
4

The pinch technique in
the Batalin–Vilkovisky framework

It is clear from the analysis presented until now that even though the PT Green’s
functions satisfy naive QED-like Ward identities, their actual derivation relies
heavily on Slavnov–Taylor identities obeyed by certain subamplitudes appearing
in the ordinary diagrammatic expansion such as the kernel AμAνqq̄ considered
in the previous chapter. Unlike QED, because of the nonlinearity of the BRST
transformations, these Slavnov–Taylor identities are realized through ghost Green’s
functions involving composite operators such as 〈0|T [s
(x) · · · |0〉, where s is
the BRST operator and 
 is a generic QCD field. It turns out that the most
efficient framework for dealing with these types of objects is the so-called Batalin-
Vilkovisky formalism [1, 2, 3, 4]. In this framework, one adds to the original
gauge-invariant action �

(0)
I the term LBRST = ∑


 

∗s
, coupling the composite

operators s
 to the BRST-invariant external sources (usually called antifields) 
∗

to obtain the new action �(0) = �
(0)
I + ∑


 

∗s
.

From the point of view of the pinch technique, there are considerable conceptual
and operational advantages to be gained from employing this formalism [5]. To
begin with, the use of antifields [6], which represent a core ingredient of the BV for-
malism itself, streamlines the derivation of Slavnov–Taylor identities, expressing
them in terms of auxiliary functions that can be constructed using a well-defined set
of Feynman rules (derived from LBRST). In addition, the formulation of the BFM
within the BV formalism gives rise to important all-order identities, to be called
background-quantum identities [5, 7], relating the BFM n-point functions to the
corresponding conventional n-point functions in the Rξ gauges. These identities
are realized by means of unphysical Green’s functions involving antifields and
background sources. The prime example of such an identity is given in Eq. (4.35),
the most important equation in this chapter: the conventional and PT gluon propa-
gators,(q) and ̂(q), respectively, are related by means of the auxiliary two-point
function G(q).
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The basic observation that makes the background-quantum identities so useful
is that the unphysical Green’s functions appearing in them (such as the G(q) in
Eq. (4.35)) are related to the auxiliary Green’s functions appearing in the Slavnov–
Taylor identities by simple expressions. Put simply, the parts of the diagrams
exchanged during the pinching process, namely, the terms containing the unphys-
ical vertices, are involved in relations connecting conventional and BFM n-point
functions. In Eq. (4.44), for example, the function G(q) is fully determined in
terms of quantities that are defined in the context of the conventional formal-
ism, without recourse to antifields or to the Feynman rules stemming from LBRST.
This, in turn, allows for a direct comparison of the PT and BFM Green’s func-
tions: a PT Green’s function is obtained from the conventional one by remov-
ing the pinching parts; but in doing so, one is practically generating the corre-
sponding background-quantum identity, which carries over to the BFM Green’s
function.

The background-quantum identities play a central role in the entire PT program for
one additional reason. As is already evident at the two-loop level, the two-loop PT
gluon self-energy is composed of Feynman diagrams involving the conventional
one-loop gluon self-energy and not the one-loop PT self-energy. This might suggest
at first that one cannot arrive (eventually) at a genuine Schwinger–Dyson equation
involving the same unknown quantity on both sides, i.e., either �μν or �̂μν . There
is, however, a way around this: the nonperturbative version of the background-
quantum identities, and most important, that of Eq. (4.35), allows one to convert
the new SD series into a dynamical equation involving either the conventional or
the BFM gluon self-energy only. As we will see in Chapter 6, this is instrumental
for the success of the entire approach.

In addition to Eq. (4.35), the second identity of Eq. (4.50) captures another impor-
tant result of this chapter. It turns out that in the Landau gauge (only), the func-
tion G(q) coincides with the so-called Kugo-Ojima function [8], u(q), defined in
Eq. (4.51). The latter function, and in particular its value in the deep infrared, is inti-
mately connected with the Kugo-Ojima confinement criterion [8], which requires
that u(0) = −1. The identity of Eq. (4.50) relates the Kugo-Ojima function with
the inverse of the ghost-dressing function, F (q), and an auxiliary function, L(q);
the latter can be shown to vanish in the deep infrared. The power of Eq. (4.50)
is in that it relates the value u(0) and, hence, the fulfillment or nonfulfillment of
the corresponding confinement criterion, with the value of F (0): the Kugo–Ojima
criterion is satisfied provided that F (0) diverges. However, as we will discuss
briefly in Chapter 6, this is not how QCD really works. Both lattice simulations
and Schwinger–Dyson equations reveal that F (0) is actually finite – a fact that can
ultimately be traced back to the dynamical generation of a gluon mass.
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4.1 An overview of the Batalin–Vilkovisky formalism

4.1.1 Green’s functions: Conventions

The 1PI Green’s functions of any theory are defined in terms of the time-ordered
product of interacting fields1 as

�
1···
n
(x1, . . . , xn) = 〈T [
1(x1) · · ·
n(xn)]〉1PI (4.1)

and can be efficiently constructed through a generating functional, which in Fourier
space reads

�[
] =
∞∑
n=0

(−i)n

n!

