A NOTE ON LAGRANGE INTERPOLATION
 FOR $|x|^{\lambda}$ AT EQUIDISTANT NODES

Michael I. Ganzburg and Michael Revers

In this note, we discuss the exceptional set $E \subseteq[-1,1]$ of points x_{0} satisfying the inequality

$$
\left.\liminf _{n \rightarrow \infty} n^{-1} \log | | x\right|^{\lambda}-L_{n}\left(f_{\lambda}, x_{0}\right) \left\lvert\,<\frac{1}{2}\left[\left(1+x_{0}\right) \log \left(1+x_{0}\right)+\left(1-x_{0}\right) \log \left(1-x_{0}\right)\right]\right.
$$

where $\lambda>0, \lambda \neq 2,4, \ldots$ and $L_{n}\left(f_{\lambda},.\right)$ is the Lagrange interpolation polynomial of degree at most n to $f_{\lambda}(x):=|x|^{\lambda}$ on the interval $[-1,1]$ associated with the equidistant nodes. It is known that E has Lebesgue measure zero. Here we show that E contains infinite families of rational and irrational numbers.

1. Introduction

Let $L_{n}(f,$.$) be the Lagrange interpolation polynomial of degree at most n$ to a continuous function f on $[-1,1]$ associated with the equidistant nodes $x_{j, n}:=-1$ $+2 j / n, j=0,1, \ldots, n, n \in \mathbf{N}$ and let $f_{\lambda}(x):=|x|^{\lambda}$.

In 1916 Bernstein ($[\mathbf{1}, \mathbf{2}, \mathbf{7}]$) proved the surprising result that the sequence $L_{n}\left(f_{1}, x_{0}\right)$ is divergent as $n \rightarrow \infty$ for every $x_{0} \in[-1,1]$, apart from the values $x_{0}=-1,0,1$. Since the endpoints ± 1 are interpolation points for every index n the sequence of the interpolation polynomials cannot diverge there. On the other hand, for the point zero it is proved in Natanson ($[7, \mathrm{pp} .30-35]$) that $\lim _{n \rightarrow \infty} L_{n}\left(f_{1}, 0\right)=0$. For other results in this direction, see also [9]. The classical result of Bernstein was revisited in the 1990s and 2000 s . In particular, the rate of this divergence process was discussed in ($[\mathbf{3}, \mathbf{5}, 6,8,10]$). More precisely, the following nth root asymptotic relation for $0<\left|x_{0}\right|<1$

$$
\begin{equation*}
\left.\left.\limsup _{n \rightarrow \infty} \frac{1}{n} \log | | x\right|^{\lambda}-L_{n}\left(f_{\lambda}, x_{0}\right) \right\rvert\,=\frac{1}{2}\left[\left(1+x_{0}\right) \log \left(1+x_{0}\right)+\left(1-x_{0}\right) \log \left(1-x_{0}\right)\right] \tag{1}
\end{equation*}
$$

was established for $\lambda=1$ by Byrne, Mills and Smith [3] and for $\lambda=3$ by the second author [8]. Recently, the first author [5] proved the conjecture posed in [8] that (1) holds for all $\lambda>0, \lambda \neq 2,4, \ldots$.

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/04 \$A2.00+0.00.

Li and Mohapatra [6] showed that for almost every $x_{0} \in[-1,1]$,

$$
\lim _{n=p_{k}+1 \rightarrow \infty} \frac{1}{n} \log | | x\left|-L_{n}\left(f_{1}, x_{0}\right)\right|=\frac{1}{2}\left[\left(1+x_{0}\right) \log \left(1+x_{0}\right)+\left(1-x_{0}\right) \log \left(1-x_{0}\right)\right]
$$

where $\left(p_{k}\right)_{k=1}^{\infty}$ is the increasing sequence of all positive prime numbers. The following generalisation and strengthening of this result was proved in [5]:

$$
\begin{equation*}
\left.\left.\lim _{n \rightarrow \infty} \frac{1}{n} \log | | x\right|^{\lambda}-L_{n}\left(f_{\lambda}, x_{0}\right) \right\rvert\,=\frac{1}{2}\left[\left(1+x_{0}\right) \log \left(1+x_{0}\right)+\left(1-x_{0}\right) \log \left(1-x_{0}\right)\right] \tag{2}
\end{equation*}
$$

for almost every $x_{0} \in[-1,1], \lambda>0, \lambda \neq 2,4, \ldots$ In this note, we discuss the exceptional set $E \subseteq[-1,1]$ of Lebesgue measure zero for which (2) does not hold for each $x_{0} \in E$, that is

