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Abstract

Let X be a nonempty subset of a normed space such that 0 < X and X is symmetric with respect to 0 and
let Y be a Banach space. We study the generalised hyperstability of the Drygas functional equation

f (x + y) + f (x − y) = 2 f (x) + f (y) + f (−y),

where f maps X into Y and x, y ∈ X with x + y, x − y ∈ X. Our first main result improves the results
of Piszczek and Szczawińska [‘Hyperstability of the Drygas functional equation’, J. Funct. Space
Appl. 2013 (2013), Article ID 912718, 4 pages]. Hyperstability results for the inhomogeneous Drygas
functional equation can be derived from our results.
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1. Introduction and preliminaries

In the sequel, N0, N, R+, R and Nn0 denote the set of nonnegative integers, the set of
positive integers, the set of nonnegative real numbers, the set of real numbers and the
set of all integers greater than or equal to n0, respectively. Also, BA denotes the set of
all functions from a set A , ∅ to a set B , ∅.

We say that a function f : R→ R satisfies the Drygas functional equation if and
only if

f (x + y) + f (x − y) = 2 f (x) + f (y) + f (−y) (1.1)

for all x, y ∈ R. For example, the functions f : R→ R defined by f (x) = cx and
f (x) = cx2 for all x ∈ R, where c is a fixed real number, satisfy the Drygas functional
equation. Also note that if f , g : R→ R satisfy the Drygas functional equation, then
f ± g also satisfy the Drygas functional equation.
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First, we will recall some history. The equation (1.1) was first considered in 1987
by Drygas [7] in order to obtain a characterisation of quasi-inner-product spaces. The
general solution of (1.1) was derived by Ebanks et al. [8] as

f (x) = A(x) + Q(x),

where A : R→ R is an additive function and Q : R→ R is a quadratic function, that is,
A satisfies the additive functional equation

A(x + y) = A(x) + A(y)

for all x, y ∈ R and Q satisfies the quadratic functional equation

Q(x + y) + Q(x − y) = 2Q(x) + 2Q(y)

for all x, y ∈ R.
The stability of the Drygas functional equation has been studied by many authors

under various conditions (see, for example, [9–11, 15] and references therein). In
2013, results on the hyperstability of the Drygas functional equation were obtained by
Piszczek and Szczawińska [14]. In fact, a hyperstability result first appeared in [2],
but it seems that the term ‘hyperstability’ was first used in [12]. For more details on
the notion of hyperstability, we refer the reader to [6].

The key tool for proving our results is a fixed point theorem derived from a result
of Brzdȩk et al. [5].

Theorem 1.1 [5]. Let U be a nonempty set, Y a Banach space and f1, . . . , fk : U → U
and L1, . . . , Lk : U → R+ given mappings, where k is a positive integer. Suppose that
T : YU → YU is an operator satisfying the inequality

‖T ξ(x) − Tµ(x)‖ ≤
k∑

i=1

Li(x)‖ξ( fi(x)) − µ( fi(x))‖

for all ξ, µ ∈ YU and x ∈ U. Assume that there are functions ε : U → R+ and ϕ : U → Y
which satisfy the following conditions for each x ∈ U:

‖Tϕ(x) − ϕ(x)‖ ≤ ε(x) and ε∗(x) :=
∞∑

n=0

(Λnε)(x) <∞,

where Λ : RU
+ → R

U
+ is defined by

(Λδ)(x) :=
k∑

i=1

Li(x)δ( fi(x)) (1.2)

for all δ ∈ RU
+ and x ∈ U. Then there exists a unique fixed point ψ of T with

‖ϕ(x) − ψ(x)‖ ≤ ε∗(x)

for all x ∈ U. Moreover,
ψ(x) := lim

n→∞
T nϕ(x)

for all x ∈ U.
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This interesting fixed point theorem has been applied in the proof of hyperstability
results for various functional equations, some of which are noted in [1, 16, 17].

The purpose of this work is to prove two new generalised hyperstability results
for the Drygas functional equation using Theorem 1.1 and a modification of the
method of Brzdȩk [3]. The first main result generalises the results of Piszczek and
Szczawińska [14]. We also derive the corresponding hyperstability results for the
inhomogeneous Drygas functional equation.