∫ n∏
i=0

d4pi δ
4

⎛⎝ n∑
j=1

pj

⎞⎠
1(p1) · · ·
n(pn)�
1···
n
(p1, . . . , pn).

(4.2)

In the preceding formula, the field 
i(pi) represents the Fourier transform of the
field 
i(xi), with pi its (in-going) momentum. Then, in terms of the generating
functional �[
], all the (momentum-space) 1PI Green’s functions can be obtained
by means of functional differentiation:

�
1···
n
(p1, . . . , pn) = in

δn�

δ
1(p1)δ
2(p2) · · · δ
n(pn)

∣∣∣∣

i=0

. (4.3)

Our convention on the external momenta is summarized in Figure 4.1. From the
definition given in Eq. (4.3), it follows that the Green’s functions i−n�
1···
n

are
simply given by the corresponding Feynman diagrams in Minkowski space.

The Green’s functions generated by�[
] can be joined together by full propagators
to construct higher-point connected amplitudes, ultimately giving rise to the S-
matrix elements of the theory. However, they are by no means a complete set, for the
nonlinearity of the BRST transformation of NAGTs implies that auxiliary Green’s
functions involving ghost fields will appear in the Slavnov–Taylor identities. The
latter are precisely the Green’s functions with which we have always been working
when applying the PT algorithm and constitute the functions we will thoroughly
study in the rest of this chapter.

4.1.2 The Batalin–Vilkovisky formalism

The Batalin-Vilkovisky formalism [1, 2, 3, 4] is a powerful quantization scheme
that allows us to address in an effective way several aspects of very general gauge

1 We let 
 run over all the fields A, ψ ,ψ̄ , c, c̄, and B. Sometimes the fields appearing in the gauge-invariant
Lagrangian will be collectively indicated as φ.
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Table 4.1. Ghost charge, statistics (B for Bose, F for Fermi), and mass dimension
of the QCD fields and antifields

Am
μ ψi

f ψ̄ i
f cm c̄m Bm A∗m

μ ψ∗i
f ψ̄∗i

f c∗m c̄∗m

Ghost charge 0 0 0 1 −1 0 −1 −1 −1 −2 0
Statistics B F F F F B F B B B B
Dimension 1 3

2
3
2 0 2 2 3 5

2
5
2 4 2

Φn−1

Φn

Φ2

Φ1

p2

pn−1
pn

Figure 4.1. Our conventions for the (1PI) Green’s functions �
1···
n
(p1, . . . , pn).

All momenta p2, . . . , pn are assumed to be incoming and are assigned to the cor-
responding fields starting from the rightmost one. The momentum of the leftmost
field 
1 is determined through momentum conservation (

∑
i pi = 0) and will be

suppressed.

theories (e.g., their quantization, renormalization, and symmetry violation due to
quantum effects), including those with open or reducible gauge symmetry algebras.

The Batalin-Vilkovisky formalism starts by introducing for each field 
 a corre-
sponding antifield, to be denoted by 
∗. The antifield 
∗ has opposite statistics
with respect to 
 as well as a ghost charge gh(
∗), which is related to the ghost
charge gh(
) of the corresponding field 
 by gh(
∗) = −1 − gh(
). The ghost
charges, statistics, and mass dimension of the various QCD fields and antifields are
summarized in Table 4.1.

Next, one adds to the original gauge-invariant action �
(0)
I [φ] (with φ representing

the physical QCD fieldsA,ψ , and ψ̄), a term coupling the antifields with the BRST
variation of the corresponding fields; then one obtains the new action

�(0)[
,
∗] = �
(0)
I [φ] +

∑




∗s
, (4.4)
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where∑




∗s
 =
∫

d4x
[
A∗m
μ (∂μcm + gf mnrAμ

n c
r ) − 1

2
gf mnrc∗mcncr + c̄∗mBm

+ igψ̄∗i
f cmtmij ψ

j

f − igcmψ̄i
f t
m
ij ψ

∗j
f

]
, (4.5)

(f is the quark flavor index).2

The action (4.4) satisfies the master equation3∫
d4x

∑



δ�(0)

δ
∗
δ�(0)

δ

= 0. (4.6)

In fact, on one hand, the terms in Eq. (4.4) that are independent of the antifields
are zero because of the gauge invariance of the action∑

φ

sφ
δ�

(0)
I

δφ
=
∫

d4x(s�(0)
I [φ]) = 0. (4.7)

On the other hand, the terms linear in the antifields vanish because of the nilpotency
of the BRST operator:∑


′
s
′ δ(s
)

