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Abstract. The local structure of rotationally symmetric Finsler surfaces with
vanishing flag curvature is completed determined in this paper. A geometric
method for constructing such surfaces is introduced. The construction begins
with a planar vector field X that depends on two functions of one variable. It
is shown that the flow of X could be used to generate a generalized Finsler
surface with zero flag curvature. Moreover, this generalized structure reduces
to a regular Finsler metric if and only if X has an isochronous center. By
relating X to a Liénard system, we obtain the isochronicity condition and
discover numerous new examples of complete flat Finsler surfaces, depending
on an odd function and an even function.

1. Introduction

In many situations, the role of flag curvature in Finsler geometry is analogous to
that of sectional curvature in Riemannian geometry. Understanding the geometric
significance of flag curvature is a central theme in the study of Finsler geometry.
As a first step in this direction, the study of manifolds with constant flag curvature
has always been popular [20, 8, 5, 17].

In B. Riemann’s famous speech, which gave birth to both Riemannian geometry
and Finsler geometry, contains only one displayed equation (see [21]). The equation
provides the local normal form of a Riemannian manifold with constant sectional
curvature. It shows that, for each constant K, the local structure of Riemannian
space forms with sectional curvature K is unique up to isometry. In Finsler geome-
try, the local structure of metrics with constant flag curvature is more complicated.
There are many non-isometric local structures that share the same constant flag
curvature K. For example, on Rn, all Minkowski metrics have vanishing flag cur-
vature; all Hilbert metrics 1 have constant flag curvature K = −1 (for more details,
refer to textbooks like [6]). R. Bryant [8] constructed several non-isometric Finsler
metrics on Sn with constant flag curvature +1.

Thus, there are three natural questions concerning constant flag curvature (CFC,
for short). (A) Given a constant number K, how many non-isometric CFC local
structures are there? (B) Can we find a way to explicitly describe these structures?
(C) Which local structures can be made global, i.e., complete?

These problems can be studied in both the generalized and classical senses. In
2002, R. Bryant proved a celebrating result that provides an answer to question
(A) when K = +1.
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Theorem 1.1. [8] The space of local isometry classes of generalized Finsler struc-
tures in dimension n that have constant flag curvature K = +1 depends on n(n−1)
functions of n variables (in the sense of Cartan-Kähler).

We conjecture that the theorem also applies to other constants. Moreover, as
indicated by the results in the current paper, the distinction between generalized
Finsler structure and classical Finsler structure is subtle. It is expected that classi-
cal Finsler structures of constant flag curvature also depend on n(n− 1) functions
of n variables.

When n = 2, Bryant provides descriptions of metrics with K = 1 that depend
on two functions of two variables (refer to [7] for details, and for an alternative
explanation, see [8]), this addresses question (B) for generalized Finsler structures
when n = 2 and K = 1.

The above questions are sometimes studied with symmetry conditions. Let
Iso(M) be the isometry group of the n-dimensional Finsler manifold (M,F ). When
F is Riemannian, it is well known that dim Iso(M) ≤ n(n + 1)/2, and the equal-
ity holds only if (M,F ) has constant sectional curvature (see [10]). Moreover,
S. Kobayashi proved that when n ̸= 4, the isometry group Iso(M) does not con-
tain any closed subgroup whose dimension strictly lies between 1+ n(n− 1)/2 and
n(n+1)/2 (see [15, Theorem 3.2]). Later, Yano [24] classified all Riemannian man-
ifolds M with dim Iso(M) = 1 + n(n− 1)/2 (For a systematic treatment of results
of this type, refer to [15]). It is easy to see that the same classification holds true if
the metric is assumed to be Finslerian. Hence, the maximal possible dimension of
Iso(M), which could produce interesting non-Riemannian examples in Finsler ge-
ometry, is n(n− 1)/2. There are indeed such metrics with constant flag curvature,
as the following classical examples show.

(1) The Funk metric on Bn(1) can be written as

F (x, y) =

√
(1− |x|2)|y|2 + ⟨x, y⟩2

1− |x|2
+

⟨x, y⟩
1− |x|2

.

It has constant flag curvature K = −1/4.
(2) The Hilbert metric on Bn(1) is given by

F (x, y) =

√
(1− |x|2)|y|2 + ⟨x, y⟩2

1− |x|2
.

It has constant flag curvature K = −1.
(3) Berwald’s metric on Bn(1) is given by

F (x, y) =
(
√

(1− |x|2)|y|2 + ⟨x, y⟩2 + ⟨x, y⟩)2

(1− |x|2)2
√
(1− |x|2)|y|2 + ⟨x, y⟩2

.

It has constant flag curvature K = 0.
(4) The very special Bryant’s metric on Sn can be locally written as

F (x, y) =

√√
A+B

D
+
(C

D

)2

+
C

D
,

where C =
√
1− ε2⟨x, y⟩, D = |x|4+2ε|x|2+1, B = (ε+ |x|2)|y|2−⟨x, y⟩2,

A = B2 + (1− ε2)|y|4, ε ∈ (−1, 1). This metric has constant flag curvature
K = +1.
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A common feature of the above examples is that they admit O(n) or SO(n)
as the isometry group. Thus, it is interesting to know if there are other Finsler n-
manifolds of constant flag curvature that admit O(n) or SO(n) symmetry. The O(n)
invariant metrics are also referred to as spherically symmetric by some researchers
(see [25, 12]).

When studying spherically symmetric metrics, there is a significant difference
between the two-dimensional case and the higher-dimensional case. For example,
the CFC condition is a single PDE in two dimensions, while it consists of a system
of two PDEs in higher dimensions (see [25, 12, 19] for related discussions). It is
easily seen that when n ≥ 3, an O(n)-invariant Finsler manifold has plenty of
totally geodesic submanifolds of dimension two. Moreover, such a manifold has
constant flag curvature if and only if it has scalar flag curvature and any one of
the totally geodesic surfaces has constant Gauss curvature. Thus, it is desirable to
understand the two-dimensional case before studying the higher-dimensional case.
For this reason, we shall only address the two-dimensional case in this paper; the
treatment of the higher-dimensional case will be addressed in a subsequent paper.

To be more focused, we will concentrate on the case where K = 0. Notice that
the SO(2) symmetry implies the existence of a Killing field. A prior result is as
follows.

Proposition 1.2. Let M be a smooth surface that admits a generalized Finsler
structure with vanishing flag curvature. If in addition M possesses a Killing field,
then at every point of M there is a local coordinate system (x, y) such that (i) the
Killing field X is given by X = (yP (x)+Q(x)) ∂

∂x −x ∂
∂y for some smooth functions

P (x) > 0 and Q(x); (ii) the vector field Y = ∂
∂y has constant length 1.

