A NOTE ON LAGRANGE INTERPOLATION FOR $|x|^{\lambda}$ AT EQUIDISTANT NODES

MICHAEL I. GANZBURG AND MICHAEL REVERS

In this note, we discuss the exceptional set $E \subseteq [-1,1]$ of points x_0 satisfying the inequality

$$\liminf_{n\to\infty} n^{-1} \log ||x|^{\lambda} - L_n(f_{\lambda}, x_0)| < \frac{1}{2} [(1+x_0)\log(1+x_0) + (1-x_0)\log(1-x_0)],$$

where $\lambda > 0, \lambda \neq 2, 4, \ldots$ and $L_n(f_{\lambda}, .)$ is the Lagrange interpolation polynomial of degree at most n to $f_{\lambda}(x) := |x|^{\lambda}$ on the interval [-1, 1] associated with the equidistant nodes. It is known that E has Lebesgue measure zero. Here we show that E contains infinite families of rational and irrational numbers.

1. INTRODUCTION

Let $L_n(f,.)$ be the Lagrange interpolation polynomial of degree at most n to a continuous function f on [-1,1] associated with the equidistant nodes $x_{j,n} := -1 + 2j/n, j = 0, 1, ..., n, n \in \mathbb{N}$ and let $f_{\lambda}(x) := |x|^{\lambda}$.

In 1916 Bernstein ([1, 2, 7]) proved the surprising result that the sequence $L_n(f_1, x_0)$ is divergent as $n \to \infty$ for every $x_0 \in [-1, 1]$, apart from the values $x_0 = -1, 0, 1$. Since the endpoints ± 1 are interpolation points for every index n the sequence of the interpolation polynomials cannot diverge there. On the other hand, for the point zero it is proved in Natanson ([7, pp.30-35]) that $\lim_{n\to\infty} L_n(f_1, 0) = 0$. For other results in this direction, see also [9]. The classical result of Bernstein was revisited in the 1990s and 2000s. In particular, the rate of this divergence process was discussed in ([3, 5, 6, 8, 10]). More precisely, the following nth root asymptotic relation for $0 < |x_0| < 1$

(1)
$$\lim_{n \to \infty} \sup \frac{1}{n} \log \left| |x|^{\lambda} - L_n(f_{\lambda}, x_0) \right| = \frac{1}{2} \left[(1 + x_0) \log(1 + x_0) + (1 - x_0) \log(1 - x_0) \right]$$

was established for $\lambda = 1$ by Byrne, Mills and Smith [3] and for $\lambda = 3$ by the second author [8]. Recently, the first author [5] proved the conjecture posed in [8] that (1) holds for all $\lambda > 0$, $\lambda \neq 2, 4, \ldots$.

Received 23rd June, 2004

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/04 \$A2.00+0.00.

Li and Mohapatra [6] showed that for almost every $x_0 \in [-1, 1]$,

$$\lim_{n=p_k+1\to\infty}\frac{1}{n}\log||x|-L_n(f_1,x_0)|=\frac{1}{2}[(1+x_0)\log(1+x_0)+(1-x_0)\log(1-x_0)],$$

where $(p_k)_{k=1}^{\infty}$ is the increasing sequence of all positive prime numbers. The following generalisation and strengthening of this result was proved in [5]:

(2)
$$\lim_{n \to \infty} \frac{1}{n} \log ||x|^{\lambda} - L_n(f_{\lambda}, x_0)| = \frac{1}{2} [(1+x_0) \log(1+x_0) + (1-x_0) \log(1-x_0)],$$

for almost every $x_0 \in [-1, 1], \lambda > 0, \lambda \neq 2, 4, ...$ In this note, we discuss the exceptional set $E \subseteq [-1, 1]$ of Lebesgue measure zero for which (2) does not hold for each $x_0 \in E$, that is

(3)
$$\liminf_{n\to\infty} \frac{1}{n} \log ||x|^{\lambda} - L_n(f_{\lambda}, x_0)| < \frac{1}{2} [(1+x_0)\log(1+x_0) + (1-x_0)\log(1-x_0)],$$

for $\lambda > 0, \lambda \neq 2, 4, \ldots$ and $x_0 \in E$. It is easy to see that $E = E_o \cup E_e$, where E_o and E_e are the subsets of [-1, 1] for which (3) holds with $\liminf_{n \to \infty}$ frequencies of $\lim_{n \to \infty} \inf_{n=2N-1 \to \infty}$ and by $\lim_{n \to \infty} \inf_{n=2N \to \infty}$ infinite following theorem we show that E_o and E_e contain certain infinite families of rational and irrational numbers.