2. The main results

In this section, we give two generalised hyperstability results for the Drygas
functional equation under certain conditions on the domain and codomain of the
unknown function.

Theorem 2.1. Let X be a nonempty subset of a normed space such that 0 < X and X is
symmetric with respect to 0, that is, x ∈ X implies that −x ∈ X, and let Y be a Banach
space. Suppose that there exist n0 ∈ N with nx ∈ X for all x ∈ X, n ∈ Nn0 , and a function
h : X → R+ such that

M0 := {n ∈ Nn0 : 2s(n + 1) + s(n) + s(−n) + s(2n + 1) < 1}

is an infinite set, where

s(n) := inf{t ∈ R+ : h(nx) ≤ th(x) for all x ∈ X}

and s(n) satisfies the following conditions for n ∈ N:

lim
n→∞

s(n) = 0 and lim
n→∞

s(−n) = 0.

If f : X → Y satisfies the inequality

‖ f (x + y) + f (x − y) − 2 f (x) − f (y) − f (−y)‖ ≤ h(x) + h(y) (2.1)

for all x, y ∈ X with x + y, x − y ∈ X, then f satisfies the equation

f (x + y) + f (x − y) = 2 f (x) + f (y) + f (−y) (2.2)

for all x, y ∈ X.

Proof. Replacing x by (m + 1)x and y by mx for m ∈ M0 in (2.1) gives

‖2 f ((m + 1)x) + f (mx) + f (−mx) − f ((2m + 1)x) − f (x)‖ ≤ h((m + 1)x) + h(mx)
(2.3)

for all x ∈ X. For each m ∈ M0, define the operator Tm : YX → YX by

(Tmξ)(x) := 2ξ((m + 1)x) + ξ(mx) + ξ(−mx) − ξ((2m + 1)x), x ∈ X, ξ ∈ YX .

Further, observe that

εm(x) := h((m + 1)x) + h(mx) ≤ [s(m + 1) + s(m)]h(x), x ∈ X. (2.4)
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Then the inequality (2.3) takes the form

‖Tm f (x) − f (x)‖ ≤ εm(x), x ∈ X.

For each m ∈ M0, the operator Λm : RX
+ → R

X
+ defined by

(Λmη)(x) := 2η((m + 1)x) + η(mx) + η(−mx) + η((2m + 1)x), η ∈ RX
+ , x ∈ X

has the form (1.2) with k = 4 and f1(x) = (m + 1)x, f2(x) = mx, f3(x) = −mx and
f4(x) = (2m + 1)x, L1(x) = 2 and L2(x) = L3(x) = L4(x) = 1 for x ∈ X. Further, for
each ξ, µ ∈ YX , x ∈ X,

‖Tmξ(x) − Tmµ(x)‖= ‖2ξ((m + 1)x) + ξ(mx) + ξ(−mx) − ξ((2m + 1)x)
− 2µ((m + 1)x) − µ(mx) − µ(−mx) + µ((2m + 1)x)‖

≤ 2‖(ξ − µ)((m + 1)x)‖ + ‖(ξ − µ)(mx)‖
+ ‖(ξ − µ)(−mx)‖ + ‖(ξ − µ)((2m + 1)x)‖

=

4∑
i=1

Li(x)‖(ξ − µ)( fi(x))‖.

By mathematical induction, we will show that, for each x ∈ X,

Λn
mεm(x) ≤ [s(m + 1) + s(m)][2s(m + 1) + s(m) + s(−m) + s(2m + 1)]nh(x) (2.5)

for all n ∈ N0. From (2.4), the inequality (2.5) holds for n = 0. Assume that (2.5) holds
for n = k, where k ∈ N0. Then

Λk+1
m εm(x) = Λm(Λk

mεm(x))
= 2Λk

mεm((m + 1)x) + Λk
mεm(mx) + Λk

mεm(−mx) + Λk
mεm((2m + 1)x)

≤ [s(m + 1) + s(m)][2s(m + 1) + s(m) + s(−m) + s(2m + 1)]k

× [2h((m + 1)x) + h(mx) + h(−mx) + h((2m + 1)x)]
≤ [s(m + 1) + s(m)][2s(m + 1) + s(m) + s(−m) + s(2m + 1)]k+1h(x).