Conversely, we have the following local construction.

Theorem 1.3. Let P and Q be smooth functions of x, and let X =
(
yP (x) +

Q(x)
)

∂
∂x − x ∂

∂y be a vector field defined on a plane region M . Let φt be the flow
generated by X, and let Σ be the flow domain. Define a map ι : Σ → TM as
follows.

ι(p, t) =
(
φt∗

∂

∂y

)
p
, ∀p ∈ M, t ∈ R.

If P (x) > 0, then ι is a generalized Finsler structure on M with vanishing flag
curvature, and X is a Killing field. Moreover, the generalized Finsler structure is
complete if P (x) and Q(x) are defined for all x ∈ R, P (x) is bounded, and Q(x)
grows sublinearly.

It is natural to ask, when will this generalized structure reduce to a classical
Finsler structure? This is answered in the following.

Theorem 1.4. Define the generalized Finsler structure as stated in Theorem 1.3.
Then the generalized structure is a classical Finsler structure if and only if the vector
field X generates an SO(2) action on M , if and only if X admits an isochronous
center and M is in the isochronous period annulus. In this case, the Finsler structure
possesses rotational symmetry.

To obtain concrete examples, we need to identify the isochronicity condition.
Notice that without loss of generality, we may assume Q(0) = 0, so X has a unique
singular point at (0, 0).
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Theorem 1.5. Suppose P (x) and Q(x) are analytic functions near 0 and Q(0) = 0.
The vector field X = (yP (x)+Q(x)) ∂

∂x −x ∂
∂y has an isochronous center at (0, 0) if

and only if there exists a function α and an odd function b such that the following
relations hold:

x = −A(u),

P (x) = A′(u),

Q(x) = −P (x)

∫ u

0

B(s) d s,

A(u) = α′(u)
(
α(u) +

1

α3(u)

(∫ α(u)

0

zb(z) d z
)2)

,

B(u) = α′(u)b(α(u)),

where the function α is invertible near 0 and its inverse function α−1 satisfies that
α−1(x)− x is even.

A few comments on the organization of this paper are in order. Section 2 reviews
the basics of Finsler geometry, focusing on generalized Finsler structure and the
dynamical approach to flag curvature as outlined in [11] and [14]. In Section 3
we prove Theorem 1.3 using knowledge from previous works by Bryant, Huang,
and Mo [9]. In Section 4, Theorem 1.4 will be proved after closely examining the
relationships between the shape of indicatrices and the isochronicity properties of
the phase flow. We analyze the isochronicity condition and prove Theorem 1.5 in
Section 5. Several examples of flat Finsler surfaces are also provided there.

2. Generalized and Classical Finsler Structures

This section mainly serves to review some fundamental concepts in Finsler ge-
ometry and establish notation.

Let M be a smooth manifold of dimension n. A Finsler metric on M is a smooth
assignment of Minkowski norms to the tangent spaces of M . Each Minkowski norm
is uniquely determined by its indicatrix, i.e., the set of vectors of unit length. By the
definition of a Minkowski norm, each indicatrix must be strongly convex (toward
the origin) and diffeomorphic to Sn−1 [2]. To generalize the concept of a Finsler
structure, we recall the following definition.

Definition 1. Let π : TM → M be the tangent bundle of the manifold M .
Let ι : Σ → TM be an immersed hypersurface in TM . If π ◦ ι : Σ → M is
a submersion with connected fibers, and for each point p ∈ M , the immersion
ιp : (π ◦ ι)−1(p) → TpM is strongly convex toward the origin, then the triple
(M,Σ, ι) is called a generalized Finsler structure on M (sometimes we simply say
that ι is a generalized Finsler structure on M). If all the ιp are embeddings and
their images are diffeomorphic to Sn−1, then ι is called a classical Finsler structure,
a regular Finsler structure, or simply a Finsler structure.

Remark 1. R. Bryant’s definition of a generalized Finsler structure differs slightly
from the one presented here; for more details, refer to [7, 8]. In [8], a generalized
Finsler structure is defined as the manifold Σ along with an adapted dual coframe
field that satisfies some structure equations (refer to (1) for the two-dimensional
scenario).
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Now, let ι : Σ → TM be a generalized Finsler structure. At each point p ∈ M ,
the tangent vectors to the fiber Σp := (π ◦ ι)−1(p) will be referred to as vertical. All
the vertical vectors constitute the vertical subbundle of TΣ. We shall denote by V Σ
the smooth sections of the vertical subbundle. The immersed hypersurface ι(Σp)
will be referred to as the indicatrix at point p. Sometimes we will not distinguish
between Σp and ι(Σp), so we will also refer to the tangent vectors of ι(Σp) as
vertical.

One can construct a globally defined contact form ω on Σ as follows. For each
u ∈ Σ, let ℓ = ι(u) be the corresponding point on the indicatrix at p = π(ℓ). There
is a unique 1-form αu in T ∗

pM that annihilates Tℓι(Σp) ⊂ TpM , and such that
αu(ℓ) = 1. Define the 1-form ω on Σ as follows:

ω|u = (π ◦ ι)∗(αu).

This form is known in the literature as the Hilbert form.
The geodesic spray (or Reeb field in another terminoledgy) is the unique vector

field on Σ determined by the following relations.
ω(ξ) = 1, dω(ξ, · ) = 0.

If γ is an integral curve of ξ, then π ◦ ι(γ) is a unit speed geodesic on M . Thus, if
ξ is a complete vector field on Σ, then every unit geodesic on M is defined on R.
In this case, we say that the manifold M is complete.

2.1. Dynamical approach to flag curvature. To define the concept of flag cur-
vature in a generalized Finsler structure, it is preferable to introduce the dynamical
approach developed by P. Foulon [11], see also [13].

The vertical endomorphism V is the unique (1, 1) tensor on Σ that satisfies the
following equations.

V ([ξ, v]) = −v, V(ξ) = V (v) = 0, ∀v ∈ V Σ.

The horizontal endomorphism H is the unique (1, 1) tensor on Σ that satisfies the
following equations.

H (v) = − [ξ, v]− 1

2
V [ξ, [ξ, v]] ,

H (H(v)) = H(ξ) = 0, ∀v ∈ V Σ.

The image of H is the horizontal subbundle of TΣ. So TΣ can be decomposed into
the direct sum of the horizontal subbundle, the vertical subbundle, and the line
bundle spanned by ξ. We shall denote by HΣ the set of smooth sections of the
horizontal subbundle.

The Riemann curvature tensor or Jacobi endomorphism R is defined on the
vertical subbundle as follows.

R(w) = VH [ξ,H(w)] , ∀w ∈ V Σ.

