objects introduced above have variants in the world of derived (or dg) schemes (see,
for example, [DG13, 0.6.8] and the references cited therein). The category of dg-schemes over C
canonically contains the category of C-schemes as a subcategory. For any linear algebraic group
G we write γG : G× LieG→ LieG for the morphism (ϕ,N) 
→ Ad(ϕ)(N)− q−1N . We denote
by XG the fiber product

XG
��

��

G× LieG

γG

��
{0} �� LieG

in the category of dg-schemes. This yields a dg-scheme XG with underlying classical scheme
clXG = XG. If G is reductive then Proposition 2.1 implies that XG = XG. Similarly, if P ⊂ G
is a parabolic subgroup of a reductive group, we denote by Xreg

P ⊂ XP the open sub-dg-scheme
with underlying topological space Xreg

P . Then Lemma 2.5 implies that Xreg
P = Xreg

P is a classical
scheme.

For any linear algebraic group G we write [XG/G] for the stack quotient of XG by the
canonical action of G. This is an algebraic dg-stack2 in the sense of [DG13, 1.1]. Similarly to the
case of schemes, we can view any algebraic stack as an algebraic dg-stack. Moreover, recall that
every dg-stack S has an underlying classical stack clS.

If G is reductive and P ⊂ G is a parabolic we also consider the stacks [Xreg
G /G] and [Xreg

P /P ].
Then

[XG/G] = [XG/G],

[Xreg
G /G] = [Xreg

G /G],

[Xreg
P /P ] = [Xreg

P /P ].

We recall that a morphism Y1 → Y2 of dg-stacks is schematic if for all affine dg-schemes
Z and all morphisms Z→ Y2 the fiber product Z×Y2 Y1 is a dg-scheme (see [DG13, 1.1.2]).
A morphism of dg-schemes is called proper if the induced morphism of the underlying classical
schemes is proper, and a morphism of algebraic dg-stacks is proper if the morphism of underlying
classical stacks is proper in the sense of [LM00, Definition 7.11]. Similarly to the non-derived
results above, we obtain the following lemma.

Lemma 2.12. Let G be a reductive group and let P ⊂ G be a parabolic subgroup with Levi
quotient M .

(i) The morphism [XP /P ]→ [XG/G] is schematic and proper.
(ii) Let P ′ ⊂ P be a second parabolic subgroup and write P ′

M ⊂M for the image of P ′ in M .
Then

XP ′ ∼= XP ′
M
×XM

XP and [XP ′/P ′] ∼= [XP ′
M
/P ′

M ]×[XM/M ] [XP /P ].

Proof. (i) As in the non-derived case we can rewrite [XP /P ] as [X̃P /G], where X̃P ⊂ XG ×G/P
is the closed G-invariant sub-dg-scheme obtained by making

XP ⊂ XG × {P} ⊂ XG ×G/P

2 In [DG13] dg-stacks are simply called stacks. In order to distinguish between derived and non-derived variants
we will always write ‘dg-stack’.
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invariant under the G-action. More precisely, we can describe this dg-scheme as follows. Let us
write Z ⊂ G× LieG×G/P for scheme representing (the sheafification of) the functor

R 
−→ {(ϕ,N, gP ) ∈ (G× LieG×G/P )(R) | ϕ ∈ g−1Pg, N ∈ Ad(g−1) LieP}

on C-algebras. By definition there is an isomorphism of stacks

[Z/G] ∼= [P × LieP/P ].

Similarly, we write Z ′ ⊂ LieG×G/P for the scheme parametrizing pairs (N, gP ) such that
N ∈ Ad(g−1) LieP . Then Z ′ → G/P is a vector bundle (with fibers isomorphic to LieP ) and we
can define X̃P as the derived fiber product

X̃P
��

��

Z

��
G/P �� Z ′

where G/P → Z ′ is the zero section and the right vertical arrow is the morphism given by
(ϕ,N, gP ) 
→ (Ad(ϕ)N − q−1N, gP ). Now [XP /P ] = [X̃P /G]→ [XG/G], and the projection

X̃P −→ XG (2.5)

is a G-equivariant model for the canonical projection [XP /P ]→ [XG/G] induced by P ⊂ G. The
claim follows from this together with the observation that clX̃P = X̃P and cl[XP /P ] = [XP /P ].

(ii) This is a direct consequence of the definition of the fiber product in the category of
dg-schemes and the fact that P ′ is the pre-image of P ′

M under the (flat) morphism P →M . �

Remark 2.13. Let B ⊂ G be a Borel subgroup and let U ⊂ B denote the unipotent radical. Then
XB ⊂ B × LieB is in fact a (derived) subscheme of B × LieU . Indeed, computing Ad(ϕ)N −
q−1N for the universal pair (ϕ,N) over B × LieB and restricting to the Lie algebra of (a choice
of) a maximal torus in B, we find that XB ⊂ B × LieU . Using this observation, we mention the
following variant of the construction in the proof of (i) above. Letting NG denote the nilpotent
cone of G, we can define Y = Z ∩G×NG ×G/B. In fact [Y/G] ∼= [B × LieU/B] and if we
write G̃→ G (respectively, ÑG → NG) for the Grothendieck (respectively, Springer) resolution,
then

Y = G̃×G/B ÑG.

In particular, Y is smooth and affine of relative dimension dimG over G/B. Then we can define
X̃B as a closed sub-dg-scheme of Y similarly to its definition as a closed sub-dg-scheme of Z in
the proposition.

2.2 Derived categories of (quasi-)coherent sheaves
Given a scheme or a stack X (or a derived scheme or a derived stack), we write DQCoh(X) for
the derived category of quasi-coherent sheaves on X (see [DG13, 1.2] where it is denoted by
QCoh(X)). We write Db

Coh(X) for the full subcategory of objects that only have cohomology in
finitely many degrees, which, moreover, is coherent.
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If X is a noetherian scheme then Db
Coh(X) coincides with the full subcategory of the derived

category D(OX -mod) of OX -modules, consisting of those complexes that have coherent cohomol-
ogy and whose cohomology is concentrated in finitely many degrees. Similarly, if X is a (classical)
algebraic stack, then Db

Coh(X), and more generally D+
QCoh(X), agrees3 with the definition of the

bounded derived category of coherent sheaves, and, respectively, with the bounded-below derived
category of quasi-coherent sheaves as defined in [LM00].

Lemma 2.14. Let G be a reductive group and let P be a parabolic subgroup with Levi
quotient M . Let

α : [XP /P ]→ [XM/M ] and β : [XP /P ]→ [XG/G]

denote the canonical morphisms. Then the maps

Lα∗ : DQCoh([XM/M ]) −→ DQCoh([XP /P ]),

Rβ∗ : DQCoh([XP /P ]) −→ DQCoh([XG/G])

preserve the subcategories D+
QCoh(−) and Db

Coh(−).

Proof. In the case of Rβ∗ the claim directly follows from the fact that β is proper and schematic.
We prove the claim for Lα∗. As the properties of belonging to D+

QCoh(−) or Db
Coh(−) can be

checked over the smooth cover XP of [XP /P ], it is enough to show that pullback along the
morphism

α′ : XP −→ XM

preserves D+
QCoh(−) and Db

Coh(−). Moreover, both properties may be checked after forgetting the
OXP

-module structure, and only remembering the OP×LieP -module structure. As in the proof
of Lemma 2.9, we find that OXP

can be represented by a finite complex F•
P of flat OXM

-modules
that are coherent as OP×LieP -modules, and Lα′∗ is identified with the functor −⊗LOXM

F•
P . The

claim follows from this. �
Remark 2.15. (a) We point out that using the definition of the derived categories as in [DG13]
has the advantage that there is a canonical pullback functor between the derived categories of
quasi-coherent sheaves on stacks. At least as long as we only consider non-derived stacks (such
as [XG/G] or [Xreg

G /G]) there is a definition of the derived category of quasi-coherent sheaves
in [LM00]. However, the definition of the pullback functor in [LM00] encounters some problems.
Lemma 2.14 essentially tells us that we could also use the definition of [LM00] and only consider
complexes that are bounded below.

(b) The explicit description of the pullback in the proof of Lemma 2.14 could also
be used to completely bypass the use of derived schemes, or derived stacks. In the
end we will be interested in the composition Rβ∗ ◦ Lα∗ rather than in the individual
functors. Hence, instead of Lα∗ we might use the construction −⊗LOXM F

•
P and care-

fully define the O[XG/G]-action after push-forward (and after descent to the stack quo-
tient). However, it seems to be more natural to use derived stacks than such an explicit
workaround.

Let P1 ⊂ P2 be parabolic subgroups of a reductive group G with Levi quotients Mi, i = 1, 2.
We write P12 ⊂M2 for the image of P1 in M2. Then P12 ⊂M2 is a parabolic subgroup with Levi

3 This is true after passing to the underlying homotopy category. The derived categories in [DG13] are by definition
∞-categories while the derived categories in [LM00] are classical triangulated categories.
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quotient M1. We obtain a diagram

[XP1/P1]
β

��

α

��
α1

��

β1

��
[XP2/P2]

β2

��

α2

��

[XG/G]

[XP12/P12]
β12

��

α12

��

[XM2/M2]

[XM1/M1]

(2.6)

where the upper left diagram is cartesian (in the category of dg-stacks).

Lemma 2.16. In the above situation we have a natural isomorphism

(Rβ2 ∗ ◦ Lα∗
2) ◦ (Rβ12 ∗ ◦ Lα∗

12)
∼=−→ Rβ1 ∗ ◦ Lα∗

1 (2.7)

of functors

DQCoh([XM1/M1]) −→ DQCoh([XG/G]).

Proof. The upper right square is (derived) cartesian and β12 is schematic and proper; in par-
ticular, it is quasi-compact and quasi-separated. Hence, [DG13, Propositions 1.3.6 and 1.3.10]
implies that the natural base change morphism

Lα∗
2 ◦Rβ12 ∗ −→ Rβ∗ ◦ Lα∗

is an isomorphism. We obtain the natural isomorphism

(Rβ2 ∗ ◦ Lα∗
2) ◦ (Rβ12 ∗ ◦ Lα∗

12) = Rβ2 ∗ ◦ (Lα∗
2 ◦Rβ12 ∗) ◦ Lα∗

12

∼=−→ Rβ2 ∗ ◦ (Rβ∗ ◦ Lα∗) ◦ Lα∗
12 = Rβ1 ∗ ◦ Lα∗

1. �

We point out that, working only with classical schemes, we still obtain a natural transfor-
mation between the corresponding functors: if we consider the underlying classical stacks in
diagram (2.6) and keep the same notation for the morphisms by abuse of notation, then there
still is a natural base change morphism, but it is not necessarily an isomorphism as the fiber
product might not be Tor-independent. However, it becomes an isomorphism when we restrict
the functors to the regular locus, that is, we consider them as functors

DQCoh([X
reg
M1
/M1])→ DQCoh([X

reg
G /G]),

as in this case the classical and derived pictures coincide. Indeed, after the restriction to the
regular locus the derived fiber product equals the classical fiber product by the Tor-independence
in Lemma 2.9.

2.3 Duals
We continue to assume that G is a reductive group over C and fix a Borel subgroup B ⊂ G.
Recall that we have defined a morphism

βB : [XB/B] −→ [XG/G]
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of (derived) stacks. In this subsection we will analyze the (derived) direct image of the struc-
ture sheaf under this morphism, which will play an important role4 later on. For a (derived)
scheme or a (derived) stack X we will write ωX ∈ DQCoh(X) for the dualizing complex and
DX(−) = RHomOX (−, ωX) for the usual duality functor. The main point of this section is to
give evidence to the following conjecture (compare also [BCHN20, Conjecture 3.35] and [Zhu20,
Conjecture 4.5.1 and Remark 4.5.4]).

Conjecture 2.17. The derived direct image Rβ∗(O[XB/B]) ∈ Db
Coh([XG/G]) is concentrated in

degree zero and there is an isomorphism

Rβ∗(O[XB/B]) ∼= D[XG/G](Rβ∗(O[XB/B])).

In particular, the pullback of Rβ∗(O[XB/B]) toXG is concentrated in degree zero and is a maximal
Cohen–Macaulay module.

Let us write β̃B : X̃B → XG for the G-equivariant model of βB, as in (2.5). The conjecture is
obviously equivalent to the claim that Rβ̃B,∗OX̃B

is concentrated in degree zero and that there
is a G-equivariant isomorphism

Rβ̃B,∗OX̃B

∼= DXG(Rβ̃B,∗OX̃B
)[−dimG].

This isomorphism then implies that the dual of the sheaf Rβ̃B,∗OX̃B
is concentrated in a single

degree and hence, by [Sta, Tag 0B5A], it is a Cohen–Macaulay module. As its support obviously
is all of XG it is then a maximal Cohen–Macaulay module.

As in Remark 2.13, we write Y → G× LieG for the scheme parametrizing triples (ϕ,N, gB) ∈
G×NG ×G/B such that ϕ ∈ g−1Bg and N ∈ Ad(g−1) LieU , where U ⊂ B is the unipotent
radical. Recall that Y is smooth (of dimension dimG+ dimG/B) as the projection to the flag
variety pr : Y → G/B is the composition of a B-bundle and a geometric vector bundle (or rank
dimU). We consider the diagram

X̃B

β̃
��

ιB �� Y

f

��
XG

ιG �� G× LieG

and write F• = RιB,∗OX̃B
. The main observation is that F• is represented by a Koszul complex

and hence is self-dual (up to a shift). In order to make this precise, recall that an alge-
braic representation of B defines a G-equivariant vector bundle on G/B. We write U∨ for the
G-equivariant vector bundle on G/B defined by the canonical B representation on u∨. Here u

denotes the Lie algebra of U (considered as a C-vector space), and u∨ denotes its dual. In par-
ticular, U∨ admits a filtration whose graded pieces are the line bundles Lα on G/B associated
to the negative (with respect to B) roots α of G.

Lemma 2.18.

(i) The complex F• is represented by a Koszul complex

· · · −→
∧i

pr∗(U∨) −→
∧i−1

pr∗(U∨) −→ · · ·
where the term

∧i pr∗(U∨) sits in (cohomological) degree −i.
4 This complex of sheaves is called the coherent Springer sheaf in the work of Ben-Zvi et al. [BCHN20] and
Zhu [Zhu20].
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(ii) There is a G-equivariant isomorphism

F• ∼= DY (F•)[−dimG].

Proof. (i) By definition the structure sheaf of the derived scheme XB ⊂ B × LieU is (as a
complex of OB×LieU -modules) quasi-isomorphic to the B-equivariant Koszul complex

· · · −→
∧i

u∨ ⊗C OB×LieU −→
∧i−1

u∨ ⊗OB×LieU −→ · · ·
defined by the entries of Ad(ϕ)N − q−1N for the universal pair (ϕ,N) over B × LieU (where,
by abuse of notation, we also write u for the C-vector space underlying the scheme LieU). The
claim follows from the identification [Y/G] = [B × LieU ] (compare also Remark 2.13).

(ii) The claim on duality follows from the usual self-duality of Koszul complexes which is
induced by the perfect pairing∧i

pr∗(U∨)×
∧dimG/B−i

pr∗(U∨) −→
∧dimG/B

pr∗(U∨)

and the identification∧dimG/B
pr∗ U∨ = pr∗

( ∧dimG/B U∨
)

= pr∗ ωG/B[−dimG/B] = ωY [−dimY ]. �

Conjecture 2.19. The complex Rf∗F• is concentrated in non-negative degrees.

Proposition 2.20. Conjecture 2.19 implies Conjecture 2.17.

Proof. The morphisms ιG and f satisfy Grothendieck duality, as ιG is a complete intersection
and f factors into a complete intersection and a smooth morphism. Hence, we have the following
isomorphisms in DQCoh(G× g):

RιG,∗(Rβ̃B,∗(OX̃B
)) = Rf∗F• ∼= Rf∗(DY (F•)[−dimG]) = Rf∗(DY (F•))[−dimG]

∼= DG×g(Rf∗F•)[−dimG]

= DG×g(RιG,∗Rβ̃B,∗(OX̃B
))[−dimG]

∼= RιG,∗(DXG(Rβ̃B,∗(OX̃B
))[−dimG]).

Assuming Conjecture 2.19, the complex Rf∗F• is concentrated in degrees (−∞, 0], and hence
so is Rβ̃B,∗(OX̃B

), as ιG is affine. It follows that DXG(Rβ̃B,∗(OX̃B
)) is concentrated in degrees

[−dimG,+∞) and hence
RιG,∗(DXG(Rβ̃∗(OX̃B

))[−dimG])

is concentrated in degrees [0,+∞). Hence, Rf∗F• is concentrated in degree zero and, again using
that ιG is affine, the same holds true for Rβ̃B,∗(OX̃B

).
But as Rβ̃B,∗(OX̃B

) is concentrated in a single degree the isomorphism

RιG,∗(Rβ̃B,∗(OX̃B
)) ∼= RιG,∗(DXG(Rβ̃B,∗(OX̃B

))[−dimG])

is in fact a G-equivariant isomorphism of sheaves on G× g (not just an isomorphism in the
derived category) and hence restricts to a G-invariant isomorphism of sheaves

Rβ̃B,∗(OX̃B
) ∼= DXG(Rβ̃B,∗(OX̃B

))[−dimG].

on XG. As we have seen above, these claims are equivalent to Conjecture 2.17. �
Unfortunately we are not able to prove Conjecture 2.19 in general. We will instead give some

evidence by proving the conjecture for GL2 and GL3.
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As G× g is affine it is enough to prove that H i(G× g, Rf∗F•) vanishes for i > 0. This
cohomology is computed by a spectral sequence

Ei,j1 = Hj(Y,F i) =⇒ H i+j(G× g, Rf∗F•),

and hence it is enough to show that Hj(Y,
∧i pr∗(U∨)) = 0 for j > i (note that F i =∧−i pr∗(U∨)).

Proposition 2.21. Let G = GL2 or G = GL3. Then

Hj

(
Y,

∧i
pr∗(U∨)

)
= 0 for j > i.

In particular, Conjecture 2.17 holds true for GL2 and GL3.

Proof. We distinguish the cases i > 0 and i = 0. Let us prove the case i > 0 first. We can compute
this cohomology group after pushforward along the closed immersion Y ↪→ G×NG ×G/B as
follows. Let us write Ū (respectively, B̄) for G-equivariant vector bundles on G/B associated to
the B-representations on g/b (respectively, on g/u), where b = LieB. Note that OY is, as a sheaf
on G×NG ×G/B, quasi-isomorphic to the Koszul complex

· · · −→
∧i

g∗(Ū∨ ⊗ B̄∨) −→
∧i−1

g∗(Ū∨ ⊗ B̄∨) −→ · · ·
where again the

∧i term appears in degree −i, and where g : G×NG ×G/B → G/B denotes
the canonical projection. By the projection formula (using that g is affine and flat base change)
we find that

Hj(Y,F−i) = Hj

(
G×NG ×G/B,

∧i
g∗(U)∨ ⊗OY

)
= Hj

(
G×NG ×G/B,

∧i
g∗(U)∨ ⊗

∧•
g∗(Ū∨ ⊗ B̄∨)

)
= Hj

(
G/B,

∧i U∨ ⊗
∧•

(Ū∨ ⊗ B̄∨)
)
⊗C Γ(G×NG,OG×N )

and again we can use a spectral sequence to compute this cohomology group. Hence, it is enough
to show that

H•
(
G/B,

∧a U∨ ⊗
∧b Ū∨ ⊗

∧c B̄∨
)

= 0 for • > a+ b+ c and a ≥ 1.

As B̄∨ is an extension of Ū∨ and a power of the trivial line bundle it is enough to prove that

H•
(
G/B,

∧a U∨ ⊗
∧b Ū∨ ⊗

∧c Ū∨
)

= 0 for • > a+ b+ c and a ≥ 1.

We compute this cohomology group in terms of the cohomology of equivariant line bundles: note
that the G-equivariant vector bundle

∧a U∨ ⊗∧b Ū∨ ⊗∧c Ū∨ has a filtration whose subquotients
are G-equivariant lines bundles Lλ ⊗ Lμ ⊗ Lν = Lλ+μ+ν , where λ is a sum of a pairwise distinct
positive roots,5 μ is a sum of b pairwise distinct negative roots and ν is a sum of c pairwise
distinct negative roots. It hence suffices to show that H•(G/B,Lλ+μ+ν) vanishes in degrees
higher than a+ b+ c in this case. By the Borel–Bott–Weil theorem the cohomology of these
line bundles is computed as follows. We write w · κ = w(κ+ ρ)− ρ for the dot action of the

5 Note that by the usual sign convention (which is used in the Borel–Bott–Weil theorem) the G-equivariant line
bundle Lλ associated to a character λ corresponds to the character −λ seen as a line bundle on [∗/B] = [G\(G/B)].
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Table 1. The dot-action on sums of roots, I.

κ w such that w · κ is dominant 1 �= w fixing κ

0 1 −
α − sβ

β − sα

α+ β 1 −
2α+ β 1 −
α+ 2β 1 −
α− β sβ −
β − α sα −
−α sα −
−β sβ −

Weyl group W on X∗(T ), where ρ is the half sum of the positive roots. Then there is either
an element 1 �= w ∈W such that w · κ = κ, or a unique w ∈W such that w · κ is dominant.
In the first case H•(G/B,Lκ) = 0 and in the second case H•(G/B,Lκ) is an irreducible G-
representation concentrated in degree (w), where, as usual, (w) denotes the length of the Weyl
group element w. We hence obtain a combinatorial claim about roots which allows us to check
the vanishing of Hj(Y,

∧i pr∗(U∨)).
Recall that we are assuming i > 0. The above discussion implies that it is enough to prove

the following claim. Let a ≥ 1 and b, c ≥ 0 and let λ be a sum of a pairwise distinct positive roots,
μ be a sum of b pairwise distinct negative roots and ν be a sum of c pairwise distinct negative
roots. If there is some (necessarily unique) w ∈W such that w · (λ+ μ+ ν) is dominant, then
(w) ≤ a+ b+ c.