THEOREM 1.

- (a) Any rational number $x_0 \in (-1, 1)$ belongs to E_e .
- (b) For any odd k and odd m > 0, satisfying |k| < m, we have $x_0 := k/m \in E_o$.
- (c) There exists an infinite family $\{\beta_R\}_{R\geq 1}$ of irrational numbers such that $\beta_R \in E_o \cap E_e$ for all real $R \geq 1$.

To prove Theorem 1 we shall need the following result on Diophantine approximation:

LEMMA 2.

(a) For any real $R \ge 1$ there exists an irrational number $\beta_R \in (0, 1/3)$ and two sequences of odd numbers $(p_n(R))_{n=1}^{\infty}$ and $(q_n(R))_{n=1}^{\infty}$ such that

(4)
$$0 < \left|\beta_R - \frac{p_n(R)}{q_n(R)}\right| < \frac{1}{3^{Rq_n(R)}}.$$

(b) The family $\{\beta_R\}_{R \ge 1}$ is infinite.

PROOF: (a) To this end select a real number $R \ge 1$ and let us define an increasing sequence $(a_m(R))_{m=1}^{\infty}$ by the following recurrence formula:

$$a_1(R) := 3,$$

 $a_{m+1}(R) := 3^{[Ra_m]+1}, \quad \forall m \ge 1,$

,

where [x] stands for the integral part of x. Then (with the shortened notation $a_j = a_j(R)$) we set

$$\beta_R := \sum_{m=1}^{\infty} (-1)^{m+1} a_m^{-1}$$

Since $(a_m)_{m=1}^{\infty}$ is an increasing sequence, β_R is a well defined element and one simply checks that $0 < \beta_R < 1/3$. Next since a_M/a_m is odd for $M \ge m \ge 1$, we can define the odd numbers

$$q_n(R) := a_{2n-1},$$

$$p_n(R) := \sum_{m=1}^{2n-1} (-1)^{m+1} a_{2n-1}/a_m,$$

for $n \in \mathbb{N}$. Then $p_n(R)/q_n(R) = \sum_{m=1}^{2n-1} (-1)^{m+1} a_m^{-1}$, and we have

$$0 < \frac{1}{a_{2n}} - \frac{1}{a_{2n+1}} < \left| \beta_R - \frac{p_n(R)}{q_n(R)} \right| = \left| \sum_{m=2n}^{\infty} (-1)^{m+1} \frac{1}{a_m} \right| \le \frac{1}{a_{2n}}$$
$$= \frac{1}{3^{[Ra_{2n-1}]+1}} < \frac{1}{3^{Rq_n(R)}}.$$

This establishes the mentioned inequalities in (4). It remains to show that β_R is irrational. Indeed, assuming that β_R is rational, say $\beta_R = a/b$, and taking account of the left-hand inequality in (4), we obtain by a standard argument in Diophantine approximation the following estimate

$$\left|\beta_R - \frac{p_n(R)}{q_n(R)}\right| \ge \frac{1}{bq_n(R)}$$

This obviously contradicts the right-hand inequality in (4) for n sufficiently large. Therefore statement (a) of the lemma follows.

(b) This statement follows from the inequalities

$$(5) \qquad \qquad \beta_1 < \beta_2 < \cdots < \beta_n < \cdots$$

To prove (5), a standard argument on β_R leads us to the both-sided estimates

(6)
$$3^{-3R}(1-3^{-78}) \leq 3^{-3R}-3^{-R3^{3R+1}} < 1-3\beta_R < 3^{-3R},$$

which are valid for all integers $R \ge 1$. Since the family of intervals $\left\{ \begin{bmatrix} 3^{-3R}(1 - 3^{-78}), 3^{-3R} \end{bmatrix} \right\}_{R=1}^{\infty}$ is mutually disjoint, then (6) implies (5) and thus the lemma is proved.