Notice that in [11], the Jacobi endomorphism R is also defined for horizontal vec-
tors, and R(ξ) = 0. However, only the vertical component is essential for us to
define flag curvature.

The following (0, 2) tensor h is a Riemannian metric on the vertical subbundle,
known as the angular metric.

h(u, v) = dω([ξ, u], v) = dω(u,H(v)), ∀u, v ∈ V Σ.
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Finally, the flag curvature K is given by

K(v) =
h(R(v), v)

h(v, v)
, ∀v ∈ V Σ \ {0}.

Notice that R is self-adjoint with respect to h, so the flag curvature of a generalized
Finsler structure is identically zero if and only if R ≡ 0.

Remark 2. If ι : Σ → TM is a classical Finsler structure, then the definition of K
above actually corresponds to a function defined for flags. Recall that a flag (P, y)
in TpM , is a two-dimensional subspace P in TpM together with a nonzero vector
y in P , where y is referred to as the flagpole. We may replace y with a unit vector
ℓ in y direction, so ℓ represents a point on the indicatrix ι(Σp). The subspace P is
spanned by ℓ and a vertical vector v that is tangent to the indicatrix at ℓ. The flag
curvature K(P, y), in traditional notation, is equivalent to our K(v).

2.2. Two dimensional case. In two dimensions, the above scenario is significantly
simplified. First, for a generalized Finsler structure on a surface, the indicatrix at
each point is simply a strongly convex curve towards the origin. Moreover, the
generalized Finsler structure reduces to a classical one if all the indicatrices are
simple closed curves. Let us recall a simple criterion for strong convexity in [2,
Chapter 4].

Lemma 2.1. An immersed curve ℓ : R → R2 is strongly convex toward the origin
if it never passes through the origin and satisfies the following condition.

det(ℓ′, ℓ′′)

det(ℓ, ℓ′)
> 0, ∀t ∈ R.

Now, the vertical subbundle is of rank one, so there is a globally defined vertical
vector field e3 satisfying h(e3, e3) = 1. Put e2 = H(e3); then e2 is a globally defined
horizontal vector field. In this way, {e1 = ξ, e2, e3} becomes a global frame field on
Σ, known as the Berwald frame. Notice that e3 is unique up to a minus sign. The
dual coframe field {ω1 = ω, ω2, ω3} satisfies the following structure equations (see
[7, 9]).

dω1 = −ω2 ∧ ω3,

dω2 = −ω3 ∧ ω1 − Iω2 ∧ ω3,

dω3 = −Kω1 ∧ ω2 − Jω2 ∧ ω3,

(1)

where I, J , and K are known as the Cartan scalar, the Landsberg curvature, and
the Gauss curvature, respectively. In two dimensions, the flag (P, y) can only be
(TxM,y), so the flag curvature K(P, y) can be written as K(y), and it is referred
to as the Gauss curvature.

2.3. Flat Finsler structures. Since we are mainly interested in the K = 0 (flat)
case, we will now review some relevant results in this context. A basic model of flat
Finsler space is Rn equipped with a Minkowski norm; it is called a Minkowski space.
A Finsler manifold is called locally Minkowski if every point has a neighborhood
that is isometric to an open subset of a Minkowski space. For a locally Minkowski
space, the Cartan scalar is bounded, and the Landsberg curvature vanishes. A
classical theorem by Akbar-Zadeh [2] states that if the flat Finsler structure is
complete and the Cartan scalar is bounded, then it is a locally Minkowski space.
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When n = 2, the Bryant normal form provides the local model of a flat Finsler
structure (see [7]). It expresses the Berwald coframe using two arbitrary functions
of two variables.

ω1 = d y − xd z,

ω2 = P̂−1 dx+ (P̂ y + Q̂) d z,

ω3 = P̂ d z,

(2)

where (x, y, z) is an adapted local coordinate system on Σ, P̂ and Q̂ are arbitrary
functions of x and z, and P̂ ̸= 0. Notice that when P̂ and Q̂ are only functions
of x, the corresponding Finsler structure admits a Killing vector field ∂

∂z , since the
transformations (x, y, z) 7→ (x, y, z + c) leave the above coframe field unchanged.

Under the assumption that the Finsler structure admits a Killing vector field,
Bryant, Huang, and Mo [9] derived another local normal form.

ω1 = d ỹ + v(x̃) d x̃+ x̃d z̃,

ω2 = −u(x̃)−1 d x̃+ ỹu(x̃) d z̃,

ω3 = u(x̃) d z̃,

(3)

where (t, a, b) is a local coordinate system on Σ, u and v are functions of a, and
u ̸= 0.

The above two normal forms are related as follows. Let V (a) =
∫
v(a) d a; then

the change of coordinates
z̃ = z, x̃ = −x, ỹ = y − V (−x)

transforms the Bryant-Huang-Mo normal form into the Bryant normal form, with
the constraint that P̂ and Q̂ depend only on x. Thus, it is fair to say that these
two normal forms are equivalent when the Finsler structure admits a Killing field.

3. Construction of Flat Surfaces

In this section, we shall demonstrate how the above normal forms can be utilized
to construct flat Finsler surfaces that admit a Killing field. To begin with, we shall
gather some information about such a surface M . Recall that the indicatrix bundle
Σ̂ of M has the following Bryant normal form.

ω1 = d y − xd z,

ω2 = P̂−1 dx+ (yP̂ + Q̂) d z,

ω3 = P̂ d z,

where (x, y, z) is a local coordinate system on Σ̂, P̂0 and Q̂ are functions of x, and
P̂ ̸= 0. The dual frame field is given by the following.

e1 =
∂

∂y
,

e2 = P̂
∂

∂x
,

e3 = P̂−1 ∂

∂z
− (yP̂ + Q̂)

∂

∂x
+ xP̂−1 ∂

∂y
.

By definition, e1 = ∂
∂y is the geodesic spray, e2 spans the horizontal subbundle, and

e3 spans the vertical bundle.
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The leaves of the foliation defined by ω1 = ω2 = 0 are simply integral curves
of e3; they represent the indicatrices of the Finsler structure. Thus, M is locally
diffeomorphic to a submanifold of Σ̂ that is transverse to the integral curves of e3.
Since P̂ ̸= 0, the integral curves of P̂ · e3 are the same as those of e3 (as point sets)
and they are always transverse to the slice z = 0 in Σ̂. For this reason, we may
identify M as this slice, i.e., M = {(x, y, z) ∈ Σ̂ | z = 0}. Thus (x, y) forms a local
coordinate system on M .