δ
′ =
∫

d4x
∑



s2
 = 0. (4.8)

The BRST symmetry is crucial for endowing a (gauge) theory with a unitary
S-matrix and gauge-independent physical observables; therefore, it must be imple-
mented to all orders. For achieving this, we establish the quantum corrected version
of the master equation (4.6) in the form of the Slavnov–Taylor identity functional

S(�)[
] =
∫

d4x
∑



δ�

δ
∗
δ�

δ

= 0, (4.9)

where �[
,
∗] is now the effective action. In the pure gluodynamics sector, the
Slavnov–Taylor functional is given by4

S(�)[
] =
∫

d4x

[
δ�

δA
∗μ
m

δ�

δAm
μ

+ δ�

δc∗m
δ�

δcm
+ Bm δ�

δc̄m

]
. (4.10)

2 It can be easily shown that this new action is physically equivalent to the gauge-fixed QCD action because the
two are related by a canonical transformation [9].

3 Our derivatives are all left derivatives, e.g., δ(ab) = (δa)b + (−1)εa aδb, with εa being the Grassmann parity
of a.

4 Quarks can be easily taken into account by adding to the Slavnov–Taylor functional (4.10) the term∫
d4x

[
δ�

δψ∗i
f

δ�

δψ̄i
f

+ δ�

δψi
f

δ�

δψ̄∗i
f

]
.
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The structure of the preceding master equation can be simplified by noticing that the
antighost c̄a and the multiplier Ba have linear BRST transformations and therefore
do not present with the usual complications of the other QCD fields. Together with
their corresponding antifields, they enter bilinearly in the action, which can be then
decomposed in the sum of a minimal and nonminimal sector:

�(0)
C [
,
∗] = �(0)[Am

μ,A
∗m
μ ,ψ,ψ∗i

f , ψ̄ i
f , ψ̄

∗i
f , cm, c∗m] + c̄∗mBm. (4.11)

The last term has no effect on the master equation (4.6), which in fact is satisfied
by �(0) alone. The fields {Am

μ,A
∗m
μ ,ψ,ψ∗i

f , ψ̄ i
f , ψ̄

∗i
f , cm, c∗m} are then often called

minimal variables, whereas {c̄m, Bm} are referred to as trivial or contractible pairs.5

Then, in the minimal sector, the reduced Slavnov–Taylor functional is given by the
complete functional of Eq. (4.10) once the last term Bmδ�/δc̄m is left out.

Taking functional derivatives of S(�)[
] and setting afterward all fields and anti-
fields to zero will generate the complete set of the all-order Slavnov–Taylor iden-
tities of the theory.6 This is an exact analogy (see Eq. (4.3)) to what happens with
the generating functional, where taking functional derivatives of �[
] and setting
afterward all fields to zero generates the Green’s functions of the theory. However,
to reach meaningful expressions, one needs to keep in mind that (1) S(�) has ghost
charge +1 and (2) functions with nonzero ghost charge vanish, for the ghost charge
is a conserved quantity. Thus, to extract nonzero identities from Eq. (4.10), one
needs to differentiate the latter with respect to a combination of fields containing
either one ghost field or two ghost fields and one antifield. The only exception
to this rule is when differentiating with respect to a ghost antifield, which needs
to be compensated by three ghost fields. Specifically, identities involving one or
more gauge fields are obtained by differentiating Eq. (4.10) with respect to the set
of fields in which one gauge boson has been replaced by the corresponding ghost
field. This is because the linear part of the BRST transformation of the gauge field
is proportional to the ghost field: sAm

μ |linear = ∂μc
m. Finally, for obtaining Slavnov–

Taylor identities involving Green’s functions that contain ghost fields, one ghost
field must be replaced by two ghost fields because of the quadratic nature of the
BRST ghost field transformation (scm ∝ f mnrcncr ).

The last technical point to be clarified is the dependence of the Slavnov–Taylor
identities on the (external) momenta. One should notice that the integral over d4x

present in Eq. (4.10), together with the conservation of momentum flow of the

5 Equivalently, the minimal sector action can be obtained by subtracting from the complete action the local term
corresponding to the gauge–fixing Lagrangian LGF.

6 In practice, the Slavnov–Taylor identities obtained from the reduced functional coincide with the ones obtained
by the complete functional (1) after implementing the Faddeev–Popov equation described in the next section [10]
and (2) taking into account that Green’s functions involving unphysical fields coincide only up to constant terms
proportional to the gauge-fixing parameter, e.g., �Am

μA
n
ν
(q) = �C

AμAν
(q) − iδmnξ−1qμqν .
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Table 4.2. Ghost charge, statistics (B for Bose,
F for Fermi), and mass dimension of the QCD
background fields and sources

Âm
μ �∗m

μ

Ghost charge 0 1
Statistics B F
Dimension 1 1

Green’s functions, implies that no momentum integration is left over. As a result,
the Slavnov–Taylor identities will be expressed as a sum of products of (at most
two) Green’s functions.

