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On the derived category of the Iwahori—-Hecke algebra

Fugen Hellmann

ABSTRACT

We state a conjecture that relates the derived category of smooth representations of a
p-adic split reductive group with the derived category of (quasi-)coherent sheaves on a
stack of L-parameters. We investigate the conjecture in the case of the principal block
of GL,, by showing that the functor should be given by the derived tensor product with
the family of representations interpolating the modified Langlands correspondence over
the stack of L-parameters that is suggested by the work of Helm and of Emerton and

Helm.
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1. Introduction

We study the smooth representation theory of a split reductive group G over a non-archimedean
local field F'. The classification of the irreducible smooth G-representations is one of the main
objectives of the local Langlands program. One aims to parametrize these representations by
so-called L-parameters, together with some additional datum (a representation of a finite group
associated to the L-parameter). Such a parametrization has been established in the case of
GL,,(F). For split reductive groups it has been established by Kazhdan and Lusztig for those
irreducible smooth representations of G that have a non-trivial fixed vector under an Iwahori
subgroup I C G (see [KL87]). In this case an L-parameter just becomes a conjugacy class of
(¢, N), where ¢ is a semi-simple element of the Langlands dual group G, and N € Lie G, sat-
isfying Ad(¢)(N) = ¢~ 'N. Here ¢ is the number of elements of the residue field of F. This
parametrization depends on an additional choice, called a Whittaker datum.

In this paper we formulate a conjecture that lifts the Langlands classification to a fully faithful
embedding of the category Rep(G) of smooth G-representations (on vector spaces over a field
C of characteristic zero) to the category of quasi-coherent sheaves on the stack of L-parameters.
It turns out that this conjecture has to be formulated at the level of derived categories. As one
of the main tools in the study of smooth representations is parabolic induction, we require this
fully faithful embedding to be compatible with parabolic induction in a precise sense. Moreover,
the conjectured functor should depend on the choice of a Whittaker datum. Similar conjectures
and results where obtained by Ben-Zvi, Chen, Helm and Nadler [BCHN20] and Zhu [Zhu20]. The
conjectures stated here can also be regarded as a special case of the conjectural geometrization
of the local Langlands correspondence of Fargues and Scholze [FS21].

The conjecture can be made more precise in the case of the principal Bernstein block
Repyr,11(G) of Rep(G), that is, the block containing the trivial representation. This block coin-

cides with the full subcategory Rep’G of smooth G-representations generated by their I-fixed
vectors for a choice of an Iwahori subgroup I C G. As Rep!G is equivalent to the category of
modules over the Iwahori—Hecke algebra the conjecture comes down to a conjecture about the
derived category of the Iwahori-Hecke algebra.

In the main part of the paper we investigate the conjecture in the case of G = GL,(F’) and the
principal block by relating it to the construction of a family of G-representations interpolating
the (modified) local Langlands correspondence, following the work of Emerton and Helm [EH14].

We describe the conjecture and our results in more detail. Fix a finite extension F' of Q,,
or of F,((t)). Let G be a split reductive group over F' and write G = G(F'). We fix a field C
of characteristic zero and shall always assume that C contains a square root ¢'/? of ¢. We
denote by G the dual group of G, considered as a reductive group over C. More generally,
for every parabolic (or Levi) P (or M) of G we will write P = P(F') (respectively, M = M(F))
for its group of F-valued points and P (respectively, M) for its dual group over C. For each
parabolic subgroup P C G with Levi M (normalized) parabolic induction defines a functor L%
from M-representations to G-representations.

On the other hand, we denote by XgD the space of Weil-Deligne representations with

values in G, that is, the space whose C-valued points are pairs (p, N) consisting of a
smooth representation Wr — G(C') of the Weil group Wg of F and N € LieG satisfying the
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usual relation
Ad(p(0))(N) = ¢ IvlIN,

where || — || : Wp — Z is the projection. We shall write [XEVD /G| for the stack quotient by the
obvious G-action.
Let us write Z(G) for the global sections of the structure sheaf on [XgD /G], or equivalently

the coordinate ring of the geometric invariant theory (GIT) quotient ngD J/G. Moreover, we
write 3(G) for the Bernstein center of Rep(G). With this notation we state the following con-
jecture. For the sake of brevity we state the conjecture in a vague form and refer to the body of
the paper for a more precise formulation.

CONJECTURE 1.1. There exist the following data.

(i) For each (G, B, T,) consisting of a reductive group G, a Borel subgroup B, a split maximal
torus T C B, and a (conjugacy class of a) generic character ¢ : N — C*, there exists an
exact and fully faithful functor

R : DT (Rep(G)) — D ((XEP/G).

(ii) For (G,B,T,®) as in (i) and a parabolic subgroup P C G containing B we denote by M the
Levi quotient of P. Then the functors Rg and quj” satisfy a compatibility with parabolic

induction L% Here s is the restriction of v to the unipotent radical of the Borel Bj; of
M via the splitting M — P defined by T.

These data satisfy the following conditions.
(a) If G =T is a split torus, then Ry = R? is induced by the equivalence
Rep(T) = QCoh(X}'P)

given by local class field theory.
(b) Let (G,B, T, 1) be as in (i). The morphism Z(G) — 3(G) defined by full faithfulness of Rg
is independent of the choice of 1 and induces a surjection

e - Bernstein components connected components
¢ of Rep(G) of XgD ’

(¢) For (G,B,T,%) as in (i) there is an isomorphism
R ((c-ind§} ) 2 O -

In this paper we mainly focus on the conjecture in the case of the principal block of Rep(G).
If T'C G is a split maximal torus, we write Reppy (&) for the Bernstein block of those rep-
resentations 7 such that all irreducible subquotients of 7 are subquotients of a representations
induced from an unramified T-representation. Then parabolic induction restricts to a functor

L% : Rep[TM,l}(M) - Rep[T,1]<G)

for any choice of maximal split tori 7' C G and Ty C M (as the categories do not depend on
these choices).

On the other hand, we denote by X5 = {(¢, N) € G x LieG | Ad(¢)(N) = g ' N} the space
of L-parameters (corresponding to the representations in the principal block) and write [X/G]
for the stack quotient by the action of G induced by conjugation. We obtain similar spaces
[Xp/P] etc. for parabolic subgroups P C G (or their Levi quotients). If T is a (maximal split)
torus, then Xy is just the dual torus T.
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In this case the relation between the Bernstein center 3¢ = 3[7,1)(G) of the category
Repir,1)(G) and the GIT quotient X¢//G can be made precise: the center 3¢ can naturally
be identified with the functions on the adjoint quotient of G' and hence 3¢ acts on categories of
modules over X~ as well as on Rep[Tvl](G). The following conjecture is a slightly more precise
version of Conjecture 1.1 in the case of the block Rep[TJ](G). Equivalently, the conjecture can
be interpreted as a conjecture about the derived category of the Iwahori—Hecke algebra, and we
shall take this point of view in the last part of the paper when we discuss the case of GL,. In the
case of modules over an affine Hecke algebra (where ¢ is an invertible indeterminate) a similar
conjecture! is due to Ben-Zvi et al. [BCHN20] and Zhu [Zhu20].

CONJECTURE 1.2. There exist the following data.

(i) For each (G,B,T,) consisting of a reductive group G, a Borel subgroup B, a maximal
split torus T C B and a (conjugacy class of a) generic character ¢ : N — C*, there exists
an exact and fully faithful 3g-linear functor

RY,: D*(Repir,)(G)) — Doy X/ C).

(ii) For (G,B,T,4) as in (i) and each parabolic subgroup P C G containing B, there exists a
natural 3g-linear isomorphism

5 Rg o L% — (RfBs 0 La™) o R?@IM

of functors D (Repyr,, 11M) — Dacoh([Xé /G]) such that the various ¢§ are compatible
(in a precise sense). Here M is the Levi quotient of P, the character 1,/ is the restriction of

¥ to the unipotent radical of By; = BN M (using a splitting M — P of P — M), and
o [Xp/P) — [X /3],
B [Xp/P] — [X/C]
are the morphisms on stacks induced by the natural maps P — M and P — G.
For a maximal split torus 7" the functor Ry = R%T is induced by the identification
Repry(T) = C[T/T°]-mod = QCoh(T'),

where T° C T' is the maximal compact subgroup. Moreover, for (G,B, T,1)) as in (i) there is an
isomorphism

RE((c-ind§ 90)71)) 2 Opy -

In fact it turns out that in the formulation of the conjecture the stack [X;/ P] has to be
replaced by a derived variant. Again, we refer to the body of the paper for details and a more
precise formulation of the conjecture.

In the case G = GL,,(F') we consider a candidate for the conjectured functor. Emerton and
Helm [EH14] have suggested (in the context of ¢-adic deformation rings rather than the stack
[X~/G]) the existence of a family Vi of smooth G-representations on [X5/G] that interpolates
the modified local Langlands correspondence. A candidate for the family Vg was constructed
by Helm in [Hell6]. The modified local Langlands correspondence assigns to (¢, N) € X(C)
a certain representation LLmOd(cp,N ) that is indecomposable, induced from a parabolic sub-
group, has a unique irreducible subrepresentation which is a generic representation, and its
unique irreducible quotient is the representation LL(p, N) associated to (¢, N) by the local
Langlands correspondence. In the context of modules over the Iwahori-Hecke algebra Hg the

! The author was not aware of their project when formulating the conjecture and results in this paper.
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Hg-modules corresponding to the representations LL™°Y(p, N) are often referred to as the
standard modules.

We conjecture that, in the GL,, case, the functor Rg = Ré should be given by the derived
tensor product with Vg (we omit the superscript ¢ from the notation, as in the case of GL,, there
is a unique Whittaker datum). For the precise formulation it is more convenient to pass from
G-representations to modules over the Iwahori-Hecke algebra Hg. The family of Hg-modules
associated to Vg by taking I-invariants is in fact a Hg ®3,, (9[ Xg /G]—module M that is coherent
as an O[XG/G]—module.

We consider the functor

Rg : DT (Hg-mod) — D, ([X/G)) (1.1)

mapping 7 to 'm ®{J{G M. Here 'r is m considered as a right module over H¢ by means of the
standard involution Hqg = ’H%p, and we point out that the derived tensor product can easily be
made explicit, as Hg has finite global dimension. Every (standard) Levi subgroup of GL,,(F) is
a product of some GL,,(F'), and hence we can construct similar functors

Ras : D* (Hag-mod) — Do (X /1)) (1.2
for every Levi M. Over a certain (open and dense) regular locus ng of Xx (see §2.1 for the
definition) we can relate the functor Rg to Conjecture 1.2 as follows.

THEOREM 1.3. Let G = GL,,. For each parabolic P C G with Levi M the restriction of (1.2) to
the regular locus is a 3j-linear functor

Ryf : DT (Hy-mod) — De, (X5 /M])
satisfying compatibility with parabolic induction as in Conjecture 1.2. Moreover,
RG((C—in% w)[IT,l]) = O[XG/G]

for any choice of a generic character 1) : N — C* of the unipotent radical N of a Borel subgroup
B C GL,(F).

In the case of GLa(F') we can also control the situation for non-regular (¢, N) and prove full
faithfulness.

THEOREM 1.4. Let G = GLo(F') and T'C B C G denote the standard maximal torus and the
standard Borel, respectively. The functors Rg and Ry defined by (1.1) are fully faithful and
there is a natural 3¢g-linear isomorphism

£§ : Rg o1& — (RB. o La*) o Ry,
where « and (3 are defined as in Conjecture 1.2(ii).

We finally return to GL,, for arbitrary n, but restrict to the case of (¢, N') with ¢ regular semi-
simple. Over the regular semi-simple locus the situation in fact can be controlled very explicitly
and we are able to compute examples. Given (¢, N) € X~(C) with regular semi-simple ¢, we
write X, N for the Zariski closure of its G-orbit.

THEOREM 1.5. Let (¢, N) € X=(C) and assume that ¢ is regular semi-simple. Then
mod — -
RG(LL (QD, N)) = O[XG,[¢,N]/G}‘

Remark 1.6. We expect a similar statement in general (see Remark 3.3(b) for a statement for
more general reductive groups, and remark (d) in §4.7 for the case of GL,, and points (¢, N)
where ¢ is not regular semi-simple).
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Moreover (still in the GL,, case), the conjectured functor R should be uniquely determined
by the conditions in Conjecture 1.2 (see §4.7 for more details). After formal completion we can
prove a result in that direction. For a character x : 3¢ — C we write HGJ( for the completion
of the Iwahori—-Hecke algebra Hg with respect to the kernel of y. Similarly, we can consider the
formal completion XG‘,X of X~ with respect to the pre-image of (the closed point of the adjoint
quotient defined by) x in X . Then (1.1) extends to a functor

Ry : D* (Hgy-mod) — D oo ((Xe 1 /G))s
and similarly for (standard) Levi subgroups M C G.

THEOREM 1.7. Let ¢ € G(C) be regular semi-simple and let x : 3g — C denote the character
defined by the image of ¢ in the adjoint quotient. The set of functors

RMX : D+(HMX-mOd) — DaCoh([ MX/M]),
for standard Levi subgroups M C G, is uniquely determined (up to 1somorph1sm) by requiring

that they are 3m x-linear, compatible with parabolic induction, and that Rr ~ 1s induced by the
identification

Hry-mod = QCoh(Xz, ).

Finally, I would like to mention that I was led to Conjecture 1.2 by considerations about
p-adic automorphic forms and moduli spaces of p-adic Galois representations. In fact I hope
that the conjecture extends (in a yet rather vague sense) to a p-adic picture, which should have
implications on the computation of locally algebraic vectors in the p-adic Langlands program, as
in work of Pyvovarov [Pyv20c]|, which in fact inspired the computation in §4.6. I do not pursue
this direction here, but will come back to it in the future.

2. Spaces of L-parameters

We fix a field C' of characteristic zero and a prime p with power ¢ = p". Let G be a linear algebraic
group over C' and let g denote its Lie algebra, considered as a C-scheme. We define the C-scheme
X as the scheme representing the functor

R— {(p,N) € (G x g)(R) | Ad(¢)(N) = ¢ 'N}

on the category of C-algebras.

The scheme X comes with a canonical G-action, by conjugation on G and by the adjoint
action on g. We write [X/G] for the stack quotient of X¢ by this action. For obvious reasons
this is an algebraic stack (or Artin stack). Given a homomorphism « : G — H of linear algebraic
groups, we obtain canonical morphisms X — Xp of schemes and [X¢ /G| — [Xg/H] of stacks.

2.1 Basic properties

We study the basic properties of the spaces X and [X¢/G]. Some of the results in this section
were also obtained, in the more general situation of stacks of L-parameters, by Dat, Helm,
Kurinczuk and Moss [DHKM20] and Zhu [Zhu20].

PROPOSITION 2.1.

(i) Assume that G is reductive. Then Xq is a complete intersection inside G x g and has
dimension dim G.

(ii) If G = GL,, then X is reduced and the irreducible components are in bijection with the
set of G-orbits in the nilpotent cone Ng C g of G. Moreover, let n = (¢, Ny) € Xg be a
generic point of an irreducible component. Then ,, is regular semi-simple.
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Proof. (ii) This is [HH20, Theorem 3.2] or [Hel20, Proposition 4.2].

(i) Helm’s argument from [Hel20] directly generalizes to the case of a reductive group: as
Xg C G x g is cut out by dim G equations, it is enough to show that Xq is equidimensional of
dimension dim G.

Let us write f: Xg — g for the projection to the Lie algebra. We first claim that f set-
theoretically factors over the nilpotent cone Ng C LieG. In order to do so we choose an
embedding G — GL,, for some m. Then X embeds into X¢r,,, and, given (¢, N) € X [HH20,
Lemma 2.3], implies that N is mapped to a nilpotent element of gl,,,. This implies N € Ng.

The scheme N is irreducible and a finite union of (locally closed) G-orbits for the adjoint
action, as G is reductive. Let Z C Ng be such a G-orbit and let Gz C G x Z be the Z-group
scheme of centralizers of the points in Z, that is, the fiber G, of Gz over z € Z is the centralizer
of z in G. Then the translation action makes f~1(Z) (if non-empty) into a right Gz-torsor.
In particular, in this case we have dim f~1(Z) = dim Z + dimz Gz = dim Z + dim G, = dim G,
where z € Z is any (closed) point. The scheme X now is the union of the locally closed subsets
f~1(Z), where Z runs over all the G-orbits in M. As all these locally closed subsets (if # ()
have dimension dim G, their closures are precisely the irreducible components of Xg. It follows
that X¢ is equidimensional of dimension dim G as claimed. O

Remark 2.2. (a) The proof implies that the irreducible components of X are indexed by a subset
of the G-orbits in Ng. We expect that the conclusion of (ii) holds true for a general reductive
group, that is, the scheme X should be reduced and a complete intersection. The description of
the irreducible components should be slightly more involved in general. Namely, the irreducible
components should be in bijection with the G-orbits of pairs (IV, ) consisting of an element N
in the nilpotent cone and a connected component « of the stabilizer of N (note that in the case
G = SLs these stabilizers are not connected in general). Moreover, we expect that the element ¢
should be regular semi-simple at the generic points of the irreducible components. The first part
(X¢ is reduced and a complete intersection) can be deduced from [DHKM20, Corollary 2.4 and
Proposition 2.7] (compare also [Zhu20, Proposition 3.1.6]) after noting that X¢ is a connected
component of the fiber over C of the scheme Z'(Wg/Pr, G) of [DHKM20].

(b) The only ingredient in the proof of (i) that uses the assumption that G is reductive is the
fact that G acts with only finitely many orbits on its nilpotent cone. More precisely, let G be an
arbitrary linear algebraic group and let G — GL,, be a faithful representation. Then the proof
of (i) works if G acts with finitely many orbits on Lie G N Nqr,,,. This is not true in general, even
if G is a parabolic subgroup in GL,, (see [BB19]): it follows from [BB19] that this fails in the
case of a Borel subgroup in GL,, for m > 6. The following example shows that the statement of
the proposition also fails for Borel subgroups of GL, for n > 9. We have not checked that this
is the optimal bound. It is very likely that Xp is not equidimensional if B is a Borel subgroup
in GL6

Example 2.3. Let r,d > 0 and n = rd. Let B C GL, be the Borel subgroup of upper triangular
matrices and let

@o = diag(1,...,1,q¢,...,q,...,¢" 1 ..., ¢ € B(C),

where each entry ¢' appears 7 times. Then a given element N = (nij)ij € Lie B satisfies Nyg =
qpoN if and only if

nij =0 forjé¢ {ir+1,...,(i+1)r}.
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Scaling (g by multiplication with elements of the center Z = G,,, we obtain a closed embedding
Gm x Hf;ll A" < Xp. The B-orbit of this closed subscheme is irreducible and of dimension

d—1
1
dim (Gm X | | Aﬁ) +dim B — Stabp(p) = 1+ dim B + ((d 1) - d?”(?“;-))
i=1

—1+dimB+ %(dr — (2r +4d)).

In particular, we find that Xp has an irreducible component of dimension strictly larger than
dim B if dr > 2r + d. On the other hand, Xp always has an irreducible component of dimension
dim B, namely B x {0} C B x Lie B.

Let G be a reductive group and let P be a parabolic subgroup. We will write Xp for the
scheme representing the sheafification of the functor

(@)N) € XG'(R) and
R— ¢ (p,N,g) € (G xg)(R) x G(R)/P(R) p € g Py, : (2.1)
N € Ad(g~!)(Lie P)

This is a closed G-invariant subscheme of Xg x G/P (where G acts on G/P by left
translation). Then (¢, N) — (¢, N, 1) induces a closed embedding Xp < Xp which descends
to an isomorphism

[Xp/P] = [Xp/q). (2.2)
Moreover, the canonical projection Xp — X¢ is G-equivariant and the induced morphism
[Xp/G] — [Xa/G] agrees under the isomorphism (2.2) with the morphism [Xp/P] — [X¢/G]|
induced by P — G. The following lemma is a direct consequence of this discussion.

LEMMA 2.4. Let G be a reductive group and P C G be a parabolic subgroup. Then the canonical
map [Xp/P] — [Xq/G| induced by the inclusion P — G is proper.

We continue to assume that G is reductive. We say that a point (¢, N) € G x g is regular, if
there are only finitely many Borel subgroups B’ C G such that ¢ € B’ and N € Lie B’, that is,
if (for one fixed choice of a Borel B) the point (¢, N) has only finitely many pre-images under

¢ € g~ 'By,
{(‘PvNagB) €EGxgxG/B N e Ad(g_l)(LieB)} — G xg.

As this morphism is proper and the fiber dimension is upper semi-continuous on the source,
the regular elements form a Zariski open subset (G x g)'® C G x g. Similarly, we can define a
Zariski open subset
X8 = X5 N (G x g)™8 C X
If P C G is a parabolic subgroup, we write
(P x Lie P)™8 = (G x Lie G)™ N (P x Lie P)

and Xp® = Xp N X5®. Moreover, we write X358 for the pre-image of X;® under Xp — Xe.
Then [X®/P] = [X®/G] as stacks and the morphism X,®* — X ® is by construction a finite

morphism. Moreover, if we write M for the Levi quotient of P, it is a direct consequence of the
definition that the canonical projection [Xp/P] — [Xp/M] restricts to [X5%/P] — [ X}/ /M].

LEMMA 2.5. The scheme X 5* is equidimensional of dimension dim P and a complete intersec-

tion inside (P x Lie P)**8. Moreover, the map X}eg — X® is surjective and each irreducible

component of Xy® dominates an irreducible component of X5°.
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Proof. Following the opening lines of the proof of Proposition 2.1, the first claim follows if we
show that every irreducible component of X}eg has dimension at most dim P. Equivalently, we
can show that every irreducible component of )N(]rfg has dimension at most dim G. This is a direct
consequence of the fact that f(;fg — X gag is finite. It follows that every irreducible component
of X% has dimension equal to dimG. As X5® — X® is finite and X¢ is equidimensional of
dimension dim G it follows that every irreducible component of X}f’g dominates an irreducible
component of X g 8.

It remains to show that X};eg — X gf € is surjective. In fact we even show that Xp — X¢ is
surjective. We easily reduce to the case P = B a Borel subgroup, and, choosing an embedding
G — GL,,, we can reduce to the case of GL,,. There we can check the claim on k-valued points
for algebraically closed fields k, where it easily follows by looking at the Jordan canonical forms
of ¢ and N. O

Remark 2.6. We remark that X3® C Xp is open, but not dense in general, as can be deduced
from Lemma 2.5 and Example 2.3. If G is reductive then we expect that ngg is dense in Xg.
In the case of GL,, this is a consequence of Proposition 2.1.