$$
\begin{equation*}
\left.\left.\liminf _{n \rightarrow \infty} \frac{1}{n} \log | | x\right|^{\lambda}-L_{n}\left(f_{\lambda}, x_{0}\right) \right\rvert\,<\frac{1}{2}\left[\left(1+x_{0}\right) \log \left(1+x_{0}\right)+\left(1-x_{0}\right) \log \left(1-x_{0}\right)\right] \tag{3}
\end{equation*}
$$

for $\lambda>0, \lambda \neq 2,4, \ldots$ and $x_{0} \in E$. It is easy to see that $E=E_{o} \cup E_{e}$, where E_{o} and E_{e} are the subsets of $[-1,1]$ for which (3) holds with $\liminf _{n \rightarrow \infty}$ replaced by $\liminf _{n=2 N-1 \rightarrow \infty}$ and by $\liminf _{n=2 N \rightarrow \infty}$, respectively. In the following theorem we show that E_{0} and E_{e} contain certain infinite families of rational and irrational numbers.

Theorem 1.

(a) Any rational number $x_{0} \in(-1,1)$ belongs to E_{e}.
(b) For any odd k and odd $m>0$, satisfying $|k|<m$, we have $x_{0}:=k / m \in E_{o}$.
(c) There exists an infinite family $\left\{\beta_{R}\right\}_{R \geqslant 1}$ of irrational numbers such that $\beta_{R} \in E_{o} \cap E_{e}$ for all real $R \geqslant 1$.
To prove Theorem 1 we shall need the following result on Diophantine approximation:

Lemma 2.

(a) For any real $R \geqslant 1$ there exists an irrational number $\beta_{R} \in(0,1 / 3)$ and two sequences of odd numbers $\left(p_{n}(R)\right)_{n=1}^{\infty}$ and $\left(q_{n}(R)\right)_{n=1}^{\infty}$ such that

$$
\begin{equation*}
0<\left|\beta_{R}-\frac{p_{n}(R)}{q_{n}(R)}\right|<\frac{1}{3^{R q_{n}(R)}} \tag{4}
\end{equation*}
$$

(b) The family $\left\{\beta_{R}\right\}_{R \geqslant 1}$ is infinite.

Proof: (a) To this end select a real number $R \geqslant 1$ and let us define an increasing sequence $\left(a_{m}(R)\right)_{m=1}^{\infty}$ by the following recurrence formula:

$$
\begin{aligned}
a_{1}(R) & :=3 \\
a_{m+1}(R) & :=3^{\left[R a_{m}\right]+1}, \quad \forall m \geqslant 1,
\end{aligned}
$$

where $[x]$ stands for the integral part of x. Then (with the shortened notation $a_{j}=a_{j}(R)$) we set

$$
\beta_{R}:=\sum_{m=1}^{\infty}(-1)^{m+1} a_{m}^{-1}
$$

Since $\left(a_{m}\right)_{m=1}^{\infty}$ is an increasing sequence, β_{R} is a well defined element and one simply checks that $0<\beta_{R}<1 / 3$. Next since a_{M} / a_{m} is odd for $M \geqslant m \geqslant 1$, we can define the odd numbers

$$
\begin{aligned}
& q_{n}(R):=a_{2 n-1} \\
& p_{n}(R):=\sum_{m=1}^{2 n-1}(-1)^{m+1} a_{2 n-1} / a_{m}
\end{aligned}
$$

for $n \in \mathbf{N}$. Then $p_{n}(R) / q_{n}(R)=\sum_{m=1}^{2 n-1}(-1)^{m+1} a_{m}^{-1}$, and we have

$$
\begin{aligned}
0<\frac{1}{a_{2 n}}-\frac{1}{a_{2 n+1}}<\left|\beta_{R}-\frac{p_{n}(R)}{q_{n}(R)}\right| & =\left|\sum_{m=2 n}^{\infty}(-1)^{m+1} \frac{1}{a_{m}}\right| \leqslant \frac{1}{a_{2 n}} \\
& =\frac{1}{3^{\left[R a_{2 n-1}\right]+1}}<\frac{1}{3^{R q_{n}(R)}} .
\end{aligned}
$$

This establishes the mentioned inequalities in (4). It remains to show that β_{R} is irrational. Indeed, assuming that β_{R} is rational, say $\beta_{R}=a / b$, and taking account of the left-hand inequality in (4), we obtain by a standard argument in Diophantine approximation the following estimate

$$
\left|\beta_{R}-\frac{p_{n}(R)}{q_{n}(R)}\right| \geqslant \frac{1}{b q_{n}(R)}
$$

This obviously contradicts the right-hand inequality in (4) for n sufficiently large. Therefore statement (a) of the lemma follows.
(b) This statement follows from the inequalities

$$
\begin{equation*}
\beta_{1}<\beta_{2}<\cdots<\beta_{n}<\cdots \tag{5}
\end{equation*}
$$

To prove (5), a standard argument on β_{R} leads us to the both-sided estimates

$$
\begin{equation*}
3^{-3 R}\left(1-3^{-78}\right) \leqslant 3^{-3 R}-3^{-R 3^{3 R+1}}<1-3 \beta_{R}<3^{-3 R} \tag{6}
\end{equation*}
$$

which are valid for all integers $R \geqslant 1$. Since the family of intervals $\left\{\left[3^{-3 R}(1\right.\right.$ $\left.\left.\left.-3^{-78}\right), 3^{-3 R}\right]\right\}_{R=1}^{\infty}$ is mutually disjoint, then (6) implies (5) and thus the lemma is proved.