In the GL2 case this computation is rather trivial. In the GL3 case G/B has dimension three
and the claim is trivially satisfied for a+ b+ c ≥ 3. We are left to check the cases a+ b+ c = 1
and a+ b+ c = 2.

We write α and β for the two simple positive roots, and sα, sβ ∈W for the corresponding
reflections.

In the case a+ b+ c = 1 the condition a ≥ 1 implies b = c = 0, and hence we need to check
that Lα,Lβ and Lα+β have cohomology only in degree ≤ 1. In the case a+ b+ c = 2 we need
to check the cases a = b = 1, c = 0 (the case a = c = 1, b = 0 of course being equivalent to this
case) and a = 2, b = c = 0. We hence need to show that the line bundles

L0,Lα−β ,L−β,Lβ−α,L−α,Lα,Lβ,Lα+β ,Lα+2β,L2α+β

have cohomology only in degrees ≤ 2.
More precisely, we have to check that for any of these weights κ, either κ is fixed by some

1 �= w under the dot action, or w · κ is dominant for some w of length less than or equal to 2.
This is done Table 1.

We are left to prove the proposition in the case i = 0, that is, we need to show that H•(Y,OY )
vanishes in positive degrees. Using the same criterion as above, we calculate OY as a Koszul
complex which reduces us to proving that

H•
(
G/B,

∧b Ū∨ ⊗
∧c Ū∨

)
= 0 for • > b+ c.

In the case G = GL2 this is again trivially satisfied. In the case G = GL3 this means we need
to prove that H•(G/B, Ū∨) vanishes in degrees higher than 1 and H•(G/B, Ū∨ ⊗ Ū∨) vanishes
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Table 2. The dot-action on sums of roots, II.

κ w such that w · κ is dominant 1 �= w fixing κ

−α sα −
−β sβ −
−α− β − any w
−2α − w0

−2β − w0

−2α− β sβsα −
−α− 2β sαsβ −
−2α− 2β w0 −

in degrees > 2. We hence need to compute the cohomology of the lines bundles

L−α,L−β ,L−α−β,L−2α,L−2β ,L−2α−β,L−α−2β,L−2α−2β.

Using Borel–Bott–Weil again, these cohomologies are computed using Table 2, where w0 =
sαsβsα is the longest element. It is a direct consequence that the cohomology H•(G/B, Ū∨)
is concentrated in degrees less than or equal to 1, whereas the cohomology H•(G/B, Ū∨ ⊗ Ū∨)
is concentrated in degrees less than or equal to 2 if and only if the boundary map

H2(G/B,L−2α−β ⊕ L−α−2β) −→ H3(G/B,L−2α−2β)

is surjective (or equivalently non-zero as the target of the map is an irreducible G-representation).
By Serre duality this is equivalent to the injectivity of the induced map

H0(G/B,L0) −→ H1(G/B,L−α ⊕ L−β). (2.8)

But this map is the boundary map in cohomology induced by a non-split extension

0 −→ L−α ⊕ L−β −→ E −→ L0 −→ 0. (2.9)

The fact that this extension is non-split implies that

H0(G/B, E) −→ H0(G/B,L0)

is the zero map (as L0 is the trivial line bundle the canonical map Γ(G/B,L0)⊗OG/B → L0 is
an isomorphism, and if H0(G/B, E) −→ H0(G/B,L0) was non-zero it necessarily would be an
isomorphism which would imply that the canonical map Γ(G/B, E)⊗OG/B → E would induce
a splitting of (2.9)) which in turn implies that (2.8) is injective. It follows that H•(Y,OY ) = 0
for • > 0 as claimed. �

Remark 2.22. Though this computation can be carried out for GL2 and GL3 rather explicitly it
seems that these computations (using Borel–Bott–Weil and boundary maps) become extremely
difficult in higher dimensions. Indeed, it is combinatorially involved to understand in what degrees
certain line bundles have non-vanishing cohomology, and in addition we would need to understand
certain boundary maps in long exact sequences.

Remark 2.23. Even though we cannot prove Conjecture 2.17 in general, it follows that the restric-
tion of Rβ̃B,∗(OX̃B

) to the regular locus Xreg
G ⊂ XG is a maximal Cohen–Macaulay module. In

particular, is it flat in the neighborhood of points x = (ϕ,N) ∈ Xreg
G such that XG is smooth

at x, by the Auslander–Buchsbaum formula. For G = GLn this is the case if (ϕss, N) is the
L-parameter of a generic representation (see [BGGT14, Lemma 1.3.2.(1)]). For a parabolic sub-
group P ⊂ G the morphism βP : X̃P → XG is clearly not flat in general, as its fiber dimension
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can jump. And even the finite morphism X̃reg
P → Xreg

G is not flat: at the intersection points of
two irreducible components of Xreg

G the number of points in the fiber (counted with multiplicity)
can jump.

3. Smooth representations and modules over the Iwahori–Hecke algebra

Let F be a finite extension of Qp (or of Fp((t))) with residue field kF and let q = pr = |kF |. In
the following let G be a split reductive group over F and write G = G(F ). From now on we will
assume that C contains a square root q1/2 of q. We fix a choice of this root.

We will always fix T ⊂ B ⊂ G, a split maximal torus and a Borel subgroup. By this choice
we can define the dual group Ǧ of G considered as an algebraic group over C. Moreover, we
denote by Ť ⊂ B̌ ⊂ Ǧ the dual torus and the dual Borel. More generally, given a parabolic
subgroup P ⊂ G containing B, we denote by P̌ ⊂ Ǧ the corresponding parabolic subgroup of the
dual group. We write W = WG = W (G,T) for the Weyl group of (G,T). If P ⊂ G is a parabolic
subgroup containing B, then the choice of T defines a lifting of the Levi quotient M of P to a
subgroup of G. Similarly, we regard the dual group M̌ of M as a subgroup of Ǧ containing the
maximal torus Ť . We write WM ⊂W for the Weyl group of (M,T).

Let Ǧ//Ǧ denote the GIT quotient of Ǧ with respect to its adjoint action on itself. The
inclusion Ť ↪→ Ǧ induces an isomorphism Ť /W ∼= Ǧ//Ǧ. The projection XǦ → Ǧ induces a map

χ = χG : XǦ −→ Ǧ −→ Ǧ//Ǧ = Ť /W (3.1)

which is Ǧ-equivariant and hence induces a map χ̄ = χ̄G : [XǦ/Ǧ]→ Ť /W . Similarly, we obtain
morphisms

χM : XM̌ → Ť /WM and χ̄M : [XM̌/M̌ ]→ Ť /WM .

3.1 Categories of smooth representations
Let us write Rep(G) for the category of smooth representations of G on C vector spaces. It is
well known that Rep(G) has a decomposition into Bernstein blocks

Rep(G) =
∏

[M,σ]∈Ω(G)

Rep[M,σ](G),

where Ω(G) is a set of equivalence classes of a Levi M of G and a cuspidal representation σ of
M (see [Ber92, III, 2.2], for example). We will restrict our attention to the Bernstein component
Rep[T,1](G), where 1 is the trivial representation of the torus T . Given π ∈ Rep(G) we write
π[T,1] for its image under the projection to Rep[T,1](G). Moreover, we will write ZG for the center
of the category Rep[T,1](G); then

ZG
∼=−→ Γ(Ǧ//Ǧ,OǦ//Ǧ)

(see below for an explicit description). This isomorphism allows us to identify the category
ZG-mod of ZG-modules with the category QCoh(Ť /W ) of quasi-coherent sheaves on the adjoint
quotient Ǧ//Ǧ = Ť /W of Ǧ, and the category ZG-modfg of finitely generated ZG-modules with
the category Coh(Ť /W ) of coherent sheaves on Ť /W . We obtain an identification of derived
categories

D(ZG-mod) ∼= DQCoh(Ť /W ),

Db(ZG-modfg) ∼= Db
Coh(Ť /W ).

(3.2)
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We use these identifications and the morphism χ̄ : [XǦ/Ǧ]→ Ť /W to make D+
QCoh([XǦ/Ǧ]) and

Db
Coh([XǦ/Ǧ]) into ZG-linear categories.

If P ⊂ G is a parabolic subgroup with Levi quotient M, we write

ιGP = IndGP (δ1/2P ⊗−) : Rep(M) −→ Rep(G)

for the normalized parabolic induction, and ιG
P

for normalized parabolic induction of the opposite
parabolic P of P (note that the normalization uses the choice of q1/2). These functors are exact
and restrict to functors

Rep[TM ,1](M) −→ Rep[T,1](G)

(for any choice of a maximal split torus TM ofM). Using a splitting M ↪→ P ⊂ G to the projection,
we obtain a morphism

M̌//M̌ −→ Ǧ//Ǧ

which is obviously independent of the choice of M ↪→ G. Then the functors ιGP and ιG
P

are linear
with respect to the morphism

ZG ∼= Γ(Ǧ//Ǧ,OǦ//Ǧ) −→ Γ(M̌//M̌,OM̌//M̌ ) ∼= ZM

(see below for details).
Let us write D(Rep[T,1](G)) (respectively, D+(Rep[T,1](G))) for the derived category

(respectively, for the bounded-below derived category) of Rep[T,1](G). Moreover, we write
Db(Rep[T,1],fg(G)) for the full subcategory of complexes whose cohomology is concentrated in
bounded degrees and is finitely generated as a C[G]-module. Then ιGP (respectively, ιG

P
) induce

functors

D(Rep[TM ,1](M)) −→ D(Rep[T,1](G)),

D+(Rep[TM ,1](M)) −→ D+(Rep[T,1](G)),

Db(Rep[TM ,1],fg(M)) −→ Db(Rep[T,1],fg(G)),

which we will also denote by ιGP (respectively, ιG
P
).

Given two parabolic subgroups P1 ⊂ P2 of G with Levi quotients M1 and M2, We write P12

for the image of P1 in M2. Then we have natural isomorphisms

ιGP2
◦ ιM2

P12
−→ ιGP1

,

ιG
P 2
◦ ιM2

P 12
−→ ιG

P 1

(3.3)

of functors D(Rep[TM1
,1](M1))→ D(Rep[T,1](G)).

Finally, recall that a Whittaker datum is a G-conjugacy class of tuples (B, ψ), where B ⊂ G
is a Borel subgroup and ψ : N → C× is a generic character of N = N(F ), where N ⊂ B is the
unipotent radical. As above, we fix the choice of a Borel subgroup B and a maximal split torus
T ⊂ G. For a parabolic P ⊂ G containing B with Levi quotient M, we write ψM : NM → C× for
the restriction of ψ to the unipotent radical NM ⊂ N of the Borel BM = B ∩M of M . Note that
the M -conjugacy class of (BM , ψM ) does not depend on the choice of M ↪→ G (i.e. on the choice
of T).

We can describe the above categories of representations in terms of modules over
Iwahori–Hecke algebras. In order to do so, let us fix a hyperspecial vertex in the apart-
ment of the Bruhat–Tits building of G defined by the maximal torus T, that is, we fix
OF -models of (G,T). The choice of a Borel B then defines an Iwahori subgroup I ⊂ G.
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We write RepIG for the category of smooth representations π of G on C-vector spaces that
are generated by their Iwahori fixed vectors πI and RepIfgG ⊂ RepIG for the full subcate-
gory of representations that are finitely generated (as C[G]-modules). It is well known that
the category RepIG does not depend on the choice of I and agrees with the Bernstein block
Rep[T,1](G).

Let HG = H(G, I) = EndG(c-indGI 1I) denote the Iwahori–Hecke algebra. Then

π 
−→ πI = HomG(c-indGI 1I , π)

induces an equivalence of categories between Rep[T,1](G) = RepIG and the category HG-mod of
HG-modules. This equivalence identifies RepIfgG and the full subcategory HG-modfg ⊂ HG-mod
of finitely generated HG-modules. Moreover, it identifies the center ZG of Rep[T,1](G) with the
center of the Iwahori–Hecke algebra HG. Then we have an isomorphism

ZG ∼= C[X∗(T)]W = C[X∗(Ť )]W = Γ(Ť /W,OŤ /W ) = Γ(Ǧ//Ǧ,OǦ//Ǧ)

(see, for example, [HKP10, Lemma 2.3.1]), which is in fact independent of the choice of the
Iwahori I.

Given a representation π ∈ RepIG and a ZG-module ρ, we will sometimes (by abuse of
notation) write π ⊗ZG ρ for the pre-image of the HG-module πI ⊗ZG ρ under the equivalence of
categories RepIG ∼= HG-mod (and similarly for corresponding derived functors).

Remark 3.1. Note that if G = T is a split torus, then I = IT = T ◦ is the unique maximal compact
subgroup of T and we have canonical identifications

C[X∗(T)] ∼= C[T/T ◦] = HT , (3.4)

where the first isomorphism is given by μ 
→ μ(�) for the choice of a uniformizer � of F (note
that this isomorphism is independent of this choice). We often use this isomorphism to identify
unramified characters and HT -modules.

Let P ⊂ G be a parabolic subgroup containing B with Levi quotient M and write P = P(F )
and M = M(F ). Set IM = IG ∩M , which is an Iwahori subgroup of M ; in particular, we
have Rep[TM ,1](M) = RepIMM . There is a canonical embedding HM ↪→ HG such that the
diagrams

RepIMM
(−)IM

��

ιGP
��

HM -mod

HomHM (HG,−)

��
RepIGG

(−)I
�� HG-mod

and

RepIMM
(−)IM

��

ιG
P

��

HM -mod

HG⊗HM−
��

RepIGG
(−)I

�� HG-mod

(3.5)

commute. Note that this is equivalent to the commutativity of the diagram

RepIMM
(−)IM

�� HM -mod

RepIGG
(−)I

��

rGP (−)

��

HG-mod

Forget

��
(3.6)

Here rGP (−) is the normalized Jacquet module which is the left adjoint functor to ιGP (−). It is
also the right adjoint functor to ιG

P
(−) by Bernstein’s second adjointness theorem. By abuse of
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notation we will often write ιGP (respectively, ιG
P
) for the functors HomHM

(HG,−) (respectively,
HG ⊗HM

−) on Hecke modules.
The embedding HM ⊂ HG induces an embedding ZG ⊂ ZM , where ZM is the center of

Rep[TM ,1](M) which is identified with the center of HM , such that the canonical diagram

ZG ��

��

Γ(Ť /W,OŤ /W )

��

ZM �� Γ(Ť /WM ,OŤ /WM
)

commutes. We deduce that ιGP and ιG
P

are ZG-linear. In particular, for a ZG-module ρ we obtain
natural isomorphisms

ιGP (−⊗ZG ρ) −→ ιGP (−)⊗ZG ρ,

ιG
P
(−⊗ZG ρ) −→ ιG

P
(−)⊗ZG ρ,

(3.7)

and similarly for the corresponding functors on the derived category.

3.2 The main conjecture
Using the notation introduced above, we state the following conjecture. Variants of the conjecture
have been around in representation theory in recent years. A proof of the conjecture is announced
in the work of Ben-Zvi et al. [BCHN20] and Zhu [Zhu20].

Conjecture 3.2. There exist the following data.

(i) For each (G,B,T, ψ) consisting of a reductive group G, a Borel subgroup B, a split maximal
torus T ⊂ B, and a (conjugacy class of a) generic character ψ : N → C×, there exists an
exact and fully faithful ZG-linear functor

RψG : D+(Rep[T,1](G)) −→ D+
QCoh([XǦ/Ǧ]).

(ii) For (G,B,T, ψ) as in (i) and each parabolic subgroup P ⊂ G containing B, there exists a
natural ZG-linear isomorphism

ξGP : RψG ◦ ιGP −→ (Rβ∗ ◦ Lα∗) ◦RψMM
of functors D+(Rep[TM ,1]M)→ D+

QCoh([XǦ/Ǧ]). Here M is the Levi quotient of P and

α : [XP̌ /P̌ ] −→ [XM̌/M̌ ],

β : [XP̌ /P̌ ] −→ [XǦ/Ǧ]

are the morphisms on stacks induced by the natural maps P̌ → M̌ and P̌ → Ǧ.

These data satisfy the following conditions.

(a) If G = T is a split torus, then RT = RψT is induced by the identification (3.4) and viewing
a sheaf on Ť as an Ť -equivariant sheaf with the trivial Ť -action (note that Ť acts trivially
on Ť = XŤ ).

(b) Let (G,B,T, ψ) be as in (i) and let P1 ⊂ P2 ⊂ G be parabolic subgroups containing B with
Levi quotients M1 and M2. Let P12 denote the image of P1 in M2. Then, with the notation
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from (2.6), the diagram

RψG ◦ ιGP 1

ξGP1

������������������
(3.3)

		�������������

Rβ1,∗Lα∗
1 ◦R

ψM1
M1

(2.7)

��

RψG ◦ ιGP 2
◦ ιM2

P 12

ξGP2
��

(Rβ2,∗Lα∗
2) ◦ (Rβ12,∗Lα∗

12) ◦R
ψM1
M1

ξ
M2
P12 �� (Rβ2,∗Lα∗

2) ◦R
ψM2
M2
◦ ιM2

P 12

is a commutative diagram of functors

D+(Rep[TM1
,1](M1)) −→ D+

QCoh([XǦ/Ǧ]).

(c) For any (G,B,T, ψ) as in (i), let (c-indGN ψ)[T,1] denote the projection of the compactly
induced representation c-indGN ψ to Rep[T,1](G). Then

RψG((c-indGN ψ)[T,1]) ∼= O[XǦ/Ǧ].

Let us point out that the ZG-linearity of the conjectured functor RψG implies that for each
ρ ∈ D+(ZG-mod) there is a natural isomorphism

ψG,ρ : RψG(−⊗LZG ρ)
∼=−→ RψG(−)⊗LO[X

Ǧ
/Ǧ]

Lχ̄∗
Gρ

of functors D+(Rep[T,1](G))→ D+
QCoh([XǦ/Ǧ]) which is functorial in ρ (in the obvious sense).

Moreover, given P ⊂ G as in (ii), the ZG-linearity of the natural isomorphism ξGP implies that
the natural transformations ψM,ρ and ψG,ρ are compatible with parabolic induction. We do not
spell this out explicitly in terms of commutative diagrams.

Remark 3.3. (a) We expect that the conjectured functor RψG induces a functor

Db(Rep[T,1],fg(G)) −→ Db
Coh([XǦ/Ǧ]).

This would allow us to extend the functor to the full derived category D(Rep[T,1](G)): as we have
an equivalence of categories Rep[T,1],fg(G) ∼= HG-modfg and as HG has finite global dimension
(see [Ber92, 4. Theorem 29]), the full derived category D(Rep[T,1](G)) is the ind-completion of
Db(Rep[T,1],fg(G)). Hence, the conjectured functor would extend to a fully faithful and exact
functor

D(Rep[T,1](G)) −→ IndCoh([XǦ/Ǧ]),

where IndCoh([XǦ/Ǧ]) is the ind-completion of Db
Coh([XǦ/Ǧ]). Note that this category differs

from DQCoh([XǦ/Ǧ]), as XǦ is singular. However, there is a canonical equivalence

IndCoh+([XǦ/Ǧ])
∼=−→ D+

QCoh([XǦ/Ǧ])

(see, for example, [DG13, 3.2.4]). In particular, restricting to bounded-below objects, the con-
jecture that the (as yet hypothetical) functor RψG is fully faithful does not depend on whether
we consider it as a functor with values in IndCoh+([XǦ/Ǧ]) or with values in D+

QCoh([XǦ/Ǧ]).
We hence arrive at a conjecture that parallels the formulation of the geometric Langlands pro-
gram (see [Gai15]). Also the conjectured compatibility with parabolic induction agrees with
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the compatibility with parabolic induction in [Gai15]. See also the formulation given in [Zhu20,
Conjecture 4.4.5].

(b) Recall that an L-parameter for G that is trivial on inertia is a Ǧ-conjugacy class [ϕ,N ]
of (ϕ,N) ∈ XǦ(C) with ϕ semi-simple. We write S[ϕ,N ] = C[ϕ,N ]/C

◦
[ϕ,N ] for the quotient of the

centralizer of (ϕ,N) by its connected component of the identity. By the classification of Kazhdan
and Lusztig [KL87, Theorem 7.12] the irreducible representations in RepIG (and the simple
objects in HG-mod) are in bijection with pairs ([ϕ,N ], ρ), where [ϕ,N ] is an L-parameter and ρ
runs through a certain set of irreducible representation of S[ϕ,N ]. This parametrization depends on
an additional choice that corresponds to the choice of a Whittaker datum (B, ψ). More precisely,
the classification in [KL87] (which in the case of GLn coincides with the Bernstein–Zelevinsky
classification [BZ77]) associates to ([ϕ,N ], ρ) an indecomposable representation (respectively,
Hecke module) πψ[ϕ,N ],ρ which has a unique irreducible quotient. Conjecture 3.2 should have the
following relation with this classification. For simplicity we only treat the case of regular semi-
simple ϕ; the general case seems to be much more involved (see remark (d) in § 4.7 for some
discussion in the case of GLn)).

Given [ϕ,N ], let us write
X ◦̌
G,[ϕ,N ]

⊂ XǦ

for the Ǧ-orbit of (ϕ,N). Moreover, we denote by

XǦ,[ϕ,N ] = X ◦̌
G,[ϕ,N ]

its Zariski closure. As we assume that ϕ is regular semi-simple we can, given an irreducible
representation ρ of S[ϕ,N ] on a finite-dimensional C-vector space, use ρ to define a Ǧ-equivariant
coherent sheaf

F̃[ϕ,N ],ρ ∈ Coh(XǦ,[ϕ,N ])

which hence defines a coherent sheaf F[ϕ,N ],ρ on the closed substack

[XǦ,[ϕ,N ]/Ǧ] ⊂ [XǦ/Ǧ].

We then expect that the conjectured functor RG has the property

RψG(πψ[ϕ,N ],ρ) = F[ϕ,N ],ρ.