If G = GL, and P C G is a parabolic subgroup, then GG /P can be identified with the variety of
flags of type P. In particular, we can identify X p with the variety of triples (¢, N, F) consisting of
(p,N) € X and a (¢, N)-stable flag of type P. From now on we will often use this identification.

LEMMA 2.7. Let G = GL,, and let P C G be a parabolic. Then X;f’g is reduced.

Proof. To prove that Xffg is reduced, it remains to show that it is generically reduced. Let
€ = (e, Ne, Fe) € X% be a generic point. Under Gp : X8 — X the point £ maps to a generic
point 1 = (¢, N¢) of X and hence ¢ is regular semi-simple. It is enough to show that B;l(n)
is reduced. But as ¢ is regular semi-simple the space of ¢¢-stable flags is a finite disjoint union
of reduced points. Hence, its closed subspace of flags that are in addition stable under N¢ has to
be reduced as well. O

Remark 2.8. Let n <5 and P C GL,, a parabolic subgroup. We point out that the argument in
Remark 2.2(b) implies that X p is a complete intersection in P x Lie P. But if n > 4, it is not true
that every irreducible component of Xp dominates an irreducible component of XL, - Indeed,
one can compute that if n = 4 and P = B is a Borel, then there is an irreducible component of X 5
on which the Frobenius ¢ is semi-simple with eigenvalues X, g\, ¢\, ¢?X for some indeterminate
A. This component clearly cannot dominate an irreducible component of Xqr,,. However, for
n < 3 one can compute that every irreducible component of Xp is the closure of an irreducible
component of X;*. In particular, we deduce that Xp is reduced if n < 3. In the general case
(P C G a parabolic subgroup of a reductive group) we do not know whether Xp is reduced.

LEMMA 2.9. Let G be reductive and P C G be parabolic with Levi quotient M.

(i) The morphism X® — X} has finite Tor dimension.
(ii) Let P’ C P be a second parabolic subgroup. Let M’ denote the Levi quotient of P’ and
P}, C M denote the image of P' in M. Then the diagrams

Xp/ *>Xp X}f,gHX};eg
l l and J{ J{ (2.3)
XP]’M — Xy X;j,i S X]r\;g

are cartesian and the fiber product on the right-hand side is Tor-independent.
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Proof. (i) Let U C P denote the unipotent radical of P and fix a section M — P of the canonical
projection. We write u C p for the Lie algebras of U and P and m for the Lie algebra of M. Then
we obtain a commutative diagram

o7

(M xU) x (m xu) ; Pxyp
\M£ﬂm

where the horizontal arrow 1 is induced by multiplication and the other two morphisms are
the canonical projections. Let » = dim M and s =dimU. Let I C T'(P x Lie P,Opx1icp) be
the ideal defining Xp < P x Lie P, that is, the ideal generated by the entries of the matrix
Ad(¢)(N) — ¢~ N, where ¢ and N are the universal elements over P and Lie P. Then we deduce
from the diagram that I can be generated by elements f,..., fr,91...,gs such that

fla"'7f7" € F(M X mvoMXm) CF(P X LieP7OP><LieP)7

where (f1,..., fr) is the ideal defining Xy C M x m. It follows that the ideal (g1,...,gs) is the
ideal defining Xp as a closed subscheme of 771(X;) = A%fM.

Let us now write K(g1,...,9s) for the Koszul complex defined by g¢i,...,gs on the
open subscheme 77 1(X ;)™ = 7~ 1(X/) N (P x Lie P)*® of 7~!(X)). This is a finite com-
plex of flat Ox,,-modules and we claim that it is a resolution of Oxjfg- Indeed, g¢1,...,9s
cut out the closed subscheme X% C 77 1(X)/)™ which is of codimension s by Lemma 2.5.
As 7 1(Xpr)*8 is Cohen—Macaulay (it is an open subscheme of an affine space over Xy,
and X,s is Cohen-Macaulay as a consequence of Proposition 2.1) it follows from [EGAIV.1,
Corollaire 16.5.6] that g; ..., gs is a regular sequence and hence the Koszul complex is a resolution
of its zeroth cohomology which is O yres.

(ii) The fact that the squares are fiber products follows from the fact that P’ is the pre-image
of Py, under P — M. We show that the square on the right is Tor-independent. As in (i) we
have a Koszul complex K(gi,...,gs) on 7 1(X/)™ which is a Oxres-flat resolution of Oyre.
Consider the closed embedding

Xpf e m (Xp )N (P xp)ee. (2.4)

As (2.3) is cartesian, the restrictions of gi,...,gs to W_I(XPJ/M) N (P x Lie P)™# generate the
ideal defining the closed embedding (2.4), and it remains to show that the pullback of the

Koszul complex K(g1,...,gs) along (2.4) is a resolution of its zeroth cohomology group; that is,
we need to show that ¢, ..., gs is a regular sequence in
—1 .
(9#_1(X1rje/g JA(PxLic Pyes . for all z € X8 C (X;fl,i) N (P x Lie P)™&.

M

Now
T XpE) N (P x Lie P)'®® C m ! (XF) 2 Ay

Par Py Prr
is an open subscheme and hence it is Cohen—Macaulay as Xﬁg is Cohen—Macaulay by Lemma 2.5.
M
The claim now follows again from [EGAIV.1, Corollaire 16.5.6] and the fact that X35 is
equidimensional of dimension dim7 (X 5#) — s. O
M
Ezample 2.10. Let us point out that the left cartesian diagram of (2.3) is not necessarily
Tor-independent without restricting to the regular locus. Let us consider » = d =3 (so that
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dr = 2r 4+ d) in Example 2.3. Let B C GL,, be the Borel subgroup of upper triangular matri-
ces, where n =rd =9. Then the above example shows that Xp is not equidimensional, and
hence the defining ideal is not generated by a regular sequence. Let P C GLg be a standard
parabolic containing B with Levi M = GL5 x GL4. Then the classification of [BB19] shows
that P as well as the Borel Bj; of M have the property that they act only via finitely many
orbits on Lie PN Ngr, or Lie Byy NNy In particular, Xp and Xp,, are complete intersec-
tions in P x Lie P or Bj; x Lie By; by Remark 2.2. As in the proof above, we can construct
generators f1,..., fiimp of the ideal defining Xp C B x Lie B such that Tor-independence of
(2.3) is equivalent to exactness of the Koszul complex K(fi,..., faimp) in negative degrees.
Let x € Xp C B x Lie B be a point that lies on an irreducible component of Xp of dimen-
sion strictly larger than dim B. Then (the germs of) fi,..., faimp lie in the maximal ideal
MpxLie B,r C OBxLie B,z and the Koszul complex defined by these elements is not exact, as they
do not form a regular sequence (because Ox , is not equidimensional of dimension dim B).

We reformulate the first claim of the lemma in terms of stacks.

COROLLARY 2.11. Let P’ C P C G be parabolic subgroups of G and let M be the Levi quotient
of P and Py, the image of P' in M. Then the diagram

[Xp/P| —— [Xp/P]

| |

(Xpy, /Pyl —— [Xa/M]

of stacks is cartesian.

Proof. Note that P — M induces an isomorphism P/P’ = M/P},. Asin (2.1), we define a closed
M-invariant subscheme Yp]/w C X x M/ Py, as the scheme representing the sheafification of the
functor

—1p! g an
R { (e Nog) € Xa(r) < b Pyt | 254 B,

Then we have a canonical isomorphism [Xp; /Py,] = [Yp; /M]. Similarly, we define a P-invariant
closed subscheme Yp, C Xpr x P/P’ such that [Xp//P'] = [Yp//P]. Then the diagram

Yp — Xp
YPIIM — Xm

is cartesian by the above lemma. Let U C P denote the unipotent radical of P, then it follows
that

[¥p /U] — [Xp/U]

L

YP]’V[ Xum

is cartesian diagram of stacks with M-action and with M-equivariant morphisms. The claim
follows by taking the quotient by the M-action everywhere. O
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The objects introduced above have variants in the world of derived (or dg) schemes (see,
for example, [DG13, 0.6.8] and the references cited therein). The category of dg-schemes over C
canonically contains the category of C-schemes as a subcategory. For any linear algebraic group
G we write 7g : G x LieG — Lie G for the morphism (¢, N) — Ad(p)(N) — ¢ !N. We denote
by X¢ the fiber product

XGHGXLieG

T

{0} LieG

in the category of dg-schemes. This yields a dg-scheme X with underlying classical scheme
X s = Xg. If G is reductive then Proposition 2.1 implies that X = X¢. Similarly, if P C G
is a parabolic subgroup of a reductive group, we denote by X5® C Xp the open sub-dg-scheme
with underlying topological space Xffg. Then Lemma 2.5 implies that ngg = X};eg is a classical
scheme.

For any linear algebraic group G we write [X¢/G] for the stack quotient of X by the
canonical action of G. This is an algebraic dg-stack? in the sense of [DG13, 1.1]. Similarly to the
case of schemes, we can view any algebraic stack as an algebraic dg-stack. Moreover, recall that
every dg-stack S has an underlying classical stack °1S.

If G is reductive and P C G is a parabolic we also consider the stacks [X5®/G] and [X 58/ P].
Then

Xa/G] = [Xa/G,
(X&?/G) = [Xg®/Gl,
X5/ P] = [Xp5/P].
We recall that a morphism Y; — Y of dg-stacks is schematic if for all affine dg-schemes
Z and all morphisms Z — Y3 the fiber product Z xvy, Y is a dg-scheme (see [DG13, 1.1.2]).
A morphism of dg-schemes is called proper if the induced morphism of the underlying classical
schemes is proper, and a morphism of algebraic dg-stacks is proper if the morphism of underlying

classical stacks is proper in the sense of [LMO00, Definition 7.11]. Similarly to the non-derived
results above, we obtain the following lemma.

LEMMA 2.12. Let G be a reductive group and let P C G be a parabolic subgroup with Levi
quotient M.

(i) The morphism [Xp/P] — [Xq/G] is schematic and proper.
(ii) Let P" C P be a second parabolic subgroup and write P}, C M for the image of P' in M.
Then

Xpr = Xpr xx, Xp and  [Xpi/P'| = [Xpr [Pyl xx,,/m) [Xp/Pl.

Proof. (i) As in the non-derived case we can rewrite [Xp/P] as [Xp/G], where Xp € Xg x G/P
is the closed G-invariant sub-dg-scheme obtained by making

XPCXGX{P}CXGXG/P

2 In [DG13] dg-stacks are simply called stacks. In order to distinguish between derived and non-derived variants
we will always write ‘dg-stack’.
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invariant under the G-action. More precisely, we can describe this dg-scheme as follows. Let us
write Z C G x Lie G x G/P for scheme representing (the sheafification of) the functor

R+ {(p,N,gP) € (G x LieG x G/P)(R) | ¢ € g"*Pg, N € Ad(g™ ") Lie P}
on C-algebras. By definition there is an isomorphism of stacks
[Z/G] = [P x Lie P/P].

Similarly, we write Z’' C LieG x G/P for the scheme parametrizing pairs (N, gP) such that
N € Ad(g‘f) Lie P. Then Z' — G/P is a vector bundle (with fibers isomorphic to Lie P) and we
can define Xp as the derived fiber product

XPHZ

|

G/P—— 7

where G/P — Z' is the zero section and the right vertical arrow is the morphism given by
(¢, N,gP) — (Ad(p)N — ¢ LN, gP). Now [Xp/P] = [Xp/G] — [Xg/G], and the projection

Xp — Xg (2.5)

is a G-equivariant model for the canonical projection [Xp/P] — [X¢ /G| induced by P C G. The
claim follows from this together with the observation that “Xp = Xp and [Xp/P] = [Xp/P)].

(ii) This is a direct consequence of the definition of the fiber product in the category of
dg-schemes and the fact that P’ is the pre-image of P;, under the (flat) morphism P — M. O

Remark 2.13. Let B C G be a Borel subgroup and let U C B denote the unipotent radical. Then
Xp C B x Lie B is in fact a (derived) subscheme of B x LieU. Indeed, computing Ad(¢)N —
g ' N for the universal pair (o, N) over B x Lie B and restricting to the Lie algebra of (a choice
of) a maximal torus in B, we find that Xp C B x LieU. Using this observation, we mention the
following variant of the construction in the proof of (i) above. Letting Mg denote the nilpotent
cone of G, we can define Y = ZNG x Ng x G/B. In fact [Y/G] = [B x LieU/B] and if we
write G — G (respectively, N — Ng) for the Grothendieck (respectively, Springer) resolution,
then

Y = é Xg/BNG.

In particular, Y is smooth and affine of relative dimension dim G over G/B. Then we can define
Xp as a closed sub-dg-scheme of Y similarly to its definition as a closed sub-dg-scheme of Z in
the proposition.

2.2 Derived categories of (quasi-)coherent sheaves

Given a scheme or a stack X (or a derived scheme or a derived stack), we write Dqcon(X) for
the derived category of quasi-coherent sheaves on X (see [DG13, 1.2] where it is denoted by
QCoh(X)). We write D%, (X) for the full subcategory of objects that only have cohomology in
finitely many degrees, which, moreover, is coherent.
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If X is a noetherian scheme then D2, | (X)) coincides with the full subcategory of the derived
category D(Ox-mod) of Ox-modules, consisting of those complexes that have coherent cohomol-
ogy and whose cohomology is concentrated in finitely many degrees. Similarly, if X is a (classical)
algebraic stack, then D%, (X), and more generally DaCoh(X ), agrees® with the definition of the
bounded derived category of coherent sheaves, and, respectively, with the bounded-below derived
category of quasi-coherent sheaves as defined in [LMOO].

LEMMA 2.14. Let G be a reductive group and let P be a parabolic subgroup with Levi
quotient M. Let

o:[Xp/P] = [Xur/M] and B:[Xp/P|— [Xe/G)
denote the canonical morphisms. Then the maps
Lo : Docon([Xar /M]) — Dacon(Xp/P)),
R, : Dqcon([Xp/P]) — Dqcon(Xe/G])

preserve the subcategories Dacoh(—) and D%, (—).

Proof. In the case of RS, the claim directly follows from the fact that 3 is proper and schematic.
We prove the claim for La*. As the properties of belonging to DJ(SCoh(_) or D%, (—) can be
checked over the smooth cover Xp of [Xp/P], it is enough to show that pullback along the
morphism

a/:Xp—>XM

preserves DJ(SC on(—) and Dbcoh(—). Moreover, both properties may be checked after forgetting the
Ox ,-module structure, and only remembering the Opyre p-module structure. As in the proof
of Lemma 2.9, we find that Ox, can be represented by a finite complex F3 of flat Ox,,-modules
that are coherent as Opy1,ie p-modules, and Lo’ is identified with the functor — ®éXM Fp. The

claim follows from this. O

Remark 2.15. (a) We point out that using the definition of the derived categories as in [DG13]
has the advantage that there is a canonical pullback functor between the derived categories of
quasi-coherent sheaves on stacks. At least as long as we only consider non-derived stacks (such
as [ X /G| or [X®/G]) there is a definition of the derived category of quasi-coherent sheaves
in [LMOO]. However, the definition of the pullback functor in [LMO00] encounters some problems.
Lemma 2.14 essentially tells us that we could also use the definition of [LMO00] and only consider
complexes that are bounded below.

(b) The explicit description of the pullback in the proof of Lemma 2.14 could also
be used to completely bypass the use of derived schemes, or derived stacks. In the
end we will be interested in the composition RS, o La* rather than in the individual
functors. Hence, instead of La* we might use the construction — ®(L9XM p and care-
fully define the Ojx,/g-action after push-forward (and after descent to the stack quo-
tient). However, it seems to be more natural to use derived stacks than such an explicit
workaround.

Let P, C P be parabolic subgroups of a reductive group G with Levi quotients M;, i = 1, 2.
We write Pjo C My for the image of P, in My. Then Pjo C My is a parabolic subgroup with Levi

3 This is true after passing to the underlying homotopy category. The derived categories in [DG13] are by definition
oo-categories while the derived categories in [LMO00] are classical triangulated categories.
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quotient M;. We obtain a diagram

B
X /P~ [Xn/P2] — = Xo/G)
l B12 i (2.6)

o1 [XP12/P12] - [XMQ/MQ]

l 12

[Xan /Mi]
where the upper left diagram is cartesian (in the category of dg-stacks).

LEMMA 2.16. In the above situation we have a natural isomorphism

(RBax 0 Lak) o (RBiax o Ladty) = RByy o Lat (2.7)
of functors
Dqcon([Xar, /M1]) — Dqcon([Xa/G)).

Proof. The upper right square is (derived) cartesian and 12 is schematic and proper; in par-
ticular, it is quasi-compact and quasi-separated. Hence, [DG13, Propositions 1.3.6 and 1.3.10]
implies that the natural base change morphism

Las o RB12+« — RB. o La*
is an isomorphism. We obtain the natural isomorphism
(RB2. 0 Laj) o (RP12+ 0 Lals) = Rfax o (Lag o RBi24) o Lajy
= Rfay 0 (RBy 0 La*) o Loty = RBy, o Lok O

We point out that, working only with classical schemes, we still obtain a natural transfor-
mation between the corresponding functors: if we consider the underlying classical stacks in
diagram (2.6) and keep the same notation for the morphisms by abuse of notation, then there
still is a natural base change morphism, but it is not necessarily an isomorphism as the fiber
product might not be Tor-independent. However, it becomes an isomorphism when we restrict
the functors to the regular locus, that is, we consider them as functors

Dqcon([X 7 /M1]) — Dqcon([X5®/G)),

as in this case the classical and derived pictures coincide. Indeed, after the restriction to the
regular locus the derived fiber product equals the classical fiber product by the Tor-independence
in Lemma 2.9.

2.3 Duals

We continue to assume that G is a reductive group over C and fix a Borel subgroup B C G.
Recall that we have defined a morphism

Bp: [Xp/B] — [Xa/G]
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of (derived) stacks. In this subsection we will analyze the (derived) direct image of the struc-
ture sheaf under this morphism, which will play an important role* later on. For a (derived)
scheme or a (derived) stack X we will write wxy € Dqcon(X) for the dualizing complex and
Dx(—) = RHomo, (—,wx) for the usual duality functor. The main point of this section is to
give evidence to the following conjecture (compare also [BCHN20, Conjecture 3.35] and [Zhu20,
Conjecture 4.5.1 and Remark 4.5.4]).

CONJECTURE 2.17. The derived direct image RB.(Ox,/p]) € D2, ([X@/G)) is concentrated in
degree zero and there is an isomorphism

RB.(O1x/5)) = Dixg /a1 (RB:(Oxp/m)))-

In particular, the pullback of R, ((’)[X 5/ B]) to X¢ is concentrated in degree zero and is a maximal
Cohen—Macaulay module.

Let us write 8 : X — X¢ for the G-equivariant model of g, as in (2.5). The conjecture is
obviously equivalent to the claim that RﬁB,*OXB is concentrated in degree zero and that there
is a G-equivariant isomorphism

RBB,*OXB = ]DXG (RBB,*OXB)[— dim G]

This isomorphism then implies that the dual of the sheaf RBB,*OXB is concentrated in a single
degree and hence, by [Sta, Tag 0B5A], it is a Cohen—Macaulay module. As its support obviously
is all of X it is then a maximal Cohen—Macaulay module.

Asin Remark 2.13, we write Y — G x Lie G for the scheme parametrizing triples (¢, N, gB) €
G x Ng x G/B such that ¢ € g7'Bg and N € Ad(g~!)LieU, where U C B is the unipotent
radical. Recall that Y is smooth (of dimension dim G + dim G/B) as the projection to the flag
variety pr: Y — G/B is the composition of a B-bundle and a geometric vector bundle (or rank
dim U). We consider the diagram

!B

Xp Y

Bl lf
LG

XG — G x LieG
and write F*® = RLB,*OXB' The main observation is that F* is represented by a Koszul complex
and hence is self-dual (up to a shift). In order to make this precise, recall that an alge-
braic representation of B defines a G-equivariant vector bundle on G/B. We write U" for the
G-equivariant vector bundle on G/B defined by the canonical B representation on u". Here u
denotes the Lie algebra of U (considered as a C-vector space), and u¥ denotes its dual. In par-

ticular, " admits a filtration whose graded pieces are the line bundles £, on G/B associated
to the negative (with respect to B) roots «a of G.

LEMMA 2.18.
(i) The complex F* is represented by a Koszul complex
. -
. /\7, pr*(UV) N /\Z pr*(u\/) ...

where the term N\’ pr*(U") sits in (cohomological) degree —i.

4 This complex of sheaves is called the coherent Springer sheaf in the work of Ben-Zvi et al. [BCHN20] and
Zhu [Zhu20].
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(ii) There is a G-equivariant isomorphism
F* =Dy (F*)[—dimG].
Proof. (i) By definition the structure sheaf of the derived scheme Xp C B x LieU is (as a
complex of Opx1iecy-modules) quasi-isomorphic to the B-equivariant Koszul complex
i i1
c— N\ v ®c Opxriev — [\ v/ @ Opxticr — -

defined by the entries of Ad(p)N — ¢ !N for the universal pair (¢, N) over B x LieU (where,
by abuse of notation, we also write u for the C-vector space underlying the scheme Lie U). The
claim follows from the identification [Y/G] = [B x Lie U] (compare also Remark 2.13).

(ii) The claim on duality follows from the usual self-duality of Koszul complexes which is
induced by the perfect pairing

i dim G/B—i dim G/B
Ao @) <« A ey — N e
and the identification
dim G/B dim G/B
/\ / pr*U” = pr* (/\ / Z/{v> = pr* wg/p[—dim G/B| = wy [ dim Y]. O

CONJECTURE 2.19. The complex Rf,F*® is concentrated in non-negative degrees.
ProrosiTiON 2.20. Conjecture 2.19 implies Conjecture 2.17.

Proof. The morphisms ¢ and f satisfy Grothendieck duality, as ¢ is a complete intersection
and f factors into a complete intersection and a smooth morphism. Hence, we have the following
isomorphisms in Dqcon(G X g):

Rig«(RAp+(0x,)) = REF® = Rf.(Dy (F*)[- dim G]) = Rf.(Dy (F*))[- dim G]
= Daxg(RfF*)[— dim G]
= Dexg(Ria-RBp (0% ,))[— dim G]
= Rig(Dxg (ROp«(0x,)) [~ dim G)).