This shows that (2.5) holds for n = k + 1, so we can conclude that the inequality (2.5)
holds for all n ∈ N0. From (2.5),

ε∗(x) =

∞∑
n=0

Λn
mεm(x)

≤

∞∑
n=0

[s(m + 1) + s(m)][2s(m + 1) + s(m) + s(−m) + s(2m + 1)]nh(x)

=
[s(m + 1) + s(m)]h(x)

1 − 2s(m + 1) − s(m) − s(−m) − s(2m + 1)

for all x ∈ X and m ∈ M0. Thus, according to Theorem 1.1, for each m ∈ M0 there
exists a unique solution Fm : X → Y of the equation

Fm(x) = 2Fm((m + 1)x) + Fm(mx) + Fm(−mx) + Fm((2m + 1)x)
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such that

‖ f (x) − Fm(x)‖ ≤
[s(m + 1) + s(m)]h(x)

1 − 2s(m + 1) − s(m) − s(−m) − s(2m + 1)
, x ∈ X.

We now show that

‖T n
m f (x + y) + T n

m f (x − y) − 2T n
m f (x) − T n

m f (y) − T n
m f (−y)‖

≤ [2s(m + 1) + s(m) + s(−m) + s(2m + 1)]n(h(x) + h(y)) (2.6)

for every x, y ∈ X with x + y, x − y ∈ X and n ∈ N0. If n = 0, then (2.6) is simply (2.1).
So, take r ∈ N0 and suppose that (2.6) holds for n = r and all x, y ∈ X such that
x + y, x − y ∈ X. Then

‖T r+1
m f (x + y) + T r+1

m f (x − y) − 2T r+1
m f (x) − T r+1

m f (y) − T r+1
m f (−y)‖

= ‖2T r
m f ((m + 1)(x + y)) + T r

m f (m(x + y)) + T r
m f (−m(x + y))

−T r
m f ((2m + 1)(x + y)) + 2T r

m f ((m + 1)(x − y)) + T r
m f (m(x − y))

+T r
m f (−m(x − y)) − T r

m f ((2m + 1)(x − y))
− 2(2T r

m f ((m + 1)x) + T r
m f (mx) + T r

m f (−mx) − T r
m f ((2m + 1)x))

− 2T r
m f ((m + 1)y) − T r

m f (my) − T r
m f (−my) + T r

m f ((2m + 1)y)
− 2T r

m f ((m + 1)(−y)) − T r
m f (m(−y)) − T r

m f (−m(−y)) + T r
m f ((2m + 1)(−y))‖

≤ [2s(m + 1) + s(m) + s(−m) + s(2m + 1)]r

× [2h((m + 1)x) + 2h((m + 1)y) + h(mx) + h(my) + h(−mx) + h(−my)
+ h((2m + 1)x) + h((2m + 1)y)]

= [2s(m + 1) + s(m) + s(−m) + s(2m + 1)]r+1(h(x) + h(y)).

This implies that (2.6) holds for all n ∈ N0. Letting n→∞ in (2.6) yields

Fm(x + y) + Fm(x − y) = 2Fm(x) + Fm(y) + Fm(−y)

for all x, y ∈ X with x + y, x − y ∈ X. So, we have a sequence {Fm}m∈M0 of functions
satisfying (2.2) such that

‖ f (x) − Fm(x)‖ ≤
[s(m + 1) + s(m)]h(x)

1 − 2s(m + 1) − s(m) − s(−m) − s(2m + 1)
, x ∈ X.

It follows, by letting m→∞, that f also satisfies (2.2) for x, y ∈ X. This completes the
proof. �

The idea of the next theorem derives from [13], where Piszczek studied the
hyperstability of the general linear functional equation.