If the L-parameter [ϕ,N ] is generic, there is a unique ψ-generic representation π in the L-packet
defined by [ϕ,N ]. With the above notation this representation is the representation

π = πψ[ϕ,N ],trivial.

Then the expected formula above specializes to

RψG(π) = O[XǦ,[ϕ,N ]/Ǧ].

(c) We point out that the conjectured functor RψG will not be essentially surjective. In fact this
is already obvious in the case where G = T a split torus. Here RT = RψT is the derived version
of the functor

HT -mod ∼= QCoh(Ť ) −→ QCoh([Ť /Ť ]).

The morphism on the right-hand side is the embedding given by equipping a quasi-coherent sheaf
with the trivial Ť -action. Obviously Ť -equivariant sheaves with non-trivial Ť -action are not in
the essential image.
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There is also a second obstruction for essential surjectivity for generalG (i.e.G is not assumed
to be a torus). Let [ϕ,N ] be an L-parameter such that ϕ is semi-simple but not regular semi-
simple, and assume N = 0 for simplicity. Similarly to (b), we write XǦ,[ϕ,0] ⊂ XǦ for the closed
subset of (ϕ′, 0) such that ϕ′ss is in the Ǧ-orbit of ϕss. Then the structure sheaf of the closed
substack

[Xss
Ǧ,[ϕ,0]

/Ǧ] ⊂ [XǦ,[ϕ,0]/Ǧ]

of pairs (ϕ′, 0) where ϕ′ is (pointwise) semi-simple should not be in the essential image of the
functor RG. The same phenomenon should apply to all (ϕ,N) with ϕ not regular semi-simple
(not only in the case N = 0), but the definition of XǦ,[ϕ,N ] is more involved in general (see
remark (d) in § 4.7 for some details).

Following Fargues and Scholze [FS21] and Zhu [Zhu20, 4.6], the failure of essential
surjectivity should be fixed by replacing the category of smooth representations by a larger
category.

(d) Finally, we point out that in the conjecture it is necessary to pass to derived categories.
Heuristically this can be explained by the fact that flat morphisms on the representation theory
side correspond to non-flat morphisms on the side of stacks: for example, HG is flat over its
center, whereas the canonical morphism

χ̄G : [XǦ/Ǧ] −→ Ť /W

is not flat (as it maps some irreducible components to proper closed subschemes of Ť /W ).
Moreover, we will see below that in the case of GLn(F ) the trivial representation will be mapped
to a complex concentrated in cohomological degree 1− n (see Remark 4.43). Hence, without
passing to derived categories, the functor cannot be fully faithful. The canonical t-structures on
the source (or target) should correspond to an exotic t-structure on the other side. However, we
have no idea how this t-structure could be described intrinsically. Moreover, the formulation of
the conjecture needs the passage to derived schemes or derived stacks: as parabolic induction is
transitive (in the sense that (3.3) is an isomorphism), the base change morphism (2.7) has to be
an isomorphism as well. However, in the world of classical schemes the corresponding cartesian
diagram is not Tor-independent in general.

3.3 A generalization of the conjecture
Conjecture 3.2 in fact is a special case of a more general conjecture about the category Rep(G),
instead of the Bernstein block Rep[T,1](G). Let us describe this generalization. A similar gen-
eralization is conjectured by Zhu [Zhu20, Conjecture 4.5.1]. The generalization stated here can
also be viewed as a special case of the main conjecture [FS21, Conjecture I.10.2] of Fargues and
Scholze.

We continue to assume that G is a split reductive group with dual group Ǧ. Let us write
WF for the Weil group of F and IF ⊂WF for the inertia group. We define the space of
Ǧ-valued Weil–Deligne representations to be the scheme XWD

Ǧ
representing the functor

R 
−→
{
ρ : WF → Ǧ(C), N ∈ Lie Ǧ

∣∣∣∣ ρ|J is trivial for some J ⊂ IF open
Ad(ρ(σ))(N) = q−‖σ‖N

}
on C-algebras R. Here ‖ − ‖ : WF → Z is the usual projection. It is easy to see that XWD

Ǧ
is

an infinite disjoint union of affine schemes and is equipped with a Ǧ-action via conjugation
on ρ and via the adjoint action on N . The space of Weil–Deligne representations XWD

Ǧ
in fact
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agrees with the fiber over C of the moduli space of L-parameters Z1(W ◦
F , Ǧ) studied in work of

Dat et al. [DHKM20] and is defined and studied as well in [Zhu20, 3.1].
Similarly, for every parabolic subgroup P̌ ⊂ Ǧ we can define the schemeXWD

P̌
and the derived

scheme XWD
P̌

that come equipped with P̌ -actions.
The inclusion P̌ ↪→ Ǧ and the projection P̌ → M̌ onto the Levi quotient M̌ of P̌ induce

morphisms

βWD
P̌

: [XWD
P̌

/P̌ ] −→ [XWD
Ǧ

/Ǧ],

αWD
P̌

: [XWD
P̌

/P̌ ] −→ [XWD
M̌

/M̌ ]
(3.8)

of the respective stack quotients. Moreover, we will write XWD
Ǧ

//Ǧ for the GIT quotient of XWD
Ǧ

by the Ǧ-action. As in the case of the space of (ϕ,N)-modules XǦ, it is easy to show that βWD
P̌

is proper. The following summarizes properties of the spaces just introduced (which are proved
using methods similar to those in § 2).

Let P̌ ⊂ Ǧ be a parabolic subgroup with Levi quotient M̌ .

(i) The space XWD
Ǧ

is reduced and a local complete intersection. (This follows from [DHKM20,
Theorem 4.1]. See also [Zhu20, Proposition 3.1.6].)

(ii) The morphism αWD
P̌

: [XWD
P̌

/P̌ ]→ [XWD
M̌

/M̌ ] has finite Tor dimension. (This follows from
[Zhu20, Lemma 3.3.1].)

(iii) There is a morphism XWD
M̌

//M̌ → XWD
Ǧ

//Ǧ making the diagram

[XWD
P̌

/P̌ ]
βWD
P̌



���������� αWD
P̌

������������

[XWD
Ǧ

/Ǧ]

��

[XWD
M̌

M̌ ]

��

XWD
Ǧ

//Ǧ XWD
M̌

//M̌��� � � � � � � � � � �

commutative. (This is the commutative diagram [Zhu20, (3.10)]. The morphism can easily
be constructed using the morphism XWD

M̌
→ XWD

P̌
induced by the choice of a splitting of

P̌ → M̌ .)

Remark 3.4. In the case of the space of (ϕ,N)-modules XǦ all these properties have been verified
in § 2. In relation to (iii) we remark that the morphism

[XǦ/Ǧ] −→ XǦ//Ǧ

is just the morphism χ̄ from (3.1), that is, the GIT quotient XǦ//Ǧ agrees with the adjoint
quotient Ǧ//Ǧ. This can be seen as follows. The morphism ϕ 
→ (ϕ, 0) defines a closed embedding
Ǧ ↪→ XǦ which is the inclusion of an irreducible component. As Ǧ is reductive and C has
characteristic zero, the category of Ǧ-representations is semi-simple and we obtain a closed
embedding

Ǧ//Ǧ −→ XǦ//Ǧ.

As source and target are reduced (as Ǧ and XǦ are) it is enough to show that the morphism
is bijective. This comes down to proving that for (ϕ,N) ∈ XǦ(k), for an algebraically closed
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field k, there exists ϕ′ ∈ Ǧ(k) such that

Ǧ · (ϕ′, 0) ∩ Ǧ · (ϕ,N) �= ∅.
By (the proof of) Lemma 2.5 we may assume that ϕ ∈ B̌ and N ∈ Lie B̌ for some Borel B̌ ⊂ Ǧ.
Let Gm act on XǦ by the sum of the positive roots. Then the closure of Gm · (ϕ,N) contains in
addition the point (ϕ′, 0) for some ϕ′ ∈ Ǧ such that ϕ and ϕ′ have the same image in the adjoint
quotient Ǧ//Ǧ.

Let us write Z(G) for the Bernstein center of the category Rep(G). Given a Bernstein
component Ω of Rep(G), we denote its center by ZΩ(G). Moreover, we denote by

Z(Ǧ) = Γ(XWD
Ǧ

//Ǧ,OXWD
Ǧ

//Ǧ)

the ring of functions on the GIT quotient XWD
Ǧ

//Ǧ. If X ⊂ XWD
Ǧ

is a connected component, we
write ZX(Ǧ) for the ring of functions on the GIT quotient X//Ǧ.

Remark 3.5. If G = T is a split torus, then the isomorphism F× →W ab
F of local class field theory

identifies XWD
Ť

with the scheme representing the functor

R 
−→ {ρ : F× −→ Ť (R) smooth character}
on the category of C-algebras. In particular, the scheme XWD

Ť
decomposes into a disjoint union

of copies of Ť indexed by the smooth characters O×
F → Ť (C). This decomposition induces an

equivalence of categories

Rep(T ) ∼= QCoh(XWD
Ť

). (3.9)

We state a generalization of Conjecture 3.2.

Conjecture 3.6. There exist the following data.

(i) For each (G,B,T, ψ) consisting of a reductive group G, a Borel subgroup B, a split maximal
torus T ⊂ B, and a (conjugacy class of a) generic character ψ : N → C×, there exists an
exact and fully faithful functor

RψG : D+(Rep(G)) −→ D+
QCoh([X

WD
Ǧ

/Ǧ]).

(ii) For (G,B,T, ψ) as in (i) and each parabolic subgroup P ⊂ G containing B, there exists a
natural isomorphism

ξGP : RψG ◦ ιGP −→ (RβWD
P̌ ,∗ ◦ Lα

WD,∗
P̌

) ◦ RψMM
of functors D+(Rep(M))→ D+

QCoh([X
WD
Ǧ

/Ǧ]). Here M is the Levi quotient of P and αWD
P̌

and βWD
P̌

are the morphisms defined in (3.8).

These data satisfy the following conditions.

(a) If G = T is a split torus, then RT = RψT is induced by the equivalence (3.9) given by local
class field theory.

(b) Let (G,B,T, ψ) be as in (i). The morphism Z(Ǧ)→ Z(G) defined by full faithfulness of RψG
is independent of the choice of ψ and induces a surjection

ωG :
{

Bernstein components
of Rep(G)

}
−→

{
connected components

of XWD
Ǧ

}
.
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(c) Let (G,B,T, ψ) and P be as in (ii). Then the natural isomorphism ξGP is Z(Ǧ)-linear for the
Z(Ǧ)-linear structure on Rep(M) defined by the morphism

Z(Ǧ) −→ Z(M̌) −→ Z(M)

that is given by the composition of the morphism Z(Ǧ)→ Z(M̌) (which is induced by
XWD
M̌

//M̌ → XWD
Ǧ

//Ǧ) with the morphism Z(M̌)→ Z(M) of (b).
(d) Let (G,B,T, ψ) as in (i) and let P1 ⊂ P2 ⊂ G be parabolic subgroups containing B with Levi

quotients M1 and M2. Let P12 denote the image of P1 in M2. Then the diagram

Rψ
G ◦ ιG

P1

ξG
P1

�������������������
(∗)

		��������������

RβWD
P̌1,∗Lα

WD,∗
P̌1

◦ RψM1
M1

(∗∗)
��

Rψ
G ◦ ιG

P2
◦ ιM2
P12

ξG
P2

��

(RβWD
P̌2,∗Lα

WD,∗
P̌2

) ◦ (RβWD
P̌12,∗Lα

WD,∗
P̌12

) ◦ RψM1
M1

ξ
M2
P12 �� (RβWD

P̌2,∗Lα
WD,∗
P̌2

) ◦ RψM2
M2

◦ ιM2
P12

is a commutative diagram of functors

D+(Rep(M1)) −→ D+
QCoh([X

WD
Ǧ

/Ǧ]).

Here (∗) is the natural isomorphism given by transitivity of parabolic induction and (∗∗) is
a base change isomorphism defined by the analogous diagram as in (2.6).

(e) For (G,B,T, ψ) as in (i) there is an isomorphism

RψG(c-indGN ψ) ∼= O[XWD
Ǧ

/Ǧ].

Remark 3.7. (i) It should be possible to construct the expected morphism

Z(Ǧ) −→ Z(G)

of (b) in the conjecture, without referring to the conjectured functor RψG. In the case of GLn a
result like this has been established by Helm and Moss [HM18] (even with Z�-coefficients). More
generally, Fargues and Scholze [FS21, Proposition I.9.3] give a construction of such a morphism
using the spectral action constructed in [FS21]. While the morphism is an isomorphism in the
GLn case of [HM18], this is not true in the general case.

(ii) In fact Z(Ǧ) coincides with the stable Bernstein center as defined by Haines in [Hai14,
5.3]. This is a consequence of [DHKM20, Theorem 6.10]. With this identification the morphism
Z(Ǧ)→ Z(G) of (b) in the conjecture should coincide with the morphism constructed in [Hai14,
Proposition 5.5.1] assuming the local Langlands correspondence.

Let us point out that the morphism ωG from (b) cannot be expected to be a bijection in
general, as, for a given Whittaker datum ψ, not every Bernstein component Ω is ψ-generic6 in
the sense of [BH03, 4.3] (note that the notions of being ψ-generic and being simply ψ-generic
of [BH03] agree by [BH03, Example 4.5(1)], as G is assumed to be (quasi-)split). More precisely,
Conjecture 3.6 predicts that the restriction of ωG induces a bijection{

ψ-generic Bernstein
components of Rep(G)

}
−→

{
connected

components of XWD
Ǧ

}
,

6 In fact there are groups with Bernstein components that are not ψ-generic for any choice of a Whittaker datum ψ.
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and that for a ψ-generic Bernstein component Ω the induced morphism

ZωG(Ω)(Ǧ) −→ ZΩ(G) (3.10)

is an isomorphism. Indeed, combining Corollary 4.2 and Theorem 4.3 of [BH03], we deduce
that the ψ-generic components are precisely those components Ω such that (c-indGN ψ)Ω �= 0.
Moreover, morphism (3.10) fits in the commutative diagram

EndG((c-indGN ψ)Ω)
∼= �� End[XWD

Ǧ,Ω
/Ǧ](O[XWD

Ǧ,Ω
/Ǧ])

ZΩ(G)

∼=
��

ZωG(Ω)(Ǧ)

∼=
��

��

where XWD
Ǧ,Ω
⊂ XWD

Ǧ
denotes the connected component defined by ωG(Ω). Here the upper hori-

zontal arrow is an isomorphism by (e) and full faithfulness in the conjecture, the right vertical
arrow is an isomorphism by definition and the left vertical arrow is an isomorphism by [BH03,
4.3. Theorem].

Remark 3.8. Conjecture 3.2 is concerned with the principal component Rep[T,1](G). This
Bernstein component is ψ-generic for any choice of ψ.

Remark 3.9. In the case of G = GLn there is (up to conjugation) a unique choice of (B, ψ)
and every Bernstein component of Rep(GLn(F )) is ψ-generic (see, for example, [BH03, 4.5,
Examples (2)]). Moreover, in this case one can show that XWD

Ǧ
decomposes into a disjoint union

XWD
GLn =

∐
n
Xn,

where n = (n[τ ]) is a tuple of non-negative integers n[τ ] indexed by the WF -conjugacy classes [τ ]
of irreducible IF -representations τ : IF → GLdτ (C) such that

n =
∑
[τ ]

[WF : Wτ ] · nτdτ .

Here Wτ ⊂WF is the WF -stabilizer of a representative τ of [τ ]. Moreover, each Xn is connected
and decomposes into a product where each factor is a space of (ϕ,N)-modules for a finite
extension F ′ of F . On the other hand, the local Langlands correspondence for GLn(F ) induces
a bijection ⎧⎨⎩

WF -conjugacy classes of
irreducible smooth representations

τ : IF → GLm(C), m ≥ 1

⎫⎬⎭←→
⎧⎨⎩

equivalence classes of
cuspidal representations

GLr(F ), r ≥ 1

⎫⎬⎭
where two cuspidal representations are said to be equivalent if they differ by the twist by
an unramified character. Hence, we obtain a bijection between the Bernstein components of
Rep(GLn(F )) and the connected components of XWD

GLn
. By results of Bushnell and Kutzko [BK99]

every Bernstein component of Rep(GLn(F )) can be described by a semi-simple type and
the corresponding Hecke algebra is in fact isomorphic to a tensor product of Iwahori–Hecke
algebras. This corresponds to the decomposition of the connected components Xn of XWD

GLn
into

a product of spaces of (ϕ,N)-modules. In fact, in the case of GLn type theory and a closer inspec-
tion of these decompositions should reduce Conjecture 3.6 to Conjecture 3.2 (in the case of GLr
for various r). In particular, it should be possible to generalize all results proven in the following
section for the block Rep[T,1](GLn(F )) to the whole category Rep(GLn(F )). This generalization
using type theory is discussed in details in [BCHN20, 5].
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4. The case of GLn

In this section we consider the group G = GLn(F ) and make Conjecture 3.2 more explicit in
this case. We will provide a candidate for the conjectured functor and prove that it satisfies
compatibility with parabolic induction on the dense open subset of regular elements. In the case
of GL2 we give a full proof of the conjecture.

We fix G = GLn and choose the canonical integral model of G over OF corresponding to the
maximal compact subgroup K = GLn(OF ) of G. In particular, we assume that the hyperspecial
vertex defined by K is contained in the apartment defined by the maximal split torus T ⊂ GLn,
and I ⊂ K. We use this to obtain canonical integral models for the choice of a Borel B ⊃ T and
for parabolic subgroups P ⊃ B as well as for their Levi quotients. We will use the same symbols
for these integral models. We will often simply write Z = ZG for the Bernstein center of the
category Rep[T,1](G).

4.1 The modified Langlands correspondence
We recall the construction of the modified local Langlands correspondence defined by Breuil
and Schneider in [BS07, 4] (see also [EH14, 4.2]). We restrict ourselves to the Bernstein block
Rep[T,1](G).

Let � be a uniformizer of F . For any field extension L of C and λ ∈ L× we write unrλ : F× →
L× for the unramified character mapping� to λ. More generally, for λ = (λ1, . . . , λn) ∈ (L×)n we
write unrλ = unrλ1 ⊗ · · · ⊗ unrλn : T → L× for the unramified character of the torus T = (F×)n

whose restriction to the ith coordinate is unrλi .
Write | − | = unrq−1 : F× → C× for the unramified character such that |�| = q−1. Let L be a

field extension of C and let (ϕ,N) ∈ XǦ(L) be a (ϕ,N)-module such that ϕ is semi-simple. Then
Breuil and Schneider associate to (ϕ,N) a smooth, absolutely indecomposable representation
LLmod(ϕ,N) of GLn(F ) with coefficients in L as follows.

Fix an algebraic closure L̄ of L. Given a scalar λ ∈ L̄× and r ≥ 0, let Sp(λ, r) denote as usual
the (ϕ,N)-module structure on L̄r = L̄e0 ⊕ · · · ⊕ L̄er−1 defined by

ϕ(ei) = q−iλ,

N(ei) =

{
ei+1, i < r − 1,
0, i = r − 1.

(4.1)

Let St(λ, r) denote the generalized Steinberg representation of GLr(F ) with coefficients in L̄,
that is, the unique simple quotient of ιGB(unrλ ⊗ unrλ| − | ⊗ · · · ⊗ unrλ| − |n−1).

Given some (ϕ,N) ∈ XǦ(L) with ϕ semi-simple, we decompose (after enlarging L if
necessary)

(Ln, ϕ,N) ∼=
s⊕
i=1

Sp(λi, ri)

and define LLmod(ϕ,N) as the unique L-model of the L̄ representation

ιGP (St(λ1, r1)⊗ · · · ⊗ St(λs, rs)). (4.2)

Here P is the block upper triangular parabolic whose Levi quotient is identified with the block
diagonal subgroup GLr1 × · · · ×GLrs and the λi are ordered so that they satisfy the condition
of [Kud94, Definition 1.2.4].

Remark 4.1. Note that the normalization we use differs from the one in [BS07, EH14]. There the
representation LLmod(ϕ,N) is modified by the twist by |det |−(n−1)/2. This has the advantage
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that the resulting GLn(F ) representation has a unique model over L, without assuming the
existence (or fixing a choice) of q1/2, as proven in [BS07, Lemma 4.2]. As we have fixed a choice
q1/2 in the base field C, and hence a choice of |det |−(n−1)/2, their argument also implies that
our representation LLmod(ϕ,N) has a (unique) model over L. The reason for these two different
normalizations is the following. In [BS07] the representation should be canonically defined over
L, without choosing q1/2; moreover, in [EH14] the representations should (conjecturally) satisfy
some local-global compatibility. In our case we work purely locally and we are aiming for a
compatibility with normalized parabolic induction. More precisely, we need Lemma 4.3 below to
be true as stated (i.e. not a twisted version of it). Anyway, the definition of normalized parabolic
induction forces us to choose a square root q1/2.

If (ϕ,N) ∈ XǦ with non-semi-simple ϕ, we write LLmod(ϕ,N) = LLmod(ϕss, N). Moreover,
if (ϕ,N) is such that LLmod(ϕ,N) is absolutely irreducible (i.e. if the Ǧ-conjugacy class [ϕss, N ]
is a generic L-parameter), we usually just write LL(ϕ,N) instead of LLmod(ϕ,N). Note that in
this case LL(ϕ,N)∨ ∼= LL((ϕ,N)∨), as normalized parabolic induction commutes with contra-
gredients and as in this case the parabolic induction of the contragredient representation still
satisfies the condition of [Kud94, Definition 1.2.4].