Assuming Conjecture 2.19, the complex Rf.F* is concentrated in degrees (—00,0], and hence
so is RBp+«(Ox,), as u¢ is affine. It follows that Dx, (RBp,.«(Ox )) is concentrated in degrees
[ dim G, +00) and hence

Rig«(Dxg (RB.(Ox,)) [~ dim G])

is concentrated in degrees [0, +00). Hence, Rf,F* is concentrated in degree zero and, again using
that ¢ is affine, the same holds true for R85 .(Ox )

But as RBB,*(OXB) is concentrated in a single degree the isomorphism
Rig(RBB+(0%,)) = Rig(Dx. (RApA(0x,))[— dim G))

is in fact a G-equivariant isomorphism of sheaves on G x g (not just an isomorphism in the
derived category) and hence restricts to a G-invariant isomorphism of sheaves

RBp.(0%,,) = Dx,(RAp(0g,))[— dimG].
on Xg. As we have seen above, these claims are equivalent to Conjecture 2.17. O

Unfortunately we are not able to prove Conjecture 2.19 in general. We will instead give some
evidence by proving the conjecture for GLy and GL3.
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As G x g is affine it is enough to prove that H*(G x g, Rf.F*®) vanishes for i > 0. This
cohomology is computed by a spectral sequence
By = H(Y,F') = H'"V(G x g, Rf.F*),

and hence it is enough to show that HI(Y, N pr*(UY)) =0 for j>i (note that Fi=
A" prUY)).
ProPOSITION 2.21. Let G = GLgy or G = GL3. Then

HI <Y /\ pr*(uv)> =0 forj>i.
In particular, Conjecture 2.17 holds true for GLy and GLs3.

Proof. We distinguish the cases ¢ > 0 and ¢ = 0. Let us prove the case ¢ > 0 first. We can compute
this cohomology group after pushforward along the closed immersion Y — G x Ng x G/B as
follows. Let us write U (respectively, B) for G-equivariant vector bundles on G/ B associated to
the B-representations on g/b (respectively, on g/u), where b = Lie B. Note that Oy is, as a sheaf
on G x Ng x G/B, quasi-isomorphic to the Koszul complex

— Ngwes)— N\ gu o) —

where again the /\Z term appears in degree —i, and where g : G x Ng X G/B — G/B denotes
the canonical projection. By the projection formula (using that g is affine and flat base change)
we find that

HI(Y,F)=H <G x Ng x G/B, /\i g (U)Y Oy>
:Hj<G></\/'GxG/B,/\i ®/\ MV®BV)>

= HI <G/B, /\i U’ ® /\'(ZIIV ® BV)> ®c T(G x Na, Oaxn)

and again we can use a spectral sequence to compute this cohomology group. Hence, it is enough
to show that

b _ _
H'(G/B,A“UV®A uv®/\cBV> —0 fore>a+b+tcanda> 1.
As BY is an extension of /¥ and a power of the trivial line bundle it is enough to prove that
b _
H'(G/B,/\auv®/\ uv®/\cuv> =0 fore>a+b+canda>1.

We compute this cohomology group in terms of the cohomology of equivariant line bundles: note
that the G-equivariant vector bundle A®UY @ A\°UY @ AU has a filtration whose subquotients
are G-equivariant lines bundles £ ® £, ® L, = L4+, where X is a sum of a pairwise distinct
positive roots,® p is a sum of b pairwise distinct negative roots and v is a sum of ¢ pairwise
distinct negative roots. It hence suffices to show that H®*(G/B, L)4;4.) vanishes in degrees
higher than a 4+ b+ ¢ in this case. By the Borel-Bott—Weil theorem the cohomology of these
line bundles is computed as follows. We write w - k = w(k + p) — p for the dot action of the

% Note that by the usual sign convention (which is used in the Borel-Bott-Weil theorem) the G-equivariant line
bundle £ associated to a character A corresponds to the character —\ seen as a line bundle on [*/B] = [G\(G/B)].
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TABLE 1. The dot-action on sums of roots, I.

K w such that w - k is dominant 1 # w fixing &
0 1 —
« - S
ﬁ - Sa
a+ s 1 —
20+ 1 -
a+243 1 —
a—pf3 53 —
8-« Sa _
-« Sa _
_5 S _

Weyl group W on X*(T'), where p is the half sum of the positive roots. Then there is either
an element 1 # w € W such that w -k = &, or a unique w € W such that w - x is dominant.
In the first case H*(G/B,L,;) =0 and in the second case H*(G/B,L,) is an irreducible G-
representation concentrated in degree £(w), where, as usual, £(w) denotes the length of the Weyl
group element w. We hence obtain a combinatorial claim about roots which allows us to check
the vanishing of H7 (Y, A’ pr*(U¥)).

Recall that we are assuming ¢ > 0. The above discussion implies that it is enough to prove
the following claim. Let @ > 1 and b, ¢ > 0 and let A be a sum of a pairwise distinct positive roots,
1 be a sum of b pairwise distinct negative roots and v be a sum of ¢ pairwise distinct negative
roots. If there is some (necessarily unique) w € W such that w - (A + p + v) is dominant, then
lw)<a+b+ec.

In the GLj case this computation is rather trivial. In the GL3 case G/B has dimension three
and the claim is trivially satisfied for a + b 4+ ¢ > 3. We are left to check the cases a +b+c=1
and a+b+c=2.

We write o and 3 for the two simple positive roots, and s, sg € W for the corresponding
reflections.

In the case a + b+ ¢ = 1 the condition @ > 1 implies b = ¢ = 0, and hence we need to check
that L., Lz and L, have cohomology only in degree < 1. In the case a + b+ ¢ =2 we need
to check the cases a =b=1,c¢ =0 (the case a = ¢ = 1,b = 0 of course being equivalent to this
case) and a = 2,b = ¢ = 0. We hence need to show that the line bundles

‘607 Ea*ﬁ7 £7ﬁ7 ‘C,Bfou E—Ou ‘Cou £ﬁ7 £a+ﬂ7 £a+257 £2a+ﬁ

have cohomology only in degrees < 2.

More precisely, we have to check that for any of these weights k, either x is fixed by some
1 # w under the dot action, or w - k is dominant for some w of length less than or equal to 2.
This is done Table 1.

We are left to prove the proposition in the case i = 0, that is, we need to show that H*(Y, Oy)
vanishes in positive degrees. Using the same criterion as above, we calculate Oy as a Koszul
complex which reduces us to proving that

b - c —
H'(G/B,/\ L{v®/\ UV> =0 fore>b+ec.

In the case G = GLy thi_s is again trivially satisfied. In the case G = GL3 th_is means we need
to prove that H*(G/B,U") vanishes in degrees higher than 1 and H*(G/B,U" @ U") vanishes
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TABLE 2. The dot-action on sums of roots, II.

K w such that w - k is dominant 1 # w fixing &
— So —

-3 55 —
—a—4 — any w
—2a - wo

—2f - wo

—2a -0 53Sa —
—a—20 54583 -

—2a — Qﬁ wWo —

in degrees > 2. We hence need to compute the cohomology of the lines bundles
E—OH £7ﬂ7 £7a757 E—QOH 672,37 £72a767 £7a72ﬂ7 572(1725'

Using Borel-Bott—Weil again, these cohomologies are computed using Table 2, where wg =
SaS3Sa is the longest element. It is a direct consequence that the cohomology H*(G/B,U")
is concentrated in degrees less than or equal to 1, whereas the cohomology H*(G/B,U"Y @ U")
is concentrated in degrees less than or equal to 2 if and only if the boundary map

H*(G/B,L 905 ® Lo 25) — H*(G/B,L_20_2p)

is surjective (or equivalently non-zero as the target of the map is an irreducible G-representation).
By Serre duality this is equivalent to the injectivity of the induced map

H°(G/B, Ly) — HYG/B,L_o0 @ L_p). (2.8)
But this map is the boundary map in cohomology induced by a non-split extension
0 —L o®Lg—E— Ly—0. (2.9)
The fact that this extension is non-split implies that
H(G/B,€) — H°(G/B, Ly)
is the zero map (as Lo is the trivial line bundle the canonical map I'(G/B, Lo) ® Og/p — Lo is
an isomorphism, and if H(G/B,&) — H°(G/B, L) was non-zero it necessarily would be an
isomorphism which would imply that the canonical map I'(G/B, &) ® Og/p — £ would induce

a splitting of (2.9)) which in turn implies that (2.8) is injective. It follows that H*(Y,Oy) =0
for @ > 0 as claimed. O

Remark 2.22. Though this computation can be carried out for GLo and GL3 rather explicitly it
seems that these computations (using Borel-Bott—Weil and boundary maps) become extremely
difficult in higher dimensions. Indeed, it is combinatorially involved to understand in what degrees
certain line bundles have non-vanishing cohomology, and in addition we would need to understand
certain boundary maps in long exact sequences.

Remark 2.23. Even though we cannot prove Conjecture 2.17 in general, it follows that the restric-
tion of RBB,*(OXB) to the regular locus X® C X¢ is a maximal Cohen—Macaulay module. In
particular, is it flat in the neighborhood of points x = (p, N) € XFGeg such that Xg is smooth
at =, by the Auslander-Buchsbaum formula. For G = GL,, this is the case if (¢*, N) is the
L-parameter of a generic representation (see [BGGT14, Lemma 1.3.2.(1)]). For a parabolic sub-
group P C G the morphism 8p : Xp — X¢ is clearly not flat in general, as its fiber dimension
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can jump. And even the finite morphism X’ffg — Xéeg is not flat: at the intersection points of
two irreducible components of X ga ® the number of points in the fiber (counted with multiplicity)
can jump.

3. Smooth representations and modules over the Iwahori—-Hecke algebra

Let F' be a finite extension of Q, (or of F,((t))) with residue field kr and let ¢ = p" = |kp|. In
the following let G be a split reductive group over F' and write G = G(F). From now on we will
assume that C' contains a square root ¢'/2 of g. We fix a choice of this root.

We will always fix T C B C G, a split maximal torus and a Borel subgroup. By this choice
we can define the dual group G of G considered as an algebraic group over C. Moreover, we
denote by T'C B C G the dual torus and the dual Borel. More generally, given a parabolic
subgroup P C G containing B, we denote by P C G the corresponding parabolic subgroup of the
dual group. We write W = W5 = W(G, T) for the Weyl group of (G, T). If P C G is a parabolic
subgroup containing B, then the choice of T defines a lifting of the Levi quotient M of P to a
subgroup of G. Similarly, we regard the dual group M of M as a subgroup of G containing the
maximal torus T. We write Wy, C W for the Weyl group of (M, T).

Let G // G denote the GIT quotient of G with respect to its adjoint action on itself. The
inclusion 7' < G induces an isomorphism 7'/W 2 G//G. The projection X5 — G induces a map

x=x¢:Xg— G— G)/G=T/W (3.1)

which is G-equivariant and hence induces a map ¥ = Y¢ : [X/G] — T/W. Similarly, we obtain
morphisms

XM : XM —>T/WM and X : [XM/M] —>T/WM

3.1 Categories of smooth representations
Let us write Rep(G) for the category of smooth representations of G on C' vector spaces. It is
well known that Rep(G) has a decomposition into Bernstein blocks

Rep(G) = H Repas,0)(G),
[M,o]eQ(@)

where Q(G) is a set of equivalence classes of a Levi M of G and a cuspidal representation o of
M (see [Ber92, 111, 2.2], for example). We will restrict our attention to the Bernstein component
Repyr,1)(G), where 1 is the trivial representation of the torus T. Given 7 € Rep(G) we write
1) for its image under the projection to Repyz (G). Moreover, we will write 3¢ for the center
of the category Repy11(G); then

3¢ = D(G//G, 0 c)

(see below for an explicit description). This isomorphism allows us to identify the category
3g-mod of 3g-modules with the category QCoh(T /W) of quasi-coherent sheaves on the adjoint
quotient G //G = T /W of G, and the category 3c-mody, of finitely generated 3g-modules with
the category Coh(T /W) of coherent sheaves on T/W. We obtain an identification of derived
categories

D(3g—m0d) = DQCoh (T/W),

3.2
D’ (3G-modsg) 2 D¢y, (T/W). 2
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We use thesei identifications and the morphism Y : [X5/G] — T/W to make DaCoh([XG/G]) and
D, ([Xa/G]) into 3¢-linear categories.
If P C G is a parabolic subgroup with Levi quotient M, we write

B = Indg(éllg/2 ® —) : Rep(M) — Rep(G)

for the normalized parabolic induction, and L% for normalized parabolic induction of the opposite

parabolic P of P (note that the normalization uses the choice of ¢'/2). These functors are exact
and restrict to functors

RGP[TMJ] (M) - Rep[T,l] (G)
(for any choice of a maximal split torus T)s of M). Using a splitting Ml — P C G to the projection,
we obtain a morphism
MM — GIG
which is obviously independent of the choice of Ml < G. Then the functors Lg and z% are linear
with respect to the morphism

3¢ 2 T(G)/G,0p)¢) — T(M /M, O p5r) = 3um
(see below for details).

Let us write D(Repirj(G)) (respectively, D¥(Rep1)(G))) for the derived category
(respectively, for the bounded-below derived category) of Repjy(G). Moreover, we write
Db(Rep[T’l},fg(G)) for the full subcategory of complexes whose cohomology is concentrated in
bounded degrees and is finitely generated as a C[G]-module. Then (& (respectively, L%) induce
functors

D(Repyp,,,11(M)) — D(Repr1(G)),
D" (Repyy,,,1j(M)) — DT (Repir,1)(G)),
D’(Repir,, 11,52 (M)) — D*(Repr 1) 2(G)),

which we will also denote by (% (respectively, L%)
Given two parabolic subgroups P; C Py of G with Levi quotients M; and My, We write Py
for the image of P; in Ms. Then we have natural isomorphisms

G Mo G
LPQ OLP12 - LPI’

G oo MG

Py = "Pqa Py
of functors D(Rep[TMpl](Ml)) — D(Repr11(G))-

Finally, recall that a Whittaker datum is a G-conjugacy class of tuples (B, ), where B C G
is a Borel subgroup and 9 : N — C* is a generic character of N = N(F'), where N C B is the
unipotent radical. As above, we fix the choice of a Borel subgroup B and a maximal split torus
T C G. For a parabolic P C G containing B with Levi quotient M, we write s : Ny — C* for
the restriction of ¥ to the unipotent radical Ny; C N of the Borel By; = BN M of M. Note that
the M-conjugacy class of (Bas, %) does not depend on the choice of M < G (i.e. on the choice
of T).

We can describe the above categories of representations in terms of modules over
Iwahori—Hecke algebras. In order to do so, let us fix a hyperspecial vertex in the apart-
ment of the Bruhat-Tits building of G defined by the maximal torus T, that is, we fix
Op-models of (G,T). The choice of a Borel B then defines an Iwahori subgroup I C G.

(3.3)
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We write Rep!G for the category of smooth representations m of G on C-vector spaces that
are generated by their Iwahori fixed vectors 7! and ReprgG C Rep!G for the full subcate-
gory of representations that are finitely generated (as C[G]-modules). It is well known that
the category Rep/G does not depend on the choice of I and agrees with the Bernstein block
Repp,1(G).

Let Hg = H(G, I) = Endg(c-ind¥17) denote the Twahori-Hecke algebra. Then

7 +— 7wl = Homg(c-ind¥1;, 7)

induces an equivalence of categories between Repir (G) = Rep! G and the category Heg-mod of
‘Ha-modules. This equivalence identifies Repng and the full subcategory Hg-modg, C Hg-mod
of finitely generated Hg-modules. Moreover, it identifies the center 34 of Rep[TJ](G) with the
center of the Iwahori-Hecke algebra H¢. Then we have an isomorphism

36 2 CIX.(T)Y = CIX* (D)"Y =T(T/W,07y) = T(G//G, O )

(see, for example, [HKP10, Lemma 2.3.1]), which is in fact independent of the choice of the
Iwahori I.

Given a representation 7 € Rep/G and a 3g-module p, we will sometimes (by abuse of
notation) write ™ ®3,, p for the pre-image of the Hg-module ! ®3. p under the equivalence of
categories Rep! G = Hg-mod (and similarly for corresponding derived functors).

Remark 3.1. Note that if G = T is a split torus, then I = Iy = T° is the unique maximal compact
subgroup of T" and we have canonical identifications

C[X.(T)] = C[T/T°] = Hr, (3.4)

where the first isomorphism is given by u — u(w) for the choice of a uniformizer w of F' (note
that this isomorphism is independent of this choice). We often use this isomorphism to identify
unramified characters and Hp-modules.

Let P C G be a parabolic subgroup containing B with Levi quotient M and write P = P(F))
and M = M(F). Set Ip; = I[N M, which is an Iwahori subgroup of M; in particular, we
have Repp,, 11(M) = Rep/™ M. There is a canonical embedding Hjs < Hg such that the

diagrams
(=) (=M
Rep™ M —— Hy-mod Rep™ M — Hp-mod
e l l Homsy, (He,—)  and s l l He®m1,,— (3.5)
Rep/cG ; Hg-mod Rep/c¢G ; Hg-mod

commute. Note that this is equivalent to the commutativity of the diagram

()

Rep™ M —— Hp-mod
r8(-) T T Forget (36)
I

Reple@ — ‘Hg-mod
@(—) is the normalized Jacquet module which is the left adjoint functor to (& (—). It is

%(—) by Bernstein’s second adjointness theorem. By abuse of

Here r
also the right adjoint functor to ¢
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notation we will often write (& (respectively, L%) for the functors Homyy,, (Ha, —) (respectively,
He @3, —) on Hecke modules.

The embedding Hjy; C Hg induces an embedding 3g C 37, where 337 is the center of
Repr,, 11 (M) which is identified with the center of H s, such that the canonical diagram

3¢ — D(T/W, 08 )

| |

3y — D(T/War, O pw,,)
commutes. We deduce that L}G;. and /,% are 3g-linear. In particular, for a 3g-module p we obtain
natural isomorphisms
G
(_ X3q :0) - LP(_) X3 P,
G
(_ X3¢ ,0) - Lﬁ(_) X36 Ps

' (3.7)

/[ B[

L
and similarly for the corresponding functors on the derived category.

3.2 The main conjecture

Using the notation introduced above, we state the following conjecture. Variants of the conjecture
have been around in representation theory in recent years. A proof of the conjecture is announced
in the work of Ben-Zvi et al. [ BCHN20] and Zhu [Zhu20).

CONJECTURE 3.2. There exist the following data.

(i) For each (G,B,T,) consisting of a reductive group G, a Borel subgroup B, a split maximal
torus T C B, and a (conjugacy class of a) generic character ¢ : N — C*, there exists an
exact and fully faithful 35-linear functor

R, : D (Repyr1)(G)) — Doy ((X/C).

(ii) For (G,B,T,%) as in (i) and each parabolic subgroup P C G containing B, there exists a
natural 3¢-linear isomorphism

€8 . Rg o [,% — (RfBy o La™) o R}@M
of functors D (Repyr,, 11 M) — Dgcoh([Xé/G]). Here M is the Levi quotient of P and
a:[Xp/P] — [Xy/M],
81 [Xp/P| — [Xg/C]
are the morphisms on stacks induced by the natural maps P — M and P — G.
These data satisfy the following conditions.

(a) If G =T is a split torus, then Ry = R? is induced by the identification (3.4) and viewing
a sheaf on T as an T-equivariant sheaf with the trivial T-action (note that T acts trivially
on T = XT)

(b) Let (G,B,T,v) be as in (i) and let P; C Py C G be parabolic subgroups containing B with
Levi quotients M; and Ms. Let P12 denote the image of P; in Ms. Then, with the notation
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from (2.6), the diagram

P G
Rg o LB,
gg/ (55)
RpBy«Laj o Rf}fl RY o L%2 o L%i
(2.7) l \L 51%
€p2
12 1/)
(Rfa, L) o Rz Laty) o Ryt (Rfa.Lag) o Ryp? 0

is a commutative diagram of functors
D (Repyr,,, 1 (M1)) — Do ([Xa/G)).

(c) For any (G,B,T,t) as in (i), let (c-ind§ ¥)r,1) denote the projection of the compactly
induced representation c-ind$ ¢ to Repyr 1(G). Then

RY((c-ind§ ) 71)) = Olxe/c-

Let us point out that the 3g-linearity of the conjectured functor Rz@ implies that for each
p € DT(3G-mod) there is a natural isomorphism

Voo RG(= €5, p) = RG(-) €6, o IXGP

of functors D (Repr 1(G)) — Dacoh([Xé/G]) which is functorial in p (in the obvious sense).

Moreover, given P C G as in (ii), the 3g-linearity of the natural isomorphism fg implies that
the natural transformations vy, and v¢¢ , are compatible with parabolic induction. We do not
spell this out explicitly in terms of commutative diagrams.

Remark 3.3. (a) We expect that the conjectured functor Rlé induces a functor
D’(Repyr, 1) 1(G)) — Deon([X/G)).

This would allow us to extend the functor to the full derived category D(Repp 1)(G)): as we have
an equivalence of categories Rep[T’u,fg(G) = Hg-modg, and as Hg has finite global dimension
(see [Ber92, 4. Theorem 29]), the full derived category D(Repp1)(G)) is the ind-completion of

Db(Rep[TJ]’fg(G)). Hence, the conjectured functor would extend to a fully faithful and exact
functor

D(Repyy1)(G)) — IndCoh([Xs/G)),

where IndCoh([X/G]) is the ind-completion of D%, ([X5/G]). Note that this category differs
from Dqcon([X=/G]), as X5 is singular. However, there is a canonical equivalence
IndCoh™* ([X¢/G]) — Dyeon ([Xe/G)

(see, for example, [DG13, 3.2.4]). In particular, restricting to bounded-below objects, the con-
jecture that the (as yet hypothetical) functor RZ is fully faithful does not depend on whether
we consider it as a functor with values in IndCoh™ ([X/G]) or with values in Dacoh([X a/G)).
We hence arrive at a conjecture that parallels the formulation of the geometric Langlands pro-
gram (see [Gail5]). Also the conjectured compatibility with parabolic induction agrees with
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the compatibility with parabolic induction in [Gail5]. See also the formulation given in [Zhu20,
Conjecture 4.4.5].