The integral curve of P̂ ·e3 passing through a point (x, y, 0) in Σ̂ is the indicatrix
at that point. Therefore, the projection π ◦ ι : Σ̂ → M is given by

(π ◦ ι)(x, y, z) = φ̂−z(x, y, z),

where φ̂t is the (local) flow generated by P̂ · e3. As such, the Killing field ∂
∂z on Σ̂

is projected to the following vector field on M ,

X =
d

d t
φ̂−z+t(x, y, z + t)

∣∣∣∣
t=0

= φ−z∗
∂

∂z
− P̂ · e3

= (yP̂ 2 + P̂ Q̂)
∂

∂x
− x

∂

∂y
.

Thus, we have proved that the Killing field X on M has a local expression

X = (yP +Q)
∂

∂x
− x

∂

∂y
, (4)

where P = P̂ 2, Q = P̂ Q̂. It is easy to see that the flow φt of X is related to φ̂t via
φ̂t(x, y, z) = (φ−t(x, y), t+ z). (5)

Moreover, since the integral curves of e1 = ∂
∂y are of the form t 7→ (x, y+t, z), the

projected curves t 7→ (π◦ι)(x, y+t, z) are unit speed geodesics on M . Consequently,
the tangent vector Ŷ of the curve t 7→ (π ◦ ι)(x, y+ t, z) has a unit length. We have

Ŷ =
d

d t
(π ◦ ι)(x, y + t, z)

∣∣∣∣
t=0

=
d

d t
φ̂−z(x, y + t, z)

∣∣∣∣
t=0

= φz∗
∂

∂y
.

Since X is a Killing field, its flow φt consists of isometries. Thus, the tangent vector
∂
∂y = φ−z∗Ŷ also has unit length. Proposition 1.2 has been proven.

3.1. A motivating example. In the proof of Proposition 1.2, we have seen that
for each fixed t, the vector field

Ŷ = φt∗
∂

∂y

has a unit length on M . Thus, at any point p ∈ M , the curve

t 7→ γ(t) :=

(
φt∗

∂

∂y

)
p

traces a portion of the indicatrix at point p.
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For example, when P = 1 and Q = 0, the vector field X has the following
expression.

X = y
∂

∂x
− x

∂

∂y
.

It is defined on the entire plane M = R2 and it generates the S1 action φt on M ,
where

φt(x, y) = (x cos t+ y sin t,−x sin t+ y cos t), ∀(x, y) ∈ M.

Now let Y = ∂
∂y , then it is easy to see that

γ(t) = (φt∗Y )p = sin t
∂

∂x

∣∣∣∣
p

+ cos t
∂

∂y

∣∣∣∣
p

.

Thus, at each point p ∈ R2, the curve γ(t) = (φt∗Y )|p is a circle of radius one,
known as the indicatrix of the Euclidean metric.

Motivated by the above example, we restate Theorem 1.3 as follows.

Theorem 3.1. Let P and Q be two smooth functions defined near 0 in R such
that P (x) > 0 for all x. Let M be the maximal plane region where the vector field
X = (yP (x) + Q(x)) ∂

∂x − x ∂
∂y is defined. Let φt be the local flow generated by X

with a flow domain Σ ⊂ M × R. Define a map ι : Σ → TM as follows.

ι(p, t) :=

(
φt∗

∂

∂y

)
p

, ∀(p, t) ∈ Σ. (6)

Then ι is a generalized Finsler structure on M with vanishing flag curvature, and
X is a Killing field. Moreover, if P and Q are defined on R, P is bounded, and Q
grows sublinearly, then M covers the entire R2, and the generalized Finsler structure
is complete.

The proof of this theorem shall consists the rest of this section and it is divided
into three subsections.

3.2. The strong convexity of the indicatrices. To show that ι is a generalized
Finsler structure, we only need to prove that γ(t) := ι(p, t) is a strongly convex
curve towards the origin in TpM for each p ∈ M . Let Y := ∂

∂y ; then direct
computation shows that

−[X,Y ] = P
∂

∂x
, [X, [X,Y ]] = (PQ′ −QP ′))

∂

∂x
− P

∂

∂y
.

Thus, it is easy to obtain

det(Y,−[X,Y ]) =

∣∣∣∣0 P
1 0

∣∣∣∣ = −P,

det(−[X,Y ], [X, [X,Y ]]) =

∣∣∣∣P PQ′ −QP ′

0 −P

∣∣∣∣ = −P 2.

Notice that these two determinants are negative at any point.
By successively using [16, Corollary 1.10] we have

d

d t
(φt∗Y ) = −φt∗[X,Y ],

d2

d t2
(φt∗Y ) = φt∗[X, [X,Y ]].

Restricting to the point p, we have
det (γ(t), γ′(t)) = det ((φt∗Y )p,−(φt∗[X,Y ])p) = det(φt∗) det(Y,−[X,Y ]),
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where the last two determinants are evaluated at the point φ−t(p). Similarly we
have

det (γ′(t), γ′′(t)) = det(φt∗) det(−[X,Y ], [X, [X,Y ]]).

Thus
det (γ(t), γ′(t))

det (γ′(t), γ′′(t))
=

det(Y, [Y,X])

det([Y,X], [X, [X,Y ]])
=

1

P
,

where the function P is evaluated at the x-coordinate of the point φ−t(p). Since
P > 0, we have proved that the curve γ(t) is strongly convex toward the origin (see
Lemma 2.1).

Remark 3. Since φt is a local diffeomorphism, det(φt∗) never vanishes. Together
with the fact that det(φ0∗) = 1, we have det(φt∗) > 0. Thus we can actually prove
det(γ(t), γ′(t)) < 0, i.e., γ(t) travels clockwise around the origin.

3.3. Computation of flag curvature. Now we compute the flag curvature of the
above generalized Finsler structure.

3.3.1. Hilbert form. As above, let (x, y, t) be the natural coordinate system on the
flow domain Σ. We define another coordinate system (u, v, s) on Σ as follows.

(u, v) = φ−t(x, y), s = t.

By the definition of the flow, we know that
u′ = −vP (u)−Q(u), v′ = u, (7)

where ′ denotes derivative with respect to t.
Let π : TM → M be the natural projection, then π ◦ ι(x, y, t) = (x, y). Recall

that at each point p = (x, y), the indicatrix is parametrized by the curve
γ(t) = (φt∗Y )p,

and it satisfies
γ′(t) = −(φt∗[X,Y ])p.

Now, since the 1-form d y satisfies
(d y)(Y ) = 1, (d y)[−X,Y ] = 0,

we find that the 1-form ℓ∗ = (φ∗
−t d y)p ∈ T ∗

pM satisfies
ℓ∗(γ) = 1, ℓ∗(γ′) = 0.

As a result, the Hilbert form ω is given by
ω = (π ◦ ι)∗(ℓ∗) = d v − vt d t = d v − ud s. (8)

3.3.2. Riemann curvature tensor. The geodesic spray ξ is the unique vector field
on Σ determined by

ω(ξ) = 1, dω(ξ, · ) = 0.