Lemma 4.2. Let x = (ϕx, Nx) ∈ XǦ. Then, using the notation of (3.1), the center Z acts on the
representation LLmod((ϕ,N)∨)∨ via the character χx : Z→ k(x) of Z that is defined by the point
χ(x) ∈ Ť /W = Spec Z

Proof. By definition of LLmod we may assume that ϕ is semi-simple. Then the representation
LLmod((ϕ,N)∨)∨ embeds into

ιG
B

(unrλ1 ⊗ · · · ⊗ unrλn)

for some ordering λ = (λ1, . . . , λn) of the eigenvalues of ϕ. Hence, it follows that
(LLmod((ϕ,N)∨)∨)I embeds into HG ⊗HT

unrλ and it is enough to prove that Z ⊂ HG acts
on HG ⊗HT

unrλ as asserted. But as Z ⊂ HT is the center of HG, it acts on HG ⊗HT
unrλ via

the same character as on unrλ. The claim follows from this. �
Recall that for a regular semi-simple endomorphism ϕ of an L-vector space Ln with

eigenvalues in L there is a canonical bijection

{ϕ-stable complete flags F of Ln} ←→ {orderings of the eigenvalues of ϕ}. (4.3)

If F is a flag corresponding to an ordering λ = (λ1, . . . , λn) of the eigenvalues of ϕ, we denote
by unrF = unrλ the L-valued unramified character defined by this ordering.

Lemma 4.3. Let x = (ϕx, Nx) ∈ XǦ with ϕx regular semi-simple and let L be an (algebraic)
extension of k(x) containing the eigenvalues of ϕx. Then

rGB(LLmod((ϕx, Nx)∨)∨ ⊗k(x) L) =
⊕
F

unrF ,

where the direct sum runs over all flags of Ln stable under ϕx and Nx.

Proof. The lemma is an application of the geometrical lemma [BZ77, 2.11, p. 448] describing the
composition of parabolic induction with the Jacquet functor.

Assume first that (ϕ,N)⊗k(x) L = Sp(λ, r) (see (4.1)). Then we need to compute the Jacquet
module of the generalized Steinberg representation

St(λ, r) = ιGB(δ−1/2
B ⊗ unrλ| − |(n−1)/2)/

∑
B�P⊆G

ιGP (δ−1/2
P ⊗ unrλ| − |(n−1)/2).
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Here we view unrλ| − |(n−1)/2 as a character of M for any (standard) Levi M . Computing
rGB(ιGP (δ−1/2 ⊗ unrλ| − |(n−1)/2)) using the geometrical lemma of [BZ77], it follows that

rGB(St(λ, r)) = unrq−(r−1)λ ⊗ · · · ⊗ unrq−1λ ⊗ unrλ.

This is the character corresponding to the ordering q−(r−1)λ, . . . , λq−1, λ, that is, to the ordering
defined by the unique (ϕ,N)-stable flag of Sp(λ, r).

In the general case we decompose (ϕ,N)⊗k(x) L =
⊕s

i=1 St(λi, ri) and write

LLmod(ϕx, Nx)⊗k(x) L = ιGP (St(λ1, r1)⊗ · · · ⊗ St(λs, rs))

as in (4.2). Then again the geometrical lemma of [BZ77] computes that its Jacquet module is
the desired one, and the claim follows from compatibility with contragredients. �
Remark 4.4. For C = C the lemma can be interpreted as a consequence of the classification of
Kazhdan and Lusztig [KL87] using equivariant K-theory, or its formulation using Borel–Moore
homology in [CG97, 8.1]. For (ϕ,N) ∈ XǦ(C) as in the lemma the fiber β̃−1

B̌
(ϕ,N) of the

map β̃B̌ : X̃B̌ → XǦ is identified with the ϕ-fixed points B
ϕ
N of the variety BN of N -stable

complete flags, compare [CG97, 8.1]. Using the induction theorem [KL87, 6] one can deduce
that the HG-module LLmod(ϕ,N) is precisely the standard module constructed in [CG97,
Definition 8.1.9](note that the group C(ϕ,N) in that definition is trivial in the GLn case). How-
ever, as ϕ is regular semi-simple the variety B

ϕ
N is a finite union of points, namely, the complete

(ϕ,N)-stable flags. Hence, its Borel-Moore homology is the direct sum of copies of C indexed
by these points. By construction the Hecke algebra HT acts on this direct sum as asserted in
the lemma.

4.2 The work of Helm and of Emerton and Helm
Emerton and Helm [EH14] proposed the existence of a family of G-representations over a defor-
mation space of -adic Galois (or Weil–Deligne) representations that interpolates the modified
local Langlands correspondence in a certain sense. A candidate for such a family was constructed
in subsequent work of Helm [Hel16].7 Rather than working over -adic deformation rings we want
to work with the stacks of L-parameters defined above. We review the work of Emerton and Helm
and of Helm in this setup in order to construct a family of G-representation on the stack [XǦ/Ǧ].

In this subsection we need to work with families of admissible smooth representations (com-
pare [EH14, 2.1]). We make precise what we mean by this. Let A be a noetherian C-algebra and
let V be a finitely generated A[G]-module. We say that V is an admissible smooth family of G
representations over A if the G-representation on V is smooth and if V K′

is a finitely generated
A-module for every compact open subgroup K ′ ⊂ G.

Denote by N ⊂ B the unipotent radical and let ψ : N → C× be a generic character. Recall
that an irreducible G-representation π is called generic if there exists an embedding π ↪→ IndGNψ.
Equivalently, π is generic if there is a surjection c-indGN ψ � π.

We write (c-indGN ψ)[T,1] for the image of the compactly induced representation c-indGN ψ in
the Bernstein component Rep[T,1](G) = RepIG. As in the case of GLn a Whittaker datum is
unique up to isomorphism, this representation (up to isomorphism) does not depend on the
Whittaker datum (B,ψ).

7 In Helm’s integral �-adic setup, the construction of the candidate in [Hel16] is not complete, but depends on
a conjecture about the action of the Bernstein center [Hel16, Conjecture 7.5]. This conjecture was proven by
Helm and Moss [HM18]. In our setup of representations with coefficients in a field of characteristic zero, and
only considering the Bernstein block defined by [T, 1], this conjecture becomes much easier and boils down to
Lemma 4.2 above.
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Recall that we have fixedK = GLn(OF ) ⊃ I and consider the induced representation IndKI 1I .
By [SZ99] this induced representation decomposes into a direct sum

IndKI 1I =
⊕
P
σ⊕mP
P (4.4)

indexed by the set of partitions P of the positive integer n which is partially ordered (see
[SZ99, p. 169]) and has a unique minimal8 element Pmin and a unique maximal element Pmax.
Let st = stG = σPmin denote the finite-dimensional Steinberg representation. This representation
occurs with multiplicity mPmin = 1. As c-indGK st lies in the Bernstein component [T, 1] it carries
a natural action of Z.

We further recall from [BZ77, 3.2 and 3.5] the definition of the rth derivative V (r) of a
GLn(F )-representation V which is a smooth representation of GLn−r(F ). In particular, V (n) is
just a C-vector space. By [Hel16, p.5, (2)] there is natural isomorphism

HomG(c-indGN ψ, V ) ∼= V (n). (4.5)

If 0 �= v ∈ V (n) and V lies in the Bernstein component [T, 1], then the morphism defined by v
obviously factors through (c-indGI ψ)[T,1].

The following theorem is a summary of the results in [Hel16, §§ 3,4] (translated to the easier
situation considered here).

Theorem 4.5. Let π be one of the representations (c-indGN ψ)[T,1] and c-indGK st. Then π is a

smooth Z-representation and the nth derivative π(n) is a free Z-module of rank one. Moreover,
let p ∈ Spec Z. Then the following properties hold.

(a) The representation π ⊗ k(p) is a direct sum of finite-length representations.
(b) The cosocle cosoc(p) of π ⊗ k(p) is absolutely irreducible and generic.
(c) The representation ker(π ⊗ k(p)→ cosoc(p)) does not contain any generic subquotient.

Finally, the representation c-indGK st is admissible as a Z-representation.

Proof. We cite the proof from [Hel16]. All references in this proof refer to that paper. In Helm’s
situation the coefficients are W (k) for a finite field k, instead of the characteristic-zero field C
in our case. The arguments literally do not change in our setup; except for one argument, where
the classification of irreducible, smooth mod  representations in terms of parabolic induction
has to be replaced by the corresponding classification of irreducible, smooth representations in
characteristic zero.

The case of (c-indGI ψ)[T,1] follows from Lemmas 3.2 and 3.4. In the case π = c-indGK st admis-
sibility follows from Theorem 4.1, and part (a) is Lemma 4.2. Properties (b) and (c) are proven
in Proposition 4.9. Finally the claim on π(n) is Corollary 4.10.

The proof of Helm’s Proposition 4.9 uses the classification of irreducible smooth mod
 representations of GLn(F ) in terms of parabolic induction, and has to be replaced by
the usual Bernstein–Zelevinsky classification of irreducible, smooth representations in char-
acteristic zero [Zel80]. With this change of reference the proof in [Hel16] literally does not
change. �

We note the following consequence (which is also a special case of [CS19, Theorem 1.1]) of
the results in Theorem 4.5.

8 Note that the partial ordering used here is the opposite to the standard ordering of partitions (compare
[SZ99, 3]). Here the maximal element is given by 1 + 1 + · · · + 1 and the minimal element is n.
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Corollary 4.6. There is an isomorphism of Z[G]-modules,

(c-indGN ψ)[T,1]
∼= c-indGK st,

unique up to a scalar in Z×.

Proof. By Theorem 4.5 the nth derivative (c-indGK st)(n) is locally free of rank one over Z. As
Z ∼= C[X1, . . . , Xn−1, X

±1
n ] every line bundle on SpecZ is trivial and hence (c-indGK st)(n) ∼= Z. By

the discussion preceding Theorem 4.5, a choice of a basis vector (which is unique up to a scalar
in Z×) gives rise to a morphism

α : (c-indGN ψ)[T,1] −→ c-indGK st.

We claim that α is an isomorphism.
We first show that α is surjective. Let W denote the cokernel of α. Then W is generated

by its Iwahori fixed vectors W I and, by admissibility of c-indGK st, the Z-module W I is finitely
generated.

As (−)I is an exact functor, W I ⊗ k(p) = (W ⊗ k(p))I and hence W = 0 if and only if W ⊗
k(p) = 0 for all p ∈ Spec Z.

As α by definition induces an isomorphism

α(n) : (c-indGN ψ)(n)
[T,1] −→ (c-indGK st)(n)

and as the functor (−)(n) is exact (see, for example, [BZ77, 3.2, Proposition]), it follows that
W (n) = 0 and (W ⊗ k(p))(n) = 0 for all p ∈ SpecZ. Assume that W ⊗ k(p) �= 0. As W ⊗ k(p) is
a quotient of c-indGK st⊗ k(p), Theorem 4.5(b),(c) implies that there exists a non-zero morphism

c-indGN ψ −→W ⊗ k(p),

contradicting (W ⊗ k(p))(n) = 0
Now c-indGK st is projective as a G-representation and hence the surjection α has a splitting

(c-indGN ψ)[T,1]
∼= c-indGK st⊕W ′.

As α induces an isomorphism after applying the nth derivative (−)(n), it follows that (W ′)(n) = 0.
By the adjointness property (4.5) is follows that the canonical projection

β : (c-indGN ψ)[T,1] −→W ′

is zero and hence W ′ = 0, as β is surjective. �

Following [Hel16], we construct a family VG of G-representations on [XǦ/Ǧ] that conjec-
turally interpolates the modified local Langlands correspondence (see Conjecture 4.8 below for
the precise meaning). Rather than constructing VG directly on [XǦ/Ǧ] we construct a family ṼG
on the affine scheme XǦ =: SpecAǦ that is Ǧ-equivariant and hence descends to [XǦ/Ǧ].

Lemma 4.7. Let x = (ϕx, Nx) ∈ XǦ. There exists a canonical surjection

(c-indGN ψ)[T,1] ⊗Z k(x) −→ LLmod((ϕss
x , Nx)∨)∨

that is unique up to a scalar.

Proof. This follows from the argument in the proof of [Hel16, Theorem 7.9], using Lemma 4.2
instead of [Hel16, Conjecture 7.5]. �
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Let η = (ϕη, Nη) ∈ XǦ be a generic point. Then

LL(ϕη, Nη) = LLmod(ϕη, Nη) = LLmod((ϕη, Nη)∨)∨

is an irreducible generic representation. We obtain a morphism

(c-indGN ψ)[T,1] ⊗ZAǦ −→ (c-indGN ψ)[T,1] ⊗Z k(η) −→ LL(ϕη, Nη),

where the second morphism is the choice of a surjection as in Lemma 4.7.
Let ηi, i ∈ I, denote the generic points of XǦ = SpecAǦ. We define ṼG to be the (admissible

smooth) family of G-representations over AǦ that is the image of the morphism

(c-indGN ψ)[T,1] ⊗ZAǦ −→
∏
i∈I

LL(ϕηi , Nηi). (4.6)

Up to isomorphism, this image does not depend on the choice of the surjection

(c-indGN ψ)[T,1] ⊗Z k(ηi)→ LL(ϕηi , Nηi).

By abuse of notation we also write ṼG for the corresponding sheaf on XǦ.
It can easily be seen that ṼG is a Ǧ-equivariant quotient of (c-indGN ψ)[T,1] ⊗ZAǦ (equipped

with the obvious Ǧ-equivariant structure). Hence, ṼG descends to a quasi-coherent sheaf VG on
[XǦ/Ǧ] that carries an action of G. We will often refer to this family of G-representation as
the Emerton–Helm family. Conjecturally this family interpolates the modified local Langlands
correspondence.

Conjecture 4.8 (compare [EH14]). Let x = (ϕ,N) ∈ XǦ be any point. Then

(ṼG ⊗ k(x))∨ ∼= LLmod((ϕ,N)∨).

4.3 Idempotents in the Iwahori–Hecke algebra
We will describe the family of Hecke modules associated to the Emerton–Helm family VG in the
next subsection, and relate this construction to Conjecture 3.2. Before we do so, we need some
preparation about idempotent elements in the Iwahori–Hecke algebra.

Let J ⊂ G be a compact open subgroup and (λ,W ) be a smooth representation of J on a
finite-dimensional C-vector space with contragredient representation (λ∨,W∨). Then we have a
natural identification of C-algebras

EndG(c-indGJ λ) ∼=
⎧⎨⎩

compactly supported f : G→ EndC(W∨)
such that f(j1gj2) = λ∨(j1) ◦ f(g) ◦ λ∨(j2)

for all g ∈ G, j1, j2 ∈ J

⎫⎬⎭ , (4.7)

where, as usual, the algebra structure on the right-hand side is given by convolution. Given
f ∈ H(G,λ), one defines f̌ : g 
→ f(g−1)∨ ∈ EndC(W ). Then f 
→ f̌ induces an isomorphism of
C-algebras

H(G,λ) ∼= H(G,λ∨)op.

Recall that HG = EndG(c-indGI 1I) = EndG(c-indGK V ), where V = IndKI 1I . From now on we
write λ for the K-representation on V . As in (4.4), the representation V decomposes as a direct
sum of the representations isomorphic to σP . Note that

V = IndGLn(k)
B(k) 1B(k),

where B(k) ⊂ GLn(k) is the special fiber of the Borel subgroup and K acts via the quotient
map K → GLn(k). For a partition P we write ΣP ⊂ V for the σP -isotypical component of V .
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In particular, we have ΣP ∼= σmP
P . The direct summand c-indGK ΣP of c-indGK V = c-indGI 1I

defines an idempotent element eP ∈ HG. If P = Pmin we will usually write est (or eG,st if we
need to refer to the group G) instead of ePmin . Further, we usually write eK = ePmax , which is
identified with the characteristic function of K.

Using the description of the Hecke algebra (4.7), the idempotent elements eP can be described
as follows. Let fP : V ∨ → V ∨ denote the endomorphism that is the identity on Σ∨

P and zero on
Σ∨
P ′ for P ′ �= P. Then the idempotent element eP is defined by

eP : g 
−→
{

0, g /∈ K,
λ∨(g) ◦ fP = fP ◦ λ∨(g), g ∈ K.

Note that the representation V = IndGK1I and the irreducible representations σP are self-dual.
In the case of V this follows from the computation of the smooth dual of an induced repre-
sentation. In particular, the canonical identification 1I = (1I)∨ gives a canonical isomorphism
α : V → V ∨. In the case of σP we proceed by descending induction: the claim is obviously true for
1K = σPmax , and for each P we can find some (integral model of a) parabolic subgroup P ⊂ GLn
such that

IndGLn(k)
P(k) 1 ∼= σP ⊕

⊕
PP ′ �=P

σ
⊕aP′
P ′

for some integers aP ′ . As the induced representation on the left-hand side is self-dual, so must
σP be.

It follows that we can identify HG = HG(V, λ) with HG(V, λ∨). In particular, we obtain a
canonical isomorphism HG ∼= Hop

G .

Lemma 4.9. Let P be a partition. Then ěP = eP .

Proof. The canonical isomorphism α allows us to identify EndC(V ∨, V ∨) with EndC(V, V ) and
HG = H(G,λ) with H(G,λ∨). By definition ěP is the element

(g 
→ eP(g−1)∨) ∈ H(G,λ∨) = H(G,λ)

under this identification. We calculate that

ěP(g) =

{
0, g /∈ K,
f∨P ◦ (λ∨(k−1))∨ = f∨P ◦ λ(k), g ∈ K.

Here f∨P is the idempotent endomorphism of V defined by the direct summand ΣP . As the σP are
self-dual the isomorphism α maps ΣP to Σ∨

P . Hence, we conclude that (under the identification
EndC(V ∨, V ∨) = EndC(V, V ) using α) the element ěP equals eP . �

Recall that HG contains the finite Hecke algebra

HG,0 = C∞c (I\K/I) = {f : B(k)\GLn(k)/B(k)→ C}

=
{
f : K → EndCV

∣∣∣∣ f(k1kk2) = λ(k1) ◦ f(k) ◦ λ(k2)
for all k, k1, k2 ∈ K

}
= EndK(V )

as a subalgebra. This algebra contains the idempotent elements eP . Further, recall that for a
parabolic subgroup P ⊂ G containing B we have an embedding HM ↪→ HG of Hecke algebras,
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where M = M(F ) is the Levi of P. If P = B this gives an embedding

C[X∗(T)] = HT ↪→ HG.
By [HKP10, Lemma 1.7.1] the morphism

HT ⊗C HG,0 −→ HG (4.8)

induced by multiplication is an isomorphism of C-vector spaces.

Lemma 4.10.

(i) The canonical inclusion HT eG,st ⊂ HGeG,st is an equality. Moreover, this module is free of
rank one with basis eG,st as an HT -module.

(ii) Let P ⊂ G be a parabolic as above and let M = M(F ) ⊂ G be the corresponding Levi
subgroup. The isomorphism

HMeM,st = HT eM,st −→ HGeG,st = HT eG,st
of free HT -modules of rank one defined by eM,st 
→ eG,st is an HM -module homomorphism.

Proof. (i) It follows directly from (4.8) that HT eG,st is free of rank one as an HT -module.
Moreover, note that

HG,0eG,st = (stG)B(k)

is a one-dimensional C-vector space. This implies that f ∈ HG can be written as the sum f =
f0eG,st + f1(1− eG,st) with f0 ∈ HT and f1 ∈ HG. It follows that

feG,st = f0eG,st + f1(1− eG,st)eG,st = f0eG,st ∈ HT eG,st.
(ii) As the inclusion HT eG,st ⊂ HGeG,st is an equality, we also have an equality HMeG,st =
HGeG,st. Therefore, it is enough to show that the HM -module homomorphism

HM −→ HMeG,st
mapping 1 to eG,st factors through HM → HMeM,st. That is, we need to show (1− eM,st)eG,st =
0 in HG. We can check this equality in the subalgebra HG,0. Translating the claim back to
representation theory, it comes down to the claim that

IndGLn(k)
P(k) stM ⊂ IndGLn(k)

P(k) (IndM(k)
BM (k)1) = IndGLn(k)

B(k) 1

contains the direct summand stG, where BM = B ∩M is a Borel in M. This is true, as stG is the
only constituent of the right-hand side that does not occur in IndGLn(k)

P′(k) 1P′(k) for any parabolic
P′ strictly larger than B. �
Corollary 4.11. Let x = (ϕx, Nx) ∈ XǦ with ϕx regular semi-simple and let L be an extension
of k(x) containing all the eigenvalues of ϕx. Then

((c-indGN ψ)[T,1] ⊗Z k(x))I ∼= (HGeG,st)⊗Z k(x)

and after extending scalars to L its Jacquet module is given by

rGB((c-indGN ψ)[T,1] ⊗Z L) =
⊕
F

unrF ,

where the sum is indexed by the ϕx-stable flags F of Ln. Moreover, the kernel of the quotient
map of HT -modules

(HGeG,st)⊗Z L =
⊕

ϕx-stable F
unrF −→

⊕
(ϕx,Nx)-stable F

unrF (4.9)
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is HG-stable and the induced HG-module structure on the quotient identifies the right-hand
side with the I-invariants of (the scalar extension to L of) the quotient LLmod((ϕx, Nx)∨)∨ in
Lemma 4.7.

Proof. The first claim is a direct consequence of (c-indGN ψ)[T,1]
∼= c-indGK stG and the

identification

(c-indGK stG)I = HGeG,st.

The claim on the Jacquet module follows from HGeG,st = HT eG,st and (3.6).
For the second part, note that the right-hand side in (4.9) is uniquely determined as an

HT -module, as the characters unrF are pairwise distinct. Hence, it is enough to prove that the
quotient

((c-indGN ψ)[T,1] ⊗Z k(x))I −→ (LLmod((ϕx, Nx)∨)∨)I

given by Lemma 4.7 induces this quotient map on the underlying HT -modules (and after extend-
ing scalars to L). This is a consequence of the computation of rGB(LLmod((ϕx, Nx)∨)∨ ⊗k(x) L)
(see Lemma 4.3). �

We finish this subsection by recalling some easy facts about the passage from left to right
modules over HG. Given a left HG-module π, one can view π as a right HG-module via the
isomorphism HG ∼= Hop

G . We write tπ for this right module structure on π.