Proof of Theorem 1: (a) If $x_{0}=k / m$ is a rational number with $m>0$ and $|k|<m$, then for any $p=1,2, \ldots$, the node $x_{p(m+k), 2 p m}$ coincides with x_{0}. Hence

$$
\begin{equation*}
0=\left|x_{0}\right|^{\lambda}-L_{N_{p}}\left(f_{\lambda}, x_{0}\right)<\left(\left(1+x_{0}\right)^{1+x_{0}}\left(1-x_{0}\right)^{1-x_{0}}\right)^{p m} \tag{7}
\end{equation*}
$$

for $p=1,2, \ldots$, where $N_{p}=2 p m$. Thus $x_{0} \in E_{e}$.
(b) Similarly, if $x_{0}=k / m$ is rational for odd k and m with $m>0$ and $|k|<m$, we find that the node

$$
x_{(2 p+1)(k+m) / 2,(2 p+1) m}=x_{0} .
$$

Therefore (7) is again valid for $p=1,2, \ldots$, and $N_{p}=(2 p+1) m$. That is, we have shown that $x_{0} \in E_{0}$.
(c) Let $\left\{\beta_{R}\right\}_{R \geqslant 1}$ be the infinite family of irrational numbers from the lemma. To prove that $\beta_{R} \in E_{o} \cap E_{e}$ for all $R \geqslant 1$, we first show that the following inequalities hold:

$$
\begin{align*}
\liminf _{n \rightarrow \infty}\left|\cos \left(\pi \beta_{R} \frac{2 n-1}{2}\right)\right|^{1 /(2 n-1)} & <3^{-R} \tag{8}\\
\liminf _{n \rightarrow \infty}\left|\sin \left(\pi \beta_{R} n\right)\right|^{1 /(2 n)} & <3^{-(R / 2)} \tag{9}
\end{align*}
$$

Indeed, let $\left(p_{n}(R)\right)_{n=1}^{\infty}$ and $\left(q_{n}(R)\right)_{n=1}^{\infty}$ be the sequences of odd numbers from the lemma. Then combining $|\sin x| \leqslant|x|$ together with (4), we get

$$
\begin{aligned}
\liminf _{n \rightarrow \infty}\left|\cos \left(\pi \beta_{R} \frac{2 n-1}{2}\right)\right|^{1 /(2 n-1)} & \leqslant \liminf _{n \rightarrow \infty}\left|\cos \left(\frac{\pi \beta_{R} q_{n}(R)}{2}\right)\right|^{1 /\left(q_{n}(R)\right)} \\
& =\liminf _{n \rightarrow \infty}\left|\sin \left[\frac{\pi q_{n}(R)}{2}\left(\beta_{R}-\frac{p_{n}(R)}{q_{n}(R)}\right)\right]\right|^{1 /\left(q_{n}(R)\right)} \\
& \leqslant \liminf _{n \rightarrow \infty}\left[\left(\frac{\pi q_{n}(R)}{2}\right)^{1 /\left(q_{n}(R)\right)}\left|\beta_{R}-\frac{p_{n}(R)}{q_{n}(R)}\right|^{1 /\left(q_{n}(R)\right)}\right] \\
& \leqslant 3^{-R} .
\end{aligned}
$$

This implies (8). Next using (4) again, we obtain

$$
\begin{aligned}
\liminf _{n \rightarrow \infty}\left|\sin \left(\pi \beta_{R} n\right)\right|^{1 /(2 n)} & \leqslant \liminf _{n \rightarrow \infty}\left|\sin \left(\pi \beta_{R} q_{n}\right)\right|^{1 /\left(2 q_{n}(R)\right)} \\
& =\liminf _{n \rightarrow \infty}\left|\sin \left[\pi q_{n}(R)\left(\beta_{R}-\frac{p_{n}(R)}{q_{n}(R)}\right)\right]\right|^{1 /\left(2 q_{n}(R)\right)} \\
& \leqslant 3^{-(R / 2)}
\end{aligned}
$$