Theorem 2.2. Let X be a nonempty subset of a normed space such that 0 < X and X is
symmetric with respect to 0 (that is, x ∈ X implies that −x ∈ X) and let Y be a Banach
space. Assume that there exist n0 ∈ N with nx ∈ X for all x ∈ X, n ∈ Nn0 , and functions
u, v : X → R+ such that

M0 := {n ∈ Nn0 : 2s1(n + 1)s2(n + 1) + s1(n)s2(n)
+ s1(−n)s2(−n) + s1(2n + 1)s2(2n + 1) < 1}
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is an infinite set, where

s1(n) := inf{t ∈ R+ : u(nx) ≤ tu(x) for all x ∈ X}

and
s2(n) := inf{t ∈ R+ : v(nx) ≤ tv(x) for all x ∈ X}

and s1, s2 satisfy the following conditions for all n ∈ N:

(W1) lim
n→∞

s1(±n)s2(±n) = 0;

(W2) lim
n→∞

s1(n) = 0 or lim
n→∞

s2(n) = 0.

If f : X → Y satisfies the inequality

‖ f (x + y) + f (x − y) − 2 f (x) − f (y) − f (−y)‖ ≤ u(x)v(y) (2.7)

for all x, y ∈ X with x + y, x − y ∈ X, then f satisfies the equation

f (x + y) + f (x − y) = 2 f (x) + f (y) + f (−y) (2.8)

for all x, y ∈ X.

Proof. Replacing x by (m + 1)x and y by mx for m ∈ M0 in (2.7) yields

‖2 f ((m + 1)x) + f (mx) + f (−mx) − f ((2m + 1)x) − f (x)‖ ≤ u((m + 1)x)v(mx) (2.9)

for all x ∈ X. For each m ∈ M0, define the operator Tm : YX → YX by

(Tmξ)(x) := 2ξ((m + 1)x) + ξ(mx) + ξ(−mx) − ξ((2m + 1)x), x ∈ X, ξ ∈ YX .

Further, observe that

εm(x) := u((m + 1)x)v(mx) ≤ [s1(m + 1)s2(m)]u(x)v(x), x ∈ X. (2.10)

Then (2.9) takes the form

‖Tm f (x) − f (x)‖ ≤ εm(x), x ∈ X.

For each m ∈ M0, the operator Λm : RX
+ → R

X
+ defined by

(Λmη)(x) := 2η((m + 1)x) + η(mx) + η(−mx) + η((2m + 1)x), η ∈ RX
+ , x ∈ X

has the form (1.2) with k = 4 and f1(x) = (m + 1)x, f2(x) = mx, f3(x) = −mx and
f4(x) = (2m + 1)x, L1(x) = 2 and L2(x) = L3(x) = L4(x) = 1 for x ∈ X. Further, for
each ξ, µ ∈ YX , x ∈ X,

‖Tmξ(x) − Tmµ(x)‖= ‖2ξ((m + 1)x) + ξ(mx) + ξ(−mx) − ξ((2m + 1)x)
− 2µ((m + 1)x) − µ(mx) − µ(−mx) + µ((2m + 1)x)‖

≤ 2‖(ξ − µ)((m + 1)x)‖ + ‖(ξ − µ)(mx)‖
+ ‖(ξ − µ)(−mx)‖ + ‖(ξ − µ)((2m + 1)x)‖

=

4∑
i=1

Li(x)‖(ξ − µ)( fi(x))‖.

https://doi.org/10.1017/S000497271600126X Published online by Cambridge University Press

https://doi.org/10.1017/S000497271600126X


[7] Hyperstability of the Drygas functional equation 275

By mathematical induction, we will show that, for each x ∈ X,

Λn
mεm(x)≤ [s1(m + 1)s2(m)][2s1(m + 1)s2(m + 1) + s1(m)s2(m) + s1(−m)s2(−m)

+ s1(2m + 1)s2(2m + 1)]nu(x)v(x) (2.11)

for all n ∈ N0. From (2.10), we see that the inequality (2.11) holds for n = 0. Next,
suppose that (2.11) holds for n = k, where k ∈ N0. Then

Λk+1
m εm(x) = Λm(Λk

mεm(x))
= 2Λk

mεm((m + 1)x) + Λk
mεm(mx) + Λk

mεm(−mx) + Λk
mεm((2m + 1)x)

≤ [s1(m + 1)s2(m)][2s1(m + 1)s2(m + 1) + s1(m)s2(m)
+ s1(−m)s2(−m) + s1(2m + 1)s2(2m + 1)]k

× [2u((m + 1)x)v((m + 1)x) + u(mx)v(mx) + u(−mx)v(−mx)
+ u((2m + 1)x)v((2m + 1)x)]

≤ [s1(m + 1)s2(m)][2s1(m + 1)s2(m + 1) + s1(m)s2(m)
+ s1(−m)s2(−m) + s1(2m + 1)s2(2m + 1)]k+1u(x)v(x).