(b) Recall that an L-parameter for G that is trivial on inertia is a G-conjugacy class [¢, N]
of (p,N) € X5(C) with ¢ semi-simple. We write S|, nj = C[‘P’N}/CEP,N] for the quotient of the
centralizer of (¢, N) by its connected component of the identity. By the classification of Kazhdan
and Lusztig [KL87, Theorem 7.12] the irreducible representations in Rep’G (and the simple
objects in Hg-mod) are in bijection with pairs ([¢, N], p), where [p, N| is an L-parameter and p
runs through a certain set of irreducible representation of Sy, xj. This parametrization depends on
an additional choice that corresponds to the choice of a Whittaker datum (B, v). More precisely,
the classification in [KL87] (which in the case of GL,, coincides with the Bernstein—Zelevinsky
classification [BZ77]) associates to ([, N],p) an indecomposable representation (respectively,
Hecke module) g N1, Which has a unique irreducible quotient. Conjecture 3.2 should have the
following relation with this classification. For simplicity we only treat the case of regular semi-
simple ¢; the general case seems to be much more involved (see remark (d) in §4.7 for some
discussion in the case of GLy,)).
Given [p, N], let us write
Xg Jo,N] C XG
for the G-orbit of (¢, N). Moreover, we denote by

Xe oM = X& o]

its Zariski closure. As we assume that ¢ is regular semi-simple we can, given an irreducible
representation p of S|, ) on a finite-dimensional C-vector space, use p to define a G-equivariant
coherent sheaf

ﬁ[cp,N},p € COh(XG’,[(p7N})

which hence defines a coherent sheaf Fj, n), on the closed substack

(X o/ G C [Xa/Gl.
We then expect that the conjectured functor Rg has the property
tp _
R ( T, N],p ) = Fle,N],p-
If the L-parameter [p, N] is generic, there is a unique t-generic representation 7 in the L-packet
defined by [p, N]. With the above notation this representation is the representation

_ Y
= 7-‘-[Lp,N],triviaLl'

Then the expected formula above specializes to
Y
Ro(m) = Oty /1

(c) We point out that the conjectured functor RG will not be essentially surjective. In fact this

is already obvious in the case where G =T a split torus. Here Ry = Rriﬁ is the derived version
of the functor

Hrp-mod = QCoh(T) — QCoh([T/T7)).

The morphism on the right-hand side is the embedding given by equipping a quas1 coherent sheaf
with the trivial T-action. Obviously T-equivariant sheaves with non-trivial T-action are not in
the essential image.
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There is also a second obstruction for essential surjectivity for general G (i.e. G is not assumed
to be a torus). Let [¢, N] be an L-parameter such that ¢ is semi-simple but not regular semi-
simple, and assume N = 0 for simplicity. Similarly to (b), we write X (00 C X for the closed

subset of (¢/,0) such that ¢/ is in the G-orbit of ¢®. Then the structure sheaf of the closed
substack

[XE 1000/ C1 € X o0/ Gl
of pairs (¢’,0) where ¢ is (pointwise) semi-simple should not be in the essential image of the
functor Rg. The same phenomenon should apply to all (¢, N) with ¢ not regular semi-simple
(not only in the case N =0), but the definition of X, yj is more involved in general (see
remark (d) in §4.7 for some details).

Following Fargues and Scholze [FS21] and Zhu [Zhu20, 4.6], the failure of essential
surjectivity should be fixed by replacing the category of smooth representations by a larger
category.

(d) Finally, we point out that in the conjecture it is necessary to pass to derived categories.
Heuristically this can be explained by the fact that flat morphisms on the representation theory
side correspond to non-flat morphisms on the side of stacks: for example, Hq is flat over its
center, whereas the canonical morphism
Xa i [Xg/Gl — T/W

is not flat (as it maps some irreducible components to proper closed subschemes of T/ w).
Moreover, we will see below that in the case of GL, (F) the trivial representation will be mapped
to a complex concentrated in cohomological degree 1 —n (see Remark 4.43). Hence, without
passing to derived categories, the functor cannot be fully faithful. The canonical t-structures on
the source (or target) should correspond to an exotic t-structure on the other side. However, we
have no idea how this t-structure could be described intrinsically. Moreover, the formulation of
the conjecture needs the passage to derived schemes or derived stacks: as parabolic induction is
transitive (in the sense that (3.3) is an isomorphism), the base change morphism (2.7) has to be
an isomorphism as well. However, in the world of classical schemes the corresponding cartesian
diagram is not Tor-independent in general.

3.3 A generalization of the conjecture
Conjecture 3.2 in fact is a special case of a more general conjecture about the category Rep(G),
instead of the Bernstein block Rep[TJ](G). Let us describe this generalization. A similar gen-
eralization is conjectured by Zhu [Zhu20, Conjecture 4.5.1]. The generalization stated here can
also be viewed as a special case of the main conjecture [FS21, Conjecture 1.10.2] of Fargues and
Scholze.

We continue to assume that G is a split reductive group with dual group G. Let us write
W for the Weil group of F' and Ip C Wg for the inertia group. We define the space of
G-valued Weil Deligne representations to be the scheme XgD representing the functor

) - .~ | pls is trivial for some J C I open

on C-algebras R. Here || — || : Wp — Z is the usual projection. It is easy to see that XgD is

an infinite disjoint union of affine schemes and is equipped with a G-action via conjugation
on p and via the adjoint action on N. The space of Weil-Deligne representations XgVD in fact
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agrees with the fiber over C' of the moduli space of L-parameters Z' (W2, G) studied in work of
Dat et al. [DHKM20] and is defined and studied as well in [Zhu20, 3.1].
Similarly, for every parabolic subgroup P C G we can define the scheme X5 WD and the derived

scheme X}’,VD that come equipped with P-actions.
The inclusion P «— G and the projection P — M onto the Levi quotient M of P induce

morphisms
AYD L (XWD /] — X WP, (38)
ap® ¢ [XFP/P) — [X){P/ M) |

of the respective stack quotients. Moreover, we will write XgD J/G for the GIT quotient of ngD
by the G-action. As in the case of the space of (¢, N)-modules X, it is easy to show that ﬁ}vD
is proper. The following summarizes properties of the spaces just introduced (which are proved
using methods similar to those in §2).

Let P C G be a parabolic subgroup with Levi quotient M.

(i) The space Xg,vD is reduced and a local complete intersection. (This follows from [DHKM20,
Theorem 4.1]. See also [Zhu20, Proposition 3.1.6].)
(ii) The morphism oYY 5 [XWD /P] — [X]\YXD /M] has finite Tor dimension. (This follows from
[Zhu20, Lemma 3.3.1].)
(iii) There is a morphism XAY/\[’D J/M — ngD J//G making the diagram

X}P/P)
pele X M)
XWPJG < - - o oo X\ PM

commutative. (This is the commutative diagram [Zhu20, (3.10)]. The morphism can easily

be constructed using the morphism X]\V}’D — X‘IQ,VD induced by the choice of a splitting of
Remark 3.4. In the case of the space of (¢, V)-modules X~ all these properties have been verified
in §2. In relation to (iii) we remark that the morphism

[X¢/Gl — Xg//G

is just the morphism y from (3.1), that is, the GIT quotient X // G agrees with the adjoint
quotient G//G. This can be seen as follows. The morphism ¢ — (¢, 0) defines a closed embedding
G — X which is the inclusion of an irreducible component. As G is reductive and C has
characteristic zero, the category of G-representations is semi-simple and we obtain a closed
embedding

As source and target are reduced (as G and X are) it is enough to show that the morphism
is bijective. This comes down to proving that for (¢, N) € X(k), for an algebraically closed

1069

https://doi.org/10.1112/S0010437X23007145 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X23007145

E. HELLMANN

field k, there exists ¢’ € G(k) such that

G- (¢,0)NG - (g, N) #0.

By (the proof of) Lemma 2.5 we may assume that ¢ € B and N € Lie B for some Borel B C G.
Let G;,, act on X~ by the sum of the positive roots. Then the closure of G, - (¢, N) contains in
addition the point (¢’,0) for some ¢’ € G such that ¢ and ¢’ have the same image in the adjoint
quotient G//G.

Let us write 3(G) for the Bernstein center of the category Rep(G). Given a Bernstein
component € of Rep(G), we denote its center by 30(G). Moreover, we denote by

2(G) = (XY )G, O )
the ring of functions on the GIT quotient XgD JJG. I X C XgD is a connected component, we
write Zx (G) for the ring of functions on the GIT quotient X//G.

Remark 3.5. If G = T is a split torus, then the isomorphism F* — ;}b of local class field theory
identifies X:VFv D' with the scheme representing the functor

R+ {p: F* — T(R) smooth character}

on the category of C-algebras. In particular, the scheme X}fv D decomposes into a disjoint union

of copies of T indexed by the smooth characters Op — T(C). This decomposition induces an
equivalence of categories

Rep(T) = QCoh(X}'P). (3.9)
We state a generalization of Conjecture 3.2.
CONJECTURE 3.6. There exist the following data.

(i) For each (G,B,T,) consisting of a reductive group G, a Borel subgroup B, a split maximal
torus T C B, and a (conjugacy class of a) generic character 1 : N — C*, there exists an
exact and fully faithful functor

R : DT (Rep(G)) — Do, (XY /G)).

(ii) For (G,B,T,v) as in (i) and each parabolic subgroup P C G containing B, there exists a
natural isomorphism

§%§:7€2,oz§§———e(]%ﬂ}if)o<Lo%yDﬂv 072%24

of functors D" (Rep(M)) — DéCOh([XgVD/G]). Here M is the Levi quotient of P and a\léVD

and ﬁ}évD are the morphisms defined in (3.8).
These data satisfy the following conditions.

(a) If G =T is a split torus, then Ry = R;ﬂ is induced by the equivalence (3.9) given by local
class field theory.
. . x . b
(b) Let (G,B,T,%) be as in (i). The morphism Z(G) — 3(G) defined by full faithfulness of R
is independent of the choice of ¥ and induces a surjection

o Bernstein components connected components
¢ of Rep(G) of XgD ’
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(c) Let (G, B, T,v) and P be as in (ii). Then the natural isomorphism ¢4 is Z(G)-linear for the

Z(G)-linear structure on Rep(M) defined by the morphism

Z(G) — Z(M) — 3(M)

that is given by the composition of the morphism Z(G) — Z(M) (which is induced by
X]\V;;D//M — ngD//G) with the morphism Z(M) — 3(M) of (b).

(d) Let (G,B,T,v) asin (i) and let P; C P2 C G be parabolic subgroups containing B with Levi
quotients My and Ms. Let P15 denote the image of P; in M. Then the diagram

Y, ,G
Rego LB,
G
gg! (*)
WD j  WDx %M RY 0.8 o, M2
RBPL*LOZPI °© RJ\/Il el P Pro
(%) \L l E}CD;Q
Moy
WD 7 . WD, x WD WD, * Yy “Piz WD 7 WD, YMy My
(Rﬁpzy*l/af’z )o (R,@Pw’*LaPm )o RMl (RBP%*LaPz )o RM2 ° LﬁlZ

is a commutative diagram of functors
D™ (Rep(M1)) — Dy, (X5 /GI).

Here (%) is the natural isomorphism given by transitivity of parabolic induction and (k) is
a base change isomorphism defined by the analogous diagram as in (2.6).
(e) For (G,B,T,) as in (i) there is an isomorphism

R (c-ind§ ) = O\xwo 3
Remark 3.7. (i) It should be possible to construct the expected morphism
Z(G) — 3(G)

of (b) in the conjecture, without referring to the conjectured functor Rg In the case of GL,, a
result like this has been established by Helm and Moss [HM18] (even with Zg-coefficients). More
generally, Fargues and Scholze [FS21, Proposition 1.9.3] give a construction of such a morphism
using the spectral action constructed in [FS21]. While the morphism is an isomorphism in the
GL,, case of [HM18], this is not true in the general case.

(ii) In fact Z(G) coincides with the stable Bernstein center as defined by Haines in [Hail4,
5.3]. This is a consequence of [DHKM20, Theorem 6.10]. With this identification the morphism
Z(G) — 3(G) of (b) in the conjecture should coincide with the morphism constructed in [Hail4,
Proposition 5.5.1] assuming the local Langlands correspondence.

Let us point out that the morphism wg from (b) cannot be expected to be a bijection in
general, as, for a given Whittaker datum 1/, not every Bernstein component € is ¢-generic® in
the sense of [BHO03, 4.3] (note that the notions of being 1-generic and being simply 1)-generic
of [BHO3] agree by [BH03, Example 4.5(1)], as G is assumed to be (quasi-)split). More precisely,

Conjecture 3.6 predicts that the restriction of wg induces a bijection

{ 1p-generic Bernstein } { connected }
. 7

components of Rep(G) components of X};VD

5 In fact there are groups with Bernstein components that are not 1-generic for any choice of a Whittaker datum .
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and that for a y-generic Bernstein component {2 the induced morphism
Z,0@)(G) — 3a(G) (3.10)

is an isomorphism. Indeed, combining Corollary 4.2 and Theorem 4.3 of [BH03], we deduce
that the 1)-generic components are precisely those components 2 such that (c—ind% Y)q # 0.
Moreover, morphism (3.10) fits in the commutative diagram

o)

Ende((c-ind§) )q) — Frdixwe /e (Opyn a)

- %T

30(G) Zue@)(G)

xX¥D

G.Q
zontal arrow is an isomorphism by (e) and full faithfulness in the conjecture, the right vertical
arrow is an isomorphism by definition and the left vertical arrow is an isomorphism by [BHO03,

4.3. Theorem].

where C ngD denotes the connected component defined by wg(€2). Here the upper hori-

Remark 3.8. Conjecture 3.2 is concerned with the principal component Repip;)(G). This
Bernstein component is -generic for any choice of 1.

Remark 3.9. In the case of G = GL,, there is (up to conjugation) a unique choice of (B, 1))
and every Bernstein component of Rep(GL,(F)) is 1-generic (see, for example, [BH03, 4.5,
Examples (2)]). Moreover, in this case one can show that XgD decomposes into a disjoint union

XC\%]?L = HﬂXﬂv

where n = (n|;) is a tuple of non-negative integers n|;) indexed by the Wr-conjugacy classes [7]
of irreducible Ip-representations 7 : Ir — GLg4, (C) such that

n= Z[WF : Wi - nqd;.
[7]
Here W, C Wp is the Wr-stabilizer of a representative 7 of [7]. Moreover, each X, is connected
and decomposes into a product where each factor is a space of (¢, N)-modules for a finite
extension F” of F. On the other hand, the local Langlands correspondence for GL,,(F') induces
a bijection

Wg-conjugacy classes of equivalence classes of
irreducible smooth representations p «— < cuspidal representations
7:1Ip — GL,(C), m>1 GL,.(F), r>1

where two cuspidal representations are said to be equivalent if they differ by the twist by
an unramified character. Hence, we obtain a bijection between the Bernstein components of
Rep(GLy,(F)) and the connected components of X2 . By results of Bushnell and Kutzko [BK99)]
every Bernstein component of Rep(GL,(F')) can be described by a semi-simple type and
the corresponding Hecke algebra is in fact isomorphic to a tensor product of Iwahori—Hecke
algebras. This corresponds to the decomposition of the connected components X,, of X(Y]\;E into
a product of spaces of (¢, N)-modules. In fact, in the case of GL,, type theory and a closer inspec-
tion of these decompositions should reduce Conjecture 3.6 to Conjecture 3.2 (in the case of GL,
for various r). In particular, it should be possible to generalize all results proven in the following
section for the block Repyr 11(GLy(F)) to the whole category Rep(GLy,(F)). This generalization
using type theory is discussed in details in [BCHN20, 5].
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4. The case of GL,,

In this section we consider the group G' = GL,(F") and make Conjecture 3.2 more explicit in
this case. We will provide a candidate for the conjectured functor and prove that it satisfies
compatibility with parabolic induction on the dense open subset of regular elements. In the case
of GLy we give a full proof of the conjecture.

We fix G = GL,, and choose the canonical integral model of G over Op corresponding to the
maximal compact subgroup K = GL,(OF) of G. In particular, we assume that the hyperspecial
vertex defined by K is contained in the apartment defined by the maximal split torus T C GL,,,
and I C K. We use this to obtain canonical integral models for the choice of a Borel B D T and
for parabolic subgroups P D B as well as for their Levi quotients. We will use the same symbols
for these integral models. We will often simply write 3 = 3 for the Bernstein center of the
category Repyr1)(G).

4.1 The modified Langlands correspondence

We recall the construction of the modified local Langlands correspondence defined by Breuil
and Schneider in [BS07, 4] (see also [EH14, 4.2]). We restrict ourselves to the Bernstein block
Repr11(G).

Let @ be a uniformizer of F'. For any field extension L of C' and A\ € L* we write unry : F'* —
L* for the unramified character mapping w to A. More generally, for A = (A1,...,\,) € (LX) we
write unry = unry, ® --- @ unry, : ' — L* for the unramified character of the torus T' = (F*)"
whose restriction to the 7th coordinate is unry,.

Write | — | = unr 1 : F* — C* for the unramified character such that || = ¢~!. Let L be a
field extension of C' and let (¢, N) € X (L) be a (¢, N)-module such that ¢ is semi-simple. Then
Breuil and Schneider associate to (¢, N) a smooth, absolutely indecomposable representation
LL™°d(p, N) of GL,(F) with coefficients in L as follows.

Fix an algebraic closure L of L. Given a scalar A € L* and r > 0, let Sp(\, ) denote as usual
the (¢, N)-module structure on L" = Leg @ - - - @ Le,_; defined by

o(e) = q '),
N(e) _ ei+1, <1 — 1, (4'1)
‘ 0, i=r—1.

Let St(\,7) denote the generalized Steinberg representation of GL,.(F) with coefficients in L,
that is, the unique simple quotient of Lg(unr,\ @unry| — | ® - @unry| — [*71).

Given some (¢, N) € Xxs(L) with ¢ semi-simple, we decompose (after enlarging L if
necessary)

(L™, 0, N) = D Sp(Ai,r4)
i=1

and define LL™°4(p, N) as the unique L-model of the L representation
(B(St(A1,71) @ -+ - @ St(Ag, 7)) (4.2)

Here P is the block upper triangular parabolic whose Levi quotient is identified with the block
diagonal subgroup GL,, x --- x GL,, and the A; are ordered so that they satisfy the condition
of [Kud94, Definition 1.2.4].

Remark 4.1. Note that the normalization we use differs from the one in [BS07, EH14]. There the
representation LL™°4(p, N) is modified by the twist by | det|~("~1)/2. This has the advantage
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that the resulting GL, (F') representation has a unique model over L, without assuming the
existence (or fixing a choice) of ¢'/2, as proven in [BS07, Lemma 4.2]. As we have fixed a choice
¢*/? in the base field C, and hence a choice of | det ]_(”_1)/ 2 their argument also implies that
our representation LL™°4(p, N) has a (unique) model over L. The reason for these two different
normalizations is the following. In [BS07] the representation should be canonically defined over
L, without choosing ¢'/2; moreover, in [EH14] the representations should (conjecturally) satisfy
some local-global compatibility. In our case we work purely locally and we are aiming for a
compatibility with normalized parabolic induction. More precisely, we need Lemma 4.3 below to
be true as stated (i.e. not a twisted version of it). Anyway, the definition of normalized parabolic

induction forces us to choose a square root g'/2.

If (¢, N) € X with non-semi-simple ¢, we write LL™°4 (¢, N) = LL™°d(¢%, N). Moreover,
if (p, N) is such that LL™%(p, N) is absolutely irreducible (i.e. if the G-conjugacy class [¢*, N]
is a generic L-parameter), we usually just write LL(p, N) instead of LL™°4(yp, N). Note that in
this case LL(¢, N)¥ 2 LL((¢, N)V), as normalized parabolic induction commutes with contra-
gredients and as in this case the parabolic induction of the contragredient representation still
satisfies the condition of [Kud94, Definition 1.2.4].

LEMMA 4.2. Let v = (¢4, Nz) € X. Then, using the notation of (3.1), the center 3 acts on the
representation LL™°9((p, N)V)Y via the character X, : 3 — k(x) of 3 that is defined by the point
x(x) € T/W = Spec 3

Proof. By definition of LL™°Y we may assume that ¢ is semi-simple. Then the representation

LL™4((¢, N)V)V embeds into

L%(umr)\1 ®---®unry,)

for some ordering A= (A1,...,\,) of the eigenvalues of ¢. Hence, it follows that
(LL™od((p, N)V)V)! embeds into Hg @7, unry and it is enough to prove that 3 C Hg acts
on Hg @, unry as asserted. But as 3 C Hr is the center of Hg, it acts on Hg @, unry via
the same character as on unry. The claim follows from this. [l

Recall that for a regular semi-simple endomorphism ¢ of an L-vector space L™ with
eigenvalues in L there is a canonical bijection

{p-stable complete flags F of L™} «— {orderings of the eigenvalues of ¢}. (4.3)

If F is a flag corresponding to an ordering A = (A1,...,A,) of the eigenvalues of ¢, we denote
by unrz = unry the L-valued unramified character defined by this ordering.

LEMMA 4.3. Let x = (@5, Nz) € X with ¢, regular semi-simple and let L be an (algebraic)
extension of k(x) containing the eigenvalues of ¢,. Then

rELL™Y((¢g, N2)¥)Y Qp(zy L) = @unr}-,
f

where the direct sum runs over all flags of L™ stable under ¢, and N.

Proof. The lemma is an application of the geometrical lemma [BZ77, 2.11, p. 448] describing the
composition of parabolic induction with the Jacquet functor.

Assume first that (o, N) @) L = Sp(A,7) (see (4.1)). Then we need to compute the Jacquet
module of the generalized Steinberg representation

St(A, 1) = 1§65 @unry| — [V2)/ ST G5, @ unry| - |(D/2),
BCPCG
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Here we view unry| — |(»~1)/2 as a character of M for any (standard) Levi M. Computing
rG (15 (671/% @ unry| — |~D/2)) using the geometrical lemma of [BZ77], it follows that

rG(St(\, 7)) = Unr,-(r—1), ® -+ @ unrg-1y @ unry.