Thus (9) follows.
To proceed further, we use the following asymptotics for the interpolation errors established in ([5, Theorem 4]):

$$
\begin{align*}
\left|x_{0}\right|^{\lambda}-L_{2 n-1}\left(f_{\lambda}, x_{0}\right)=B_{1}(2 n-1)^{-\lambda-2} x_{0}^{-2} \cos \left(\frac{\pi(2 n-1) x_{0}}{2}\right) & \varphi_{2 n-1}\left(x_{0}\right)\left(1+\alpha_{n, 1}\left(x_{0}\right)\right) \tag{10}\\
& \left|x_{0}\right|^{\lambda}-L_{2 n}\left(f_{\lambda}, x_{0}\right)
\end{align*}
$$

$$
\begin{equation*}
\left|x_{0}\right|^{\lambda}-L_{2 n}\left(f_{\lambda}, x_{0}\right)=B_{2} n^{-\lambda-1} x_{0}^{-1} \sin \left(\pi n x_{0}\right) \varphi_{2 n}\left(x_{0}\right)\left(1+\alpha_{n, 2}\left(x_{0}\right)\right) \tag{11}
\end{equation*}
$$

where $0<\left|x_{0}\right|<1, \lambda>0, B_{1}=B_{1}(\lambda)$ and $B_{2}=B_{2}(\lambda)$ are some constants,

$$
\varphi_{N}(x):=\sqrt{1-x^{2}}\left[(1+x)^{1+x}(1-x)^{1-x}\right]^{N / 2}
$$

and the error terms $\alpha_{n, i}(x)$ satisfy the estimates

$$
\begin{equation*}
\left|\alpha_{n, i}(x)\right| \leqslant C_{i} n^{-(1 / 3)}, \quad i=1,2 . \tag{12}
\end{equation*}
$$

Here C_{i} is independent of $n, i=1,2$. Then using (8), (10) and (12), we have for $R \geqslant 1$

$$
\liminf _{n \rightarrow \infty}\left|\beta_{R}^{\lambda}-L_{2 n-1}\left(f_{\lambda}, \beta_{R}\right)\right|^{1 /(2 n-1)} \leqslant 3^{-R}\left[\left(1+\beta_{R}\right)^{1+\beta_{R}}\left(1-\beta_{R}\right)^{1-\beta_{R}}\right]^{1 / 2}
$$

Thus $\beta_{R} \in E_{o}$. Furthermore using (9), (11) and (12), we get for $R \geqslant 1$

$$
\liminf _{n \rightarrow \infty}\left|\beta_{R}^{\lambda}-L_{2 n}\left(f_{\lambda}, \beta_{R}\right)\right|^{1 /(2 n)} \leqslant 3^{-(R / 2)}\left[\left(1+\beta_{R}\right)^{1+\beta_{R}}\left(1-\beta_{R}\right)^{1-\beta_{R}}\right]^{1 / 2}
$$

This shows that $\beta_{R} \in E_{e}$. This completes the proof of the theorem.
Remark 3. The theorem is new even for $\lambda=1$.
Remark 4. If we drop the condition in statement (a) of the lemma that $p_{n}(R)$ and $q_{n}(R)$ are odd numbers, then the existence of β_{R} satisfying (4) is well known in Diophantine approximation (see [4]).

References

[1] S.N. Bernstein, 'Quelques remarques sur l'interpolation', Zap. Kharkov Mat. Ob-va (Comm. Kharkov Math. Soc.) 15 (1916), 49-61.
[2] S.N. Bernstein, 'Quelques remarques sur l'interpolation', Math. Ann. 79 (1918), 1-12.
[3] G. Byrne, T.M. Mills and S.J. Smith, 'On Lagrange interpolation with equidistant nodes', Bull. Austral. Math. Soc. 42 (1990), 81-89.
[4] N.I. Feldman, Approximations of algebraic numbers, (in Russian) (Moscow State University, Moscow, 1981).
[5] M.I. Ganzburg, 'Strong asymptotics in Lagrange interpolation with equidistant nodes', J. Approx. Theory 122 (2003), 224-240.
[6] X. Li and R.N. Mohapatra, 'On the divergence of Lagrange interpolation with equidistant nodes', Proc. Amer. Math. Soc. 118 (1993), 1205-1212.
[7] I.P. Natanson, Constructive function theory, III (Frederick Ungar, New York, 1965).
[8] M. Revers, 'On Lagrange interpolation with equally spaced nodes', Bull. Austral. Math. Soc. 62 (2000), 357-368.
[9] M. Revers, On the zero-divergence of equidistant Lagrange interpolation, Monatsh. Math. 131 (2000), 215-221.
[10] M. Revers, 'A survey on Lagrange interpolation based on equally spaced nodes', in Advanced problems in Constructive Approximation, (M.D. Buhmann and D.H. Mache, Editors) (Birkhäuser, Basel, 2002), pp. 153-163.

Department of Mathematics
Hampton University
Hampton, VA 23668
United States of America
e-mail: michael.ganzburg@hamptonu.edu

[^0]: Received 23rd June, 2004