This yields (2.11) for n = k + 1, so (2.11) holds for all n ∈ N0. From (2.11),

ε∗(x) =

∞∑
n=0

Λn
mεm(x)

≤

∞∑
n=0

[s1(m + 1)s2(m)][2s12(m + 1) + s12(m) + s12(−m) + s12(2m + 1)]nu(x)v(x)

=
[s1(m + 1)s2(m)]u(x)v(x)

1 − 2s12(m + 1) − s12(m) − s12(−m) − s12(2m + 1)

for all x ∈ X and m ∈ M0, where s12(n) := s1(n)s2(n). Thus, according to Theorem 1.1,
for each m ∈ M0 there exists a unique solution Fm : X → Y of the equation

Fm(x) = 2Fm((m + 1)x) + Fm(mx) + Fm(−mx) + Fm((2m + 1)x)

such that

‖ f (x) − Fm(x)‖ ≤
[s1(m + 1)s2(m)]u(x)v(x)

1 − 2s12(m + 1) − s12(m) − s12(−m) − s12(2m + 1)
, x ∈ X.

Next, we will show that

‖T n
m f (x + y) + T n

m f (x − y) − 2T n
m f (x) − T n

m f (y) − T n
m f (−y)‖

≤ [2s12(m + 1) + s12(m) + s12(−m) + s12(2m + 1)]nu(x)v(y) (2.12)

for every x, y ∈ X with x + y, x − y ∈ X and n ∈ N0. If n = 0, (2.12) is simply (2.7).
Take r ∈ N0 and assume that (2.12) holds for n = r and x, y ∈ X with x + y, x − y ∈ X.
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Then

‖T r+1
m f (x + y) + T r+1

m f (x − y) − 2T r+1
m f (x) − T r+1

m f (y) − T r+1
m f (−y)‖

= ‖2T r
m f ((m + 1)(x + y)) + T r

m f (m(x + y)) + T r
m f (−m(x + y))

−T r
m f ((2m + 1)(x + y)) + 2T r

m f ((m + 1)(x − y)) + T r
m f (m(x − y))

+T r
m f (−m(x − y)) − T r

m f ((2m + 1)(x − y))
− 2(2T r

m f ((m + 1)x) + T r
m f (mx) + T r

m f (−mx) − T r
m f ((2m + 1)x))

− 2T r
m f ((m + 1)y) − T r

m f (my) − T r
m f (−my) + T r

m f ((2m + 1)y)
− 2T r

m f ((m + 1)(−y)) − T r
m f (m(−y)) − T r

m f (−m(−y)) + T r
m f ((2m + 1)(−y))‖

≤ [2s12(m + 1) + s12(m) + s12(−m) + s12(2m + 1)]r[2u((m + 1)x)v((m + 1)y)
+ u(mx)v(my) + u(−mx)v(−my) + u((2m + 1)x)v((2m + 1)y)]

= [2s12(m + 1) + s12(m) + s12(−m) + s12(2m + 1)]r+1u(x)v(y).

This means that (2.12) holds for all n ∈ N0. Letting n→∞ in (2.12) yields

Fm(x + y) + Fm(x − y) = 2Fm(x) + Fm(y) + Fm(−y)

for all x, y ∈ X with x + y, x − y ∈ X. Thus, we have a sequence {Fm}m∈M0 of functions
satisfying (2.8) for which

‖ f (x) − Fm(x)‖ ≤
[s1(m + 1)s2(m)]u(x)v(x)

1 − 2s12(m + 1) − s12(m) − s12(−m) − s12(2m + 1)
, x ∈ X.