This is the character corresponding to the ordering g DN, . Mg ), that is, to the ordering
defined by the unique (¢, N)-stable flag of Sp(A, 7).
In the general case we decompose (¢, N) ®y(z) L = @j_; St(A;, r;) and write

LLmOd(SDJHNLL’) ®k($) L = L]GJ(St(A17r1) Q- ® St(>\87rs))

as in (4.2). Then again the geometrical lemma of [BZ77] computes that its Jacquet module is
the desired one, and the claim follows from compatibility with contragredients. ]

Remark 4.4. For C = C the lemma can be interpreted as a consequence of the classification of
Kazhdan and Lusztig [KL87] using equivariant K-theory, or its formulation using Borel-Moore
homology in [CG97, 8.1]. For (¢,N) € X~(C) as in the lemma the fiber ﬁél(ap, N) of the

map BB : X 5 — X is identified with the ¢-fixed points ‘Bﬁ of the variety By of N-stable
complete flags, compare [CG97, 8.1]. Using the induction theorem [KL87, 6] one can deduce
that the Hg-module LL™°d(p, N) is precisely the standard module constructed in [CG97,
Definition 8.1.9](note that the group C(p, N) in that definition is trivial in the GL,, case). How-
ever, as  is regular semi-simple the variety ‘B% is a finite union of points, namely, the complete
(p, N)-stable flags. Hence, its Borel-Moore homology is the direct sum of copies of C' indexed
by these points. By construction the Hecke algebra Hp acts on this direct sum as asserted in
the lemma.

4.2 The work of Helm and of Emerton and Helm

Emerton and Helm [EH14] proposed the existence of a family of G-representations over a defor-
mation space of f-adic Galois (or Weil-Deligne) representations that interpolates the modified
local Langlands correspondence in a certain sense. A candidate for such a family was constructed
in subsequent work of Helm [Hel16].” Rather than working over f-adic deformation rings we want
to work with the stacks of L-parameters defined above. We review the work of Emerton and Helm
and of Helm in this setup in order to construct a family of G-representation on the stack [ X~/ G’]

In this subsection we need to work with families of admissible smooth representations (com-
pare [EH14, 2.1]). We make precise what we mean by this. Let A be a noetherian C-algebra and
let V be a finitely generated A[G]-module. We say that V is an admissible smooth family of G
representations over A if the G-representation on V is smooth and if VX' is a finitely generated
A-module for every compact open subgroup K’ C G.

Denote by N C B the unipotent radical and let ¢ : N — C* be a generic character. Recall
that an irreducible G-representation 7 is called generic if there exists an embedding 7 — Ind%zﬂ.
Equivalently, 7 is generic if there is a surjection c—ind% P — .

We write (c—ind% ¢)[T,1] for the image of the compactly induced representation c-ind% ¥ in
the Bernstein component Rep[TJ}(G) = Rep/G. As in the case of GL,, a Whittaker datum is
unique up to isomorphism, this representation (up to isomorphism) does not depend on the
Whittaker datum (B, ).

7 In Helm’s integral ¢-adic setup, the construction of the candidate in [Hell6] is not complete, but depends on
a conjecture about the action of the Bernstein center [Hell6, Conjecture 7.5]. This conjecture was proven by
Helm and Moss [HM18]. In our setup of representations with coefficients in a field of characteristic zero, and
only considering the Bernstein block defined by [T, 1], this conjecture becomes much easier and boils down to
Lemma 4.2 above.
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Recall that we have fixed K = GL,,(Or) D I and consider the induced representation Ind¥1;.
By [SZ99] this induced representation decomposes into a direct sum

Indf 1, = Pop"" (4.4)
P

indexed by the set of partitions P of the positive integer m which is partially ordered (see
[SZ99, p. 169]) and has a unique minimal® element Pp;, and a unique maximal element Ppax.
Let st = stg = op,,, denote the finite-dimensional Steinberg representation. This representation
occurs with multiplicity mp_ = 1. As c-ind$ st lies in the Bernstein component [T',1] it carries
a natural action of 3.

We further recall from [BZ77, 3.2 and 3.5] the definition of the rth derivative V") of a
GL,, (F)-representation V which is a smooth representation of GL,,_,(F). In particular, V(" is
just a C-vector space. By [Hell6, p.5, (2)] there is natural isomorphism

Homg (c-ind§ o, V) = V™, (4.5)
Ifo#£ve V() and V lies in the Bernstein component [T, 1], then the morphism defined by v
obviously factors through (c-ind¥ V) ir,1)-

The following theorem is a summary of the results in [Hell6, §§ 3,4] (translated to the easier
situation considered here).

min

THEOREM 4.5. Let m be one of the representations (c—ind% 1/})[T,1] and c—ind?( st. Then 7 is a

smooth 3-representation and the nth derivative 7(") is a free 3-module of rank one. Moreover,
let p € Spec 3. Then the following properties hold.

(a) The representation m ® k(p) is a direct sum of finite-length representations.
(b) The cosocle cosoc(p) of m ® k(p) is absolutely irreducible and generic.
(¢) The representation ker(m ® k(p) — cosoc(p)) does not contain any generic subquotient.

Finally, the representation c—ind[G( st is admissible as a 3-representation.

Proof. We cite the proof from [Hell6]. All references in this proof refer to that paper. In Helm’s
situation the coefficients are W (k) for a finite field k, instead of the characteristic-zero field C
in our case. The arguments literally do not change in our setup; except for one argument, where
the classification of irreducible, smooth mod ¢ representations in terms of parabolic induction
has to be replaced by the corresponding classification of irreducible, smooth representations in
characteristic zero.

The case of (c-ind¥ ¥)(7,1) follows from Lemmas 3.2 and 3.4. In the case m = c-ind% st admis-
sibility follows from Theorem 4.1, and part (a) is Lemma 4.2. Properties (b) and (c) are proven
in Proposition 4.9. Finally the claim on 7(™ is Corollary 4.10.

The proof of Helm’s Proposition 4.9 uses the classification of irreducible smooth mod
¢ representations of GL,(F) in terms of parabolic induction, and has to be replaced by
the usual Bernstein—Zelevinsky classification of irreducible, smooth representations in char-
acteristic zero [Zel80]. With this change of reference the proof in [Hell6] literally does not
change. O

We note the following consequence (which is also a special case of [CS19, Theorem 1.1]) of
the results in Theorem 4.5.

8 Note that the partial ordering used here is the opposite to the standard ordering of partitions (compare
[SZ99, 3]). Here the maximal element is given by 1+ 1+ --- 4 1 and the minimal element is n.

1076

https://doi.org/10.1112/S0010437X23007145 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X23007145

ON THE DERIVED CATEGORY OF THE IWAHORI-HECKE ALGEBRA
COROLLARY 4.6. There is an isomorphism of 3[G]-modules,
(c-ind§ V)i = c-ind¥ st,
unique up to a scalar in 3*.

Proof. By Theorem 4.5 the nth derivative (c-lndK st)(™ is locally free of rank one over 3. As
32 C[Xy,...,Xn 1, X;F!] every line bundle on Spec 3 is trivial and hence (c-ind% st)(™ = 3. By
the discussion preceding Theorem 4.5, a choice of a basis vector (which is unique up to a scalar
in 3*) gives rise to a morphism

o : (c-ind§ V)i — c-ind% st.

We claim that « is an isomorphism.

We first show that « is surjective. Let W denote the cokernel of a. Then W is generated
by its Iwahori fixed vectors W/ and, by admissibility of c—ind?( st, the 3-module W7 is finitely
generated.

As (—)! is an exact functor, W! @ k(p) = (W @ k(p))! and hence W = 0 if and only if W ®
k(p) = 0 for all p € Spec 3.

As a by definition induces an isomorphism

o™ : (c-ind§ @ZJ)[Tl — (c-ind% st) ™

and as the functor (—)(™ is exact (see, for example, [BZ77, 3.2, Proposition]), it follows that
W™ =0 and (W ® k(p))™ = 0 for all p € Spec3. Assume that W @ k(p) # 0. As W ® k(p) is
a quotient of c-ind% st ® k(p), Theorem 4.5(b),(c) implies that there exists a non-zero morphism

c-ind§ v — W @ k(p),

contradicting (W @ k(p))™ =0
Now c—indg’; st is projective as a G-representation and hence the surjection o has a splitting

(c-ind§ V)i = c-ind% st @ W',

As «a induces an isomorphism after applying the nth derivative (—)("), it follows that (W’ )(") =0.
By the adjointness property (4.5) is follows that the canonical projection

B¢ (c-ind§ )y — W'
is zero and hence W’ = 0, as (3 is surjective. ]

Following [Hel16], we construct a family Vg of G-representations on [X/G] that conjec-
turally interpolates the modified local Langlands correspondence (see Conjecture 4.8 below for
the precise meaning). Rather than constructing Vg directly on [X&/G] we construct a family Va
on the affine scheme X =: Spec A that is G-equivariant and hence descends to [X/G].

LEMMA 4.7. Let x = (¢z, Nz) € X. There exists a canonical surjection
(c-ind§ ¥) 1) @3 k(a) — LL™Y((oF, No) Y)Y
that is unique up to a scalar.

Proof. This follows from the argument in the proof of [Hell6, Theorem 7.9], using Lemma 4.2
instead of [Hell6, Conjecture 7.5]. O
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Let n = (¢y, Ny) € X be a generic point. Then
LL(SOnan) = LLmOd(SOm Nn) = LLmOd((SOnv Nn)v)v
is an irreducible generic representation. We obtain a morphism

(c-ind§ ¥) (1) ®3 A — (c-ind§ ) pr,1) ®3 k(1) — LL(py, Ny),
where the second morphism is the choice of a surjection as in Lemma 4.7.

Let 7;, @ € I, denote the generic points of X = Spec A 5. We define Vg to be the (admissible
smooth) family of G-representations over A that is the image of the morphism

(c—ind% ’lﬂ)[le] X3 Aé — H LL(QO,H, Nm). (4.6)
i€l
Up to isomorphism, this image does not depend on the choice of the surjection

(c-ind§ ) (1,1 ®3 k(i) — LL(¢y,, Np,).

By abuse of notation we also write Vg for the corresponding sheaf on XG

It can easily be seen that Vg is a G-equivariant quotient of (c—lnd N w)[T 1 ®3Ag (equipped
with the obvious G-equivariant structure). Hence, Ve descends to a quasi-coherent sheaf Vg on
X/ G] that carries an action of G. We will often refer to this family of G-representation as
the Emerton—Helm family. Conjecturally this family interpolates the modified local Langlands
correspondence.

CONJECTURE 4.8 (compare [EH14]). Let z = (¢, N) € X be any point. Then
(Vo ® k()" 2 LL™((p, N)Y).

4.3 Idempotents in the Iwahori—Hecke algebra
We will describe the family of Hecke modules associated to the Emerton—Helm family Vg in the
next subsection, and relate this construction to Conjecture 3.2. Before we do so, we need some
preparation about idempotent elements in the Iwahori—-Hecke algebra.

Let J C G be a compact open subgroup and (A, W) be a smooth representation of J on a
finite-dimensional C-vector space with contragredient representation (AY, W"). Then we have a
natural identification of C-algebras

compactly supported f : G — Endg(WV)
Endg(c-ind§ ) 2 { such that f(j1g52) = AV (j1) o f(9) o AV (j2) ¢ , (4.7)
forall g € G, j1,j0 € J
where, as usual, the algebra structure on the right-hand side is given by convolution. Given
f € H(G,\), one defines f: g+— f(g~') € Endg(W). Then f — f induces an isomorphism of
C-algebras

H(G, ) 2 H(G, \Y)°P,

Recall that Hg = Endg(c-ind¥ 1;) = Endg(c-ind% V), where V = Ind¥1;. From now on we
write A for the K-representation on V. As in (4.4), the representation V' decomposes as a direct
sum of the representations isomorphic to op. Note that

o GLa(k)
V = IndB(k) 1B(k)7
where B(k) C GLy,(k) is the special fiber of the Borel subgroup and K acts via the quotient
map K — GL, (k). For a partition P we write ¥p C V for the op-isotypical component of V.
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In particular, we have Xp = of”. The direct summand c-ind% ¥p of c-ind% V = c-ind¥ 1;
defines an idempotent element ep € Hg. If P = Prin we will usually write egy (or eggst if we
need to refer to the group G) instead of ep_, . Further, we usually write ex = ep,,. , which is
identified with the characteristic function of K.

Using the description of the Hecke algebra (4.7), the idempotent elements ep can be described
as follows. Let fp : V¥ — V" denote the endomorphism that is the identity on ¥y, and zero on
3%, for P' # P. Then the idempotent element ep is defined by

S 0, g¢ K,
P N ) o fp = fpoAV(g), geK.

Note that the representation V = Indf{ 1; and the irreducible representations op are self-dual.
In the case of V' this follows from the computation of the smooth dual of an induced repre-
sentation. In particular, the canonical identification 1; = (17)V gives a canonical isomorphism
a :V — VV.In the case of op we proceed by descending induction: the claim is obviously true for
1x = op,,.., and for each P we can find some (integral model of a) parabolic subgroup P C GL,
such that

GL, (k ~ Daps
Indp(k)( )1~ op ® @ op "
P<PI£P

for some integers ap:. As the induced representation on the left-hand side is self-dual, so must
op be.

It follows that we can identify Hg = Hg(V,A) with Hg(V,AY). In particular, we obtain a
canonical isomorphism Hg & HOGP.

LEMMA 4.9. Let P be a partition. Then ép = ep.

Proof. The canonical isomorphism « allows us to identify Endo(VY, V") with End¢(V, V) and
He = H(G, \) with H(G,\V). By definition ép is the element

(g ep(g™)") € H(G,X) = H(G,N)

under this identification. We calculate that

ép(g) = {0’ g¢ K,
PO e VY)Y = o AR), ge K.

Here f% is the idempotent endomorphism of V' defined by the direct summand >p. As the op are
self-dual the isomorphism « maps p to Z}’;. Hence, we conclude that (under the identification
Ende(VVY,VV) = Ende(V, V) using a) the element ép equals ep. O

Recall that Hg contains the finite Hecke algebra
Hao=C(INK/T) ={f : B(k)\GLn(k)/B(k) — C}

S, f(kikke) = A(k1) o f(k) o A(k2)
_{f'K_’EndCV for all k, ky, ko € K }

= Endg (V)

as a subalgebra. This algebra contains the idempotent elements ep. Further, recall that for a
parabolic subgroup P C G containing B we have an embedding Hjys <— Hg of Hecke algebras,
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where M = M(F) is the Levi of P. If P = B this gives an embedding
CX(T)] = Hr — He-
By [HKP10, Lemma 1.7.1] the morphism
Hr ®c Heo — Ha (4.8)
induced by multiplication is an isomorphism of C-vector spaces.
LEMMA 4.10.

(i) The canonical inclusion Hreg s C Haeagst is an equality. Moreover, this module is free of
rank one with basis eq st as an Hp-module.

(ii) Let P C G be a parabolic as above and let M = M(F) C G be the corresponding Levi
subgroup. The isomorphism

Hyrenmst = Hremst — Haeast = Hreag st
of free Hp-modules of rank one defined by ey st — eqst is an ‘Hy-module homomorphism.

Proof. (i) It follows directly from (4.8) that Hregg is free of rank one as an Hp-module.
Moreover, note that

Haoegst = (stq)B®)

is a one-dimensional C-vector space. This implies that f € Hg can be written as the sum f =
foeast + fi(l —eqst) with fo € Hr and fi € He. It follows that

feG,st = fOeG,st + fl(l - eG,st)eG,st = fOeG,st € HTeG’,st~

(ii) As the inclusion Hreg s C Heegst is an equality, we also have an equality Hyeg s =
Hgeg st- Therefore, it is enough to show that the Hj/-module homomorphism

Hy — Huea st

mapping 1 to eg g factors through Hyr — Harensse. That is, we need to show (1 — eprst)eqst =
0 in Hg. We can check this equality in the subalgebra Hg . Translating the claim back to
representation theory, it comes down to the claim that

Ind$ " ®sty, € ndGhr® (ndy ™ 1) = Indgm*1

P(k) P(k) M (k) B(k)
contains the direct summand stg, where By = B N M is a Borel in M. This is true, as st¢ is the
only constituent of the right-hand side that does not occur in Indg(“;)(k)lp/(k) for any parabolic
P’ strictly larger than B. O

COROLLARY 4.11. Let x = (¢4, N;) € X5 with ¢, regular semi-simple and let L be an extension
of k(z) containing all the eigenvalues of p,. Then

((c-ind§ 9) 1) ©3 k(2)" = (Haeast) ©3 k()

and after extending scalars to L its Jacquet module is given by

rG((c-ind§ ¥)r,y) @3 L) = @ unr,
f

where the sum is indexed by the . -stable flags F of L™. Moreover, the kernel of the quotient
map of Hp-modules

(Heegst) ®3 L = @ unry — @ unrx (4.9)
pz-stable F (¢z,Nz)-stable F
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is Hg-stable and the induced Hg-module structure on the quotient identifies the right-hand
side with the I-invariants of (the scalar extension to L of) the quotient LL™%((y,, N,)¥)V in
Lemma 4.7.

Proof. The first claim is a direct consequence of (c—ind% V)i Qc—indf( stg and the
identification

(C—ind[G( stg)I = Haea st-

The claim on the Jacquet module follows from Hgeg st = Hregst and (3.6).

For the second part, note that the right-hand side in (4.9) is uniquely determined as an
‘Hr-module, as the characters unrz are pairwise distinct. Hence, it is enough to prove that the
quotient

((c-ind§ o)1 ®3 k(x))" — (LLY((pz, Na))Y)!

given by Lemma 4.7 induces this quotient map on the underlying Hp-modules (and after extend-
ing scalars to L). This is a consequence of the computation of % (LL™°((p,, N,)V )Y Ok(z) L)
(see Lemma 4.3). O

We finish this subsection by recalling some easy facts about the passage from left to right
modules over H¢g. Given a left Hg-module m, one can view 7w as a right Hg-module via the
isomorphism H¢ = H/. We write ' for this right module structure on 7.

LEMMA 4.12. Let M C G be a Levi and let m be a left Hs-module. Then there is a canonical
and functorial isomorphism of right Hg-modules

HHg @1y, 0) 2o @1y, Ha,
where the Hg-module structure on the right-hand side is given by right multiplication.
Proof. 1t is easily checked that ¢ ® v — v ® ¢ defines the desired isomorphism. O
LEMMA 4.13. Let m be an Hg-module and let e € Hg be an idempotent element.
(i) There is a canonical equality of 3-modules
Homy,(Hge, 7) = em = eHg Qn,, 7.

(i) There is a canonical identification '(Hge) = ¢éH as H¢ right modules.
(iii) Let P be a partition. Then

Homy, (Hgep,m) = t('HGCP) QK T
iv) For two partitions P, P’ we have
(iv) p ,
epHgepr = Bm%’mg”.

Proof. Part (i) and (ii) are obvious, and (iii) is a direct consequence of (i), (ii) and ép = ep.
Finally, we find

epHgep = Homy, (Hgep, Hgepr) = Homg (c-ind% Sp, c-ind% Spr)
mpmpr

= Homg(c-ind% op, c-ind% opr)

Now (iv) follows from [Pyv20a, Theorem 1.4]. O
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4.4 The Hecke module of the interpolating family
In §4.2 we constructed a family of G-representations Vg on the stack [X~/G]. Let

Me = (Ve)!

denote the corresponding module over the Iwahori-Hecke algebra. We write Mg for the
corresponding G-equivariant sheaf of O X, ®3 He-modules on X .

We write A for the coordinate ring of X . Similarly, given a Levi subgroup M C G, we
write A,; for the coordinate ring of X ;. Recall that we have embeddings Hys — Hqg and a
canonical isomorphism Hy = 37 = Aj.

Recall the following diagram of C-schemes from § 2:

/W

Assuming Conjecture 2.17, the complex
RﬁB,*Of(B

is concentrated in degree zero and, as 3’ is affine, so is R:)/*(’)XB. Hence, the formulation of the
following conjecture makes sense.

CONJECTURE 4.14. Let G = GL, and assume Conjecture 2.17. Then the canonical map

XGXT/WT R’Y*OXB

is a surjection.
Note that Conjecture 4.14 would imply that we have a canonical surjection
OXC: ®3 Hr = OXC: ®3Ap = ﬂi(OXCXT/WT) — RﬂBv*OXB‘ (4.10)

Remark 4.15. We point out that Conjecture 4.14 is a conjecture for the group GL,, and will fail
for other groups. In fact it already fails for SLs and its failure seems to be related to the existence
of non-trivial L-packets. We refer to Example 4.33 below for a discussion of this point.

The restriction of the above diagram to the regular locus yields the following diagram.

v reg
Xp
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THEOREM 4.16. Conjecture 4.14 is true over the regular locus. That is, the canonical morphism
OngXT/WT 7 RV*OXréeg

is a surjection. Moreover, the restriction of the induced surjection (4.10) to the regular locus and
the identification

Ox, ®3Hr = Ox, ®3 Hregst = Ox, @3 Haeg st
equips RBB,*OXreg with the structure of an Oxree @3 Hg-module that identifies this sheaf with
B G
the restriction M¢|xres of the Hecke module defined by the Emerton—Helm family.
G

Proof. This follows from Lemma 4.18 and Proposition 4.19 below. O

Remark 4.17. We point out that proving Conjecture 4.14 would automatically imply that the
identification of RBB,*OXB with the Hecke module underlying the Emerton-Helm family holds
true without restricting to the regular locus.

LEMMA 4.18. The morphism

v X5 — X5 Xy T

is a closed immersion.

Proof. Clearly « is a finite morphism, by the very definition of the regular locus. Hence, it is
enough to show that v induces an injection on k-valued points, for algebraically closed fields k,
and a surjection on complete local rings.

Let k be an algebraically closed extension of C' and let (A, m) be a local Artinian C-algebra
with residue field k. Let (¢, N) € X5%(A) and let A,..., A, € A. Then we have to show that
there is at most one complete flag Fo of A™ stable under ¢ and N such that ¢ acts on F;/F;_1
by multiplication with A;.

Assume first A = k. We prove the claim by induction on n. The case n = 1 is trivial. Assume
the claim is true for n — 1. Then it is enough to show that there is a unique (¢, N)-stable line F;
in k™ on which ¢ acts by multiplication with A;. Obviously this forces F C ker N and we need
to show that the y-eigenspace in ker N of eigenvalue A; is one-dimensional. However, if this is
not the case then there are infinitely many pairwise distinct (¢, IV)-stable lines in £™, and each
can be completed to a complete (¢, N)-stable flag. This contradicts the regularity of (¢, N).