Since ω = d v − ud s, it is easy to see that ξ = ∂
∂v .

Within the coordinate system (u, v, s), the vertical vector field ∂
∂t is expressed

as
V :=

∂

∂t
= vP (u)

∂

∂u
− u

∂

∂v
+

∂

∂s
.

Direct calculation shows that

[ξ, V ] = P (u)
∂

∂u
, [ξ, [ξ, V ]] = 0.
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Consequently we have

H(V ) = −[ξ, V ]− 1

2
V[ξ, [ξ, V ]] = −P (u)

∂

∂u
.

Therefore, the Riemann curvature tensor R is given by

R(V ) = VH[ξ,H(V )] = VH
[
∂

∂v
,−P (u)

∂

∂u

]
= 0,

meaning that the generalized Finsler surface we constructed is indeed a flat one.

3.4. Completeness. Recall that a generalized Finsler structure (M,Σ, ι) is called
complete if the geodesic spray vector field on Σ is complete.

Lemma 3.2. If the vector field X is complete on the entire plane M = R2, i.e., its
flow domain Σ is M ×R = R3, then the corresponding generalized Finsler structure
(R2,R3, ι) is complete.

Proof. As the above computation shows, within the (u, v, s) coordinate system, the
geodesic spray is given by ∂

∂v . Hence, the geodesic spray is complete if and only
if the function v can take all real values. Now, the vector field X is complete on
the entire plane M = R2, so its flow φt is defined for all t ∈ R. By the relation
(u, v) = φ−t(x, y), it is readily seen that v can take any real values, thus the
generalized Finsler structure is complete. □

Lemma 3.3. Let P and Q be smooth functions on R. If P is bounded and Q grows
sublinearly, i.e., there exist positive real numbers C1 and C2 such that

|P (x)| ≤ C1, |Q(x)| ≤ C2|x|, ∀x ∈ R,

then the vector field X = (yP (x) +Q(x)) ∂
∂x − x ∂

∂y is complete on R2.

Proof. To prove that the vector field X is complete on R2, we need to show that
for any (x0, y0) ∈ R2, the solution of the initial value problem

(x, y)′ = (yP (x) +Q(x),−x), (x, y)|t=0 = (x0, y0)

is defined for all t ∈ R. Let C3 = (2C2
1 + 2C2

2 + 1)1/2, then one can easily verify
that (

(yP (x) +Q(x))2 + (−x)2
)1/2 ≤ C3 · (x2 + y2)1/2.

By using Theorem 2.17 in [22, pp. 53], the above estimate guarantees that the
solution of the above initial value problem is defined for all t ∈ R. □

Together the above two lemmas, we have proved the last assertion in Theorem
1.3. This finishes the proof of Theorem 1.3.

4. Isochronicity and rotational symmetry

Given the generalized Finsler surface constructed above, our main goal in this
section is to determine the conditions under which the generalized Finsler structure
reduces to a classical one.
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4.1. A sufficient condition. Let P and Q be smooth functions near 0 in R and
P > 0. The vector field X = (yP (x) +Q(x)) ∂

∂x − x ∂
∂y has a unique singular point

at (0,−Q(0)/P (0)). By suitably translating the coordinates along the y-axis, we
may assume the singular point is (0, 0), i.e., Q(0) = 0.

Recall that for a vector field X, the singular point (0, 0) is called an isochronous
center if all the integral curves near (0, 0) are closed and have a constant period.
The maximal domain enclosing all such integral curves is called the period annulus.

Lemma 4.1. If (0, 0) is an isochronous center of the vector field X = (yP (x) +
Q(x)) ∂

∂x−x ∂
∂y , then for any point p in the period annulus, the curve γ(t) =

(
φt∗

∂
∂y

)
p

is smooth and closed.

Proof. Let Y = ∂
∂y . Suppose that T is the period constant of the isochronous

center. Then, we would have φt = φt+T , ∀t. Hence φ0∗Y = φT∗Y and γ(0) = γ(T ).
Moreover, since γ′(t) = (φt∗[Y,X])p, we have γ′(0) = γ′(T ). In a similar manner,
we can prove that γ(n)(0) = γ(n)(T ), for all n ∈ N. □

Now we are ready to derive the following proposition.

Proposition 4.2. Suppose (0, 0) is an isochronous center of the vector field X =
(yP (x) + Q(x)) ∂

∂x − x ∂
∂y and M is the isochronicity period annulus. Define the

generalized Finsler structure (M,Σ, ι) as in Theorem 1.3. Then this generalized
Finsler structure is actually a classical Finsler structure.

Proof. Let p be a point in the period annulus M . Let γ(t) =
(
φt∗Y )p = φt∗Yφ−t(p)

as before. We already know from the proof of Theorem 1.3 that γ(t) travels clock-
wise around the origin (see Remark 3 at the end of §3.2). Lemma 4.1 ensures that
γ(t) is smooth and closed. Therefore, we only need to prove now that γ(t) is a
simple curve in TpM . This amounts to showing that the curve γ(t), 0 ≤ t ≤ T , has
a winding number of −1.

First, consider the case p = (0, 0). In this situation, we have φ−t(p) = p and
γ(t) = φt∗Yp. By the definition of flow, φt+s = φt ◦ φs, we have φ(t+s)∗ = φt∗φs∗.
Since the maps φt∗ : TpM → TpM are linear, we find that t 7→ φt∗ is a representa-
tion of S1 = R/TZ on TpM . Consequently, as the orbit through Yp, the curve γ(t)
must be an ellipse. Moreover, since T is the least period of φt, it must also be the
least period of γ(t). Thus, we have proved that γ(t) has a winding number of −1
when p = (0, 0).

Next, we consider a general point p in the period annulus. Suppose γ(t) =

h1(t)
∂
∂x

∣∣
p
+h2(t)

∂
∂y

∣∣∣
p
, then we have the following formula for the winding number

(see [3]).

W =
1

2π

∫ T

0

h1h
′
2 − h2h

′
1

h2
1 + h2

2

d t.

Since h1 and h2 in the integrand depend continuously on p, the integral W must
also be a continuous function on M ; but we know that the winding number must
be an integer for closed curves, so W ≡ −1. □

4.2. A necessary condition. The following proposition suggests that (0, 0) being
an isochronous center is also the necessary condition for the above generalized
Finsler structure to become a classical Finsler structure, at least in a neighborhood
of (0, 0).
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Proposition 4.3. If the singular point (0, 0) is not an isochronous center of X =
(yP (x) + Q(x)) ∂

∂x − x ∂
∂y , then for any open subset U ⊂ M , there exists a point

p ∈ U such that the curve γ(t) = (φt∗Y )p is not closed.