Lemma 4.12. Let M ⊂ G be a Levi and let π be a left HM -module. Then there is a canonical
and functorial isomorphism of right HG-modules

t(HG ⊗HM
σ) ∼= tσ ⊗HM

HG,
where the HG-module structure on the right-hand side is given by right multiplication.

Proof. It is easily checked that ϕ⊗ v 
−→ v ⊗ ϕ̌ defines the desired isomorphism. �

Lemma 4.13. Let π be an HG-module and let e ∈ HG be an idempotent element.

(i) There is a canonical equality of Z-modules

HomHG
(HGe, π) = eπ = eHG ⊗HG

π.

(ii) There is a canonical identification t(HGe) = ěH as HG right modules.
(iii) Let P be a partition. Then

HomHG
(HGeP , π) = t(HGeP)⊗HG

π.

(iv) For two partitions P,P ′ we have

ePHGeP ′ ∼= Zm
2
Pm

2
P′ .

Proof. Part (i) and (ii) are obvious, and (iii) is a direct consequence of (i), (ii) and ěP = eP .
Finally, we find

ePHGeP ′ = HomHG
(HGeP ,HGeP ′) = HomG(c-indGK ΣP , c-indGK ΣP ′)

= HomG(c-indGK σP , c-indGK σP ′)mPmP′ .

Now (iv) follows from [Pyv20a, Theorem 1.4]. �
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4.4 The Hecke module of the interpolating family
In § 4.2 we constructed a family of G-representations VG on the stack [XǦ/Ǧ]. Let

MG = (VG)I

denote the corresponding module over the Iwahori–Hecke algebra. We write M̃G for the
corresponding Ǧ-equivariant sheaf of OXǦ ⊗ZHG-modules on XǦ.

We write AǦ for the coordinate ring of XǦ. Similarly, given a Levi subgroup M ⊂ G, we
write AM̌ for the coordinate ring of XM̌ . Recall that we have embeddings HM ↪→ HG and a
canonical isomorphism HT = ZT ∼= AŤ .

Recall the following diagram of C-schemes from § 2:

X̃B̌

β̃B

��������������������������

γ��										

��

































XǦ

��

XǦ ×Ť /W Ť

��

β′
��

Ť /W Ť��

Assuming Conjecture 2.17, the complex

Rβ̃B,∗OX̃B̌

is concentrated in degree zero and, as β′ is affine, so is Rγ̃∗OX̃B̌
. Hence, the formulation of the

following conjecture makes sense.

Conjecture 4.14. Let G = GLn and assume Conjecture 2.17. Then the canonical map

OXǦ×Ť /W Ť −→ Rγ∗OX̃B̌

is a surjection.

Note that Conjecture 4.14 would imply that we have a canonical surjection

OXǦ ⊗ZHT = OXǦ ⊗ZAŤ = β′∗(OXǦ×Ť /W Ť ) −→ Rβ̃B,∗OX̃B̌
. (4.10)

Remark 4.15. We point out that Conjecture 4.14 is a conjecture for the group GLn and will fail
for other groups. In fact it already fails for SL2 and its failure seems to be related to the existence
of non-trivial L-packets. We refer to Example 4.33 below for a discussion of this point.

The restriction of the above diagram to the regular locus yields the following diagram.

X̃reg

B̌

γ



����������

����
��

��
��

��
��

��
��

��
�β̃B

��������������������������

Xreg

Ǧ

��

Xreg

Ǧ
×Ť /W Ť

��

β′
��

Ť /W Ť��
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Theorem 4.16. Conjecture 4.14 is true over the regular locus. That is, the canonical morphism

OXreg

Ǧ
×Ť /W Ť −→ Rγ∗OX̃reg

B̌

is a surjection. Moreover, the restriction of the induced surjection (4.10) to the regular locus and
the identification

OXǦ ⊗ZHT = OXǦ ⊗ZHT eG,st = OXǦ ⊗ZHGeG,st
equips Rβ̃B,∗OX̃reg

B̌

with the structure of an OXreg

Ǧ
⊗ZHG-module that identifies this sheaf with

the restriction M̃G|Xreg

Ǧ
of the Hecke module defined by the Emerton–Helm family.

Proof. This follows from Lemma 4.18 and Proposition 4.19 below. �
Remark 4.17. We point out that proving Conjecture 4.14 would automatically imply that the
identification of Rβ̃B,∗OX̃B̌

with the Hecke module underlying the Emerton–Helm family holds
true without restricting to the regular locus.

Lemma 4.18. The morphism

γ : X̃reg

B̌
−→ Xreg

Ǧ
×Ť /W Ť

is a closed immersion.

Proof. Clearly γ is a finite morphism, by the very definition of the regular locus. Hence, it is
enough to show that γ induces an injection on k-valued points, for algebraically closed fields k,
and a surjection on complete local rings.

Let k be an algebraically closed extension of C and let (A,m) be a local Artinian C-algebra
with residue field k. Let (ϕ,N) ∈ Xreg

Ǧ
(A) and let λ1, . . . , λn ∈ A. Then we have to show that

there is at most one complete flag F• of An stable under ϕ and N such that ϕ acts on Fi/Fi−1

by multiplication with λi.
Assume first A = k. We prove the claim by induction on n. The case n = 1 is trivial. Assume

the claim is true for n− 1. Then it is enough to show that there is a unique (ϕ,N)-stable line F1

in kn on which ϕ acts by multiplication with λ1. Obviously this forces F ⊂ kerN and we need
to show that the ϕ-eigenspace in kerN of eigenvalue λ1 is one-dimensional. However, if this is
not the case then there are infinitely many pairwise distinct (ϕ,N)-stable lines in kn, and each
can be completed to a complete (ϕ,N)-stable flag. This contradicts the regularity of (ϕ,N).

Now assume that (A,m) is a general Artinian C-algebra with residue field k. Again it suffices
to show that there is a unique (ϕ,N)-stable A-line in An, such that the quotient of An by
this line is free, on which ϕ acts as multiplication by λ1. By induction on the length of A we
can reduce to the following situation: there exists f ∈ A such that mf = 0, and if A′ = A/(f)
and (ϕ′, N ′) is the image of (ϕ,N) in Xreg

Ǧ
(A′), then there is a unique (ϕ′, N ′) stable A′-line

in A′n on which ϕ′ acts by multiplication with λ1 mod (f). Let (ϕ̄, N̄) ∈ Xreg

Ǧ
(k) denote the

reduction of (ϕ,N) modulo m and let λ̄1 ∈ k denote the reduction of λ1. Then multiplication by
f induces an embedding of kn ↪→ An of (ϕ,N)-modules with cokernel A′n. Assume that F1 = Ae1
and F ′

1 = Ae′1 are two (ϕ,N)-stable A-lines on which ϕ acts by multiplication with λ1. Then the
assumption implies e′1 = αe1 + fv for some α ∈ A× and v ∈ kn. Let ē1 ∈ kn denote the reduction
of e1 modulo m, then it remains to show v ∈ kē1. As ϕ(e1) = λ1e1 and ϕ(e′1) = λ1e

′
1 we deduce

ϕ̄(v) = λ̄1v. The discussion of the case of an algebraically closed field k above implies that it
is enough to prove that v ∈ ker N̄ . However, we assume that F1 and F ′

1 are defined by points
(ϕ,N,F•), (ϕ,N,F ′•) ∈ Xreg

Ǧ
(A). As Xreg

Ǧ
is reduced by Lemma 2.7 and as N is nilpotent we

deduce that N(F1) = N(F ′
1) = 0 and hence N(fv) = 0, which implies N̄(v) = 0. �
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We use the lemma to identify X̃reg

B̌
with a closed subscheme Y reg

Ǧ
of Xreg

Ǧ
×Ť /W Ť . We denote

by
YǦ ⊂ XǦ ×Ť /W Ť = Spec(AǦ ⊗ZAŤ )

the closure of Y reg

Ǧ
equipped with its canonical scheme structure (which is the reduced structure,

as X̃reg

B̌
is reduced). Let us write ÃǦ for the corresponding quotient of AǦ ⊗ZAŤ and β : YǦ →

XǦ for the canonical projection.
We can use Lemma 4.10 to equip

AǦ ⊗ZAŤ = AǦ ⊗ZHT ∼= AǦ ⊗ZHT eG,st = AǦ ⊗ZHGeG,st
with an HG-module structure.

Proposition 4.19.

(i) The kernel of the canonical morphism AǦ ⊗ZAŤ → ÃǦ is stable under the action of HG.
(ii) There is a canonical isomorphism

M̃G
∼= β∗OYǦ

of Ǧ-equivariant OXǦ ⊗ZHG-modules.

Proof. (i) By Lemmas 2.5 and 2.7 the scheme YǦ is reduced and every irreducible component of
YǦ dominates an irreducible component of XǦ. In particular, the canonical morphism

ÃǦ −→
∏
η

ÃǦ ⊗ k(η) =
∏
η

Γ(β̃−1
B (η),Oβ̃−1

B (η))

is an injection. Here the product runs over all generic points η of XǦ. It is therefore enough to
prove that for all generic points η of XǦ the kernel of the canonical map

k(η)⊗ZHGeG,st = k(η)⊗ZHT eG,st = k(η)⊗ZAŤ −→ Γ((β̃−1
B (η),Oβ̃−1

B (η))

is stable under the HG-action. This follows from Corollary 4.11 applied to the generic point
η = (ϕη, Nη).

(ii) Consider the diagram

(c-indGN ψ)I[T,1] ⊗ZAǦ �� ��

∼=
��

Γ(XǦ,M̃G) � � ��
∏
η LL(ϕη, Nη)I

∼=
��

AŤ ⊗ZAǦ �� �� ÃǦ
� � ��

∏
η Γ(β̃−1

B (η),Oβ̃−1
B (η))

where the left vertical arrow comes from the identification of

(c-indGN ψ)I[T,1] = HGeG,st = HT eG,st ∼= AŤ

and the right vertical arrow comes from the identification of the Jacquet module of LL(ϕη, Nη)
in Corollary 4.11. By construction the diagram is a commutative diagram of AǦ ⊗ZHǦ-modules;
moreover, all morphisms are compatible with the Ǧ-action. Hence, these morphisms induce a
canonical isomorphism

Γ(XǦ,M̃G) ∼= ÃǦ

as claimed. �
As a consequence we can easily deduce Conjecture 4.8 for regular semi-simple points. We

refer to point (d) in § 4.7 for a discussion of non-regular points.
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Corollary 4.20. Let x = (ϕ,N) ∈ XǦ with ϕ regular semi-simple. Then

(ṼG ⊗ k(x))∨ ∼= LLmod((ϕ,N)∨).

Proof. It follows from the proof of Proposition 4.19 that

((c-indGN ψ)[T,1] ⊗Z k(x))I −→ M̃G ⊗ k(x) ∼= Γ(β̃−1(x),Oβ̃−1(x))

is a surjection of HT ⊗ k(x)-modules. The claim now follows from Corollary 4.11. �

The module of I-invariants in the family of smooth representation over -adic deformation
rings proposed by Emerton and Helm [EH14] (and constructed by Helm in [Hel16]) is expected to
have a close relation with patched modules in the Taylor–Wiles method (for Iwahori level at p). In
fact the Taylor–Wiles patching modules automatically produces maximal Cohen–Macaulay mod-
ules (which are in fact self-dual for Grothendieck–Serre duality). The family defined in [Hel16]
is related to the family VG by the twist with |det|−(n−1)/2 and by some flat base changes. This
motivates the following conjecture which also would be a direct consequence of Conjecture 4.14
and the self-duality statement in Conjecture 2.17

Conjecture 4.21. The Hecke module M̃G = (ṼG)I underlying the Emerton–Helm family ṼG
on XǦ is a Cohen–Macaulay module over OXǦ .

Remark 4.22. One deduces easily from Proposition 4.19 that M̃G cannot be flat as an
OXǦ-module. On the other hand, as explained above, the family M̃G should have some relation
with patching modules and hence should satisfy some local-global compatibility with the coho-
mology of certain locally symmetric spaces. We do not give a very precise formulation of this
here, but it would include the (derived) base change to a global Galois deformation ring. In the
neighborhood of generic L-parameters there should be no obstruction for this base change to sit
in a single cohomological degree. This motivates the following observation.

Corollary 4.23. Let x = (ϕ,N) ∈ Xreg

Ǧ
such that the Ǧ-conjugacy class of (ϕ,N) is a generic

L-parameter. Then M̃G is locally free (as an OXǦ-module) in a neighborhood of x.

Proof. As a maximal Cohen–Macaulay module over a regular local ring is automatically free,
this follows from Remark 2.23 and the identification of M̃G|Xreg

Ǧ
above. �

4.5 The main conjecture in the regular case
After restricting to the regular case we give a candidate for the functor RψG in Conjecture 3.2, as
well as functors RψMM for all (standard) Levi subgroups, and prove compatibility with parabolic
induction. As in the case of GLn the choice of (B, ψ) is unique up to conjugation, we will always
omit the superscript ψ from the notation. By abuse of notation we will also use the symbols
ιGP (−) and ιG

P
(−) to denote the functors on Hecke modules corresponding to parabolic induction

(3.5).
For a standard Levi subgroup

∏s
i=1 GLri = M ⊂ G = GLn we write M̃M for the tensor prod-

uct of the pullbacks of the M̃GLri (F ) on XGLri
to XM̌ =

∏s
i=1XGLri

. This is an M̌ -equivariant
sheaf of OXM̌ ⊗ZM HM -modules, and again we write MM for the sheaf on [XM̌/M̌ ] defined by
M̃M . We define the functor

RM : D+(HM -mod) −→ D+
QCoh([XM̌/M̌ ])

π• 
−→ tπ• ⊗LHM
MM .

(4.11)
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The derived tensor product in the formula can be defined for objects π• ∈ D+(HM -mod) that are
bounded above using finite projective resolutions (recall that HM has finite global dimension).
In general an object π• ∈ D+(HM -mod) can be written as the direct limit of its truncations

lim−→ τ<m(π•)
∼=−→ π•,

and we can define
tπ• ⊗LHM

MM = lim−→((τ<m(tπ•)⊗LHM
MM ).

Note that by definition RM preserves the truncation τ<m.
We will write Rreg

M for the composition of RM with the restriction to the regular locus
[Xreg

M̌
/M̌ ] ⊂ [XM̌/M̌ ]. Obviously the functors RM and Rreg

M are ZM -linear.
We restrict ourselves to the regular case. In order to have a compatible choice of the MM

(which are a priori only defined up to isomorphism) for various Levi subgroups of GLn, let us
set

Mreg
M =MM |[Xreg

M̌
/M̌ ] = RβBM ,∗O[Xreg

B̌M
/B̌M ],

where BM = B ∩M ⊂M is a Borel and βBM is the restriction of the canonical projection
[XB̌/B̌]→ [XǦ/Ǧ] to the regular locus. By abuse of notation we drop the restriction to the
regular locus in the notation and just writeMM instead ofMreg

M . We now use Proposition 4.19
to define the HM -module structure on MM , that is, we let HM act on

OXreg

M̌
⊗ZM AŤ � OX̃reg

B̌M

by letting it act on AŤ = HT ∼= HMeM,st (the fact that this HM -action extends to the quotient
is the content of Proposition 4.19).

Let P1 ⊂ P2 be parabolic subgroups containing B with Levi quotients M1 and M2 and write
P12 for the image of P1 in M2. We will define a natural ZM2-linear transformation

ξM2
P12

: Rreg
M2
◦ ιM2

P 12
−→ (Rβ12,∗ ◦ Lα∗

12) ◦Rreg
M1
, (4.12)

where α12 and β12 are the morphisms in the following diagram.

[Xreg

M̌2
/M̌2] [Xreg

P̌12
/P̌12]

β12

��

α12

��

[Xreg

B̌M2

/B̌M2 ]
β

��

α

��

βM2

��

[Xreg

M̌1
/M̌1] [Xreg

B̌M1

/B̌M1 ]
βM1��

(4.13)

Note that the square on the right-hand side is cartesian and Tor-independent by Lemma 2.9 and
Corollary 2.11.

Let π be a complex of HM1-modules. Giving ξP2
P1

(π) is equivalent to defining its adjoint
morphism

tξM2
P12

(π) : Lβ∗12(
t(HM2 ⊗LHM1

π)⊗HM2
MM2) −→ Lα∗

12(
tπ ⊗LHM1

MM1).

Using Lemma 4.12 and compatibility of pullbacks with tensor products, we need to define a
morphism

tπ ⊗LHM1
Lβ∗12MM2 −→ tπ ⊗LHM1

Lα∗
12MM1 ,
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that is, we need to define a morphism of HM1 ⊗ZM2
O[Xreg

P̌12
/P̌12]-modules

Lβ∗12MM2 −→ Lα∗
12MM1 .

Using the above identifications, we can define this as the composition

Lβ∗12MM2 = (Lβ∗12 ◦Rβ12,∗ ◦Rβ∗)(O[Xreg

B̌M2

/B̌M2
])

−→ Rβ∗Lα∗(O[Xreg

B̌M1

/B̌M1
])

∼=−→ Lα∗
12RβM1,∗(O[Xreg

B̌M1

/B̌M1
]) = Lα∗

12MM1 , (4.14)

where the first morphism is given by adjunction and the second morphism is given by the base
change morphism in the cartesian square in (4.13).

A priori this is only a morphism of O[Xreg

P̌12
/P̌12]-modules.

Lemma 4.24. The morphism (4.14) is a morphism of HM1-modules.

Proof. We prove the claim after pulling back to X̃reg

P̌12
in (4.13).

We write α̃, β̃ etc. for the corresponding morphisms of schemes. As all the maps β̃ (with
various subscripts) are affine, all but the first object in (4.14) are concentrated in degree 0.
Moreover, all schemes are reduced, and hence it is enough to prove the claim after restricting to
the dense open subscheme where ϕ is regular semi-simple. We denote these open subschemes by
X̃reg-ss

B̌M2

, etc. Consider the following diagram.

X̃reg-ss

B̌M2

��

α̃
��

Xreg-ss

M̌2
×Ť /WM2

Ť �� M̌ reg-ss
2 ×Ť /WM2

Ť ��

(∗)
��

Ť

��
X̃reg-ss

B̌M1

�� Xreg-ss

M̌1
×Ť /WM1

Ť �� M̌ reg-ss
1 ×Ť /WM1

Ť �� Ť

Here, the vertical arrow (∗) on the right-hand side is induced by the identification

M̌ reg-ss
i ×Ť /WMi

Ť ∼= {(ϕ, gB̌Mi) ∈ M̌ reg-ss
i × M̌i/B̌Mi | ϕ ∈ g−1B̌Mig}.

By definition the HM1-module structures on source and target of

β̃∗α̃∗OX̃reg-ss

B̌M1

∼= α̃∗
12β̃M1,∗OX̃reg-ss

B̌M1

are induced by two (a priori perhaps different) HM1-module structures of the structure sheaves

OX̃reg-ss

B̌M2

� OXreg-ss

M̌2
×Ť /WM2

Ť

which in turn are given by the pullback of an HM1-action on AŤ . These HM1-actions are given
by

– the HM1 action on AŤ given by AŤ ∼= HT eM1,st,
– the restriction of the HM2 action on AŤ given by AŤ ∼= HT eM2,st.

By Lemma 4.10(ii) these actions coincide. �

We obtain the following first step towards Conjecture 3.2.
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Theorem 4.25. For each parabolic B ⊂ P ⊂ G with Levi M the restriction of (4.11) to the
regular locus is a ZM -linear functor

Rreg
M : D+(HM -mod) −→ D+

QCoh([X
reg

M̌
/M̌ ]).

Moreover, for two parabolic subgroups B ⊂ P1 ⊂ P2 the natural transformation ξM2
P12

defined in
(4.12) is a ZM2-linear isomorphism.

For parabolic subgroups P1 ⊂ P2 ⊂ P3 let M3 denote the Levi quotient of P3 and P13 ⊂ P23

denote the images of P1 ⊂ P2 in M3. Then the diagram in Conjecture 3.2(b), applied to P13 ⊂
P23 ⊂M3, commutes.

Proof. We are left to prove that ξM2
P12

is an isomorphism and that the diagram in Conjecture 3.2(b)
commutes. Using truncations and resolutions by free modules, it is enough to prove that

ξM2
P12

(HM1) : MM2 = t(HM2 ⊗HM1
HM1)⊗HM2

MM2

−→ Rβ12,∗(Lα∗
12MM1) ∼= Rβ12,∗Rβ∗O[Xreg

B̌M2

/B̌M2
] =MM2

is an isomorphism. However, this is a direct consequence of the construction of ξM2
P12

in (4.14)
using the base change isomorphism in the cartesian square of (4.13).

As ξM2
P12

is the composition of an adjunction morphism and a base change map, the com-
mutativity of (b) in the conjecture is a consequence of standard compatibilities of base change
morphisms and adjunctions. �
Remark 4.26. We point out that the arguments above extend directly from the regular locus to
all of XǦ once Conjecture 4.14 is known.

4.6 Compactly induced representations
We describe the image of the functor RG defined in (4.11) on (the I-invariants in) the compactly
induced representations c-indGK σP . The result parallels, and is motivated by, results of Pyvovarov
in [Pyv20c].

Recall from Proposition 2.1(ii) that the irreducible components of XǦ are in bijection with
the possible Jordan canonical forms of the nilpotent endomorphism N . For a partition P let
ZǦ,P denote the irreducible component of XǦ,P such that the Jordan canonical form of N at
the generic point of ZǦ,P is given by the partition P. Then we set

XǦ,P =
⋃

PP ′
ZǦ,P ′ .

In particular, we have that XǦ,Pmin
= XǦ, and XǦ,Pmax

= ZǦ,Pmax
is irreducible. We will some-

times write XǦ,0 for this irreducible component, as it is the irreducible component defined by
N = 0. We write ηP for the generic point of the irreducible component ZǦ,P .