Now assume that (A, m) is a general Artinian C-algebra with residue field k. Again it suffices
to show that there is a unique (¢, N)-stable A-line in A", such that the quotient of A™ by
this line is free, on which ¢ acts as multiplication by A;. By induction on the length of A we
can reduce to the following situation: there exists f € A such that mf =0, and if A’ = A/(f)
and (¢', N') is the image of (¢, N) in X;®(A’), then there is a unique (¢', N') stable A'-line
in A on which ¢ acts by multiplication with A\; mod (f). Let (@, N) € Xéfg(k) denote the
reduction of (¢, N) modulo m and let \; € k denote the reduction of A;. Then multiplication by
f induces an embedding of k™ < A" of (¢, N)-modules with cokernel A™". Assume that F; = Ae;
and F] = Ae]] are two (¢, N)-stable A-lines on which ¢ acts by multiplication with A;. Then the
assumption implies €] = ae; + fov for some o € A* and v € k™. Let &; € k™ denote the reduction
of e; modulo m, then it remains to show v € ké;1. As ¢(e1) = Aie1 and ¢(e)) = A€} we deduce
@(v) = Apv. The discussion of the case of an algebraically closed field k& above implies that it
is enough to prove that v € ker N. However, we assume that F; and Fj are defined by points
(o, N, Fo), (p, N, F.) € ng(A). As ng is reduced by Lemma 2.7 and as N is nilpotent we
deduce that N(F;) = N(F]) = 0 and hence N(fv) = 0, which implies N (v) = 0. O
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We use the lemma to identify ng with a closed subscheme Yéeg of ng X w T. We denote
by
YG C XG XT/W T= Spec(AG ®3 AT)
the closure of Yéeg equipped with its canonical scheme structure (which is the reduced structure,

as X;g is reduced). Let us write 121(; for the corresponding quotient of Ax ®3 A and B : Yy —
X for the canonical projection.
We can use Lemma 4.10 to equip

Ar®3Ap = Agx @3 Hp = An @3 Hregst = Ag @3 Haeg st
with an Hg-module structure.
PROPOSITION 4.19.

(i) The kernel of the canonical morphism As ®3 Ay — Ay is stable under the action of Hg.
(ii) There is a canonical isomorphism

MG = 5*OYG
of G-equivariant Ox,, ®3 Hg-modules.

Proof. (i) By Lemmas 2.5 and 2.7 the scheme Y is reduced and every irreducible component of
Y dominates an irreducible component of X . In particular, the canonical morphism

A — [T Ac @ k) = [[T(B5' ), O5.1,)
n n

is an injection. Here the product runs over all generic points 7 of X . It is therefore enough to
prove that for all generic points 1 of X~ the kernel of the canonical map

k(n) ®3 HGGG,st = k(ﬁ) ®3 HTeG,st = k(ﬁ) ®3 AT - F((Bél(ﬁ)a O/;El(’?))

is stable under the Hg-action. This follows from Corollary 4.11 applied to the generic point
1n = (s, Ny).

(ii) Consider the diagram
(C—ind% 1/1)[[,1171] X3 AG‘ — F(XG" MG) O HW LL(QDU, Nn)l

ok

AT X3 AG‘ AG'C Hn F(Bgl(n)voﬁgl(n))

1%

where the left vertical arrow comes from the identification of

(C‘indg w)fm] =Hgeast = Hregs = AT

and the right vertical arrow comes from the identification of the Jacquet module of LL(p,, N;)
in Corollary 4.11. By construction the diagram is a commutative diagram of A ®3 Hz-modules;
moreover, all morphisms are compatible with the G-action. Hence, these morphisms induce a
canonical isomorphism

I(Xe Mg) = Ay
as claimed. 0

As a consequence we can easily deduce Conjecture 4.8 for regular semi-simple points. We
refer to point (d) in §4.7 for a discussion of non-regular points.
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COROLLARY 4.20. Let x = (¢, N) € X with ¢ regular semi-simple. Then
(Vo ® k()" 2 LL™((p, N)Y).
Proof. 1t follows from the proof of Proposition 4.19 that
((-ind§ ) pry) @3 k(2))" — Me @ k(z) 2T (B~ (2), 051 ()
is a surjection of Hr ® k(z)-modules. The claim now follows from Corollary 4.11. O

The module of I-invariants in the family of smooth representation over f-adic deformation
rings proposed by Emerton and Helm [EH14] (and constructed by Helm in [Hel16]) is expected to
have a close relation with patched modules in the Taylor—Wiles method (for Iwahori level at p). In
fact the Taylor—Wiles patching modules automatically produces maximal Cohen—Macaulay mod-
ules (which are in fact self-dual for Grothendieck—Serre duality). The family defined in [Hell6]
is related to the family Vg by the twist with |det|=(»~1/2 and by some flat base changes. This
motivates the following conjecture which also would be a direct consequence of Conjecture 4.14
and the self-duality statement in Conjecture 2.17

CONJECTURE 4.21. The Hecke module Mg = (Vg)! underlying the Emerton-Helm family Vg
on X is a Cohen-Macaulay module over Ox.

Remark 4.22. One deduces easily from Proposition 4.19 that Mg cannot be flat as an
Ox,-module. On the other hand, as explained above, the family M should have some relation
with patching modules and hence should satisfy some local-global compatibility with the coho-
mology of certain locally symmetric spaces. We do not give a very precise formulation of this
here, but it would include the (derived) base change to a global Galois deformation ring. In the
neighborhood of generic L-parameters there should be no obstruction for this base change to sit
in a single cohomological degree. This motivates the following observation.

COROLLARY 4.23. Let z = (p,N) € ng such that the G-conjugacy class of (o, N) is a generic
L-parameter. Then Mg is locally free (as an Ox,-module) in a neighborhood of z.

Proof. As a maximal Cohen—Macaulay module over a regular local ring is automatically free,
this follows from Remark 2.23 and the identification of Mg|yree above. O
G

4.5 The main conjecture in the regular case
After restricting to the regular case we give a candidate for the functor Rg in Conjecture 3.2, as
well as functors R}{’/}” for all (standard) Levi subgroups, and prove compatibility with parabolic
induction. As in the case of GL,, the choice of (B, ) is unique up to conjugation, we will always
omit the superscript ¢ from the notation. By abuse of notation we will also use the symbols
1%(—) and L%(—) to denote the functors on Hecke modules corresponding to parabolic induction
(3.5).

For a standard Levi subgroup [[;_; GL,, = M C G = GL,, we write My for the tensor prod-
uct of the pullbacks of the MGLW_( r) on Xgr,, to Xy = I, Xar,,- This is an M-equivariant
sheaf of Ox , ®3,, Hy-modules, and again we write My for the sheaf on [X;/ M defined by

M M- We define the functor

Ry : DT (Hp-mod) — Dacoh([XM/M]) (411)
7ro|—>t7r'®7[_/lM_/\/[M. .
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The derived tensor product in the formula can be defined for objects 7® € D*(Hjs-mod) that are
bounded above using finite projective resolutions (recall that H,s has finite global dimension).
In general an object 7® € D*(Hj-mod) can be written as the direct limit of its truncations

lim 7 (7°) = o,
—_—

and we can define
el Mas = lim((rem (') @k, M),

Note that by definition Rjs preserves the truncation 7,.

We will write R}r\(j[g for the composition of Rj; with the restriction to the regular locus
[X 7/ M] C [Xy7/M]. Obviously the functors Ry and Ry are 3p-linear.

We restrict ourselves to the regular case. In order to have a compatible choice of the M
(which are a priori only defined up to isomorphism) for various Levi subgroups of GL,, let us
set

M?\Zg = MM‘[XIT\;g/M} = RﬁBAlv*O[XrB:iI/B]W]’

where Byy = BN M C M is a Borel and fp,, is the restriction of the canonical projection

[Xj/B] — [X&/G] to the regular locus. By abuse of notation we drop the restriction to the

regular locus in the notation and just write M instead of M. We now use Proposition 4.19
to define the Hjs-module structure on M, that is, we let H s act on

re. A - ore

Oxres @3y, Ap — OXB;

by letting it act on Ay = Hr = Hyenr st (the fact that this Hjps-action extends to the quotient
is the content of Proposition 4.19).

Let P; C P> be parabolic subgroups containing B with Levi quotients M; and My and write
P15 for the image of P; in M. We will define a natural 3s,-linear transformation

Ep: RAE 00 — (b2, o Laty) o RyF, (4.12)

where a2 and (12 are the morphisms in the following diagram.

e

re > re > o reg »
[XMf/MQ] <,BT [Xplgz/Pm] <7 [XBMQ/BM2]
l i (4.13)
@12 «@
reg /1’ By xes B
(X8 /00] < X /B

Note that the square on the right-hand side is cartesian and Tor-independent by Lemma 2.9 and
Corollary 2.11.

Let m be a complex of Hjs-modules. Giving ff;f () is equivalent to defining its adjoint
morphism

tﬁ%i (TF) : Lﬁ;Z(t(HMz ®7L-{Ml 7T) ®HM2 MM2) - LO‘T2(t7r ®7[-/(M1 MMl)‘

Using Lemma 4.12 and compatibility of pullbacks with tensor products, we need to define a
morphism

t L * t L *
T ®H1Wl L612MM2 — T ®HM1 LCY12MM1,

1086

https://doi.org/10.1112/S0010437X23007145 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X23007145

ON THE DERIVED CATEGORY OF THE IWAHORI-HECKE ALGEBRA

that is, we need to define a morphism of Has, ®3,,, O|xres /p,,;-modules
P12

LﬁikQMM2 — LO[{QMMI.
Using the above identifications, we can define this as the composition

LBiaMas, = (LB1z © BB« 0 Rﬁ*)(O[XEJgM /Brrg)
2
— BB La™(Opyres 5, 1) - LatgRpBu «(Opxres 3, 1) = Lada Mo, (4.14)
My By 1

where the first morphism is given by adjunction and the second morphism is given by the base
change morphism in the cartesian square in (4.13).
A priori this is only a morphism of (9[ X'eE p12]—modules.
P12

LEMMA 4.24. The morphism (4.14) is a morphism of H s, -modules.

Proof. We prove the claim after pulling back to X}fli in (4.13).

We write &, 3 etc. for the corresponding morphisms of schemes. As all the maps 8 (with
various subscripts) are affine, all but the first object in (4.14) are concentrated in degree 0.
Moreover, all schemes are reduced, and hence it is enough to prove the claim after restricting to

the dense open subscheme where ¢ is regular semi-simple. We denote these open subschemes by

ngi * etc. Consider the following diagram.
2

ereg-ss reg-ss %o T “rreg-ss N T
Buy, — Ko, XTwap T = My Xy, T ——

~l& l(*) z“j

ereg-ss reg-ss . 7 “rreg-ss . T
B, XM1 T/ War, T — M 2T /Wi, T ——

Here, the vertical arrow (x) on the right-hand side is induced by the identification
Mireg—ss ><T/VVMZ- T = {(SOMQBMi) € Mireg—ss x MZ/BMz ‘ P e gilgMig}'
By definition the H,s,-module structures on source and target of

ﬂ* 6(* Oj(rvegfss = &TQﬁMl % OX—rvegfss
By By

are induced by two (a priori perhaps different) H s, -module structures of the structure sheaves

O oreg-ss &— O reg-ss
X . X X

. T
By, o TT/Whry

which in turn are given by the pullback of an H s, -action on Aj. These Hyy, -actions are given
by

— the Hyy, action on A given by Ay = Hrenr, st
— the restriction of the Hjz, action on A given by Ay = Hrenr, st-

By Lemma 4.10(ii) these actions coincide. O

We obtain the following first step towards Conjecture 3.2.
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THEOREM 4.25. For each parabolic B C P C G with Levi M the restriction of (4.11) to the
regular locus is a 3)-linear functor

RyF : DY (Hp-mod) — Décoh([X;;g/M]).

Moreover, for two parabolic subgroups B C Py C Py the natural transformation f%ﬁ defined in
(4.12) is a 3pp,-linear isomorphism.

For parabolic subgroups P1 C Py, C IP3 Iet M3 denote the Levi quotient of Py and P13 C Pog
denote the images of P; C Py in Mz. Then the diagram in Conjecture 3.2(b), applied to P13 C
Po3 C Mg, commutes.

Proof. We are left to prove that ﬁ‘{g is an isomorphism and that the diagram in Conjecture 3.2(b)
commutes. Using truncations and resolutions by free modules, it is enough to prove that

glei(HMl) : MMQ = t(HMQ ®HA{1 HM1) ®HA12 MM2
— RBio(LaioMas) & Rb12,RB.Oxes 5,1 = Mo,
Mo

is an isomorphism. However, this is a direct consequence of the construction of f%ﬁ in (4.14)
using the base change isomorphism in the cartesian square of (4.13).

As 5}7\3{2 is the composition of an adjunction morphism and a base change map, the com-
mutativity of (b) in the conjecture is a consequence of standard compatibilities of base change
morphisms and adjunctions. 0

Remark 4.26. We point out that the arguments above extend directly from the regular locus to
all of X~ once Conjecture 4.14 is known.

4.6 Compactly induced representations

We describe the image of the functor Rg defined in (4.11) on (the I-invariants in) the compactly
induced representations c—ind% op. The result parallels, and is motivated by, results of Pyvovarov
in [Pyv20c].

Recall from Proposition 2.1(ii) that the irreducible components of X are in bijection with
the possible Jordan canonical forms of the nilpotent endomorphism N. For a partition P let
Zap denote the irreducible component of X p such that the Jordan canonical form of N at
the generic point of Z¢ p is given by the partition P. Then we set

Xep = U Zé,pr-
PP’

In particular, we have that XG,Ptmn = X, and X, G P = ZG‘,Pmax is irreducible. We will some-
times write X, for this irreducible component, as it is the irreducible component defined by
N = 0. We write np for the generic point of the irreducible component ZG‘,P-

PROPOSITION 4.27. Let P be a partition. Then Rg(c-ind$% op) is concentrated in degree zero
and, viewed as a G-equivariant coherent sheaf on X, has support X . Moreover,

:1G I
Re((c-indg 1k)") = Ox, s
Rg((c—ind?( Stg)I) = OXC;"
equipped with their canonical G’—equjvariant structures. In particular,
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Proof. We will rather calculate the images of
Heep = (c-ind§ Bp)! = (c-ind§ o5™7)".

Recall that mp,,, = mp,,, = 1. Using Lemma 4.9, we see that the G-equivariant coherent sheaf
on X5 defined by Ra((c-ind% ©p)T) is epHa @ng Ma-
Recall that by definition the sheaf M is the sheaf attached to the image of

AG ®3 Hgest — HLL(@npman/)I
7)/

induced by the surjections Hgess @3 k(npr) — LL(gonP,,N ) of Lemma 4.7. Consequently,

Np’

epHa @, Mg is the sheaf defined by the image of the morphism

An @3 epHgesy — H GPLLmOd(SOnp/ ) an/)l-
P/

Note that Ax ®3 epHgest is a free Ax-module of rank m%, by Lemma 4.13(iv). To show that
the sheaf Rg(Hgep) has support X, ¢p it remains to show that

epLL(¢y,, Ny ) #0 =P <P

np!

The left-hand side can be identified with
Homyy, (Hgep, LL(wy,, , N,

Npr

)") = Homg(c-ind§ Ep, LL(y,,,, Ny, ))
= Homg (op, LL(¢y,, s Ny, )™ 7

As LL(¢y,,,, Ny, ) is absolutely irreducible and generic, [Shol8, Theorem 3.7] implies the claim.

If P € {Pumins Pmax}, then Xp = op and An @3 epHgess = Ag. In this case the above dis-
cussion shows that Rg((c-ind% op)!) is the structure sheaf of the union of those irreducible
components Zg p, such that Hompg (op, LL(#y,,; Ny, ) # 0. If P = Prax this implies P =P
as above. On the other hand, if P = Py, then Homg (op, LL(py,,, Ny, )) # 0 for all P" by

[Pyv20b, Theorem 1.3]. O

Remark 4.28. A closer analysis of the proof shows that Rg(c-ind% op) can never be (locally)
free over its support XG,P unless mp = 1. Indeed, generically on ZG,P the sheaf RG(c—ind% op)
is free of rank one, using [Shol8, Theorem 3.7 (ii)]. On the other hand, generically on Xy,
this sheaf is free of rank mp. Indeed, let L be the algebraic closure of k(np,..)- Then
LL(¢p,..» NPoos) Ok(np,...) L 1s an irreducible representation induced from the upper triangular
Borel. On the other hand, c—indIG( op ®3 K is a direct sum of mp copies of the same irreducible
principal series representation by Corollary 6.1 and Lemma 6.4 of [Pyv20a].

4.7 Remarks about the relation of the various conjectures

In this section we add a few remarks about the relation of Conjecture 4.14 with
Conjectures 3.2 and 2.17. This should give some evidence for Conjecture 4.14 which in turn
would imply that RBB,*OXB agrees with the Ox,-module underlying the Hecke module Mg
defined by the Emerton—Helm family. Moreover, we explain the relation of the main conjecture
with Conjecture 4.8.

(a) Before we come to this point, we mention that our expectations about R B’*OXB imply that,
for G = GL,, the functor Rg is uniquely determined by the requirements in Conjecture 3.2.
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If R is any functor satisfying the main conjecture, then
Rg(c-ind§¥ 1) = Rg(L%(C—indTo 170)) = RBp (Lol Ry (c-indhe 170))
= RBp+(Lag(Ox, /11)) = ROB-Ox

which is equipped with a faithful action of Hg = Endg(c—imd?v 1;7). Using the identification
Rep[TJ}G =~ Hae-mod and resolutions by free Hg-modules, we deduce that the functor Rg on
the category Hg-mod necessarily has to be of the form

T — t7r‘ ®,§’_{G RﬁBv*OXB'
As we expect that RﬁB,*Of(B is concentrated in one degree and is a maximal Cohen—Macaulay
module the Hg-action (if it exists) is uniquely determined by its specialization at the generic
points of X . At these points the Frobenius ¢ is regular semi-simple and we will see
in Corollary 4.44 below that in this case the completion of the functor (with respect to

the corresponding character of the center 3) is uniquely determined by the conditions in
Conjecture 3.2.

(b) One could hope that (if Conjecture 2.17 holds true) the Cohen—Macaulay property of
RBB,*OXB implies that the Hg-action extends from its restriction to the regular locus to all
of Xx. Indeed, this would be automatic if the complement of the open dense subset ng had
codimension greater than or equal to two in X 5. Unfortunately this is not true in general, not
even in the case G = GL,,. However, the generic points of XG\ng that are of codimension one
in X5 can be described rather explicitly. In fact it turns out that they are generic L-parameters
and hence X is smooth at these points. It seems likely that Conjecture 4.14 can be checked
explicitly (‘by hand’) at these points. This would imply that the Hg-action on RBB,*OXB is well
defined on an open subset U whose complement has codimension at least 2 and hence (using
Conjecture 2.17) the Hecke action extends to all of RBB,*OXB.

(c) We assume Conjectures 2.17 and 3.2 and explain that in this case Conjecture 4.14 can be
attacked using the functor Rg. The sheaf
- )
MG = RﬂB,*OX B

is an Ox,, ®3 Hg-module that is Cohen-Macaulay as an Ox,-module. In particular, its direct
summand eG,stM,G is a Cohen—Macaulay modqle as well. If Conjecture 4.14 can be checked on
an open subset U as in (b) above, then eg s M|y = Oy as in the proof of Proposition 4.27.
The Cohen-Macaulay property hence implies that eq Mg = Ox . and hence by (4.5) there is
a canonical morphism

Haeast ©3 Ox, — M.
We expect that this morphism is a surjection, and that this surjection agrees with the surjection
in Conjecture 4.14. In fact it seems that this can be checked using properties of the conjectured
functor Re(—) = '(—) @k - MG (compare (a) above for the fact that Rg necessarily is of this
form): We only need to check that for each point x € X the canonical map
Heeas ©3 k(z) — Mg @ k() (4.15)

is surjective. As eqgMp ® k(z) = k(z) is one-dimensional there is a unique generic
Jordan-Holder factor 7, in My ® k(x) and (4.15) is surjective if any only if 7, is the cosocle of

t: ® k(z). The center 3 acts on m, via a character x, : 3 — k(z) and there are only finitely
many irreducible representations w on which 3 acts via x,. Among those, 7, is the unique
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generic one. We expect that for irreducible 7 the complex of coherent sheaves Rg(m) (which
is supported in non-positive degrees) has cohomology in degree zero if and only if 7 is generic.
This implies in particular that tm Qe Mg @ k(x) = 0 unless 7 is generic. Using the Tensor-Hom
adjunction

Homk(m) (tﬂ- QHg M/G ® k(z), k(x)) = Homyy, (tﬂ-v Homk(x) (/\;l/G ® k(z), k(x))),

this expectation would imply that the cosocle of M, ® k(z) has to be generic and hence (4.15)
must be a surjection.

(d) We discuss how Conjecture 4.8 relates to Conjecture 3.2 in the cases where ¢ is not regular
semi-simple (i.e. in the cases that are not covered by Corollary 4.20). For (¢, N) € X~(C) let
¢ denote the semi-simplification of ¢. Generalizing Remark 3.3(b), we define a closed G-stable
subscheme X pn C Xg as the closed subscheme whose C-points are the pairs (¢’, N) such

that ¢ € G- ¢ and such that N’ lies in the closure of G - N. While it turns out that this
closed subscheme still contains

X o = { N € Xg o n | N €G- N}

3 is
G,le,N]
dense in XC?,[% NI In fact XG[% N] can have several irreducible components in general (the

as an open subscheme, we caution the reader that it is not true in general that X

lowest-dimensional case where this phenomenon occurs is GL; with ¢ = diag(1, ¢, ¢, ¢*) and
N of maximal possible rank).