Proof. It is easy to verify that the conclusion holds if (0, 0) is not even a center of
X.

Meanwhile, if (0, 0) is a non-isochronous center of X, then the function T :
M → R, where T (p) is the least period of the orbit containing p, is bound to
be differentiable and non-constant on any open set U and its open subset U0 :=
U\ {(x, y) ∈ U | yP (x) +Q(x) = 0}. As the directional derivative of T along the
vector X is already zero, we must have ∂T

∂y ̸= 0 on U0.
Let p = (x, y) ∈ U0. Consider a curve c(t) in M satisfying c(0) = p and

c′(0) = Yp as well as its image under φT (p). Expanding near t = 0, we have
T (c(t)) = T (p) + t∂T∂y (p) + o(t). Thus

φT (p) (c(t)) = φT (p)−T (c(t))(c(t))

= φ−t ∂T
∂y (p)−o(t)(c(t))

= c(t)− t
∂T

∂y
(p) ·Xp + o(t).

Consequently

(φT (p)∗Y )p = φT (p)∗c
′(0) = Yp −

∂T

∂y
(p) ·Xp.

By using a similar argument, we have

(φkT (p)∗Y )p = Yp − k
∂T

∂y
(p)Xp, k ∈ N.

Thus, since γ(0) ̸= γ(kT (p)), the curve γ(t) cannot be closed. □

Even if the vector field X admits an isochronous center, one can similarly prove
that for any open set U outside the isochronous period annulus of X, there exists
a point p ∈ U such that the indicatrix at p is not closed. Thus, the above two
propositions imply that, for the generalized Finsler structure on M to be a classical
one, X must have an isochronous center and M must be included in the isochronicity
period annulus. Moreover, combining this result with the last assertion of Theorem
1.3, we find that the constructed generalized structure is classical and complete if
and only if (0, 0) is a global isochronous center on R2, i.e., the entire R2 is the
period annulus.

4.3. Rotational symmetry. At this point, we have almost finished the proof of
Theorem 1.4. It remains to show that X admits an isochronous center if and only
if it generates an SO(2) action, but this is indeed a conceptual transition between
dynamical systems and differential geometry.

If X admits an isochronous center, then its flow φt has a constant period T , i.e.,
φt+T = φt holds for all t ∈ R. This means that the action of the flow on M reduces
to R/TZ = S1.

Conversely, if X generates an SO(2) = S1 action on M , then every orbit has a
constant period T . Together with the fact that X has a unique singular point, we
find that X must have an isochronous center. The proof of Theorem 1.4 ends here.
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Corollary 4.4. If M is a regular Finsler surface with vanishing flag curvature and
its isometry group G is one-dimensional, then necessarily G = S1.

In the following, we shall discuss the difference between rotational symmetry and
spherical symmetry. Let us begin with the following definition.

Definition 2. A generalized Finsler structure (Mn,Σ, ι) is called rotationally sym-
metric (resp. spherically symmetric) if M admits an effective SO(n) (resp. O(n))
action that maps the indicatrices into indicatrices.

Remark 4. In general, if a Finsler structure is spherically symmetric, then the
Finsler metric can be expressed as F = |y| · ϕ(|x|, ⟨x, y⟩/|y|) in some well-chosen
local coordinate system (see [25, 12]); but for a rotationally symmetric Finsler
structure, this is not the case in dimension two, as the following example shows.

The difference between rotational symmetry and spherical symmetry is better
illustrated by the following two dimensional example: Let us consider the usual
SO(2) or O(2) action on R2. Let

F (x1, x2; y1, y2) = |y|ϕ(s),

where |y| =
√

(y1)2 + (y2)2 is the Euclidean norm, and s = (x1y2−x2y1)/|y|. If the
one-variable function ϕ satisfies some open conditions, then F is a Finsler metric
defined in a neighborhood of (0, 0). It is easy to check that the corresponding
Finsler structure is rotationally symmetric.

F (Ax,Ay) = F (x, y), ∀A ∈ SO(2), x ∈ R2, y ∈ TxR2 ≃ R2,

but in general it is not spherically symmetric because the above relation does not
hold for any A ∈ O(n). Actually, this metric is spherically symmetric only if ϕ is an
even function. Indeed, a generalized Finsler structure on R2 is just an assignment of
indicatrices (strongly convex curves) to the tangent spaces. So along the (positive)
x1-axis, there is a family of such strongly convex curves. If the Finsler structure
is rotationally symmetric, then this family of curves can be freely assigned, and
it completely determines the Finsler structure since the indicatrices at any point
(x1, x2) can be obtained by rotating the corresponding curve at (|x|, 0). However,
to make the Finsler structure spherically symmetric, this family of curves has to be
symmetric about the x1-axis because the reflection on the x1-axis is an element of
O(2).

However, in dimensions ≥ 3, one cannot distinguish between rotational symme-
try and spherical symmetry by looking at the expression of the Finsler metric F , be-
cause in both cases, the Finsler metric can be expressed as F = |y| ·ϕ(|x|, ⟨x, y⟩/|y|)
in some local coordinate system. For a proof of this fact, one may consult [12], in
which the proof of Proposition 3.1 also works for rotationally symmetric Finsler
metrics.

5. Isochronoucity conditions

In this section, we will try to find appropriate conditions on P and Q to make
the vector field X isochronous. Although the general case can be settled, we shall
treat the Q = 0 case first, not only because the result is more elegant, but also
because the method is more elementary.
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5.1. Isochronicity conditions when Q = 0. When Q = 0, the integral curves of
X are given by solutions of the dynamical system

x′ = yP (x), y′ = −x. (9)
Let κ = P (0)−1/2, and let b(x) be the solution to the following initial value problem

κ+ b(x)− xb′(x) = P
( x

κ+ b(x)

)
· (κ+ b(x))3, b(0) = 0. (10)

By the following change of variables

x =
x̃

κ+ b(x̃)
, y = ỹ,

we can rewrite the above system (9) as

x̃′ =
ỹ

κ+ b(x̃)
, ỹ′ =

−x̃

κ+ b(x̃)
. (11)

The isochronicity condition of this system will follow in the next two lemmas.

Lemma 5.1. Let λ be a smooth function defined on the open interval (−ϵ, ϵ). If∫ 2π

0
λ(r cos θ) d θ is a constant for any r ∈ [0, ϵ), then λ(x)−λ(0) is an odd function.

Proof. Let f(x) = λ(x)+λ(−x)−2λ(0), then f(x) is even and f(0) = 0. Moreover,
the condition implies that ∫ π

0

f(r cos θ) d θ = 0.