Proposition 4.27. Let P be a partition. Then RG(c-indGK σP) is concentrated in degree zero
and, viewed as a Ǧ-equivariant coherent sheaf on XǦ, has support XǦ,P . Moreover,

RG((c-indGK 1K)I) = OXǦ,0 ,
RG((c-indGK stG)I) = OXǦ ,

equipped with their canonical Ǧ-equivariant structures. In particular,

RG((c-indGN ψ)I[T,1]) = O[XǦ/Ǧ].
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Proof. We will rather calculate the images of

HGeP = (c-indGK ΣP )I ∼= (c-indGK σ
⊕mP
P )I .

Recall that mPmin = mPmax = 1. Using Lemma 4.9, we see that the Ǧ-equivariant coherent sheaf
on XǦ defined by RG((c-indGK ΣP )I) is ePHG ⊗HG

M̃G.
Recall that by definition the sheaf M̃G is the sheaf attached to the image of

AǦ ⊗ZHGest −→
∏
P ′

LL(ϕηP′ , NηP′ )
I

induced by the surjections HGest ⊗Z k(ηP ′)→ LL(ϕηP′ , NηP′ )I of Lemma 4.7. Consequently,
ePHG ⊗HG

M̃G is the sheaf defined by the image of the morphism

AǦ ⊗Z ePHGest −→
∏
P ′
ePLLmod(ϕηP′ , NηP′ )

I .

Note that AǦ ⊗Z ePHGest is a free AǦ-module of rank m2
P , by Lemma 4.13(iv). To show that

the sheaf RG(HGeP) has support XǦ,P it remains to show that

ePLL(ϕηP′ , NηP′ )
I �= 0⇐⇒ P � P ′.

The left-hand side can be identified with

HomHG
(HGeP ,LL(ϕηP′ , NηP′ )

I) = HomG(c-indGK ΣP ,LL(ϕηP′ , NηP′ ))

= HomK(σP ,LL(ϕηP′ , NηP′ ))
mP .

As LL(ϕηP′ , NηP′ ) is absolutely irreducible and generic, [Sho18, Theorem 3.7] implies the claim.
If P ∈ {Pmin,Pmax}, then ΣP = σP and AǦ ⊗Z ePHGest ∼= AǦ. In this case the above dis-

cussion shows that RG((c-indGK σP)I) is the structure sheaf of the union of those irreducible
components ZǦ,P ′ such that HomK(σP ,LL(ϕηP′ , NηP′ )) �= 0. If P = Pmax this implies P ′ = P
as above. On the other hand, if P = Pmin, then HomK(σP ,LL(ϕηP′ , NηP′ )) �= 0 for all P ′ by
[Pyv20b, Theorem 1.3]. �

Remark 4.28. A closer analysis of the proof shows that RG(c-indGK σP) can never be (locally)
free over its support XǦ,P unless mP = 1. Indeed, generically on ZǦ,P the sheaf RG(c-indGK σP)
is free of rank one, using [Sho18, Theorem 3.7 (ii)]. On the other hand, generically on XǦ,0

this sheaf is free of rank mP . Indeed, let L be the algebraic closure of k(ηPmax). Then
LL(ϕPmax , NPmax)⊗k(ηPmax ) L is an irreducible representation induced from the upper triangular
Borel. On the other hand, c-indGK σP ⊗ZK is a direct sum of mP copies of the same irreducible
principal series representation by Corollary 6.1 and Lemma 6.4 of [Pyv20a].

4.7 Remarks about the relation of the various conjectures
In this section we add a few remarks about the relation of Conjecture 4.14 with
Conjectures 3.2 and 2.17. This should give some evidence for Conjecture 4.14 which in turn
would imply that Rβ̃B,∗OX̃B̌

agrees with the OXǦ-module underlying the Hecke module M̃G

defined by the Emerton–Helm family. Moreover, we explain the relation of the main conjecture
with Conjecture 4.8.

(a) Before we come to this point, we mention that our expectations about RβB,∗OX̃B̌
imply that,

for G = GLn, the functor RG is uniquely determined by the requirements in Conjecture 3.2.
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If RG is any functor satisfying the main conjecture, then

RG(c-indGI 1I) = RG(ιG
B

(c-indT ◦ 1T ◦)) = RβB,∗(Lα∗
BRT (c-indTT ◦ 1T ◦))

= RβB,∗(Lα∗
B(O[XŤ /Ť ])) = RβB,∗OX̃B̌

which is equipped with a faithful action of HG = EndG(c-indGI 1I). Using the identification
Rep[T,1]G

∼= HG-mod and resolutions by free HG-modules, we deduce that the functor RG on
the category HG-mod necessarily has to be of the form

π• 
−→ tπ• ⊗LHG
RβB,∗OX̃B̌

.

As we expect that RβB,∗OX̃B̌
is concentrated in one degree and is a maximal Cohen–Macaulay

module the HG-action (if it exists) is uniquely determined by its specialization at the generic
points of XǦ. At these points the Frobenius ϕ is regular semi-simple and we will see
in Corollary 4.44 below that in this case the completion of the functor (with respect to
the corresponding character of the center Z) is uniquely determined by the conditions in
Conjecture 3.2.

(b) One could hope that (if Conjecture 2.17 holds true) the Cohen–Macaulay property of
Rβ̃B,∗OX̃B̌

implies that the HG-action extends from its restriction to the regular locus to all
of XǦ. Indeed, this would be automatic if the complement of the open dense subset Xreg

Ǧ
had

codimension greater than or equal to two in XǦ. Unfortunately this is not true in general, not
even in the case G = GLn. However, the generic points of XǦ\Xreg

Ǧ
that are of codimension one

in XǦ can be described rather explicitly. In fact it turns out that they are generic L-parameters
and hence XǦ is smooth at these points. It seems likely that Conjecture 4.14 can be checked
explicitly (‘by hand’) at these points. This would imply that the HG-action on Rβ̃B,∗OX̃B̌

is well
defined on an open subset U whose complement has codimension at least 2 and hence (using
Conjecture 2.17) the Hecke action extends to all of Rβ̃B,∗OX̃B̌

.

(c) We assume Conjectures 2.17 and 3.2 and explain that in this case Conjecture 4.14 can be
attacked using the functor RG. The sheaf

M̃′
G = Rβ̃B,∗OX̃B̌

is an OXǦ ⊗ZHG-module that is Cohen–Macaulay as an OXǦ-module. In particular, its direct
summand eG,stM̃′

G is a Cohen–Macaulay module as well. If Conjecture 4.14 can be checked on
an open subset U as in (b) above, then eG,stM̃′

G|U ∼= OU as in the proof of Proposition 4.27.
The Cohen–Macaulay property hence implies that eG,stM̃′

G
∼= OXǦ and hence by (4.5) there is

a canonical morphism
HGeG,st ⊗ZOXǦ −→ M̃′

G.

We expect that this morphism is a surjection, and that this surjection agrees with the surjection
in Conjecture 4.14. In fact it seems that this can be checked using properties of the conjectured
functor RG(−) = t(−)⊗LHG

M̃′
G (compare (a) above for the fact that RG necessarily is of this

form): We only need to check that for each point x ∈ XǦ the canonical map

HGeG,st ⊗Z k(x) −→ M̃′
G ⊗ k(x) (4.15)

is surjective. As eG,stM̃′
G ⊗ k(x) = k(x) is one-dimensional there is a unique generic

Jordan–Hölder factor πx in M̃′
G ⊗ k(x) and (4.15) is surjective if any only if πx is the cosocle of

M̃′
G ⊗ k(x). The center Z acts on πx via a character χx : Z→ k(x) and there are only finitely

many irreducible representations π on which Z acts via χx. Among those, πx is the unique
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generic one. We expect that for irreducible π the complex of coherent sheaves RG(π) (which
is supported in non-positive degrees) has cohomology in degree zero if and only if π is generic.
This implies in particular that tπ ⊗HG

M̃′
G ⊗ k(x) = 0 unless π is generic. Using the Tensor-Hom

adjunction

Homk(x)(
tπ ⊗HG

M̃′
G ⊗ k(x), k(x)) = HomHG

(tπ,Homk(x)(M̃′
G ⊗ k(x), k(x))),

this expectation would imply that the cosocle of M̃′
G ⊗ k(x) has to be generic and hence (4.15)

must be a surjection.

(d) We discuss how Conjecture 4.8 relates to Conjecture 3.2 in the cases where ϕ is not regular
semi-simple (i.e. in the cases that are not covered by Corollary 4.20). For (ϕ,N) ∈ XǦ(C) let
ϕss denote the semi-simplification of ϕ. Generalizing Remark 3.3(b), we define a closed Ǧ-stable
subscheme XǦ,[ϕ,N ] ⊂ XǦ as the closed subscheme whose C-points are the pairs (ϕ′, N ′) such
that ϕ′ss ∈ Ǧ · ϕss and such that N ′ lies in the closure of Ǧ ·N . While it turns out that this
closed subscheme still contains

X ◦̌
G,[ϕ,N ]

= {(ϕ′, N ′) ∈ XǦ,[ϕ,N ] | N ′ ∈ Ǧ ·N}
as an open subscheme, we caution the reader that it is not true in general that X ◦̌

G,[ϕ,N ]
is

dense in XǦ,[ϕ,N ]. In fact XǦ,[ϕ,N ] can have several irreducible components in general (the
lowest-dimensional case where this phenomenon occurs is GL4 with ϕ = diag(1, q, q, q2) and
N of maximal possible rank).

According to the discussion above and assuming Conjecture 4.14, the functor RG coincides
with the functor π 
→ tπ ⊗LHG

MG, and if π is a representation (not just a complex of represen-
tations) concentrated in degree zero the complex RG(π) is concentrated in non-positive degrees.
If π is a representation concentrated in degree zero its zeroth cohomology sheaf H0(RG(π)) is
identified with the non-derived tensor product tπ ⊗HG

MG Similarly to (c), we compute that
the fiber H0(RG(π))⊗ k(x) as the k(x)-dual to

HomHG
(tπ,Homk(x)(MG ⊗ k(x), k(x))). (4.16)

Given a point x = (ϕ,N) ∈ XǦ, we apply this to the modified representations LLmod(ϕ,N ′)
for the various N ′ such that (ϕ,N ′) ∈ XǦ. We expect that, generalizing Remark 3.3(b), the sheaf
H0(RG(LLmod(ϕ,N ′))) has support XǦ,[ϕ,N ′] (we are slightly sloppy about viewing RG(π) as a
complex of sheaves on [XǦ/Ǧ] or on XǦ). Hence, we expect that there is a non-trivial morphism

LLmod((ϕ,N ′)∨) −→ (MG ⊗ k(x))∨
if and only if N lies in the closure of the Ǧ-orbit of N ′. As the left-hand side and the right-hand
side have exactly one generic irreducible constituent which appears as the unique subrepre-
sentation, this morphism (if non-zero) is automatically injective. In particular, (MG ⊗ k(x))∨
contains LLmod((ϕ,N)∨). A closer analysis of the representations (c-indGN ψ)[T,1] ⊗Z k(x), of
which MG ⊗ k(x) is a quotient (again we are sloppy and do not distinguish between a rep-
resentation and the Hecke module defined by the representation), yields that this inclusion in
fact has to be an equality as otherwise there is a non-zero map

LLmod((ϕ,N ′)∨)→ (MG ⊗ k(x))∨
for some N ′ such that N is not contained in the Ǧ-orbit of N ′, contradicting our expectations
about the support of the sheaf H0(RG(LLmod(ϕ,N ′))).

We note that the discussion above automatically would imply that (4.16) is one-dimensional
if non-zero. Hence, it seems reasonable to expect that H0(RG(LLmod(ϕ,N))) is the structure
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sheaf of XǦ,[ϕ,N ], generalizing the expectations in Remark 3.3(b) (which is Theorem 4.34 below
in the case of GLn). However, we do not know whether one should expect that RG(LLmod(ϕ,N))
is always concentrated in degree zero.

4.8 Proof of the conjecture for GL2

We prove Conjecture 3.2 in the two-dimensional case. In this subsection we use the notation G =
GL2(F ) and Ǧ is the algebraic group GL2 over C. In this case the B̌-action on Lie B̌ ∩NGL2 has
two orbits and hence XB̌ is a complete intersection and XB̌ = XB̌ (see Remark 2.8). Moreover,
this remark implies that XB̌ is reduced, and both of its irreducible components are the closure of
an irreducible component ofXreg

B̌
. To simplify notation, we will writeX0 = XǦ,0 = ZǦ,Pmax

⊂ XǦ

for the component given by N = 0 and X = XǦ. Moreover, we sometimes write X1 = ZǦ,Pmin
⊂

X for the component on which N is generically non-trivial.

Proposition 4.29. Conjecture 4.14 is true for GL2. In particular, we obtain an identification

MG = Rβ̃∗OX̃B̌ .
Proof. As already discussed above, the claim holds over the open subset Xreg

Ǧ
⊂ X = XǦ. On

the other hand, the closed complement of Xreg

Ǧ
has the open neighborhood X\X1 which is an

open subset of Ǧ. The claim now follows from the well known fact that

h : G̃L2 = {(ϕ, gB) ∈ Ǧ× Ǧ/B̌ | ϕ ∈ gBg−1} −→ Ǧ = GL2

has vanishing higher direct images, and its global sections are given by

Γ(G̃L2,OG̃L2
) = Γ(GL2×Ť /W Ť ,OGL2 ×Ť /W Ť ). �

As a consequence we still can use (4.14) to define a natural transformation

ξGB : RG ◦ ιGB −→ (Rβ∗Lα∗) ◦RT , (4.17)

where α : [XB̌/B̌]→ [XŤ /Ť ] and β : [XB̌/B̌]→ [XǦ/Ǧ] are the canonical morphisms. The same
computation as in the proof of Theorem 4.25 again shows that this natural transformation is a
Z-linear isomorphism (compare Remark 4.26).

Theorem 4.30. Let G = GL2(F ) and T ⊂ B ⊂ G denote the standard maximal torus and the
standard Borel, respectively. The functors RG and RT defined by (4.11) are fully faithful and
the natural transformation ξGB defined by (4.17) is a Z-linear isomorphism. Moreover,

RG((c-indGN ψ)I[T,1]) ∼= O[XǦ/Ǧ]

for a choice of a generic character ψ : N → C× of the unipotent radical N of B.

By the above discussion, it remains to show that RG is fully faithful. Let us write f ∈ Z

for the element corresponding to the characteristic polynomials of the form (T − λ)(T − qλ) for
some indeterminate λ. Then the morphism

O[X/Ǧ]

·f
�� O[X/Ǧ]

factors through O[X/Ǧ] � O[X0/Ǧ] and yields a morphism

O[X0/Ǧ]
�� O[X/Ǧ] (4.18)

with image fO[X/Ǧ] and cokernel O[X1/Ǧ].
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Proposition 4.31. Let F ,G ∈ {O[X/Ǧ],O[X0/Ǧ]}. Then

Exti
[X/Ǧ]

(F ,G) =

{
Z, i = 0,
0, i �= 0.

More precisely, a Z-basis of Hom = Ext0 is given by the identity if F = G.
If F = O[X/Ǧ] and G = O[X0/Ǧ], then a Z-basis is given by the canonical projection, and if

F = O[X0/Ǧ] and G = O[X/Ǧ], a Z-basis is given by the morphism (4.18).

Proof. We can easily reduce to the case C algebraically closed.
Consider the canonical projection

f : [X/Ǧ] −→ [∗/Ǧ] = BǦ.

We need to compute H i(BǦ, Rf∗RHom(F ,G)). As Ǧ is reductive and the base field C has
characteristic zero, the category of Ǧ-representations is semi-simple and hence this vector
space is given by H i(Rf∗RHom(F ,G))Ǧ (compare also [DG13, Lemma 2.4.1]). Here we write
H i(Rf∗RHom(F ,G)) for the ith cohomology sheaf of the complex Rf∗RHom(F ,G), which is a
sheaf on BǦ, and hence a Ǧ-representation.

Let us write F̃ and G̃ for the pullbacks of F and G to X. Then, by definition, giving the
quasi-coherent sheaf H i(Rf∗RHom(F ,G)) on BǦ is the same as giving a Ǧ-equivariant structure
on H i(RHom(F̃ , G̃)). We conclude that

Exti
[X/Ǧ]

(F ,G) = (ExtiX(F̃ , G̃))Ǧ

for the canonical Ǧ-representation on ExtiX(F̃ , G̃) induced by the Ǧ-equivariant structures on F̃
and G̃.

If F = O[X/Ǧ], then

ExtiX(F̃ , G̃) =

{
Γ(X, G̃), i = 0,
0, i �= 0,

and one easily computes Γ(X, G̃)Ǧ ∼= Z in both cases. Moreover, a Z-basis is easily identified with
the identity or the canonical projection, as claimed.

Now assume that F = O[X0/Ǧ]. We compute

ExtiX(F̃ , G̃) = Γ(X, ExtiOX (F̃ , G̃)).

If i �= 0, the sheaf ExtiOX (F̃ , G̃) clearly is supported on the intersection X0 ∩X1. We first
show that it is a locally free sheaf on X0 ∩X1 (equipped with the reduced scheme structure).
Let Xreg-ss ⊂ X denote the Zariski open subset of (ϕ,N) with ϕ regular semi-simple. Then
X0 ∩X1 ⊂ Xreg-ss.

Moreover, let X ′ → Xreg-ss denote the scheme parametrizing a ϕ-stable subspace. This is
an étale Galois cover of degree two and the filtration by the universal ϕ-stable subspace has a
canonical ϕ-stable splitting. Let us write V1 and V2 for these eigenspaces and let Y → X̃ ′ denote
the Ť -torsor trivializing V1 and V2. Moreover, let

Z = {(λ1, λ2, a, b) ∈ Ť × A2 | a(λ2 − qλ1) = 0 = b(λ1 − qλ2), λ1 �= λ2}
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equipped with the Ť = SpecC[s±1
1 , s±1

2 ]-action that is trivial on Ť and via multiplication with
the character α : (s1, s2) 
→ s1s

−1
2 on a, and via α−1 on b. We consider the diagram

Y
β

��





 γ

���
��

��
��

Xreg-ss Z

where β is the canonical projection, which is Ǧ-equivariant, and γ is the Ť -equivariant Ǧ-torsor
that is given by writing the matrices of ϕ and N over Y as

Mat(ϕ) =
(
λ1 0
0 λ2

)
and Mat(N) =

(
0 a
b 0

)
in the chosen basis of V1 and V2.

Let x = (ϕ0, 0) ∈ X0 ∩X1 be a C-valued point. Without loss of generality we may assume
ϕ0 = diag(λ0, qλ0). Let y ∈ Y be a pre-image of x and let z denote its image in Z, such that
z = (λ0, qλ0, 0, 0). Consider the closed subscheme Z0 = V (a, b) ⊂ Z and write FZ = OZ0 and

GZ =

{
OZ , if G̃ = OX ,
OZ0 , if G̃ = OX0 .

Then ExtiOX (F̃ , G̃) is locally free on X0 ∩X1 if and only if ExtiOZ (FZ ,GZ) is locally free on Z0.
Let S = ÔZ,z ∼= C[[t1, t2, a]]/((t1 − t2)a) be the complete local ring at z with λ1 = λ0 + t1 and
λ2 = q(λ0 + t2), and consider the Ť -equivariant resolution of F̂Z,z = S/(a) given by

· · · → S(2) ·a−→ S(1)
·(t1−t2)−−−−−→ S(1) ·a−→ S.

Here S(m) is the free S-module of rank one with the Ť -action twisted by the multiplication with
αm. It follows that

ExtiS(S/(a), S) =

{
S/(a), i = 0,
0, i ≥ 1,

and

ExtiA(S/(a), S/(a)) =

⎧⎪⎨⎪⎩
S/(a), i = 0,
0, i odd,
(S/(t1 − t2, a))(−i/2), i ≥ 2 even.

In particular, ExtiOZ (FZ ,OZ) vanishes for i �= 0, and ExtiOZ (FZ ,OZ0) vanishes for odd i and is
locally free of rank one over Z0 for non-zero even i. We deduce

ExtiOX (F̃ ,OX) = 0 for i �= 0.

Moreover, it follows that ExtiOX (F̃ ,OX0) vanishes for odd i and is locally free of rank one on
X0 ∩X1 for non-zero even i. In particular, a Ǧ-invariant global section

h ∈ ExtiX(F̃ ,OX0) = Γ(X, ExtiOX (F̃ ,OX0))

vanishes if
0 = h(x′) ∈ ExtiOX (F̃ ,OX0)⊗ k(x′)

for all x′ ∈ X0 ∩X1. Hence, we have to show h(x′) = 0 for all x′ ∈ X0 ∩X1 for even i �= 0. Again
it is enough to check this for our choice x = (ϕ0, 0). Then Ť = StabGL2(ϕ0) acts on the fiber
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ExtiOX (F̃ ,OX0)⊗ k(x), and h(x) is Ť -invariant. By the above diagram the Ť -action on this fiber
is the same as the Ť -action on

ExtiOZ (FZ ,OZ0)⊗ k(z) =

{
0, i odd,
C(−i/2), i ≥ 2 even.

Obviously, for i �= 0, there are no non-trivial Ť -invariants.
It remains to show that Hom[X/Ǧ](O[X0/Ǧ],G) ∼= Z, and to identify the basis vector. If G =

O[X0/Ǧ] this is clear, and a Z-basis is clearly given by the identity. If G = O[X/Ǧ], one computes
that the pullback of the morphism (4.18) to Y specializes to the pullback of a basis vector of
HomOZ (OZ0 ,OZ)⊗ k(γ(y)) at every point of y ∈ Y . The claim easily follows from this. �
Corollary 4.32. Let D1, D2 ∈ {HGeK ,HGest}. The functor RG induces isomorphisms

ExtiHG
(D1, D2) −→ Exti

[X/Ǧ]
(RG(D1), RG(D2)).