The (complete) Slavnov–Taylor functional is absolutely general and need not be
modified if one changes the way of gauge fixing the Lagrangian, e.g., switching
from a general Rξ gauge to the BFM. In this latter case, however, to control the
dependence of the Green’s functions on the background fields, some new terms,
implementing the equation of motion of the background fields at the quantum
level, are conventionally added to the Slavnov-Taylor functional. Specifically, one
extends the BRST symmetry to the background gluon field through the relations

sÂm
μ = �m

μ s�m
μ = 0. (4.12)

The expression �m
μ represents a (classical) vector field with the same quantum

numbers as the gluon but with ghost charge +1 and Fermi statistics (see also
Table 4.2). The dependence of the Green’s functions on the background fields is
then controlled by the modified Slavnov–Taylor functional

S ′(�′)[
] = S(�′)[
] +
∫

d4x �μ
m

[
δ�′

δÂm
μ

− δ�′

δAm
μ

]
= 0, (4.13)

where �′ denotes the effective action that depends on the background sources
�m
μ (with � ≡ �′|�=0), and S(�′)[
] is the Slavnov–Taylor identity functional of

Eq. (4.10). Differentiation of the Slavnov–Taylor functional (4.13) with respect
to the background source and background or quantum fields will then provide
the background-quantum identities relating 1PI Green’s functions involving back-
ground fields to the ones involving quantum fields and already briefly discussed.7

Finally, the background gauge invariance of the BFM effective action implies that
Green’s functions involving background fields satisfy linear Ward identities when

7 As it happens, for Slavnov–Taylor identities, background-quantum identities are not deformed by the renormal-
ization procedure. The new background variables enter, in fact, as BRST doublets, and they cannot change the
cohomology of the linearized Slavnov–Taylor operator [11].
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contracted with the momentum corresponding to a background leg. These Ward
identities are generated by taking functional differentiations of the Ward identity
functional

Wϑ [�′] =
∫

d4x
∑



(δϑ
)
δ�′

δ

= 0, (4.14)

where δϑ
 are given by the BRST transformation of the corresponding fields
when replacing ghosts with the local infinitesimal parameters ϑa(x) correspond-
ing to the SU (3) generators ta; the background transformations of the antifields
δϑ


∗ coincide with the gauge transformations of the corresponding quantum fields
according to their specific representation. To obtain the Ward identity satisfied by
the Green’s functions involving background gluons Â, one has then to differentiate
the functional (4.14) with respect to the corresponding parameter ϑ .

4.2 Examples

4.2.1 Slavnov–Taylor identities

One of the most useful Slavnov–Taylor identities in a PT context is definitely the
one satisfied by the three-gluon vertex. The textbook derivation of this identity has
been sketched in Chapter 1 (see Section 1.5.1); here we derive the same identity
within the Batalin-Vilkovisky formalism.

According to the rules stated in the previous section, the three-gluon Slavnov–
Taylor identity can be obtained by considering the following functional differenti-
ation:

δ3S(�)

δca(q)δAm
μ (k1)δAn

ν(k2)

∣∣∣∣∣

,
∗=0

= 0, (4.15)

which gives the result

−�caA∗α
a′ (−q)�Aa′

α A
m
μA

n
ν
(k1, k2) = �caAn

νA
∗γ
d

(k2, k1)�Ad
γA

m
μ
(k1)

+�caAm
μA

∗γ
d

(k1, k2)�Ad
γA

n
ν
(k2). (4.16)

To further simplify the preceding identity, we need to resort to the so-called
Faddeev–Popov (or ghost) equation, which describes the action of longitudinal
momenta when acting on auxiliary Green’s functions. To derive this equation in
the Rξ gauges, one observes that in the QCD action, the only term proportional to
the antighost fields comes from the Faddeev–Popov Lagrangian density, which can
be rewritten as

LRξ

FPG = −c̄m∂μ(sAm
μ ) = −c̄m∂μ δ�

δA∗m
μ

. (4.17)

https://doi.org/10.1017/9781009402415.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402415.005


94 The pinch technique in the Batalin–Vilkovisky framework

Differentiation of the action with respect to c̄m then yields the Faddeev–Popov
equation in the form of the identity

δ�

δc̄m
+ ∂μ

δ�

δA∗m
μ

= 0, (4.18)

so that, taking the Fourier transform, we arrive at

δ�

δc̄m
+ iqμ

δ�

δA∗m
μ

= 0. (4.19)

Thus, in the Rξ case, Eq. (4.19) amounts to the simple statement that the con-
traction of a leg corresponding to a gluon antifield (A∗m

μ ) by its own momentum
(qμ) converts it to an antighost leg (c̄m). Notice that the Faddeev–Popov equation
depends crucially on the form of the ghost Lagrangian, which in turn depends on
the gauge-fixing function. In the presence of background gluons and sources, the
presence of extra terms in the BFM gauge-fixing function will modify Eq. (4.18),
which will read, in this case,

δ�′

δc̄m
+
(
D̂μ δ�′

δA∗
μ

)m

− (
Dμ�μ

)m = 0. (4.20)

Notice that by setting the background field and source to zero, one correctly recovers
the Rξ equation (4.18).