PROOF OF THEOREM 1: (a) If $x_0 = k/m$ is a rational number with m > 0 and |k| < m, then for any p = 1, 2, ..., the node $x_{p(m+k), 2pm}$ coincides with x_0 . Hence

(7)
$$0 = |x_0|^{\lambda} - L_{N_p}(f_{\lambda}, x_0) < \left((1+x_0)^{1+x_0} (1-x_0)^{1-x_0} \right)^{pm},$$

[4]

for $p = 1, 2, \ldots$, where $N_p = 2pm$. Thus $x_0 \in E_e$.

(b) Similarly, if $x_0 = k/m$ is rational for odd k and m with m > 0 and |k| < m, we find that the node

 $x_{(2p+1)(k+m)/2,(2p+1)m} = x_0.$

Therefore (7) is again valid for $p = 1, 2, ..., and N_p = (2p+1)m$. That is, we have shown that $x_0 \in E_o$.

(c) Let $\{\beta_R\}_{R \ge 1}$ be the infinite family of irrational numbers from the lemma. To prove that $\beta_R \in E_o \cap E_e$ for all $R \ge 1$, we first show that the following inequalities hold:

(8)
$$\liminf_{n \to \infty} \left| \cos \left(\pi \beta_R \frac{2n-1}{2} \right) \right|^{1/(2n-1)} < 3^{-R},$$

(9)
$$\liminf_{n \to \infty} |\sin(\pi \beta_R n)|^{1/(2n)} < 3^{-(R/2)}.$$

Indeed, let $(p_n(R))_{n=1}^{\infty}$ and $(q_n(R))_{n=1}^{\infty}$ be the sequences of odd numbers from the lemma. Then combining $|\sin x| \leq |x|$ together with (4), we get

$$\begin{split} \liminf_{n \to \infty} \left| \cos\left(\pi \beta_R \frac{2n-1}{2}\right) \right|^{1/(2n-1)} &\leq \liminf_{n \to \infty} \left| \cos\left(\frac{\pi \beta_R q_n(R)}{2}\right) \right|^{1/(q_n(R))} \\ &= \liminf_{n \to \infty} \left| \sin\left[\frac{\pi q_n(R)}{2} \left(\beta_R - \frac{p_n(R)}{q_n(R)}\right)\right] \right|^{1/(q_n(R))} \\ &\leq \liminf_{n \to \infty} \left[\left(\frac{\pi q_n(R)}{2}\right)^{1/(q_n(R))} \left|\beta_R - \frac{p_n(R)}{q_n(R)}\right|^{1/(q_n(R))} \right] \\ &\leq 3^{-R}. \end{split}$$

This implies (8). Next using (4) again, we obtain

$$\begin{split} \liminf_{n \to \infty} |\sin(\pi \beta_R n)|^{1/(2n)} &\leq \liminf_{n \to \infty} |\sin(\pi \beta_R q_n)|^{1/(2q_n(R))} \\ &= \liminf_{n \to \infty} \left| \sin \left[\pi q_n(R) \left(\beta_R - \frac{p_n(R)}{q_n(R)} \right) \right] \right|^{1/(2q_n(R))} \\ &\leq 3^{-(R/2)}. \end{split}$$

Thus (9) follows.