According to the discussion above and assuming Conjecture 4.14, the functor Rg coincides
with the functor 7 — 7 ®7L{G Mg, and if 7 is a representation (not just a complex of represen-
tations) concentrated in degree zero the complex R (7) is concentrated in non-positive degrees.
If 7 is a representation concentrated in degree zero its zeroth cohomology sheaf H(Rg(7)) is
identified with the non-derived tensor product ‘m ®7;, M Similarly to (c), we compute that
the fiber H*(Rg (7)) ® k(z) as the k(z)-dual to

Homyy,, (“r, Homy () (Ma ® k(z), k(x))). (4.16)

Given a point = = (¢, N) € X, we apply this to the modified representations LL™°4 (¢, N')
for the various N’ such that (¢, N') € X 5. We expect that, generalizing Remark 3.3(b), the sheaf
HO(Rg(LL™4(p, N'))) has support X (o,N7] (We are slightly sloppy about viewing Rg(m) as a

complex of sheaves on [X/G] or on X5). Hence, we expect that there is a non-trivial morphism
LL™((p, N')Y) — (Mg ® k()"

if and only if N lies in the closure of the G-orbit of N’. As the left-hand side and the right-hand

side have exactly one generic irreducible constituent which appears as the unique subrepre-

sentation, this morphism (if non-zero) is automatically injective. In particular, (Mg ® k(z))V

contains LL™°Y((p, N)V). A closer analysis of the representations (c-ind$ V)i @3 k(z), of

which Mg ® k(x) is a quotient (again we are sloppy and do not distinguish between a rep-

resentation and the Hecke module defined by the representation), yields that this inclusion in
fact has to be an equality as otherwise there is a non-zero map

LL™((, N')Y) = (Mg ® k()"

for some N’ such that N is not contained in the G-orbit of N, contradicting our expectations
about the support of the sheaf HO(Rg(LL™4 (¢, N'))).

We note that the discussion above automatically would imply that (4.16) is one-dimensional
if non-zero. Hence, it seems reasonable to expect that HO(Rg(LL™Y(p, N))) is the structure
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sheaf of X, (., vy, generalizing the expectations in Remark 3.3(b) (which is Theorem 4.34 below

in the case of GL,). However, we do not know whether one should expect that Rg(LL™d(¢p, N))
is always concentrated in degree zero.

4.8 Proof of the conjecture for GL,

We prove Conjecture 3.2 in the two-dimensional case. In this subsection we use the notation G =
CLy(F) and G is the algebraic group GLy over C. In this case the B-action on Lie B N Ngr,, has
two orbits and hence X is a complete intersection and X5 = X3 (see Remark 2.8). Moreover,
this remark implies that X 5 is reduced, and both of its irreducible components are the closure of
an irreducible component of X;g. To simplify notation, we will write Xo = Xy = Zgp,  C X
for the component given by N = 0 and X = X. Moreover, we sometimes write X1 = Zy p = C
X for the component on which NV is generically non-trivial.

PRrOPOSITION 4.29. Conjecture 4.14 is true for GLs. In particular, we obtain an identification
Mea = R3O b
Proof. As already discussed above, the claim holds over the open subset Xéeg CX =Xz On

the other hand, the closed complement of ngg has the open neighborhood X\ X; which is an
open subset of G. The claim now follows from the well known fact that

h:GLy = {(p,gB) € Gx G/B| ¢ € gBg '} — G =GLy
has vanishing higher direct images, and its global sections are given by
I(GLg, Ogy,) = I'(GLa x4/ T, Oy, T O
As a consequence we still can use (4.14) to define a natural transformation
£¢§ : Rg o5 — (RB.La™) o Ry, (4.17)

where o : [Xp/B) — [X7/T] and 3 : [X3/B] — [X/G] are the canonical morphisms. The same
computation as in the proof of Theorem 4.25 again shows that this natural transformation is a
3-linear isomorphism (compare Remark 4.26).

THEOREM 4.30. Let G = GLy(F) and T' C B C G denote the standard maximal torus and the
standard Borel, respectively. The functors Rg and Ry defined by (4.11) are fully faithful and
the natural transformation ¢§ defined by (4.17) is a 3-linear isomorphism. Moreover,

RG((C—ind% w)[ITJ]) = O[XG/G]
for a choice of a generic character 1) : N — C* of the unipotent radical N of B.

By the above discussion, it remains to show that Rg is fully faithful. Let us write f € 3
for the element corresponding to the characteristic polynomials of the form (7' — A\)(T — g)) for
some indeterminate A. Then the morphism

-f
O1x/a) — Oya
factors through (’)[ x/c) = (9[ Xo/C] and yields a morphism

Olxo /61 — Oy (4.18)

with image fO[X/G‘] and cokernel O[Xl/é‘}‘
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PROPOSITION 4.31. Let F,G € {Ox /¢, Oy, iy }- Then

1 _ 37 Z: 07
Extig e (F,9) = {0, i 0.

More precisely, a 3-basis of Hom = Ext" is given by the identity if F = G.
If F = O[X/G‘] and G = O[XO/G']7 then a 3-basis is given by the canonical projection, and if
F = O[XO/@] and G = O[X/G], a 3-basis is given by the morphism (4.18).

Proof. We can easily reduce to the case C algebraically closed.
Consider the canonical projection

f:1X/G] — [x/G] = BG.

We need to compute H'(BG, Rf.RHom(F,G)). As G is reductive and the base field C' has
characteristic zero, the category of @—}"epresentations is semi-simple and hence this vector
space is given by H'(Rf.RHom(F,G))¢ (compare also [DG13, Lemma 2.4.1]). Here we write
HY(Rf.RHom(F,G)) for the ith cohomology sheaf of the complex Rf.RHom(F,G), which is a
sheaf on BG, and hence a G-representation.

Let us write F and G for the pullbacks of F and G to X. Then, by definition, giving the
quasi-coherent sheaf H*(Rf,RHom(F,G)) on BG is the same as giving a G-equivariant structure
on H{(RHom(F,G)). We conclude that

Extly ¢ (F,9) = (Bxtiy(F,6))°

for the canonical G-representation on Extix(f" ,G) induced by the G-equivariant structures on F
and G.
If F = O[X/é]’ then

L~ s I'Xx,g), i=0,
Bty (F,g) = {09
0, 1#£ 0,
and one easily computes I'(X, G)G 2 3 in both cases. Moreover, a 3-basis is easily identified with

the identity or the canonical projection, as claimed.
Now assume that F = (’)[ Xo/C" We compute

Ext’y (F,0) = T(X, Extp  (F,G)).

If ¢ # 0, the sheaf Extlbx (JE , G) clearly is supported on the intersection Xo N X;. We first
show that it is a locally free sheaf on Xy N X; (equipped with the reduced scheme structure).
Let X™&% C X denote the Zariski open subset of (¢, N) with ¢ regular semi-simple. Then
XoN Xy, C Xreess,

Moreover, let X' — X'8% denote the scheme parametrizing a ¢-stable subspace. This is
an étale Galois cover of degree two and the filtration by the universal (p-stable subspace has a
canonical ¢-stable splitting. Let us write Vi and V5 for these eigenspaces and let Y — X’ denote
the T-torsor trivializing V7 and Vs. Moreover, let

Z ={(M, M, a,b) €T x A% | a(Aa — g\1) = 0 =b(\1 — qha), A1 # Ao}
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equipped with the 7' = Spec C' [s{cl, sgl]—action that is trivial on 7" and via multiplication with

the character a: (s1,s2) — 3152_1 on a, and via ! on b. We consider the diagram

Y
7N
Xreg—ss Z

where (3 is the canonical projection, which is G-equivariant, and = is the T-equivariant G-torsor
that is given by writing the matrices of ¢ and N over Y as

1\/1%(90):(?)1 ;\L) and Mat(N):(g g)

in the chosen basis of V; and V5.

Let x = (¢0,0) € Xo N X, be a C-valued point. Without loss of generality we may assume
o = diag(Ao,gAo). Let y € Y be a pre-image of = and let z denote its image in Z, such that
z = (Mo, g0, 0,0). Consider the closed subscheme Zy = V' (a,b) C Z and write Fz = O, and

OZ, if g~ = OX7
Gz = e 5
Oz, if G=0x,.
Then S:ctfgx (F,G) is locally free on Xy N X if and only if Extlbz (Fz,Gz) is locally free on Zj.

Let S = (’}sz & C[t1,t2,a]/((t1 — t2)a) be the complete local ring at z with A\ = Ao + ¢ and
A2 = q(A\o + t2), and consider the T-equivariant resolution of Fz, = S/(a) given by

- 8(2) % 1) 2 gy =g,
Here S(m) is the free S-module of rank one with the T-action twisted by the multiplication with
™. It follows that
S/(a), 1=0,
0, i>1,

Ext}(S/(a), S) = {

and
) S/(a)7 i=0,
Ext} (S/(a),5/(a)) = {0, i odd,
(S/(t1 — t2,a))(—i/2), i > 2 even.

In particular, S:Ut’bz (Fz,0z) vanishes for i # 0, and Sxtzbz (Fz,0z,) vanishes for odd ¢ and is
locally free of rank one over Zy for non-zero even i. We deduce

Eatly (F,Ox) =0 fori#0.
Moreover, it follows that Extsz (F, Ox,) vanishes for odd i and is locally free of rank one on
Xy N Xy for non-zero even . In particular, a G-invariant global section
h € Ext’y (F, Ox,) = T'(X, Extly  (F,Ox,))
vanishes if
0= h(2') € Extly (F,Ox,) @ k(z')

for all 2/ € Xy N X1. Hence, we have to show h(z') = 0 for all 2’ € Xy N X7 for even i # 0. Again
it is enough to check this for our choice x = (¢p,0). Then T' = Stabgar,(¢o) acts on the fiber
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Saﬁt%x (F,0x,) ® k(z), and h(x) is T-invariant. By the above diagram the T-action on this fiber
is the same as the T-action on

0, i odd,

Eato, (Fz,0z) @ k(z) =
J}OZ( Z Zo) (Z) {C(—l/2)u 1 > 2 even.

Obviously, for i # 0, there are no non-trivial T-invariants.

It remains to show that Homy (O x, ¢, 9) = 3, and to identify the basis vector. If G =
(’)[ X0/ this is clear, and a 3-basis is clearly given by the identity. If G = O[ X/, One computes
that the pullback of the morphism (4.18) to Y specializes to the pullback of a basis vector of
Homo,(Oz,,0z) @ k(v(y)) at every point of y € Y. The claim easily follows from this. O

COROLLARY 4.32. Let Dy, Dy € {Hgex,Hgest}. The functor Rg induces isomorphisms

EXt%'lG(Db DQ) — EXt’EX/é}(RG(Dl)v RG(DQ))

Proof. Note that Hgex and Hges are projective and Homyy, (D1, D) = 3. By Proposition 4.31
the claim is true for i # 0 and we are left to show that in degree zero the canonical mor-
phism identifies basis vectors. This is clear if D; = Dy. Let us write v : Hgex — Haest and
Yo : Haess — Hgeg for choices of basis vectors and let f € 3 as defined before Proposition 4.31.
Then, up to scalars in 3™, we have

Y2071 = [ idyge, and 1oy = f - idygey- (4.19)
Writing §; = Rg(7;) one checks that the equalities

dp 001 = f'ido[xo/c:] and 0100y = f-idoy ¢
enforce that

01 € Homyxcy(Opx ) Olxyen) - and - 0 € Homyxey (O Opxy i)
are basis vectors. O
Proof of Theorem 4.30. We show that
Rg : D(Hg-modss) — Dy, ([X /Gl

is fully faithful. The general case then follows from a limit argument as in Remark 3.3(a).

By standard arguments the proof boils down to Corollary 4.32. Let D}, DS be complexes in
Db(H(;—modfg). We may choose representatives of D? consisting of bounded complexes whose
entries are direct sums of copies of Hgex and Hges. Assume first D} = Hgex or Hgeg concen-
trated in degree zero. We prove the claim by induction on the length of D3. By Corollary 4.32
the claim is true if D has length zero, that is, if D3 is concentrated in a single degree. Assume
the claim is true for all complexes of length less than or equal to m and let D3 be a complex
in degrees [r,r +m + 1] for some r € Z. Then D$ can be identified with the mapping cone of a
morphism of complexes

Dy[~r] — D3

with f); concentrated in degree [r,7 4+ m]. The claim follows from the induction hypothesis,
Corollary 4.32 and the long exact cohomology sequence.
The general case follows by a similar induction on the length of Df. O

Ezample 4.33. We finish this section with some remarks about the case G = SLy(F) and G =
PGLs. As already pointed out above, Conjecture 4.14 fails for SLo.
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In this case T = G,,, and W = Ss. Let us write
PGL; € PGLy x G/B = PGLy x P!
for the Grothendieck resolution of PGLs, that is for the closed subscheme of (g, L) € PGLgy x P!

such that the line L is stable under g. We consider the following canonical diagram.
PGLy
/
PGL2 - PGL2 X(Gm/g2 G

| |

Gm/82 Gm

Again it is well known that R f*oﬁ?}fz
(necessarily of rank two). However, the canonical map

Ol%GLg = OpcL, (1] C[X,Xfl] — f*Oﬁ_@fg = Rf*(’)lgém, (4.20)

is concentrated in degree zero and in fact locally free

where C[T] = T(Gy/S2, Og,,/s,) and C[X, X ] =T(Gy, Og,,), is not surjective. Indeed, con-
sider the point 2 € PGLy given by the class of the diagonal matrix diag(—1,1). Then f~!(x) =
{0, 00} is the disjoint union of two points and hence

fiOpar, ® k(x) = k() x k(z)

as a k(xr)-algebra. On the other hand, the morphism C[T] — C[X, X ~!]is given by 7'+ X 4+ X1
and z maps to the point {T' = —2} in Spec C[T| = G,,,/S2. We find that the canonical map (4.20)
specializes to

k(z) @cpr CIX, X' = CIX]/(X +1)* — C x C = k(z) x k(z)

which cannot be surjective. In fact Pic(PGL2) = Hom(m; (PGLz),G,,) = Z/2Z and hence there
is (up to isomorphism) a unique non-trivial line bundle £ (which comes with a canonical PGLo-
equivariant structure). In fact £ can be identified with the ideal sheaf of the closed subscheme
G-z and LY = L. Tt is not hard to show that

f+Opgar, = Opar, © L. (4.21)

Let us also mention what RBB,*OXB looks like. As in the case of GLa, the scheme X~ has
two irreducible components XG‘,O and Xc’l, where N =0 on XG‘,O' Using (4.21), we obtain a
decomposition

RBp.Ox, = Ox, & Fo = F & Ox,,, (4.22)
where F (respectively, Fo) is the twist of Ox, (respectively, Ox, ) by the pullback of the
non-trivial line bundle £ on G = PGLs. Indeed, the same computation as for GLy yields that

1 1
Bxtix, ja(F0, Oxg) = 0= Bxtiy )y (Oxg 00 F)

and we can use (4.21) and the canonical morphism Ox , — R B,+O X5 to obtain a short exact
sequence

0 — Ox, — RBp.Og, — Fo—0
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which has to split using the computation of Ext-groups. Note that the pullback of £ to P/’aig
is the trivial line bundle, and hence twisting this sequence by the line bundle F and using the
projection formula, we obtain a short exact sequence

0 —>.7:—>Rﬂ~37*(95(3 —>(’)XGD —0

which has to split as well.
We point out that in light of the main conjecture the decompositions (4.22) correspond to
the two decompositions

c—ind? 17 = c—indIG(1 1k, @ c—indIG(1 stg, = c—ind%’;1 1k, @ C—ind%’;2 str,

of representation of G = SLa(F'), where I is a choice of an Iwahori and K; and Ky are the two
non-conjugate hyperspecial subgroups of G with I = K; N Ky. Moreover, K; = Ky = SLy(OF)
and st is the respective inflation of the finite-dimensional Steinberg representation of SLa(kr).

Let us finally comment on the comparison with the Emerton-Helm construction (for a choice
of a Whittaker datum ). Indeed, choosing 1, we can again compute that Hgey = (c—indjc\;, )t
for some idempotent element e, and this module is free of rank one over Hr. We can define an
‘Emerton-Helm family’ Vg, as the quotient

(c-ind§ ¥)pr1) @3 Ox, — Vo

with prescribed fibers at the generic points of Xx. The fiber of Vg, at the point (,0) € Xz,
for x € PGLy as above, is the representation c—ind%@b ®3 k() which is the unique non-split

extension
0 W;ﬁ/_gen _ VG,zp ® k((l’, O)) N ﬂ;ﬁ-gen _ .0
where 7T}£/) 8% is the 1)-generic representation on the L-packet defined by (x,0) and 9’ is (a choice

of) the Whittaker datum not conjugate to .
On the other hand, we obtain a diagram

(-indf 9)" @3 Ox,, = Oxy @3 Op —> Mgy = Vo)

\v‘"

IBB’*OXB
of Ox,-modules. The morphism g is an injection and induces an isomorphism on the open
complement U of the Cartier divisor G - (z,0) C X, and
B0, C jux(BpOx |v) = jux(Ma,p|v)

is stable under the action of H¢, where jy : U < X5 is the canonical embedding.
This construction equips ﬂBv*OXB = RﬂB,*OXB with an action of Hg, depending on the
choice of the Whittaker datum v, such that

RY(=) ="(-) ©%, Bp-Ox,
is the desired functor in the case of G = SLsy. Computing the fibers of BB,* Oj(Ba we find
BB,*OXB & k:((x, 0)) = (ﬂ.g)—gen)] D (leb’—gen)l’

P-gen

and the action of the centralizer of x is trivial on (72 #™)! and non-trivial on (r% ")/,
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4.9 Calculation of examples
We finish by computing the image of some special representations under the functor Rg defined
in (4.11). In particular, we are in the situation G = GL,(F) and G is the algebraic group GL,,
over C'. For simplicity we assume that C' is algebraically closed. We fix the choice of the diagonal
torus T and the upper triangular Borel subgroup B.

Let z = (¢,N) € X In the examples calculated in this section we will assume that ¢ is
regular semi-simple. As in Remark 3.3(b), we write

Xa[%N} =Gz

for the G-orbit of (¢, N) and Xz (p,) for its closure.
THEOREM 4.34. Let (¢, N) € X~(C) and assume that ¢ is regular semi-simple. Then

d
To prove this, we will use compatibility with parabolic induction. Hence, the main step will
be to calculate the image of the generalized Steinberg representations.
Let x : 3 — C be the character defined by the characteristic polynomial of ¢. We write 3,
for the completion of 3 with respect to the kernel m, of x and

ﬂG»( = HG ®3 3)(

for the m-adic completion of Hq. Similarly, if M C G is a Levi subgroup, we write HM,X for
the corresponding completion of Hyy.

Assume that ¢ = diag(¢1,...,¢n). For w € W =§,, we write wep for the diagonal matrix
diag(@w(l), e ,cpw(n)). We use the notation d,, to denote the Hp-module defined by the unram-
ified character unry, (i.e. the residue field at the point wy € Spec Hr), and by to denote the
completion of Hr at the point wy € Spec Hr. Then §,, and Sw are ﬂ;nx—modules.

We recall intertwining operators for parabolic induction. Let P,”’ € G be parabolic sub-
groups (containing T) with Levi subgroups M and M’ and let w € W such that M’ = wMw™!.
Let 7 (respectively, ') be smooth representations of M (respectively, M’) and let f : 7% — 7/
be a morphism of M’-representations. Then there is a canonical morphism of G-representations

F(w, f) =Fg(w, f): L%T[‘ — L%w'

associated to f (and similarly for LIGJ and LIGD,). Moreover, this construction extends to (mor-
phisms of) complexes of M (respectively, M') representations. We also note that the formation of
these intertwining operators is transitive in the following sense. Let P1, P} C P C G be parabolic
subgroups. Let M, M} and M denote the corresponding Levi quotients and let P; ps be the
image of P; in M (and similarly IP”LM). Let w e Wy C W be a Weyl group element such
that wMjw~! = M] (as subgroups of G, and hence also as subgroups of M). Moreover, let
7 be a representation of Mj, 7’ be a representation of Mj, and f: 7 — 7’ be a morphism of
Mj/-representations. Then, under the canonical identifications

G LM (7[_) — LG

G M / G _/
=12 =2 o and =22 ) =127
P P1m Py P P/LM( ) P/1 ’

the morphism L%(FM(U], f)) is identified with Fg(w, f).

1098

https://doi.org/10.1112/S0010437X23007145 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X23007145

ON THE DERIVED CATEGORY OF THE IWAHORI-HECKE ALGEBRA

Now fix A € C* and let p = diag(\, ¢ '\, ..., ¢~ DN). For w,w’ € W the identity of d,
and &, , respectively, induces intertwining operators

flw,w') : L%((Fw) — L%(&w/),
Fw,w') 1 8(0w) — i%(bur).

Note that these morphisms are isomorphisms (with inverse f(w',w) and f(w’,w), respectively)
if and only if for each 7 the entries ¢—*\ and ¢~ @)\ appear in the same order in we and wp.

(4.23)

Moreover,

Homg 10(t5 G bws 150r) = 3y f (w, w) (4.24)
is a free gx-module of rank one. We define the (universal) deformation of the generalized Steinberg
representation

gt(A,r):L§(5 1/2 ® unry| — |*~D/2)) Z (0p 1/2 ® unry| — |~ D/2),

BCPCG

Here we write unr), for the universal (unramified) deformation of the character unry and denote
the target of unry by C[t]. Then

unty @cyg C[t]/(t) = unry,
St(\, 1) @cqq CILl/(t) = St(A, 7).

Note that by definition S;t()\, n) is a quotient of L%Swo, where wy € W is the longest element.

By abuse of notation we will also write St(\,n) (respectively, St(\,n)) for the Hg-module
(respectively, ﬂgvx—module) given by the I-invariants in the respective representations. Similarly,
we will continue to write (&6, etc. for the Hecke modules defined by these representations. In
the following we will only work with Hecke modules, hence no confusion should arise.

We construct a projective resolution C’ 2 of the HGX -module St(\,n) concentrated in
(cohomological) degrees [ -(n —1),0] such that all objects in the complex are direct sums of
induced representations ¢ G5, and the differentials are given by combinations of the intertwining
morphisms (4.23). We construct the complex by induction.

If n = 2, then ¢ = diag()\, ¢~ )\) and we consider the complex
s

. e .
A C'2,,\ %( 2N — 1,%(58),

where s € S is the unique non-trivial element. It can easily be checked that the morphism f (1,s)
is injective and that its cokernel is gt(A 2).