It follows, by letting m→∞, that f also satisfies (2.8) for x, y ∈ X. �

By using Theorems 2.1 and 2.2 and the same technique as in the proof of Brzdȩk
[4, Corollary 4.8], we have the following hyperstability results for the inhomogeneous
Drygas functional equation. To avoid repetition, the details are omitted.

Corollary 2.3. Let X be a nonempty subset of a normed space such that 0 < X and X
is symmetric with respect to 0 and let Y be a Banach space and C : X × X → Y be a
given mapping. Suppose that there exist n0 ∈ N with nx ∈ X for all x ∈ X, n ∈ Nn0 , and
a function h : X → R+ such that

M0 := {n ∈ Nn0 : 2s(n + 1) + s(n) + s(−n) + s(2n + 1) < 1}

is an infinite set, where

s(n) := inf{t ∈ R+ : h(nx) ≤ th(x) for all x ∈ X}

and s(n) satisfies the following conditions for all n ∈ N:

lim
n→∞

s(n) = 0 and lim
n→∞

s(−n) = 0.

If f : X → Y satisfies the inequality

‖ f (x + y) + f (x − y) − 2 f (x) − f (y) − f (−y) −C(x, y)‖ ≤ h(x) + h(y)
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for all x, y ∈ X with x + y, x − y ∈ X and the functional equation

g(x + y) + g(x − y) = 2g(x) + g(y) + g(−y) + C(x, y)

has a solution g0 : X → Y, then f satisfies the equation

f (x + y) + f (x − y) = 2 f (x) + f (y) + f (−y) + C(x, y)

for all x, y ∈ X.

Corollary 2.4. Let X be a nonempty subset of a normed space such that 0 < X and X
is symmetric with respect to 0 and let Y be a Banach space and C : X × X → Y be a
given mapping. Assume that there exist n0 ∈ N with nx ∈ X for all x ∈ X, n ∈ Nn0 , and
functions u, v : X → R+ such that

M0 := {n ∈ Nn0 : 2s12(n + 1) + s12(n) + s12(−n) + s12(2n + 1)) < 1}

is an infinite set, where

s1(n) := inf{t ∈ R+ : u(nx) ≤ tu(x) for all x ∈ X},
s2(n) := inf{t ∈ R+ : v(nx) ≤ tv(x) for all x ∈ X}

and s12(n) = s1(n)s2(n) and s1, s2 satisfy the following conditions for all n ∈ N:

(W1) lim
n→∞

s1(±n)s2(±n) = 0;

(W2) lim
n→∞

s1(n) = 0 or lim
n→∞

s2(n) = 0.

If f : X → Y satisfies the inequality

‖ f (x + y) + f (x − y) − 2 f (x) − f (y) − f (−y) −C(x, y)‖ ≤ u(x)v(y)

for all x, y ∈ X with x + y, x − y ∈ X and the functional equation

g(x + y) + g(x − y) = 2g(x) + g(y) + g(−y) + C(x, y)

has a solution g0 : X → Y, then f satisfies the equation

f (x + y) + f (x − y) = 2 f (x) + f (y) + f (−y) + C(x, y)

for all x, y ∈ X.

3. Some particular cases
In this section, we derive some hyperstability results for the Drygas functional

equation and the inhomogeneous Drygas functional equation from our main results.

Corollary 3.1 [14]. Let X be a nonempty subset of a normed space such that 0 < X
and X is symmetric with respect to 0 and let Y be a Banach space, c ≥ 0 and p < 0.
Suppose that there exist n0 ∈ N with nx ∈ X for all x ∈ X, n ∈ Nn0 , and f : X → Y
satisfies the inequality

‖ f (x + y) + f (x − y) − 2 f (x) − f (y) − f (−y)‖ ≤ c(‖x‖p + ‖y‖p)

for all x, y ∈ X with x + y, x − y ∈ X. Then f satisfies the equation

f (x + y) + f (x − y) = 2 f (x) + f (y) + f (−y)

for all x, y ∈ X.
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Proof. Define h : X → R+ by h(x) := c‖x‖p, x ∈ X. For each n ∈ N,

s(n) = inf{t ∈ R+ : h(nx) ≤ th(x) for all x ∈ X}

= inf{t ∈ R+ : c‖nx‖p ≤ tc‖x‖p for all x ∈ X}

= inf{t ∈ R+ : |n|p ≤ t} = |n|p.