Let us now differentiate Eq. (4.19) with respect to a ghost field c; after setting the
fields and antifields to zero, we get

�cmc̄n(q) + iqν�cmA∗n
ν

(q) = 0, (4.21)

which can be used to relate the auxiliary function �cmA∗n
ν

(q) with the full ghost
propagator Dmn(q). Owing to Lorentz invariance, we can in fact write �cmA∗n

ν
(q) =

qν�cmA∗n(q), and therefore

�cmc̄n(q) = −iqν�cmA∗n
ν

(q) = −iq2�cmA∗n(q). (4.22)

On the other hand, observing that iDmr (q)�cr c̄n(q) = δmn, we get the announced
relation

�cmA∗n
ν

(q) = qν�cmA∗n(q) = qν[q2Dmn(q)]−1, (4.23)

which, inserted back into Eq. (4.16), gives

qα�Aa
αA

m
μA

n
ν
(k1, k2) = [q2Daa′

(q)]
{
�ca

′
An
νA

∗γ
d

(k2, k1)�Ad
γA

m
μ
(k1)

+ �ca
′
Am
μA

∗γ
d

(k1, k2)�Ad
γA

n
ν
(k2)

}
. (4.24)

https://doi.org/10.1017/9781009402415.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402415.005


4.2 Examples 95

To get the Slavnov–Taylor identity in the same form of Eq. (4.16), one factors out
the color structure igf amn, uses the relation

�Aa
αA

b
β
(q) = (−1)abαβ(q) − iδabqαqβ = iδabPαβ(q)−1(q2), (4.25)

and identifiesHμγ (k1, k2) with�cAμA∗
γ
(k1, k2). Notice then that the relation between

H and the gluon-ghost vertex is automatic, being a manifestation of the Faddeev-
Popov equation; in fact, by differentiating Eq. (4.19) with respect to a gluon and a
ghost field, we get the identity

�crAn
ν c̄

m(k, q) + iqμ�crAn
νA

∗m
μ

(k, q) = 0. (4.26)

We conclude by observing that within the Batalin–Vilkovisky formalism, one
can also obtain Slavnov–Taylor identities for kernels appearing e.g., in the usual
skeleton expansion of QCD Green’s functions. To do so, one decomposes the
kernel under scrutiny in terms of 1PI Green’s functions, calculates the correspond-
ing Slavnov–Taylor identities by taking functional differentiation of the func-
tional (4.10) with respect to suitable fields’ combinations, and then puts together all
the pieces. For example, the Batalin-Vilkovisky formalism version of the Slavnov–
Taylor identity satisfied by the fundamental PT kernel KAAψψ̄ , identified in the
previous chapter, reads (suppressing the quark flavor and color indices)

k
μ

1 KAm
μA

n
νψψ̄

(k2, p2,−p1) = [k2
1D

mm′
(k1)]

×
{
�cm

′
An
νA

∗γ
d

(k2,−k1 − k2)�Ad
γ ψψ̄

(p2,−p1)

+�ψψ̄ (p1)KAn
νψc

m′
ψ̄∗(p2, k1,−p1)

+KAn
νψ

∗ψ̄cm′ (p2,−p1, k1)�ψψ̄ (p2)

+ �cm
′
A

∗γ
d ψψ̄ (k2, p2,−p1)�Ad

γA
n
ν
(k2)

}
, (4.27)

where we have defined the auxiliary kernels

KAn
νψc

m′
ψ̄∗(p2, k1,−p1) = �An

νψc
m′
ψ̄∗(p2, k1,−p1) (4.28)

− i�ψcm
′
ψ̄∗(k1,−p1)S(�)�An

νψψ̄
(p2,−�)

KAn
νψ

∗ψ̄cm′ (p2,−p1, k1) = �An
νψ

∗ψ̄cm′ (p2,−p1, k1) (4.29)

− i�An
νψψ̄

(�,−p1)S(�)�ψ∗ψ̄cm′ (−�, k1).