Assume we have constructed C _qa- For i=1,2 consider the upper triangular block
parabolic subgroup P; C G with Levi subgroup M such that M; has block sizes (n — 1,1) and
My has block sizes (1,n — 1). We consider

) A. _ ——
D} = Ch1\@ UNT - (n-1),
as a complex of Hjy, -modules and
e — S Ave
D3 =unr,-n-1),® Cp_q )

as a complex of 7:{M2,X-modules. Let 0 € S, be the cycle (12---n). Then M; and M, satisfy
oMio~! = M, and the identity (D})” — D3, as a morphism of complexes of Hyy, ,-modules,
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induces a morphism of complexes
1§ D} — 5 Ds.
We define C® m) as the mapping cone of this complex. Then C A obviously is a complex in degree

[—(n — 1),0] whose entries are (by transitivity of parabolic induction) direct sums of LE((SM) for
some w € W (each isomorphism class appearing exactly once) and the differentials are given by
intertwining operators (by transitivity of intertwining operators).

LEMMA 4.35. The complex C . Is exact in negative degrees and
HO(CS,) = St(\,n).

Proof. We proceed by induction. If n = 2 this was already remarked above. Assume that CA’;L_I A\

is quasi-isomorphic to gt(A, n —1). Then C’ .\ 18 quasi-isomorphic to the complex

(St(/\ n— 1)®unr —(n— 1») — Lg

in degrees —1 and 0, where the morphism is given by the obvious intertwining map. One can
easily check that this morphism is injective and its cokernel is St(A,n). O

(Unr - (- 1,® St(\,n — 1))

Similarly to the definition of 7:[G7X, we define m,-adic completions on the side of stacks of
L-parameters. Let XG‘,X denote the completion of X~ along the pre-image of x € Spec3 = T/ w
under the canonical morphism X = — T'/W. This formal scheme is still equipped with an action
of G and we can form the stack quotient [XG +/ G). Similarly, we write X 5  and Xy , for the
corresponding completions of X and X ;. The functor R defined in (4. 11) naturally extends
to a functor

Ray : DT (Hg y-mod) — D (X, /G-

As a consequence of Theorem 4.25 the functor RG,X also satisfies compatibility with parabolic
induction similarly to Conjecture 3.2(ii), but for the induced morphism between the formal
completions of the stacks involved.

Let us build a more explicit model of these stacks. We consider the closed formal subscheme

Y =Spf (Clur,.. . tna]ltr, - tal /(tig1 — ti)wi)) € Xz s (4.25)

where Clui, ..., up—1][t1, ..., ta]/((ti41 — ti)wi) is equipped with the (¢1,...,t,)-adic topology.
The embedding into X, is defined by the (¢, N)-module

vy — dla’g()‘ + 11, q_l()‘ + tQ)a s 7q—(n—1)()\ + tn))a
Ui€i+1, Z<7'L—].,
Ny €;) =
v(ei) {Q i=n-—1,

over Y. This formal scheme comes equipped with a canonical T-action (which is trivial on the
t; and via the adjoint action on the u;) such that [Y /7] = [ X X/G]

For w € W we define a closed T-equivariant formal subscheme )A/(w) by adding the equation
u; = 01if g~ 0~Y\ precedes ¢\ in we. In particular, Y(wo) Y if wg € W is the longest element.
We denote by XG (w) the corresponding G-equivariant closed formal subscheme of XG

LEMMA 4.36. There is an isomorphism
» G¢ ~
Rex(50w) = O, (w)

where we view RG7X(L%(5w) as a G-equivariant sheaf on XG:X'
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Proof. This is a straightforward calculation using the compatibility of RG,X with parabolic
induction. O

The lemma identifies the images of parabolically induced representations under Rny- Next
we identify the images of intertwining operators. For w, w’ € W there is a canonical T-equivariant
morphism

9w, ) : Og ) — Opuny
defined as follows. Let I, = {i=1,...,n — 1] ¢ (DX precedes ¢\ in we}, that is,
Y (w) = Spf Clug, ..., tun_1][t1, - tn]/(ui, @ € Ly, (tig1 — ti)us, @ & L)
and let us write
Y(w,w') = Spf Clus, ..., un—1][t1, . - - tn]/ (i, i € Ly O L, (tig1 — i), i & Ly N L)

for the moment. Then, similarly to (4.18), multiplication by [];c; \; ,(ti+1 — ) induces a
morphism OY(w) — OY(w w) and we define §(w,w’) to be its composition with the canonical
projection to (’)f,(w,).

LEMMA 4.37. For w,w’ € W the Bx—module
Homg . 1e1(O1x,, wysap Qi whyyep) = Hompy 1y (O 12 Oty 1)
is free of rank one with basis §(w,w’).

Proof. This is a straightforward computation. O

By the following theorem the images of the intertwining operators RG,X( f(w,w')) can be
identified (up to isomorphism) with the morphisms §(w,w’) just constructed.

THEOREM 4.38. Let o = diag(\, ¢ ', ..., q_("_l))\) € T(C) and x :3 — C be the character
defined by the image of ¢ in T/W. The set of functors

Ry : DY (Fasy-mod) — Dy (X ./ M])

for standard Levi subgroups M C G, is uniquely determined (up to 1somorph1sm) by requiring
that they are 3 M,x-linear, compatible with parabolic induction, and that RTX is induced by the
identification

Hr-mod = QCoh(X7 ).

More precisely, let R/GX be any functor satisfying these conditions. Then for each w € W, there
are isomorphisms

RIG,X(f(w,w/)) l l g(w,w’) (4‘26)

commutes.
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Remark 4.39. (a) Note that we do not need to add the requirement
A G N 5\
Rex((c-indX ¥)iry @3 3x) = Oz, ey

which also would be a consequence of the requirements in Conjecture 3.2. In the situation
considered here, there is an isomorphism

(c-ind§; V)T @3 3)( = L%Swo

and hence the above isomorphism is automatic.
(b) It seems possible to compute that

Extiy i1 (O tw) 11> Oy 7)) = 0

for w,w’ € W and i # 0 by a similar explicit computation to that in Proposition 4.31. This would
imply the conjectured full faithfulness of Rq, .

Proof. Let us first justify that the second assertion implies the first. Note that

- - N - . M2
Harx = Harx ®7:lT,X Hrx = Harx ®7:1T,x < @ 6“’) - EB L§M(5w'

wEW s weWy,

Using free resolutions of bounded-above objects in D+(7:{M,X—mod), it is hence enough control
the images of parabolically induced representations and the images of the intertwining operators.
Then a limit argument deals with the general case.

Given R’GX as in the formulation of the theorem, compatibility with parabolic induction

forces the existence of isomorphisms «y,. Note that «,, is unique up to a unit in ?JX. We claim
that we can choose the isomorphisms such that the diagrams (4.26) are commutative. In order
to do so, we proceed by induction. By assumption the claim is true for n = 1. We also make
n = 2 explicit. In this case we can identify

~

G » G »
L§(51 = Ha ek and LE(SS = Hg yest-

~

One calculates that the intertwining operators f(1, s) and f(s, 1) are identified with a 3, -basis of

HomﬁGX (Ha ek, Hayest) and Homﬂc’x (Ha,yests Haxex)s

respectively. Moreover, the compositions f (1,s)0 f (s,1) and f (s,1)0 f (1,s) are the multiplica-
tions with f € 3;, with f as defined just before Proposition 4.31. The calculation in the rank-two
case, Proposition 4.31, yields the claim.

Assume now that the claim is true for n — 1 and view S,_1 as the subgroup of W =S8,

permuting the elements 1,...,n — 1. Recall the parabolic subgroups P; and P; from the inductive
construction of the complex C;L’ - Using parabolic induction L%l and the induction hypothesis,

we may assume that we have constructed o, for all w € §,,—1 C W such that the diagram (4.26)
commutes for all w,w’ € S,—1. Let o = (12---n) as above. We first show that we can choose

Y G5 =
Qo1+ RG,x(LECSUwG*l) - OY/(

ocwo—1)

such that (4.26) commutes for the pairs w, cwo~! and cwo ™!, w. Let Tii+1 denote the transposi-
tion of ¢ and ¢ + 1. Inductively we define wy = 7, p—1WTy n—1 and w; = Tp—i n—i—1Wi—1Tp—in—i—1-
Then the composition of intertwining operators

G§ G§ G§ G§
L§5w — L§6w1 —_— s — L§5wn71 — L§60w0*1
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is identified with 8f (w, cwo~1) for some 3 € 3; Similarly, the composition

L%(S(,wgq — L%(LWHI — L%éwl = L%(Sw

is identified with 3f (cwo ™!, w) for the same unit 3. In this composition all the intertwining
maps are isomorphisms, except for the morphisms

L%Swi — L%Swi .1 and L%Swi o L%Swi

where the position of n and n—1 in (w;(1),...,w;(n)) and (w;+1(1),...,wi+1(n)) is inter-
changed. By the computation in the two-dimensional case and compatibility with parabolic
induction this intertwining morphism is given by the multiplication with 8'(¢,, — t,—1) for some
unit §' € 3; or by canonical projection multiplied with 3. Modifying a,,,-1 by (83)71, we
deduce the commutativity of the diagrams (4.26) for the pairs w, cwo ™! and cwo ™!, w.

Now consider the general case. Note that for any w € W there exists w € §,—1 such that
L%gw =N L%&,; or L%gw = L%ggwa-—l.

Hence, we can choose «,, such that all the diagrams (4.26) commute, provided we can check
commutativity of these diagrams for w,w’ € S,—1 U cS,_10~ L. If both elements w,w’ lie in
S,_1, this follows from the induction hypothesis. Let us check the claim for w,w” € S,,_; and
w' = ow”o~! (the argument in the other cases being similar). By Bx—linearity it is enough to

check that
Ry, (160,) —— Oxg (w)
Ry, (vf(wo')) l l Yi(w,w')
R (160w) —— O, ()

commutes for any choice of 0 #£ v € BX. In particular, we may check it for the element + defined
by

A~

fw” ocw"o™ ) o f(w,w") =y f(w,ow'c™) =~ f(w,w).
This follows from functoriality and the cases already treated above. ([l

We now continue to calculate the image Rg  (St(\,n)) of the deformed Steinberg represen-
tation. Let us write

VS 2 Spf Cluy, ..., up1][t] C Y

for the formal subscheme defined by t:=t = --- =t,. We write thx for the corresponding

G-equivariant scheme.
We inductively construct a T-equivariant resolution E , of Oys;.

(i) If n = 2 we set

e . -1 _ ; _
B3\ Eyy=0pq — By, =0y,

where again s € Ss is the unique non-trivial element. It can easily be checked that this morphism
is injective and its cokernel is (’)};St
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(ii) Assume that E 1) 18 constructed, then consider the morphism of complexes

B Al ][]/ (1) 2 BT ][t /(= ta)tn 1)

on Y and define £° o to be its mapping cone. Here we write

~

E:z—l,A[Unfl][[tn]]/(unfl) = E:z—l,/\ ® 4,1 An/(Un-1),
and

E;z—l,A[unfl][[tn]]/((tn —tn—1)Un-1) = Er.z—l,A @A,y An,
by a slight abuse of notation, where we write
Aj = C[ul, e ,uj_l][[tl, g ,tj]]/((ti_;,_l — tz)uz)

LEMMA 4.40. The complex E‘;M is exact in negative degrees and
HY(E}, ) = Ogs.

Proof. We proceed by induction. For n = 2 the claim is clear Assume the claim is true for n — 1.
Then the long exact cohomology sequence implies that £ )\ is quasi-isomorphic to the complex

C[ulv ce 7un—2] [[t; tn]] I C[’U,l, ceey Un—2, un—l][[ty tn]]/((tn - t)un—l)
sending 1 to (¢, —t). The claim follows from this. O

Let us denote by é ° A the G-equivariant complex on X G corresponding to the T-equivariant
complex E° o under the identification [V/T) = [X'GX /G].

COROLLARY 4.41. There is an isomorphism of complexes
Rax(Ch0) = &z (4.27)

Proof. We prove this using the inductive construction of both complexes. The case n =1 is
trivial. Assume now that (4.27 ) is true for n — 1. Recall the parabolic subgroups P; and P> from
the inductive construction of C'

Let us write G,,—1 = GL,,— 1( ) and B,_1 C G,_1 for the upper trlangular Borel. Further,
let ' = diag(\, ¢~ '\, ..., ¢~ 2 )\). Similarly to the definition of §,, and b, using we, we define
8! and &), using wy’ for w 6 Sp—1. Then

G Gn 18 S GA
Lﬁl(L§n7 0,y @ AT (n— ) = 150w,

G — n—1 &/ _ G%
i, (T ® LEnflétU’\) = 1500wo 1

and the intertwining operator between the representations on the right-hand side translates to
the intertwining operator f (w,cwo 1) under this identification.
By the same inductive construction, we assume that each entry of C _1. Is a direct sum of

representations L%n7131/0 for w € §,,—1. By Theorem 4.38 the morphism

RG,X(L%DI) - RG,X(L%2D5)

is (up to a unit) identified with the multiplication by (¢, — t,—1). The inductive construction of
E; \ hence implies the claim. ([l
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COROLLARY 4.42. Let A€ C* and let (¢,N) € Xxs(C) be the L-parameter defined by
(C"™, ¢, N) = Sp(A,n). Then
Ra(St(A,n)) = OXg oy
where St(\,n) = LL(p, N) = LL™4(p, N) is the generalized Steinberg representation.
Proof. The corollary above implies

RG’ X(St()\ n)) OXSt

G, x
as G-equivariant sheaves. Moreover, we have

St(A\,n) @6 CIEL/ () = St(A,n) @cpy CIEL/ () = St(A,n),
OXSt ®C[[tﬂ Ct]/(t) = XSt ®cry CI/(8) = Ox -

The center 3, acts on St(\,n) and Ogs via a surjection
Gox

3x — CTt].
Choosing a pre-image g of t, we obtain isomorphisms
St(\ n) @by CI/(1) = St m) @ 3,/(0)
Oxs: ®cp Cltl/ (1) = Ogs: ®% 3x/(9).

The claim now follows from 3X—linearity of RG,X- 0

Remark 4.43. With some extra effort one can use a similar strategy to compute the images of
LL(¢, N), where ¢ = diag(\, ¢ ' \,..., ¢~ Y)) and N is an arbitrary endomorphism such that
(¢, N) € X Recall that LL(p, N) is the unique simple quotient of LL™4(p, N). One needs
to build a complex similar to CT: , Wwhich is a resolution of LL(p, N). We omit the technical
computation, and only describe the result.
Let us choose such y = (p, N) € Y C Xz, where Y C Y is the closed subscheme ¢ = -+ =
= 0. We denote by L(y) the sheaf of ideals defining the closed subscheme

U {w=0cvy

{ilui(y)=0}
Obviously this is a T-equivariant line bundle, and we write L(y) for the corresponding
G-equivariant line bundle on X5. Let us denote the number of i € {1,...,n — 1} such that

ui(y) = 0 by l,. Then
Ra(LL(p, N)) = L(y)[ly]
is the equivariant line bundle £(y) shifted to (cohomological) degree —1,,.

Proof of Theorem 4.34. We assume that ¢ is an arbitrary regular semi-simple element and choose
a decomposition

C", ¢, N @Sp i, 7i)

as in §4.1. Then
LL™ (0, N) = 18(St(A1,71) @ - @ St(Ae, 7)) = 1% (St(As,7s) @ -+ @ St(A1, 71))

1105

https://doi.org/10.1112/S0010437X23007145 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X23007145

E. HELLMANN

with the ordering of (4.2). Here P is a block upper triangular parabolic with Levi M and we set
P’ to be the block upper triangular parabolic with Levi M’ = woMuw, ! where wo € W is the
longest element. Write M’ = GL,_ x --- X GL,, and consider the morphisms

a: Xp — Xyp,
B:Xp, — Xe.

The choice of M’ — P’ defines an embedding ¢ : X — X . We will write (zs,...,21) € X7
for the point defined by

Sp(As,75) @ - - ® Sp(A1,71),

and write Zy;, (x4, ..., x,) for the Zariski closure of its M’-orbit M’ - (x,, ..., x1). Then one easily
checks that the choice of ordering of Ay,..., As implies that

a N Zy (s, 71)) = Zpi (25,0 1)
is the Zariski closure of the P’-orbit of t(zg,...,21). Moreover, the choice of ordering implies

that « is smooth along this pre-image. In particular,
La*OZM/(QJS,...,I1) = OZp;(ms,.‘.,ajl)'

Let Za(xs,...,21) C X denote the G-invariant closed subscheme of X 5, corresponding to the
P'-invariant closed subscheme Zp, (x5, ...,21) C X . Using Corollary 4.42 and compatibility of
R with parabolic induction, we are left to show that

Rﬂ*(ozé (s, ..oy 21)) = OXG,[%N]'

This follows, as the construction implies that 8 maps Zx(xs,...,21) isomorphically onto the
Zariski closure X 1, ) of the G-orbit G - (o, N) =G - t(xs...,x1). O

We also remark that Theorem 4.38 is true for all regular semi-simple elements (.

COROLLARY 4.44. Let ¢ € T(C) be regular semi-simple and x : 3 — C the character defined
by the image of ¢ in T'/W. The set of functors

RMyX : D+(7:[M7X_m0d) - DaCoh([XM,X/M])

for standard Levi subgroups M C G, is uniquely determined (up to isomorphism) by requiring
that they are 3r,-linear, compatible with parabolic induction, and that Rt is induced by the
identification

7:(T7X—mod = QCoh(XT’X).
Proof. As in the proof of Theorem 4.38 the images of qu((gw) are uniquely determined up

to isomorphism and it is enough to prove that the same is true for the images of intertwining
operators. Without loss of generality we may assume

o = diag(A, g A, q AL A g A g TY)

with ¢7%\; # q*b)\j for i #j,a=0,...,m,—1, b=0,...,7; =1, and \; #q " Aj. Let M =
GL,, (F) x --- x GL,,(F') be the block diagonal Levi subgroup with block sizes (ri,...,rs) and
P the corresponding block upper triangular parabolic subgroup.

Further, let ¢; = diag(\i, ¢ '\, .. .,q*(”*l))\i) € GL,,(F). For w; € S,, we write 5&) for
the universal unramified deformation of the character defined by w;yp;. Then, by means of an
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intertwining operator, every L%(Sw is isomorphic to
G, M (31 g
Lﬁ(L§M<51(u1) Q- ® 51(55)))

for some (w1, ...,ws) € Sy X -+ X Sy, = Wy. As in the proof of Theorem 4.38 we deduce that,

given two functors Rg,, and ]:Z’G X satisfying the assumptions, it is enough to show that for all
w € Wy there are isomorphisms

Qo - RG,X(L%&LU) - RlG,x(ngw)

such that the diagrams

commute for all w,w’ € Wj;. This follows from the statement of Theorem 4.38 and transitivity
of intertwining operators under parabolic induction. O

We finish by giving more details on the behavior of Rg(c-ind% op) in the three-dimensional
case.

Ezample 4.45. In the case n = 3 there are three partitions Puin, Po, Pmax of n = 3. We have
mpmin = mpmax = ]'7
mp, = 2,

where the multiplicities are defined as in (4.4).
The sheaves R ((c-ind$ oumin)’) and Rg((c-ind% omax)?) are determined in Proposition 4.27.
Let us give a closer description of

F = Ro/((c-ind% op, ) ).

As discussed in Remark 4.28, the generic rank of F on Zg p, is zero if P’ = Prin, one if P’ = Py,
and two if P/ = Prax.

We describe the completed stalks F, as modules over the complete local rings Ox,, . for
C-valued points = = (p, N) € X. To simplify the exposition we restrict ourselves to regular
semi-simple ¢. Recall that X p = Za p U Z p is a union of two irreducible components in
this case. Moreover, recall that we write XG‘,O = ZG',Pmax for the irreducible component defined
by N =0.

(a) Assume z € Zzp  \Xg p,- Then Fr=0.

(b) Assume x € Zg p \Z¢ p,.. - Then Fp @ch
o~ A2

(c) Assume x € Zg p  \Z¢ p,- Then Fp = OX 0

(d) Assume x € Zg p N Zg p,- Without loss of generality we may assume ¢ = diag(A1, A2, A3).
As before, we write x : 3 — C for the character defined by the characteristic polynomial of ¢.
Up to renumbering, we have to distinguish two cases.
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(d1) A2 = ¢ Ay and A3 ¢ {g~ ' X2, ¢\1}. In this case Zap, and Zg p aresmooth at x. Moreover
(using the notation introduced above),

c-ind% op, @3 3X = L%Swl & L%3w2
for some wi,wy € W and (with appropriate numeration)
C_ind?( O-Pmin ®3 ‘?)X = L%(Swl % L%(SWQ = C_ind% OPrax ®3 3X'
We then can use compatibility of Rg with parabolic induction to deduce that
Fp = OXC?‘,Pva ) OXG‘,va'

(d2) A3 = ¢~ ' A2 = ¢~ 2\;. In this case ZG,PO is no longer smooth at z, but has a self-intersection
as can be seen from the description of the complete local ring: using a local presentation as in
(4.25), we can compute that the complete local ring of Ox o 18 smoothly equivalent to

Clt1,ta, t3, ur, ua] /((t1 — t2)uy, (t2 — t3)ug).

With these coordinates the completion of Z¢p,,, b x is given by the vanishing locus V' (¢; —
to,ty — t3), and the completion of Zap,., is given by V(u1,u2). Moreover, both are smooth
at x. However, the completion of Zy p is given by V(ty — to,u2) UV (ug,ty — t3), that is, it
decomposes into two components, say 7, and Zs. Note that this computation implies that Zép,
cannot be Cohen—Macaulay at x, as it has a self-intersection in codimension two. We can compute
the completions of the compactly induced representation:

c-ind% op, ®3 3x = L%gl,
c—ind%’; op, V3 3X = L%gwl @ L%gwg,
c-ind% op_ @3 3X = L%gwo,
where wy € W is the longest element and wy,we € W\{1,wg}. Here the elements wy,ws are
chosen such that
{LG51,LB5w1, LOws s U G Syt = {L w, WE W}

is the set (consisting of four pairwise non-isomorphic elements) of induced representations of the
form 1£4,,. Using compatibility with parabolic induction, we deduce that (in the coordinates
introduced above)

ﬁl‘ = Cﬂt17t27t37u17u2]]/((t1 - t2)“17u2)
& Ct1, ta, t3, ur, ua] /(u1, (t2 — t3)uz).

In other words, the completion F, is the direct sum of the structure sheaves of X Goz Y 71 and
X G0 U ZQ.
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