In the same way, s(−n) = |n|p for all n ∈ N, so

lim
n→∞

s(n) = lim
n→∞
|n|p = 0 and lim

n→∞
s(−n) = lim

n→∞
|n|p = 0

for all n ∈ N. Moreover, we can see that M0 is an infinite set. Thus, all the conditions
in Theorem 2.1 hold and we have this result. �

The next result follows from Corollary 2.3 with Corollary 3.1.

Corollary 3.2. Let X be a nonempty subset of a normed space such that 0 < X and
X is symmetric with respect to 0 and let Y be a Banach space, c ≥ 0, p < 0 and
C : X × X → Y be a given mapping. Suppose that there exist n0 ∈ N with nx ∈ X for
all x ∈ X, n ∈ Nn0 , and f : X → Y satisfies the inequality

‖ f (x + y) + f (x − y) − 2 f (x) − f (y) − f (−y) −C(x, y)‖ ≤ c(‖x‖p + ‖y‖p)

for all x, y ∈ X with x + y, x − y ∈ X and the functional equation

g(x + y) + g(x − y) = 2g(x) + g(y) + g(−y) + C(x, y)

has a solution g0 : X → Y. Then f satisfies the equation

f (x + y) + f (x − y) = 2 f (x) + f (y) + f (−y) + C(x, y)

for all x, y ∈ X.

The next two corollaries can be derived from Theorem 2.2 and Corollary 2.4.

Corollary 3.3. Let X be a nonempty subset of a normed space such that 0 < X and X
is symmetric with respect to 0 and let Y be a Banach space, c ≥ 0 and p, q ∈ R with
p + q < 0. Suppose that there exist n0 ∈ N with nx ∈ X for all x ∈ X, n ∈ Nn0 , and
f : X → Y satisfies the inequality

‖ f (x + y) + f (x − y) − 2 f (x) − f (y) − f (−y)‖ ≤ c(‖x‖p‖y‖q)

for all x, y ∈ X with x + y, x − y ∈ X. Then f satisfies the equation

f (x + y) + f (x − y) = 2 f (x) + f (y) + f (−y)

for all x, y ∈ X.
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Proof. Define u, v : X → R+ by u(x) := s‖x‖p and v(x) := r‖x‖q, where s, r ∈ R+ with
sr = c. As in the proof of Corollary 3.1, for each n ∈ N, s1(n) = |n|p and s2(n) = |n|q.
So,

lim
n→∞

s1(±n)s2(±n) = lim
n→∞
|n|p+q = 0

for all n ∈ N. Next, we claim that limn→∞ s1(n) = 0 or limn→∞ s2(n) = 0 for each n ∈ N.
Since p, q ∈ R with p + q < 0, either p < 0 or q < 0. If p < 0,

lim
n→∞

s1(n) = lim
n→∞
|n|p = 0.

On the other hand, if q < 0, then

lim
n→∞

s2(n) = lim
n→∞
|n|q = 0.

It is easy to see that M0 is an infinite set. Thus, all the conditions in Theorem 2.2 now
hold. Therefore, we obtain the result. �

Corollary 3.4. Let X be a nonempty subset of a normed space such that 0 < X and
X is symmetric with respect to 0 and let Y be a Banach space, c ≥ 0, p, q ∈ R with
p + q < 0 and C : X × X → Y be a given mapping. Suppose that there exist n0 ∈ N
with nx ∈ X for all x ∈ X, n ∈ Nn0 , and f : X → Y satisfies the inequality

‖ f (x + y) + f (x − y) − 2 f (x) − f (y) − f (−y) −C(x, y)‖ ≤ c(‖x‖p‖y‖q)

for all x, y ∈ X with x + y, x − y ∈ X and the functional equation

g(x + y) + g(x − y) = 2g(x) + g(y) + g(−y) + C(x, y)

has a solution g0 : X → Y. Then f satisfies the equation

f (x + y) + f (x − y) = 2 f (x) + f (y) + f (−y) + C(x, y)

for all x, y ∈ X.
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