By changing variables x = r cos θ, one can rewrite the above equation as∫ r

−r

f(x)(r2 − x2)−1/2 dx = 0.

Since f is even, we also have∫ r

0

f(x)(r2 − x2)−1/2 dx = 0.

Now we use induction to show that
∫ r

0
f(x)x2m(r2 − x2)−1/2 dx = 0 holds for any

nonpositive integer m. The base case m = 0 is already established above. Suppose
it holds for some m ≥ 0, then we have∫ r

0

f(x)x2m+2(r2 − x2)−1/2 dx

=−
∫ r

0

f(x)x2m(r2 − x2)(r2 − x2)−1/2 dx

=−
∫ r

0

f(x)x2m(r2 − x2)1/2 dx

=−
∫ r

0

dx

∫ r

x

sf(x)x2m(s2 − x2)−1/2 d s

=−
∫ r

0

d s

∫ s

0

sf(x)x2m(s2 − x2)−1/2 dx = 0.

Thus, the equality holds for all non-positive integers m. From the above deduction,
we also have ∫ r

0

f(x)x2m(r2 − x2)1/2 dx = 0.
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Since any continuous even function can be approximated by linear combinations of
1, x2, x4, · · · , we conclude from the above equation that∫ r

0

f(x)(r2 − x2)1/2g(x) dx = 0

holds for any even function g(x). Taking g(x) = f(x)(r2 − x2)1/2 then shows that
f(x) = 0 on [0, r]. □
Remark 5. If λ is analytic, then one can use its power series expansion to get a
simple proof of this lemma.
Lemma 5.2. Suppose λ is a smooth function satisfying λ(0) > 0, then the necces-
sary and sufficient condition for (0, 0) to be an isochronous center of the system

x′ = − y

λ(x)
, y′ =

x

λ(x)

is that λ(x)− λ(0) is an odd function.
Proof. The integral curves of this system obviously share the same shapes as those
of the system x′ = −y, y′ = x, so (0, 0) is a center of this system. By changing to
polar coordinates, i.e., x = r cos θ, y = r sin θ, this system can be written as

r′ = 0, θ′ =
1

λ(r cos θ)
.

Thus, the period of an orbit passing through (r, 0) is given by

T (r) =

∫ T (r)

0

d t =

∫ 2π

0

λ(r cos θ) d θ.

The point (0, 0) is an isochronous center if and only if T (r) is independent of r. By
Lemma 5.1, this happens if and only if λ(x)− λ(0) is an odd function. □

Using this lemma, we know that the vector field X = yP (x) ∂
∂x−x ∂

∂y possesses an
isochronous center if and only if the function b is odd. What’s more, after picking
a positive constant κ and an odd function b, we can easily solve for P from the
relations

P (x) = (κ+ b(x̃)− x̃b′(x̃))(κ+ b(x̃))−3, x = x̃/(κ+ b(x̃)). (12)
Example 1. If we take κ = 1 and b(x) = −εx, then one can solve the above
equations to get

P (x) = (1 + εx)3.

In this case, we have the following well-known polynomial Abel system (see [23,
Theorem 8], see also [4, Theorem 6.2]).

x′ = y(1 + εx)3, y′ = −x,

where ε ∈ (−1, 1).
Example 2. Set b(x) = εx/(1 + x2), then we have

P (x) =
(z2 + 1)2

(z2 + εz + 1)2
,

where z is determined by the relation x = z(z2 +1)/(z2 + εz +1). From the above
expression, it is easy to see that P (x) is bounded on R when ε ∈ (−2, 2). Thus, by
Theorem 1.3 and Theorem 1.4, the corresponding Finsler structure is defined on
the entire R2, and it is complete.
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5.2. Isochronicity conditions when Q ̸= 0. In the general case, integral curves
of X are given by solutions of

x′ = yP (x) +Q(x), y′ = −x,

where, without loss of generality, we can assume that P (0) = 1 and Q(0) = 0.
This time, using a change of variables

u = −
∫ x

0

1

P (s)
ds, v = y +

Q(x)

P (x)
,

we can turn this system into a Liénard system

u′ = −v, v′ = A(u) + vB(u), (13)

where the functions A and B are determined by the relations

A(u) = −x, B(u) =
Q′(x)P (x)− P ′(x)Q(x)

P (x)
. (14)

The necessary and sufficient conditions for Liénard systems to have isochronous
centers were studied by Amel’kin and Rudenok, who, in 2018, proved the following
theorem (see [1, Theorem 18] or [18, Theorem 6]).

Theorem 5.3. [1, 18] If A and B are analytic near 0, then the Liénard system
(13) possesses an isochronous center at (0, 0) if and only if there exists a function
α and an odd function b, such that

A(u) = α′(u)
(
α(u) +

1

α3(u)

(∫ α(u)

0

zb(z) d z
)2)

,

B(u) = α′(u)b(α(u)),

where the function α is invertible near 0 and its inverse function α−1 satisfies that
α−1(x)− x is even.

To obtain concrete examples, we present the following proposition.

Proposition 5.4. Let A, B, P , and Q be defined as above; then we have the
following relations.

x = −A(u),

P (x) = A′(u),

Q(x)/P (x) = −
∫ u

0

B(s) d s.

(15)

Proof. As u′(x) = − 1
P (x) , we have x′(u) = −P (x). Together with the relation

x = −A(u), we get P (x) = A′(u).
Meanwhile, the expression for B(u) in (14) can be rewritten into the differential

equation (Q/P )′ = B(u)/P (x). Together with x′(u) = −P (x), we have d(Q/P )
du =

−B(u). Thus, Q/P = −
∫ u

0
B(s) d s. □

Combining Theorem 5.3 and Proposition 5.4, we have proved Theorem 1.5. Now
we shall present several examples.
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Example 3. Set α(u) = u and b(z) = z in Theorem 5.3, then we get

A(u) = u+ u−3
( ∫ u

0

z2 d z
)2

= u+ u3/9,

B(u) = u.

From the relations (15) we have
P (x) = 1 + u2/3,

Q(x) = −1

2
u2(1 + u2/3),

where x = −A(u) = −u− u3/9.

Example 4. Set α(u) = u and b(z) = sin z in Theorem 5.3, then we have
P (x) = 1 + u−4(sinu− u cosu)

(
2u2 sinu− 3(sinu− u cosu)

)
,

Q(x) = −P (x)(1− cosu),

where u is determined by the relation x = u + (sinu − u cosu)2u−3. One can
verify that this relationship is globally invertible. From the above expression, it is
seen that P (x) and Q(x) are bounded on R. Therefore, the corresponding Finsler
structure is complete on R2.