4.2.2 Background-quantum identities

The first background-quantum identity we can construct is the one relating the
conventional with the BFM gluon self-energies. To this end, consider the following
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functional differentiations (q + p = 0):

δ2S ′ (�′)
δ�a

α(p)δAb
β(q)

∣∣∣∣∣

,
∗,�=0

= 0;
δ2S ′ (�′)

δ�a
α(p)δÂb

β(q)

∣∣∣∣∣

,
∗,�=0

= 0, (4.30)

which give the relations

i�Âa
αA

b
β
(q) =

[
igγα δ

ad + ��a
αA

∗γ
d

(q)
]
�Ad

γA
b
β
(q) (4.31)

i�Âa
αÂ

b
β
(q) =

[
igγα δ

ad + ��a
αA

∗γ
d

(q)
]
�Ad

γ Â
b
β
(q). (4.32)

We can now combine Eqs. (4.31) and (4.32) such that the two-point function mixing
background and quantum fields drop out; then, using the transversality of the gluon
two-point function �AA, we get the background-quantum identity

i�Âa
αÂ

b
β
(q) = i�Aa

αA
b
β
(q) + 2��a

αA
∗γ
d

(q)�Ad
γ A

b
β
(q)

− i��a
αA

∗γ
d

(q)�Ad
γ A

e
ε
(q)��b

βA
∗ε
e

(q). (4.33)

This identity can be rewritten in a more suggestive form by trading the two-point
functions �AA and �ÂÂ for the corresponding (inverse) propagators and setting8

��a
αA

∗d
γ

(q) = iδad
[
gαγG(q2) + qαqγ

q2
L(q2)

]
. (4.34)

One then gets

̂−1(q2) = [
1 +G(q2)

]2
−1(q2). (4.35)

As we know from Chapter 1, the quantity ̂(q2) appearing on the left-hand side
(lhs) of the preceding equation captures the running of the QCD beta function,
exactly as happens with the QED vacuum polarization.9 For example, to lowest
order, one can use the closed expression (4.44) to get (in the Landau gauge)

1 +G(q2) = 1 + 9

4

CAg
2

48π2
ln

(
q2

μ2

)
−1(q2) = q2

[
1 + 13

2

CAg
2

48π2
ln

(
q2

μ2

)]
, (4.36)

thus recovering the well-known result

̂−1(q2) = q2

[
1 + bg2 ln

(
q2

μ2

)]
, (4.37)

8 From Tables 4.1 and 4.2, one sees that the dimensions of the gluon antifield A∗ and background source � are,
respectively, 3 and 1; then simple power counting shows that the (logarithmically) divergent part of �

�a
αA

∗d
γ

(q)
can be proportional to gαγ only, whereas the longitudinal form factor L(q2) is ultraviolet finite.

9 Recall that this is a fundamental property of the BFM gluon self-energy, valid for every value of the (quantum)
gauge-fixing parameter [12].

https://doi.org/10.1017/9781009402415.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402415.005


4.2 Examples 97

where b is the usual one-loop beta function coefficient of Eq. (1.69). As we will
see in Chapter 6, Eq. (4.35) plays a pivotal role in the derivation of a new set of
QCD Schwinger–Dyson equations [13, 14] that can be truncated in a manifestly
gauge-invariant way [15].

Other background-quantum identities involving, e.g., the quark-gluon vertex and
the three-gluon vertex read

i�Âa
αψψ̄

(p2,−p1) = [igγα δ
ad + ��a

αA
∗γ
d

(q)]�Ad
γ ψψ̄

(p2,−p1)

+�ψ∗ψ̄�a
α
(−p1, q)�ψψ̄ (p2)

+�ψψ̄ (p1)�ψ�a
αψ̄

∗(q,−p1) (4.38)

i�Âa
αA

r
ρA

s
σ
(p2,−p1) = [igγα δ

ad + ��a
αA

∗γ
d

(q)]�Ad
γ A

r
ρA

s
σ
(p2,−p1)

+��a
αA

s
σA

∗γ
d

(−p1, p2)�Ad
γA

r
ρ
(p2)

+��a
αA

r
ρA

∗γ
d

(p2,−p1)�Ad
γA

s
σ
(p1). (4.39)

Notice first that the auxiliary function appearing in square brackets on the right-
hand side (rhs) of the preceding identities is always ��A∗ : this is at the root of the
process independence of the PT algorithm. Second, observe that in more general
identities other than the two-point one, the form factor L(q2) is also relevant.

4.2.3 Closed expressions for auxiliary functions

From the PT point of view, it would be not enough to be able to derive the Slavnov–
Taylor identities and the background-quantum identities in the form given earlier. In
fact, one is really striving for a formal link between the Slavnov–Taylor identities,
which are triggered by the action of the longitudinal momenta, and the background-
quantum identities, which relate Green’s functions written in the conventional (Rξ )
and BFM gauges.