To proceed further, we use the following asymptotics for the interpolation errors established in ([5, Theorem 4]):

$$|x_0|^{\lambda} - L_{2n-1}(f_{\lambda}, x_0) = B_1(2n-1)^{-\lambda-2} x_0^{-2} \cos\left(\frac{\pi(2n-1)x_0}{2}\right) \varphi_{2n-1}(x_0) \left(1 + \alpha_{n,1}(x_0)\right),$$
$$|x_0|^{\lambda} - L_{2n}(f_{\lambda}, x_0)$$

(11)
$$|x_0|^{\lambda} - L_{2n}(f_{\lambda}, x_0) = B_2 n^{-\lambda - 1} x_0^{-1} \sin(\pi n x_0) \varphi_{2n}(x_0) (1 + \alpha_{n,2}(x_0)),$$

where $0 < |x_0| < 1, \lambda > 0, B_1 = B_1(\lambda)$ and $B_2 = B_2(\lambda)$ are some constants,

$$\varphi_N(x) := \sqrt{1-x^2} [(1+x)^{1+x}(1-x)^{1-x}]^{N/2},$$

and the error terms $\alpha_{n,i}(x)$ satisfy the estimates

[5]

(12)
$$|\alpha_{n,i}(x)| \leq C_i n^{-(1/3)}, \quad i = 1, 2.$$

Here C_i is independent of n, i = 1, 2. Then using (8), (10) and (12), we have for $R \ge 1$

$$\liminf_{n \to \infty} \left| \beta_R^{\lambda} - L_{2n-1}(f_{\lambda}, \beta_R) \right|^{1/(2n-1)} \leq 3^{-R} \left[(1+\beta_R)^{1+\beta_R} (1-\beta_R)^{1-\beta_R} \right]^{1/2}.$$

Thus $\beta_R \in E_o$. Furthermore using (9), (11) and (12), we get for $R \ge 1$

$$\liminf_{n\to\infty} |\beta_R{}^{\lambda} - L_{2n}(f_{\lambda},\beta_R)|^{1/(2n)} \leq 3^{-(R/2)} [(1+\beta_R)^{1+\beta_R} (1-\beta_R)^{1-\beta_R}]^{1/2}.$$

This shows that $\beta_R \in E_e$. This completes the proof of the theorem.

REMARK 3. The theorem is new even for $\lambda = 1$.

REMARK 4. If we drop the condition in statement (a) of the lemma that $p_n(R)$ and $q_n(R)$ are odd numbers, then the existence of β_R satisfying (4) is well known in Diophantine approximation (see [4]).

References

- S.N. Bernstein, 'Quelques remarques sur l'interpolation', Zap. Kharkov Mat. Ob-va (Comm. Kharkov Math. Soc.) 15 (1916), 49-61.
- [2] S.N. Bernstein, 'Quelques remarques sur l'interpolation', Math. Ann. 79 (1918), 1-12.
- [3] G. Byrne, T.M. Mills and S.J. Smith, 'On Lagrange interpolation with equidistant nodes', Bull. Austral. Math. Soc. 42 (1990), 81-89.
- [4] N.I. Feldman, Approximations of algebraic numbers, (in Russian) (Moscow State University, Moscow, 1981).
- [5] M.I. Ganzburg, 'Strong asymptotics in Lagrange interpolation with equidistant nodes', J. Approx. Theory 122 (2003), 224-240.
- [6] X. Li and R.N. Mohapatra, 'On the divergence of Lagrange interpolation with equidistant nodes', Proc. Amer. Math. Soc. 118 (1993), 1205-1212.
- [7] I.P. Natanson, Constructive function theory, III (Frederick Ungar, New York, 1965).
- [8] M. Revers, 'On Lagrange interpolation with equally spaced nodes', Bull. Austral. Math. Soc. 62 (2000), 357-368.
- [9] M. Revers, On the zero-divergence of equidistant Lagrange interpolation, Monatsh. Math. 131 (2000), 215-221.
- [10] M. Revers, 'A survey on Lagrange interpolation based on equally spaced nodes', in Advanced problems in Constructive Approximation, (M.D. Buhmann and D.H. Mache, Editors) (Birkhäuser, Basel, 2002), pp. 153-163.

0

Department of Mathematics Hampton University Hampton, VA 23668 United States of America e-mail: michael.ganzburg@hamptonu.edu Department of Mathematics University Salzburg Hellbrunnerstrasse 34 A-5020 Salzburg Austria e-mail: michael.revers@sbg.ac.at Internet: www.michael.revers.at