5.3. The Bryant-Huang-Mo normal form. So far, our discussions are based
on the Bryant normal form (2). If we use the Bryant-Huang-Mo normal form (3)
instead, similar results can be obtained. Since these two normal forms only differ
by a coordinate transformation, the corresponding results are identical in content,
but different in expressions. For example, the vector field to be considered has the
following form:

X = −y
∂

∂x
+
(
xu(x)−2 + yv(x)

) ∂

∂y
, (16)

where u(x) and v(x) are the arbitrary functions appeared in (3). We may again
use its flow φt to push the vector field Y = ∂

∂y to generate a generalized Finsler
structure. This generalized Finsler structure reduces to a classical one, if and only
if X admits an isochronous center. However, to find the isochronicity condition, we
do not need to do any coordinate transformations, because it is already a Liénard
system.

x′ = −y, y′ = xu(x)−2 + yv(x).

Thus, Theorem 5.3 directly gives the expressions of u and v when the system is
isochronous. Both normal forms suggest the following corollary holds.

Corollary 5.5. The local isometry class of regular rotationally symmetric Finsler
surfaces with vanishing flag curvature depends on two functions of one variable.
One of them is an odd function, and the other is even.

References
[1] V. V. Amel’kin, A. E. Rudenok. Centers and Isochronous Centers of Lienard Systems, Dif-

ferential Equations, 55 (2019) 3, 283-293.
[2] D. Bao, S.-S. Chern, Z. Shen. An Introduction to Riemann-Finsler Geometry, Graduate Texts

in Mathematics, vol. 200. Springer, New York, 2000.
[3] M. Berger, B. Gostiaux. Differential Geometry: Manifolds, Curves and Surfaces. Springer,

1987.

https://doi.org/10.4153/S0008414X24000336 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000336


ISOCHRONOUS CENTERS AND FLAT FINSLER METRICS (I) 19

[4] I. Boussaada, A. R. Chouikha, J.-M. Strelcyn. Isochronicity conditions for some planar
polynomial systems. Bull. Sci. Math. 135 (2011) 1, 89-112.

[5] D. Bao, C. Robles, Z. Shen. Zermelo Navigation on Riemannian Manifolds, J. Differential
Geom. 66 (2004) 391-441.

[6] S.-S. Chern, Z. Shen. Riemann-Finsler Geometry, Nankai Tracts in Mathematics, vol. 6.
World Scientific, Singapore (2005).

[7] R. Bryant. Finsler Surfaces with Prescribed Curvature Conditons, Contemporary Mathemat-
ics. 196 (1996), 27-41.

[8] R. Bryant. Some Remarks on Finsler Manifolds with Constant Flag Curvature. Houston J.
Math. 28 (2002), 221-262.

[9] R. Bryant, L. Huang, X. Mo. On Finsler Surfaces of Constant Flag Curvature with a Killing
Field. J. Geom. Phys. 116 (2015), 345-357.

[10] L. P. Eisenhart. Riemannian geometry. Princeton: Princeton Univ. Press, 1949.
[11] P. Foulon. Geometrie des equations differentielles du second ordre. Annales de l’I.H.P., section

A, 45 (1986) 1, 1-28.
[12] L. Huang, X. Mo. Projectively flat Finsler metrics with orthogonal invariance. Ann. Polon.

Math. 107 (2013) 3, 259-270. doi:10.4064/ap107-3-3
[13] L. Huang, X. Mo, On Finsler surfaces of constant curvature with two-dimensional isometry

group. Internat. J. Math. 26 (2015) 5, 1550046 (16 pp).
[14] L. Huang, X. Mo. On the flag curvature of a class of Finsler metrics produced by the navi-

gation problem. Pacific J. Math. 277 (2015) 1, 149-168.
[15] S. Kobayashi. Transformation Groups in Differential Geometry. Classics in Mathematics.

Springer Berlin, Heidelberg, 1995.
[16] S. Kobayashi, K. Nomizu. Foundations of Differential Geometry. vol. 1. Interscience Pub-

lishers, New York, London, 1963.
[17] B. Li. On the classification of projectively flat Finsler metrics with constant flag curvature.

Adv. Math. 257 (2014) 1, 266-284.
[18] A. E. Rudenok. Generalized Symmetry of the Liénard System. Differential Equations 55

(2019) 2, 181-193.
[19] S. Sevim, Z. Shen, S. Ülgen. Spherically symmetric Finsler metrics with constant Ricci and

flag curvature. Publ. Math. Debrecen 87 (2015) 3-4, 463-472.
[20] Z. Shen. Projectively Flat Finsler Metrics of Constant Flag Curvature. Trans. Amer. Math.

Soc. 355 (2002) 4, 1713-1728.
[21] M. Spivak. A Comprehensive Introduction to Differential Geometry. vol. II, 2nd ed. Publish

or Perish, Houston, 1979.
[22] G. Teschl. Ordinary Differential Equations and Dynamical Systems, Graduate Studies in

Mathematics, vol. 140, American Mathematical Society, Rhode Island, 2012.
[23] E. P. Volokitin, V. V. Ivanov. Isochronicity and commutation of polynomial vector fields. Sib.

Math. J. 40(1999), 23–38. doi:10.1007/BF02674287
[24] K. Yano. On n-dimensional Riemannian spaces admitting a group of motions of order 1

2
n(n−

1) + 1. Trans. Amer. Math. Soc. 74 (1953), 260-279.
[25] L. Zhou. Spherically symmetric Finsler metrics in Rn. Publ. Math. Debrecen 80 (2012), no.

1-2, 67–77.
Email address, Xinhe Mu: muxinhe22@mails.ucas.ac.cn

(Xinhe Mu) Academy of Mathematics and System Sciences, Chinese Academy of Sci-
ences, Beijing, P. R. China

Email address, Hui Miao: 2805582641@qq.com

Email address, Libing Huang: huanglb@nankai.edu.cn

School of Mathematical Sciences and LPMC, Nankai University, 94 Weijin Road,
Tianjin, P. R. China

https://doi.org/10.4153/S0008414X24000336 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000336

	1. Introduction
	2. Generalized and Classical Finsler Structures
	2.1. Dynamical approach to flag curvature
	2.2. Two dimensional case
	2.3. Flat Finsler structures

	3. Construction of Flat Surfaces
	3.1. A motivating example
	3.2. The strong convexity of the indicatrices
	3.3. Computation of flag curvature
	3.4. Completeness

	4. Isochronicity and rotational symmetry
	4.1. A sufficient condition
	4.2. A necessary condition
	4.3. Rotational symmetry

	5. Isochronoucity conditions
	5.1. Isochronicity conditions when Q=0
	5.2. Isochronicity conditions when Q=0
	5.3. The Bryant-Huang-Mo normal form

	References