The key observation that makes this link possible is that one can always replace
an antifield or BFM source with the corresponding BRST composite operator to
which it is coupled. This means that we can use the replacements10 (see Figure 4.2)

A∗a
α (q) → −i�(0)

ce
′
An′
ν′A

∗a
α

∫
k1

ν ′ν
n′n(k2)De′e(k1) · · · (4.40)

�a
α(q) → −i�(0)

�a
αA

n′
ν′ c̄

e′

∫
k1

ν ′ν
n′n(k2)De′e(k1) · · · , (4.41)

10 For consistency with the definition (4.3), we use here (and later in Chapter 6) a definition of the full gluon
propagator in which the rhs of Eq. (1.25) corresponds to −αβ ; this will not affect the inverse propagator,
which will now be determined by the equation iαμ(−1)μβ = g

β
α . Full gluon lines will then contribute a

factor of iαβ to the corresponding amplitude (ghost lines will contribute an iD factor).
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ca

An
ν

γ

d
A∗γ

d

= igfadngγν +

ca

An
ν

p

k

q

q

γ

d

A∗γ
dcm

= −δdmqγ +

A∗γ
d

Ωa
α

γ

d
≡

≡ a

α

cm

Ωa
α A∗γ

d

=

A∗γ
d

a

α

q

Figure 4.2. (Left) Expansion of the gluon antifield and BFM source in terms of
the corresponding composite operators. Notice that if the antifield or the BFM
sources are attached to a 1PI vertex, such an expansion will in general convert the
1PI vertex into a (connected) Schwinger–Dyson kernel. (Right) The corresponding
expansion of the two-point function ��A∗ and the three-point function �cAA∗ .

to write, e.g.,11

−�cmA
∗γ
d

(q) = −δdmqγ + gf dne

∫
k1

D(k1)γν(k2)�cmAn
ν c̄

e (k2, k1), (4.42)

i�caAn
νA

∗γ
d

(k, q) = igf adngγν − igf edr

∫
k1

D(k1)γρ(k2)KcaAn
νA

r
ρ c̄

e (k, k2, k1),

(4.43)

−��a
αA

∗γ
d

(q) = gf aen

∫
k1

D(k1)ν
α(k2)�ceAn

νA
∗γ
d

(k2,−q). (4.44)

Equation (4.43) then shows explicitly the equivalence between �cAA∗ and the
function H introduced earlier (compare also Figures 1.11 and 4.2).

The systematic use of this expansion to write closed expressions for the auxiliary
functions appearing in the Slavnov–Taylor identities as well as in the background-
quantum identities allows one to unveil a pattern that will be exploited when
applying the pinch technique to the Schwinger–Dyson equations of QCD: the
auxiliary functions appearing in the background-quantum identity satisfied by a
particular Green’s function can be written in terms of kernels appearing in the
Slavnov–Taylor identities triggered when the PT procedure is applied to that same
Green’s function.

11 The expansion of Eqs. (4.40) and (4.41) is, of course, not valid at tree level, which must be explicitly accounted
for when present.
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4.2.4 A special case: The (background) Landau gauge

When choosing to quantize the theory in the background Landau gauge (D̂μAμ)m =
0, a new local equation (called the antighost equation) appears [16]:

δ�

δcm
−
(
D̂μ δ�

δ�μ

)m

− (
DμA∗

μ

)m − f mnrc∗ncr + f mnr δ�

δBn
c̄r = 0. (4.45)

This equation fully constrains the dynamics of the ghost field c and implies that
the latter will not get an independent renormalization constant. To see this, let us
differentiate Eq. (4.20) with respect to a ghost field and a background source to get
(after a Fourier transform)

�cmc̄n(q) = −iqν�cmA∗n
ν

(q)

�c̄n�m
μ
(q) = qμδ

mn − iqν��m
μA

∗n
ν

(q). (4.46)

On the other hand, differentiating the antighost equation (4.45) with respect to a
gluon antifield and an antighost, one gets

�cmA∗n
ν

(q) = qνδ
mn − iqμ��m

μA
∗n
ν

(q)

�cmc̄n(q) = −iqμ�c̄a�m
μ
(q). (4.47)

Next, contracting the first equation in Eq. (4.47) with qν , and making use of the
first equation in Eq. (4.46), we see that the dynamics of the ghost sector are entirely
captured by the ��μA∗

ν
auxiliary function because

�cc̄(q) = −iq2 − qμqν��μA∗
ν
(q). (4.48)

Introducing the Lorentz decompositions

�cA∗
μ
(q) = qμC(q2); �c̄�μ

(q) = qμE(q2), (4.49)

we find that Eq. (4.48), together with the last equations of Eqs. (4.46) and (4.47),
gives the identities [16, 17]

C(q2) = E(q2) = F−1(q2)

F−1(q2) = 1 +G(q2) + L(q2), (4.50)

where F (q2) is the so-called ghost dressing function (with D(q2) = iF (q2)/q2

being the ghost propagator).

In addition, in this gauge, one can prove that the form factor G coincides with the
well-known Kugo–Ojima function u(q2) [8], defined (in Euclidean space) through
the two-point composite operator function∫

d4x e−iq·(x−y)〈T [ (Dμc
)m
x

(
Dμc̄

)n
y

]〉 = −qμqν

q2
δmn + Pμν(q)δmnu(q2). (4.51)
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Ωm
μ Ωm

μA∗m
ν A∗m

νcrc̄s

+−Gmn
μν (q) =

Figure 4.3. Connected components contributing to the function Gmn
μν (q).