Proof. Note that HGeK and HGest are projective and HomHG
(D1, D2) ∼= Z. By Proposition 4.31

the claim is true for i �= 0 and we are left to show that in degree zero the canonical mor-
phism identifies basis vectors. This is clear if D1 = D2. Let us write γ1 : HGeK → HGest and
γ2 : HGest → HGeK for choices of basis vectors and let f ∈ Z as defined before Proposition 4.31.
Then, up to scalars in Z×, we have

γ2 ◦ γ1 = f · idHGeK and γ1 ◦ γ2 = f · idHGest . (4.19)

Writing δi = RG(γi) one checks that the equalities

δ2 ◦ δ1 = f · idO[X0/Ǧ]
and δ1 ◦ δ2 = f · idO[X/Ǧ]

enforce that

δ1 ∈ Hom[X/Ǧ](O[X0/Ǧ],O[X/Ǧ]) and δ2 ∈ Hom[X/Ǧ](O[X/Ǧ],O[X0/Ǧ])

are basis vectors. �
Proof of Theorem 4.30. We show that

RG : Db(HG-modfg) −→ Db
Coh([XǦ/Ǧ])

is fully faithful. The general case then follows from a limit argument as in Remark 3.3(a).
By standard arguments the proof boils down to Corollary 4.32. Let D•

1, D
•
2 be complexes in

Db(HG-modfg). We may choose representatives of D•
i consisting of bounded complexes whose

entries are direct sums of copies of HGeK and HGest. Assume first D•
1 = HGeK or HGest concen-

trated in degree zero. We prove the claim by induction on the length of D•
2. By Corollary 4.32

the claim is true if D•
2 has length zero, that is, if D•

2 is concentrated in a single degree. Assume
the claim is true for all complexes of length less than or equal to m and let D•

2 be a complex
in degrees [r, r +m+ 1] for some r ∈ Z. Then D•

2 can be identified with the mapping cone of a
morphism of complexes

Dr
2[−r] −→ D̃•

2

with D̃•
2 concentrated in degree [r, r +m]. The claim follows from the induction hypothesis,

Corollary 4.32 and the long exact cohomology sequence.
The general case follows by a similar induction on the length of D•

1. �
Example 4.33. We finish this section with some remarks about the case G = SL2(F ) and Ǧ =
PGL2. As already pointed out above, Conjecture 4.14 fails for SL2.
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In this case Ť = Gm and W = S2. Let us write

P̃GL2 ⊂ PGL2 × Ǧ/B̌ = PGL2 × P1

for the Grothendieck resolution of PGL2, that is for the closed subscheme of (g, L) ∈ PGL2 × P1

such that the line L is stable under g. We consider the following canonical diagram.

P̃GL2

f

���������������������������������

��������������

����
��

��
��

��
��

��
��

��
��

PGL2

��

PGL2 ×Gm/S2
Gm

��

��

Gm/S2 Gm
��

Again it is well known that Rf∗OP̃GL2
is concentrated in degree zero and in fact locally free

(necessarily of rank two). However, the canonical map

O2
PGL2

= OPGL2 ⊗C[T ] C[X,X−1] −→ f∗OP̃GL2
= Rf∗OP̃GL2

, (4.20)

where C[T ] = Γ(Gm/S2,OGm/S2
) and C[X,X−1] = Γ(Gm,OGm), is not surjective. Indeed, con-

sider the point x ∈ PGL2 given by the class of the diagonal matrix diag(−1, 1). Then f−1(x) =
{0,∞} is the disjoint union of two points and hence

f∗OP̃GL2
⊗ k(x) = k(x)× k(x)

as a k(x)-algebra. On the other hand, the morphism C[T ]→ C[X,X−1] is given by T 
→ X +X−1

and x maps to the point {T = −2} in SpecC[T ] = Gm/S2. We find that the canonical map (4.20)
specializes to

k(x)⊗C[T ] C[X,X−1] = C[X]/(X + 1)2 −→ C × C = k(x)× k(x)
which cannot be surjective. In fact Pic(PGL2) = Hom(π1(PGL2),Gm) = Z/2Z and hence there
is (up to isomorphism) a unique non-trivial line bundle L (which comes with a canonical PGL2-
equivariant structure). In fact L can be identified with the ideal sheaf of the closed subscheme
Ǧ · x and L∨ ∼= L. It is not hard to show that

f∗OP̃GL2
= OPGL2 ⊕ L. (4.21)

Let us also mention what Rβ̃B,∗OXB̌ looks like. As in the case of GL2, the scheme XǦ has
two irreducible components XǦ,0 and XǦ,1, where N = 0 on XǦ,0. Using (4.21), we obtain a
decomposition

Rβ̃B,∗OXB̌ ∼= OXǦ ⊕F0
∼= F ⊕OXǦ,0 , (4.22)

where F (respectively, F0) is the twist of OXǦ (respectively, OXǦ,0) by the pullback of the
non-trivial line bundle L on Ǧ = PGL2. Indeed, the same computation as for GL2 yields that

Ext1
[XǦ/Ǧ]

(F0,OXǦ) = 0 = Ext1
[XǦ/Ǧ]

(OXǦ,0 ,F)

and we can use (4.21) and the canonical morphism OXǦ → Rβ̃B,∗OX̃B̌ to obtain a short exact
sequence

0 −→ OXǦ −→ Rβ̃B,∗OX̃B̌ −→ F0 −→ 0
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which has to split using the computation of Ext-groups. Note that the pullback of L to P̃GL2

is the trivial line bundle, and hence twisting this sequence by the line bundle F and using the
projection formula, we obtain a short exact sequence

0 −→ F −→ Rβ̃B,∗OX̃B̌ −→ OXǦ,0 −→ 0

which has to split as well.
We point out that in light of the main conjecture the decompositions (4.22) correspond to

the two decompositions

c-indGI 1I = c-indGK1
1K1 ⊕ c-indGK1

stK1 = c-indGK1
1K2 ⊕ c-indGK2

stK2

of representation of G = SL2(F ), where I is a choice of an Iwahori and K1 and K2 are the two
non-conjugate hyperspecial subgroups of G with I = K1 ∩K2. Moreover, K1

∼= K2
∼= SL2(OF )

and stKi is the respective inflation of the finite-dimensional Steinberg representation of SL2(kF ).
Let us finally comment on the comparison with the Emerton–Helm construction (for a choice

of a Whittaker datum ψ). Indeed, choosing ψ, we can again compute that HGeψ = (c-indGN ψ)I

for some idempotent element eψ and this module is free of rank one over HT . We can define an
‘Emerton–Helm family’ VG,ψ as the quotient

(c-indGN ψ)[T,1] ⊗ZOXǦ −→ VG,ψ
with prescribed fibers at the generic points of XǦ. The fiber of VG,ψ at the point (x, 0) ∈ XǦ,
for x ∈ PGL2 as above, is the representation c-indGN ψ ⊗Z k(x) which is the unique non-split
extension

0 −→ πψ
′-gen

x −→ VG,ψ ⊗ k((x, 0)) −→ πψ-gen
x −→ 0

where πψ-gen
x is the ψ-generic representation on the L-packet defined by (x, 0) and ψ′ is (a choice

of) the Whittaker datum not conjugate to ψ.
On the other hand, we obtain a diagram

(c-indGN ψ)I ⊗ZOXǦ = OXǦ ⊗ZOŤ ��

����������������������
MG,ψ = (VG,ψ)I

g

��

β̃B,∗OX̃B̌
of OXǦ-modules. The morphism g is an injection and induces an isomorphism on the open
complement U of the Cartier divisor Ǧ · (x, 0) ⊂ XǦ, and

β̃B,∗OX̃B̌ ⊂ jU,∗(β̃B,∗OX̃B̌ |U ) = jU,∗(MG,ψ|U )

is stable under the action of HG, where jU : U ↪→ XǦ is the canonical embedding.
This construction equips β̃B,∗OX̃B̌ = Rβ̃B,∗OX̃B̌ with an action of HG, depending on the

choice of the Whittaker datum ψ, such that

RψG(−) = t(−)⊗LHG
β̃B,∗OX̃B̌

is the desired functor in the case of G = SL2. Computing the fibers of β̃B,∗OX̃B̌ , we find

β̃B,∗OX̃B̌ ⊗ k((x, 0)) = (πψ-gen
x )I ⊕ (πψ

′-gen
x )I ,

and the action of the centralizer of x is trivial on (πψ-gen
x )I and non-trivial on (πψ

′-gen
x )I .
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4.9 Calculation of examples
We finish by computing the image of some special representations under the functor RG defined
in (4.11). In particular, we are in the situation G = GLn(F ) and Ǧ is the algebraic group GLn
over C. For simplicity we assume that C is algebraically closed. We fix the choice of the diagonal
torus T and the upper triangular Borel subgroup B.

Let x = (ϕ,N) ∈ XǦ. In the examples calculated in this section we will assume that ϕ is
regular semi-simple. As in Remark 3.3(b), we write

X ◦̌
G,[ϕ,N ]

= Ǧ · x

for the Ǧ-orbit of (ϕ,N) and XǦ,[ϕ,N ] for its closure.

Theorem 4.34. Let (ϕ,N) ∈ XǦ(C) and assume that ϕ is regular semi-simple. Then

RG(LLmod(ϕ,N)) = O[XǦ,[ϕ,N ]/Ǧ].

To prove this, we will use compatibility with parabolic induction. Hence, the main step will
be to calculate the image of the generalized Steinberg representations.

Let χ : Z→ C be the character defined by the characteristic polynomial of ϕ. We write Ẑχ
for the completion of Z with respect to the kernel mχ of χ and

ĤG,χ = HG ⊗Z Ẑχ

for the mχ-adic completion of HG. Similarly, if M ⊂ G is a Levi subgroup, we write ĤM,χ for
the corresponding completion of HM .

Assume that ϕ = diag(ϕ1, . . . , ϕn). For w ∈W = Sn we write wϕ for the diagonal matrix
diag(ϕw(1), . . . , ϕw(n)). We use the notation δw to denote the HT -module defined by the unram-
ified character unrwϕ (i.e. the residue field at the point wϕ ∈ SpecHT ), and δ̂w to denote the
completion of HT at the point wϕ ∈ SpecHT . Then δw and δ̂w are ĤT,χ-modules.

We recall intertwining operators for parabolic induction. Let P,P′ ⊂ G be parabolic sub-
groups (containing T) with Levi subgroups M and M′ and let w ∈W such that M ′ = wMw−1.
Let π (respectively, π′) be smooth representations of M (respectively, M ′) and let f : πw → π′

be a morphism of M ′-representations. Then there is a canonical morphism of G-representations

F (w, f) = FG(w, f) : ιG
P
π −→ ιG

P
′π′

associated to f (and similarly for ιGP and ιGP ′). Moreover, this construction extends to (mor-
phisms of) complexes of M (respectively, M ′) representations. We also note that the formation of
these intertwining operators is transitive in the following sense. Let P1,P

′
1 ⊂ P ⊂ G be parabolic

subgroups. Let M1,M
′
1 and M denote the corresponding Levi quotients and let P1,M be the

image of P1 in M (and similarly P′
1,M ). Let w ∈WM ⊂W be a Weyl group element such

that wM1w
−1 = M ′

1 (as subgroups of G, and hence also as subgroups of M). Moreover, let
π be a representation of M1, π′ be a representation of M ′

1, and f : πw → π′ be a morphism of
M ′

1-representations. Then, under the canonical identifications

ιG
P
ιM
P 1,M

(π) = ιG
P 1
π and ιG

P
ιM
P

′
1,M

(π′) = ιG
P

′
1
π′,

the morphism ιG
P
(FM (w, f)) is identified with FG(w, f).
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Now fix λ ∈ C× and let ϕ = diag(λ, q−1λ, . . . , q−(n−1)λ). For w,w′ ∈W the identity of δw′

and δ̂w′ , respectively, induces intertwining operators

f(w,w′) : ιG
B

(δw) −→ ιG
B

(δw′),

f̂(w,w′) : ιG
B

(δ̂w) −→ ι̂G
B

(δ̂w′).
(4.23)

Note that these morphisms are isomorphisms (with inverse f(w′, w) and f̂(w′, w), respectively)
if and only if for each i the entries q−iλ and q−(i+1)λ appear in the same order in wϕ and w′ϕ.
Moreover,

HomẐχ[G](ι
G
B
δ̂w, ι

G
B
δ̂w′) = Ẑχf̂(w,w′) (4.24)

is a free Ẑχ-module of rank one. We define the (universal) deformation of the generalized Steinberg
representation

Ŝt(λ, r) = ιGB(δ−1/2
B ⊗ ûnrλ| − |(n−1)/2)/

∑
B�P⊆G

ιGP (δ−1/2
P ⊗ ûnrλ| − |(n−1)/2).

Here we write ûnrλ for the universal (unramified) deformation of the character unrλ and denote
the target of ûnrλ by C[[t]]. Then

ûnrλ ⊗C[[t]] C[[t]]/(t) = unrλ,

Ŝt(λ, r)⊗C[[t]] C[[t]]/(t) = St(λ, r).

Note that by definition Ŝt(λ, n) is a quotient of ιG
B
δ̂w0 , where w0 ∈W is the longest element.

By abuse of notation we will also write St(λ, n) (respectively, Ŝt(λ, n)) for the HG-module
(respectively, ĤG,χ-module) given by the I-invariants in the respective representations. Similarly,
we will continue to write ιG

B
δw, etc. for the Hecke modules defined by these representations. In

the following we will only work with Hecke modules, hence no confusion should arise.
We construct a projective resolution Ĉ•

n,λ of the ĤG,χ-module Ŝt(λ, n) concentrated in
(cohomological) degrees [−(n− 1), 0] such that all objects in the complex are direct sums of
induced representations ιG

B
δ̂w and the differentials are given by combinations of the intertwining

morphisms (4.23). We construct the complex by induction.
If n = 2, then ϕ = diag(λ, q−1λ) and we consider the complex

Ĉ•
2,λ : Ĉ−1

2,λ = ιG
B

(δ̂1)
f̂(1,s)

�� Ĉ0
2,λ = ιG

B
(δ̂s),

where s ∈ S2 is the unique non-trivial element. It can easily be checked that the morphism f̂(1, s)
is injective and that its cokernel is Ŝt(λ, 2).

Assume we have constructed Ĉ•
n−1,λ. For i = 1, 2 consider the upper triangular block

parabolic subgroup Pi ⊂ G with Levi subgroup Mi such that M1 has block sizes (n− 1, 1) and
M2 has block sizes (1, n− 1). We consider

D•
1 = Ĉ•

n−1,λ⊗̂ ûnrq−(n−1)λ

as a complex of ĤM1,χ-modules and

D•
2 = ûnrq−(n−1)λ⊗̂ Ĉ•

n−1,λ

as a complex of ĤM2,χ-modules. Let σ ∈ Sn be the cycle (12 · · ·n). Then M1 and M2 satisfy
σM1σ

−1 = M2 and the identity (D•
1)
σ → D•

2, as a morphism of complexes of ĤM2,χ-modules,
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induces a morphism of complexes
ιG
P 1
D•

1 −→ ιG
P 2
D•

2.

We define Ĉ•
n,λ as the mapping cone of this complex. Then Ĉ•

n,λ obviously is a complex in degree
[−(n− 1), 0] whose entries are (by transitivity of parabolic induction) direct sums of ιG

B
(δ̂w) for

some w ∈W (each isomorphism class appearing exactly once) and the differentials are given by
intertwining operators (by transitivity of intertwining operators).

Lemma 4.35. The complex Ĉ•
n,λ is exact in negative degrees and

H0(Ĉ•
n,λ) ∼= Ŝt(λ, n).

Proof. We proceed by induction. If n = 2 this was already remarked above. Assume that Ĉ•
n−1,λ

is quasi-isomorphic to Ŝt(λ, n− 1). Then Ĉ•
n,λ is quasi-isomorphic to the complex

ιG
P 1

(
Ŝt(λ, n− 1)⊗̂ûnrq−(n−1)λ

) −→ ιG
P 2

(ûnrq−(n−1)λ⊗̂ Ŝt(λ, n− 1))

in degrees −1 and 0, where the morphism is given by the obvious intertwining map. One can
easily check that this morphism is injective and its cokernel is Ŝt(λ, n). �

Similarly to the definition of ĤG,χ, we define mχ-adic completions on the side of stacks of
L-parameters. Let X̂Ǧ,χ denote the completion of XǦ along the pre-image of χ ∈ Spec Z = Ť /W

under the canonical morphism XǦ → Ť /W . This formal scheme is still equipped with an action
of Ǧ and we can form the stack quotient [X̂Ǧ,χ/Ǧ]. Similarly, we write X̂P̌ ,χ and X̂M̌,χ for the
corresponding completions of XP̌ and XM̌ . The functor RG defined in (4.11) naturally extends
to a functor

R̂G,χ : D+(ĤG,χ-mod) −→ D+
QCoh([X̂Ǧ,χ/Ǧ]).

As a consequence of Theorem 4.25 the functor R̂G,χ also satisfies compatibility with parabolic
induction similarly to Conjecture 3.2(ii), but for the induced morphism between the formal
completions of the stacks involved.

Let us build a more explicit model of these stacks. We consider the closed formal subscheme

Ŷ = Spf (C[u1, . . . , un−1][[t1, . . . , tn]]/((ti+1 − ti)ui)) ⊂ X̂Ǧ,χ, (4.25)

where C[u1, . . . , un−1][[t1, . . . , tn]]/((ti+1 − ti)ui) is equipped with the (t1, . . . , tn)-adic topology.
The embedding into X̂Ǧ,χ is defined by the (ϕ,N)-module

ϕŶ = diag(λ+ t1, q
−1(λ+ t2), . . . , q−(n−1)(λ+ tn)),

NŶ (ei) =

{
uiei+1, i < n− 1,
0, i = n− 1,

over Ŷ . This formal scheme comes equipped with a canonical Ť -action (which is trivial on the
ti and via the adjoint action on the ui) such that [Ŷ /Ť ] = [X̂Ǧ,χ/Ǧ].

For w ∈W we define a closed Ť -equivariant formal subscheme Ŷ (w) by adding the equation
ui = 0 if q−(i−1)λ precedes q−iλ in wϕ. In particular, Ŷ (w0) = Ŷ if w0 ∈W is the longest element.
We denote by X̂Ǧ,χ(w) the corresponding Ǧ-equivariant closed formal subscheme of X̂Ǧ,χ.

Lemma 4.36. There is an isomorphism

R̂G,χ(ιGB δ̂w) ∼= OX̂Ǧ,χ(w),

where we view R̂G,χ(ιGB δ̂w) as a Ǧ-equivariant sheaf on X̂Ǧ,χ.
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Proof. This is a straightforward calculation using the compatibility of R̂G,χ with parabolic
induction. �

The lemma identifies the images of parabolically induced representations under R̂G,χ. Next
we identify the images of intertwining operators. For w,w′ ∈W there is a canonical Ť -equivariant
morphism

ĝ(w,w′) : OŶ (w) −→ OŶ (w′)

defined as follows. Let Iw = {i = 1, . . . , n− 1| q−(i−1)λ precedes q−iλ in wϕ}, that is,

Ŷ (w) = Spf C[u1, . . . , un−1][[t1, . . . , tn]]/(ui, i ∈ Iw, (ti+1 − ti)ui, i /∈ Iw)

and let us write

Ŷ (w,w′) = Spf C[u1, . . . , un−1][[t1, . . . , tn]]/(ui, i ∈ Iw ∩ Iw′ , (ti+1 − ti)ui, i /∈ Iw ∩ Iw′)

for the moment. Then, similarly to (4.18), multiplication by
∏
i∈Iw\Iw′ (ti+1 − ti) induces a

morphism OŶ (w) → OŶ (w,w′) and we define ĝ(w,w′) to be its composition with the canonical
projection to OŶ (w′).

Lemma 4.37. For w,w′ ∈W the Ẑχ-module

Hom[X̂Ǧ,χ/Ǧ](O[X̂Ǧ,χ(w)/Ǧ],O[X̂Ǧ,χ(w′)/Ǧ]) = Hom[Ŷ /Ť ](O[Ŷ (w)/Ť ],O[Ŷ (w′)/Ť ])

is free of rank one with basis ĝ(w,w′).

Proof. This is a straightforward computation. �
By the following theorem the images of the intertwining operators R̂G,χ(f̂(w,w′)) can be

identified (up to isomorphism) with the morphisms ĝ(w,w′) just constructed.

Theorem 4.38. Let ϕ = diag(λ, q−1λ, . . . , q−(n−1)λ) ∈ Ť (C) and χ : Z→ C be the character
defined by the image of ϕ in Ť /W . The set of functors

R̂M,χ : D+(ĤM,χ-mod) −→ D+
QCoh([X̂M̌,χ/M̌ ])

for standard Levi subgroups M ⊂ G, is uniquely determined (up to isomorphism) by requiring
that they are ẐM,χ-linear, compatible with parabolic induction, and that R̂T,χ is induced by the
identification

ĤT,χ-mod
∼=−→ QCoh(X̂Ť ,χ).

More precisely, let R̂′
G,χ be any functor satisfying these conditions. Then for each w ∈W , there

are isomorphisms

αw : R̂′
G,χ(ι

G
B
δ̂w)

∼=−→ OX̂Ǧ,χ(w)

such that for w,w′ ∈W the diagram

R̂′
G,χ(ι

G
B
δ̂w)

αw ��

R̂′
G,χ(f̂(w,w′))

��

OX̂Ǧ,χ(w)

ĝ(w,w′)
��

R̂′
G,χ(ι

G
B
δ̂w′)

αw′
�� OX̂Ǧ,χ(w′)

(4.26)

commutes.
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Remark 4.39. (a) Note that we do not need to add the requirement

R̂G,χ((c-indGN ψ)I[T,1] ⊗Z Ẑχ) ∼= O[X̂Ǧ,χ/Ǧ]

which also would be a consequence of the requirements in Conjecture 3.2. In the situation
considered here, there is an isomorphism

(c-indGN ψ)[T,1] ⊗Z Ẑχ ∼= ιG
B
δ̂w0

and hence the above isomorphism is automatic.
(b) It seems possible to compute that

Exti
[Ŷ /Ť ]

(O[Ŷ (w)/Ť ],O[Ŷ (w′)/Ť ]) = 0

for w,w′ ∈W and i �= 0 by a similar explicit computation to that in Proposition 4.31. This would
imply the conjectured full faithfulness of R̂G,χ.