In fact, in the background Landau gauge, the function appearing on the lhs of the
preceding equation is precisely given by

− Gmn
μν (q) = δ2W

δ�m
μδA

∗n
ν

, (4.52)

whereW is the generator of the connected Green’s functions and the two connected
diagrams contributing to Gμν are shown in Figure 4.3. Factoring out the color
structure and making use of the identities (4.50), one has

Gμν(q) = ��μA∗
ν
(q) + i��μc̄(q)D(q2)�A∗

νc
(q)

= −i
qμqν

q2
+ iPμν(q)G(q2). (4.53)

Passing to the Euclidean formulation, and comparing with Eq. (4.51), we then
arrive at the announced equality12

u(q2) = G(q2). (4.54)

4.3 Pinching in the Batalin–Vilkovisky framework

It is now important to make contact between the PT algorithm and the Batalin-
Vilkovisky formalism. This is, of course, best done at the one-loop level, where all
calculations are straightforward and it is relatively easy to compare the standard
diagrammatic results with those we will be finding. Not only will this comparison
help us in identifying the pieces that will be generated when applying the PT
algorithm but it will also be useful for establishing the rules to distribute them
among the different Green’s functions appearing in the calculation.

The starting point is the embedding of the (one-loop) gluon propagator into an
S-matrix element (Figure 4.4), exactly as done in Chapter 1. Then, carrying out the
PT decomposition � = �P + �F on the tree-level three-gluon vertex of diagram
(b), we get for the pinching part

(b)P = −gf amngνα

∫
k1

1

k2
1

1

k2
2

k
μ

1 K
(0)
Am
μA

n
νψψ̄

(k2, p2,−p1). (4.55)

12 Many of the results of this section turn out to be valid also in the conventional Rξ Landau gauge [17, 18],
where, however, only an integrated version of the ghost equation (4.45) is available [19].
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(1)

(a)

K(0)

(c)

K(0)

(d)

(b)

K(0)

Figure 4.4. The S-matrix one-loop PT setting for constructing the gluon
propagator.

On the other hand, observing that �cA∗ψψ̄ is zero at tree level, we find that the
Slavnov–Taylor identity of Eq. (4.27) reduces to

k
μ

1 K
(0)
Am
μA

n
νψψ̄

(k2, p2,−p1) = −ggγν f dmn�
(0)
Ad
γ ψψ̄

(p2,−p1)

+�
(0)
ψψ̄

(p1)K(0)
An
νψc

mψ̄∗(p2, k1,−p1)

+K(0)
An
νψ

∗ψ̄cm(p2,−p1, k1)�(0)
ψψ̄

(p2). (4.56)

Now, notice that when the external legs are on shell, the last two terms of the
preceding Slavnov–Taylor identity drop out by virtue of the quark equations of
motion; thus, making use of Eq. (4.44), we are left with the final result

(b)P = g2CAδ
adgγα

∫
k1

1

k2
1

1

k2
2

�
(0)
Ad
γ ψψ̄

(p2,−p1)

= −�(1)
�a
αA

∗γ
d

(−q)�(0)
Ad
γ ψψ̄

(p2,−p1). (4.57)

At this point, the calculation is over, and one needs to reshuffle the pieces generated.
On one hand, to get the PT (on-shell) quark-gluon vertex, one adds to the Abelian
diagram (c) the �F part of diagram (b); thus one is left with the combination
(b) + (c) − (b)P or

i�̂(1)
Aa
αψψ̄

(p2,−p1) = i�(1)
Aa
αψψ̄

(p2,−p1) + �
(1)
�a
αA

∗γ
d

(−q)�(0)
Ad
γ ψψ̄

(p2,−p1). (4.58)

On the other hand, the PT self-energy will be given by adding to the diagram (a)
twice the pinching contribution (b)P (one for each vertex), i.e.,

�̂
(1)
αβ(q) = �

(1)
αβ(q) + 2i�(1)

�a
αA

∗γ
d

(q)�(0)
Ad
γ A

b
β

(q). (4.59)
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The comparison of the PT Green’s functions with those of the background Feynman
gauge is now immediate by virtue of the background-quantum identities.
Equation (4.58) represents the one-loop (on-shell) version of the background-
quantum identity (4.38), and, recalling that −�Am

μA
n
ν
= δmn�μν , we find that

Eq. (4.59) correctly reproduces the background-quantum identity (4.33). Thus
we have (once again) proved the PT background Feynman gauge correspondence
at one loop.

The procedure just described goes through almost unaltered when choosing the
external legs of the embedding process to be gluons, rendering the (one-loop)
proof of the PT process’s independence effortless.
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