Proof. Let us first justify that the second assertion implies the first. Note that

ĤM,χ = ĤM,χ ⊗ĤT,χ
ĤT,χ = ĤM,χ ⊗ĤT,χ

( ⊕
w∈WM

δ̂w

)
=

⊕
w∈WM

ιM
BM

δ̂w.

Using free resolutions of bounded-above objects in D+(ĤM,χ-mod), it is hence enough control
the images of parabolically induced representations and the images of the intertwining operators.
Then a limit argument deals with the general case.

Given R̂′
G,χ as in the formulation of the theorem, compatibility with parabolic induction

forces the existence of isomorphisms αw. Note that αw is unique up to a unit in Ẑχ. We claim
that we can choose the isomorphisms such that the diagrams (4.26) are commutative. In order
to do so, we proceed by induction. By assumption the claim is true for n = 1. We also make
n = 2 explicit. In this case we can identify

ιG
B
δ̂1 = ĤG,χeK and ιG

B
δ̂s = ĤG,χest.

One calculates that the intertwining operators f̂(1, s) and f̂(s, 1) are identified with a Ẑχ-basis of

HomĤG,χ
(ĤG,χeK , ĤG,χest) and HomĤG,χ

(ĤG,χest, ĤG,χeK),

respectively. Moreover, the compositions f̂(1, s) ◦ f̂(s, 1) and f̂(s, 1) ◦ f̂(1, s) are the multiplica-
tions with f ∈ Ẑ×

χ , with f as defined just before Proposition 4.31. The calculation in the rank-two
case, Proposition 4.31, yields the claim.

Assume now that the claim is true for n− 1 and view Sn−1 as the subgroup of W = Sn
permuting the elements 1, . . . , n− 1. Recall the parabolic subgroups P1 and P2 from the inductive
construction of the complex Ĉ•

n,λ. Using parabolic induction ιG
P 1

and the induction hypothesis,
we may assume that we have constructed αw for all w ∈ Sn−1 ⊂W such that the diagram (4.26)
commutes for all w,w′ ∈ Sn−1. Let σ = (12 · · ·n) as above. We first show that we can choose

ασwσ−1 : R̂′
G,χ(ι

G
B
δ̂σwσ−1)

∼=−→ OŶ (σwσ−1)

such that (4.26) commutes for the pairs w, σwσ−1 and σwσ−1, w. Let τi,i+1 denote the transposi-
tion of i and i+ 1. Inductively we define w1 = τn,n−1wτn,n−1 and wi = τn−i,n−i−1wi−1τn−i,n−i−1.
Then the composition of intertwining operators

ιG
B
δ̂w −→ ιG

B
δ̂w1 −→ · · · −→ ιG

B
δ̂wn−1 = ιG

B
δ̂σwσ−1
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is identified with βf̂(w, σwσ−1) for some β ∈ Ẑ×
χ . Similarly, the composition

ιG
B
δ̂σwσ−1 −→ ιG

B
δ̂wn−1 −→ · · · −→ ιG

B
δ̂w1 = ιG

B
δ̂w

is identified with βf̂(σwσ−1, w) for the same unit β. In this composition all the intertwining
maps are isomorphisms, except for the morphisms

ιG
B
δ̂wi −→ ιG

B
δ̂wi+1 and ιG

B
δ̂wi+1 −→ ιG

B
δ̂wi

where the position of n and n− 1 in (wi(1), . . . , wi(n)) and (wi+1(1), . . . , wi+1(n)) is inter-
changed. By the computation in the two-dimensional case and compatibility with parabolic
induction this intertwining morphism is given by the multiplication with β′(tn − tn−1) for some
unit β′ ∈ Ẑ×

χ or by canonical projection multiplied with β′. Modifying ασwσ−1 by (ββ′)−1, we
deduce the commutativity of the diagrams (4.26) for the pairs w, σwσ−1 and σwσ−1, w.

Now consider the general case. Note that for any w ∈W there exists w̃ ∈ Sn−1 such that

ιG
B
δ̂w

∼=−→ ιG
B
δ̂w̃ or ιG

B
δ̂w

∼=−→ ιG
B
δ̂σw̃σ−1 .

Hence, we can choose αw such that all the diagrams (4.26) commute, provided we can check
commutativity of these diagrams for w,w′ ∈ Sn−1 ∪ σSn−1σ

−1. If both elements w,w′ lie in
Sn−1, this follows from the induction hypothesis. Let us check the claim for w,w′′ ∈ Sn−1 and
w′ = σw′′σ−1 (the argument in the other cases being similar). By Ẑχ-linearity it is enough to
check that

R̂′
G,χ(ι

G
B
δ̂w)

αw ��

R̂′
G,χ(γf̂(w,w′))

��

OX̂Ǧ,χ(w)

γĝ(w,w′)
��

R̂′
G,χ(ι

G
B
δ̂w′)

αw′
�� OX̂Ǧ,χ(w′)

commutes for any choice of 0 �= γ ∈ Ẑχ. In particular, we may check it for the element γ defined
by

f̂(w′′, σw′′σ−1) ◦ f̂(w,w′′) = γf̂(w, σw′′σ−1) = γf̂(w,w′).

This follows from functoriality and the cases already treated above. �

We now continue to calculate the image R̂G,χ(Ŝt(λ, n)) of the deformed Steinberg represen-
tation. Let us write

Ŷ St ∼= Spf C[u1, . . . , un−1][[t]] ⊂ Ŷ

for the formal subscheme defined by t := t1 = · · · = tn. We write X̂St
Ǧ,χ

for the corresponding

Ǧ-equivariant scheme.
We inductively construct a Ť -equivariant resolution Ê•

n,λ of OŶ St .

(i) If n = 2 we set

Ê•
2,λ : Ê−1

2,λ = OŶ (1)

·(t2−t1)
�� Ê0

2,λ = OŶ (s),

where again s ∈ S2 is the unique non-trivial element. It can easily be checked that this morphism
is injective and its cokernel is OŶ St
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(ii) Assume that Ê•
n−1,λ is constructed, then consider the morphism of complexes

Ê•
n−1,λ[un−1][[tn]]/(un−1)

·(tn−tn−1)−−−−−−−→ Ê•
n−1,λ[un−1][[tn]]/((tn − tn−1)un−1)

on Ŷ and define Ê•
n,λ to be its mapping cone. Here we write

Ê•
n−1,λ[un−1][[tn]]/(un−1) = Ê•

n−1,λ ⊗An−1 An/(un−1),

and

Ê•
n−1,λ[un−1][[tn]]/((tn − tn−1)un−1) = Ê•

n−1,λ ⊗An−1 An,

by a slight abuse of notation, where we write

Aj = C[u1, . . . , uj−1][[t1, , . . . , tj ]]/((ti+1 − ti)ui).
Lemma 4.40. The complex Ê•

n,λ is exact in negative degrees and

H0(Ê•
n,λ) = OŶ St .

Proof. We proceed by induction. For n = 2 the claim is clear. Assume the claim is true for n− 1.
Then the long exact cohomology sequence implies that Ê•

n,λ is quasi-isomorphic to the complex

C[u1, . . . , un−2][[t, tn]] −→ C[u1, . . . , un−2, un−1][[t, tn]]/((tn − t)un−1)

sending 1 to (tn − t). The claim follows from this. �

Let us denote by Ê•n,λ the Ǧ-equivariant complex on X̂Ǧ,χ corresponding to the Ť -equivariant
complex Ê•

n,λ under the identification [Ŷ /Ť ] = [X̂Ǧ,χ/Ǧ].

Corollary 4.41. There is an isomorphism of complexes

R̂G,χ(Ĉ•
n,λ) ∼= Ê•n,λ. (4.27)

Proof. We prove this using the inductive construction of both complexes. The case n = 1 is
trivial. Assume now that (4.27) is true for n− 1. Recall the parabolic subgroups P1 and P2 from
the inductive construction of Ĉ•

n,λ.
Let us write Gn−1 = GLn−1(F ) and Bn−1 ⊂ Gn−1 for the upper triangular Borel. Further,

let ϕ′ = diag(λ, q−1λ, . . . , q−(n−2)λ). Similarly to the definition of δw and δ̂w, using wϕ, we define
δ′w and δ̂′w using wϕ′ for w ∈ Sn−1. Then

ιG
P 1

(ιGn−1

Bn−1
δ̂′w⊗̂ ûnrq−(n−1)λ) = ιG

B
δ̂w,

ιG
P 2

(ûnrq−(n−1)⊗̂ ιGn−1

Bn−1
δ̂′wλ) = ιG

B
δ̂σwσ−1 ,

and the intertwining operator between the representations on the right-hand side translates to
the intertwining operator f̂(w, σwσ−1) under this identification.

By the same inductive construction, we assume that each entry of Ĉ•
n−1,λ is a direct sum of

representations ιGn−1

Bn−1
δ̂′w for w ∈ Sn−1. By Theorem 4.38 the morphism

R̂G,χ(ιGP 1
D•

1) −→ R̂G,χ(ιGP 2
D•

2)

is (up to a unit) identified with the multiplication by (tn − tn−1). The inductive construction of
Ê•
n,λ hence implies the claim. �
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Corollary 4.42. Let λ ∈ C× and let (ϕ,N) ∈ XǦ(C) be the L-parameter defined by
(Cn, ϕ,N) = Sp(λ, n). Then

RG(St(λ, n)) ∼= OXǦ,[ϕ,N ]
,

where St(λ, n) = LL(ϕ,N) = LLmod(ϕ,N) is the generalized Steinberg representation.

Proof. The corollary above implies

R̂G,χ(Ŝt(λ, n)) = OX̂St
Ǧ,χ

as Ǧ-equivariant sheaves. Moreover, we have

Ŝt(λ, n)⊗LC[[t]] C[[t]]/(t) = Ŝt(λ, n)⊗C[[t]] C[[t]]/(t) = St(λ, n),

OX̂St
Ǧ,χ

⊗LC[[t]] C[[t]]/(t) = OX̂St
Ǧ,χ

⊗C[[t]] C[[t]]/(t) = OXǦ,[ϕ,N ]
.

The center Ẑχ acts on Ŝt(λ, n) and OX̂St
Ǧ,χ

via a surjection

Ẑχ −→ C[[t]].

Choosing a pre-image g of t, we obtain isomorphisms

Ŝt(λ, n)⊗LC[[t]] C[[t]]/(t) = Ŝt(λ, n)⊗L
Ẑχ

Ẑχ/(g),

OX̂St
Ǧ,χ

⊗LC[[t]] C[[t]]/(t) = OX̂St
Ǧ,χ

⊗L
Ẑχ

Ẑχ/(g).

The claim now follows from Ẑχ-linearity of R̂G,χ. �
Remark 4.43. With some extra effort one can use a similar strategy to compute the images of
LL(ϕ,N), where ϕ = diag(λ, q−1λ, . . . , q−(n−1)λ) and N is an arbitrary endomorphism such that
(ϕ,N) ∈ XǦ. Recall that LL(ϕ,N) is the unique simple quotient of LLmod(ϕ,N). One needs
to build a complex similar to Ĉ•

n,λ which is a resolution of LL(ϕ,N). We omit the technical
computation, and only describe the result.

Let us choose such y = (ϕ,N) ∈ Y ⊂ XǦ, where Y ⊂ Ŷ is the closed subscheme t1 = · · · =
tn = 0. We denote by L(y) the sheaf of ideals defining the closed subscheme⋃

{i|ui(y)=0}
{ui = 0} ⊂ Y.

Obviously this is a Ť -equivariant line bundle, and we write L(y) for the corresponding
Ǧ-equivariant line bundle on XǦ. Let us denote the number of i ∈ {1, . . . , n− 1} such that
ui(y) = 0 by ly. Then

RG(LL(ϕ,N)) = L(y)[ly]

is the equivariant line bundle L(y) shifted to (cohomological) degree −ly.
Proof of Theorem 4.34. We assume that ϕ is an arbitrary regular semi-simple element and choose
a decomposition

(Cn, ϕ,N) =
s⊕
i=1

Sp(λi, ri)

as in § 4.1. Then

LLmod(ϕ,N) = ιGP (St(λ1, r1)⊗ · · · ⊗ St(λs, rs)) = ιG
P

′(St(λs, rs)⊗ · · · ⊗ St(λ1, r1))
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with the ordering of (4.2). Here P is a block upper triangular parabolic with Levi M and we set
P ′ to be the block upper triangular parabolic with Levi M ′ = w0Mw−1

0 , where w0 ∈W is the
longest element. Write M̌ ′ = GLrs × · · · ×GLr1 and consider the morphisms

α : XP̌ ′ −→ XM̌ ′ ,

β : X̃P̌ ′ −→ XǦ.

The choice of M̌ ′ ↪→ P̌ ′ defines an embedding ι : XM̌ ′ ↪→ XP̌ ′ . We will write (xs, . . . , x1) ∈ XM̌ ′
for the point defined by

Sp(λs, rs)⊕ · · · ⊕ Sp(λ1, r1),

and write ZM̌ ′(x1, . . . , xs) for the Zariski closure of its M̌ ′-orbit M̌ ′ · (xs, . . . , x1). Then one easily
checks that the choice of ordering of λ1, . . . , λs implies that

α−1(ZM̌ ′(xs, . . . , x1)) =: ZP̌ ′(xs, . . . , x1)

is the Zariski closure of the P̌ ′-orbit of ι(xs, . . . , x1). Moreover, the choice of ordering implies
that α is smooth along this pre-image. In particular,

Lα∗OZM̌′ (xs,...,x1) = OZP̌ ′ (xs,...,x1).

Let ZǦ(xs, . . . , x1) ⊂ X̃P̌ ′ denote the Ǧ-invariant closed subscheme of X̃P̌ ′ corresponding to the
P̌ ′-invariant closed subscheme ZP̌ ′(xs, . . . , x1) ⊂ XP̌ ′ . Using Corollary 4.42 and compatibility of
RG with parabolic induction, we are left to show that

Rβ∗(OZǦ(xs, . . . , x1)) = OXǦ,[ϕ,N ]
.

This follows, as the construction implies that β maps ZǦ(xs, . . . , x1) isomorphically onto the
Zariski closure XǦ,[ϕ,N ] of the Ǧ-orbit Ǧ · (ϕ,N) = Ǧ · ι(xs . . . , x1). �

We also remark that Theorem 4.38 is true for all regular semi-simple elements ϕ.

Corollary 4.44. Let ϕ ∈ Ť (C) be regular semi-simple and χ : Z→ C the character defined
by the image of ϕ in Ť /W . The set of functors

R̂M,χ : D+(ĤM,χ-mod) −→ D+
QCoh([X̂M̌,χ/M̌ ])

for standard Levi subgroups M ⊂ G, is uniquely determined (up to isomorphism) by requiring
that they are ẐM,χ-linear, compatible with parabolic induction, and that R̂T,χ is induced by the
identification

ĤT,χ-mod = QCoh(X̂Ť ,χ).

Proof. As in the proof of Theorem 4.38 the images of R̂G,χ(δ̂w) are uniquely determined up
to isomorphism and it is enough to prove that the same is true for the images of intertwining
operators. Without loss of generality we may assume

ϕ = diag(λ1, q
−1λ1, . . . , q

−(r1−1)λ1, . . . λs, q
−1λs, . . . q

−(rs−1)λs)

with q−aλi �= q−bλj for i �= j, a = 0, . . . , ri − 1, b = 0, . . . , rj − 1, and λi �= q−rjλj . Let M =
GLr1(F )× · · · ×GLrs(F ) be the block diagonal Levi subgroup with block sizes (r1, . . . , rs) and
P the corresponding block upper triangular parabolic subgroup.

Further, let ϕi = diag(λi, q−1λi, . . . , q
−(ri−1)λi) ∈ GLri(F ). For wi ∈ Sri we write δ̂

(i)
wi for

the universal unramified deformation of the character defined by wiϕi. Then, by means of an
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intertwining operator, every ιG
B
δ̂w is isomorphic to

ιG
P
(ιM
BM

(δ̂(1)
w1
⊗ · · · ⊗ δ̂(s)ws ))

for some (w1, . . . , ws) ∈ Sr1 × · · · × Srs = WM . As in the proof of Theorem 4.38 we deduce that,
given two functors R̂G,χ and R̂′

G,χ satisfying the assumptions, it is enough to show that for all
w ∈WM there are isomorphisms

αw : R̂G,χ(ιGB δ̂w) −→ R̂′
G,χ(ι

G
B
δ̂w)

such that the diagrams

R̂G,χ(ιGB δ̂w)
αw ��

R̂G,χ(f̂(w,w′))
��

R̂′
G,χ(ι

G
B
δ̂w)

R̂′
G,χ(f̂(w,w′))

��

R̂G,χ(ιGB δ̂w′)
αw′

�� R̂′
G,χ(ι

G
B
δ̂w′)

commute for all w,w′ ∈WM . This follows from the statement of Theorem 4.38 and transitivity
of intertwining operators under parabolic induction. �

We finish by giving more details on the behavior of RG(c-indGK σP) in the three-dimensional
case.

Example 4.45. In the case n = 3 there are three partitions Pmin,P0,Pmax of n = 3. We have

mPmin = mPmax = 1,

mP0 = 2,

where the multiplicities are defined as in (4.4).
The sheaves RG((c-indGK σmin)I) and RG((c-indGK σmax)I) are determined in Proposition 4.27.

Let us give a closer description of

F = RG((c-indGK σP0)
I).

As discussed in Remark 4.28, the generic rank of F on ZǦ,P ′ is zero if P ′ = Pmin, one if P ′ = P0,
and two if P ′ = Pmax.

We describe the completed stalks F̂x as modules over the complete local rings ÔXǦ,x for
C-valued points x = (ϕ,N) ∈ XǦ. To simplify the exposition we restrict ourselves to regular
semi-simple ϕ. Recall that XǦ,P0

= ZǦ,P0
∪ ZǦ,Pmax

is a union of two irreducible components in
this case. Moreover, recall that we write XǦ,0 = ZǦ,Pmax

for the irreducible component defined
by N = 0.

(a) Assume x ∈ ZǦ,Pmin
\XǦ,P0

. Then F̂x = 0.

(b) Assume x ∈ ZǦ,P0
\ZǦ,Pmax

. Then F̂x ∼= ÔXǦ,x.
(c) Assume x ∈ ZǦ,Pmax

\ZǦ,P0
. Then F̂x ∼= Ô2

XǦ,x
.

(d) Assume x ∈ ZǦ,Pmax
∩ ZǦ,P0

. Without loss of generality we may assume ϕ = diag(λ1, λ2, λ3).
As before, we write χ : Z→ C for the character defined by the characteristic polynomial of ϕ.
Up to renumbering, we have to distinguish two cases.
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(d1) λ2 = q−1λ1 and λ3 /∈ {q−1λ2, qλ1}. In this case ZǦ,P0
and ZǦ,Pmax

are smooth at x. Moreover
(using the notation introduced above),

c-indGK σP0 ⊗Z Ẑχ ∼= ιG
B
δ̂w1 ⊕ ιGB δ̂w2

for some w1, w2 ∈W and (with appropriate numeration)

c-indGK σPmin ⊗Z Ẑχ ∼= ιG
B
δ̂w1 �∼= ιG

B
δ̂w2
∼= c-indGK σPmax ⊗Z Ẑχ.

We then can use compatibility of RG with parabolic induction to deduce that

F̂x ∼= ÔXǦ,P0
,x ⊕ ÔXǦ,0,x.

(d2) λ3 = q−1λ2 = q−2λ1. In this case ZǦ,P0
is no longer smooth at x, but has a self-intersection

as can be seen from the description of the complete local ring: using a local presentation as in
(4.25), we can compute that the complete local ring of ÔXǦ,x is smoothly equivalent to

C[[t1, t2, t3, u1, u2]]/((t1 − t2)u1, (t2 − t3)u2).

With these coordinates the completion of ZǦ,Pmin
at x is given by the vanishing locus V (t1 −

t2, t2 − t3), and the completion of ZǦ,Pmax
is given by V (u1, u2). Moreover, both are smooth

at x. However, the completion of ZǦ,P0
is given by V (t1 − t2, u2) ∪ V (u1, t2 − t3), that is, it

decomposes into two components, say Ẑ1 and Ẑ2. Note that this computation implies that ZǦ,P0

cannot be Cohen–Macaulay at x, as it has a self-intersection in codimension two. We can compute
the completions of the compactly induced representation:

c-indGK σPmax ⊗Z Ẑχ ∼= ιG
B
δ̂1,

c-indGK σP0 ⊗Z Ẑχ ∼= ιG
B
δ̂w1 ⊕ ιGB δ̂w2 ,

c-indGK σPmin ⊗Z Ẑχ ∼= ιG
B
δ̂w0 ,

where w0 ∈W is the longest element and w1, w2 ∈W\{1, w0}. Here the elements w1, w2 are
chosen such that

{ιG
B
δ̂1, ι

G
B
δ̂w1 , ι

G
B
δ̂w2 , ι

G
B
δ̂w0} = {ιG

B
δ̂w, w ∈W}

is the set (consisting of four pairwise non-isomorphic elements) of induced representations of the
form ιG

B
δ̂w. Using compatibility with parabolic induction, we deduce that (in the coordinates

introduced above)

F̂x = C[[t1, t2, t3, u1, u2]]/((t1 − t2)u1, u2)

⊕ C[[t1, t2, t3, u1, u2]]/(u1, (t2 − t3)u2).

In other words, the completion F̂x is the direct sum of the structure sheaves of X̂Ǧ,0,x ∪ Ẑ1 and
X̂Ǧ,0,x ∪ Ẑ2.
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