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In turbulent Rayleigh–Bénard (RB) convection, a transition to the so-called ultimate
regime, in which the boundary layers (BL) are of turbulent type, has been postulated.
Indeed, at very large Rayleigh number Ra≈1013–1014 a transition in the scaling of the
global Nusselt number Nu (the dimensionless heat transfer) and the Reynolds number
with Ra has been observed in experiments and very recently in direct numerical
simulations (DNS) of two-dimensional (2D) RB convection. In this paper, we analyse
the local scaling properties of the lateral temperature structure functions in the BLs
of this simulation of 2D RB convection, employing extended self-similarity (ESS)
(i.e., plotting the structure functions against each other, rather than only against the
scale) in the spirit of the attached-eddy hypothesis, as we have recently introduced for
velocity structure functions in wall turbulence (Krug et al., J. Fluid Mech., vol. 830,
2017, pp. 797–819). We find no ESS scaling at Ra below the transition and in the
near-wall region. However, beyond the transition and for large enough wall distance
z+ > 100, we find clear ESS behaviour, as expected for a scalar in a turbulent
boundary layer. In striking correspondence to the Nu scaling, the ESS scaling region
is negligible at Ra = 1011 and well developed at Ra = 1014, thus providing strong
evidence that the observed transition in the global Nusselt number at Ra≈ 1013 indeed
is the transition from a laminar type BL to a turbulent type BL. Our results further
show that the relative slopes for scalar structure functions in the ESS scaling regime
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are the same as for their velocity counterparts, extending their previously established
universality. The findings are confirmed by comparing to scalar structure functions in
three-dimensional turbulent channel flow.

Key words: Bénard convection, turbulent boundary layers, turbulent flows

1. Introduction

Thermal convection is relevant to a wide range of applications across various fields,
such as building ventilation (e.g. Linden 1999), atmospheric (e.g. Hartmann, Moy
& Fu 2001) or oceanic (e.g. Rahmstorf 2000) flows. The phenomenon is widely
studied in terms of the paradigmatic case of Rayleigh–Bénard (RB) convection (see
the reviews of Ahlers, Grossmann & Lohse 2009; Lohse & Xia 2010; Chillà &
Schumacher 2012), in which two horizontal plates at a distance L are cooled from
above and heated from below. In the presence of a gravitational acceleration g, a
flow is driven with properties (for given Prandtl number Pr ≡ ν/κ and aspect ratio
Γ = D/L) that are controlled by the Rayleigh number Ra≡ αg1L3Θ/(νκ). Here, α
is the thermal expansion coefficient, ν and κ are kinematic viscosity and the thermal
expansion coefficient, respectively, D is some lateral length scale and 1Θ ≡Θb −Θt
denotes the temperature difference between the bottom (held at Θb) and top (Θt)
plates. The primary response parameter of the system is the resulting heat flux,
which in its non-dimensional form is given by the Nusselt number Nu relating
the actual heat transfer to the one in the purely conductive case. The behaviour
of the system at very high Ra is of interest in many applications, and theoretical
work (Kraichnan 1962; Spiegel 1971; Grossmann & Lohse 2000, 2011) predicts the
existence of a so-called ‘ultimate regime’, in which the scaling Nu ∝ Raβ switches
from the classical β 6 1/3 (Malkus 1954) to β > 1/3. This transition is related to a
change of the boundary layer (BL) structure, of both velocity and temperature, from a
laminar to turbulent type. A transition in the Nu scaling – as well as in the Reynolds
number scaling – has indeed been observed experimentally, most convincingly by
He et al. (2012a,b, 2015) and very recently also in a direct numerical simulation
(DNS) of two-dimensional (2D) RB convection by Zhu et al. (2018). Results of the
latter are reproduced in figure 1(a), where the transition is evident from the change
in slope of the (compensated) Nu at Ra ≈ 1013. As expected from the theory and
indicative of the turbulent nature of the BLs, Zhu et al. (2018) found logarithmic
dependencies with respect to the distance from the wall for the mean temperature
and velocity BLs. In the following, we will characterize the thermal BLs further by
studying their lateral structure functions.

Such an analysis originated from Davidson, Nickels & Krogstad (2006), who
pointed out that the k−1 spectral scaling (k being the streamwise wavenumber) of
the streamwise velocity power spectrum predicted by the attached-eddy hypothesis
(Townsend 1976; Perry & Chong 1982), is equivalent to – and more readily observed
as – a ln(r/z) scaling of the second-order longitudinal structure function. Here and
in the following, r denotes the streamwise separation distance and z is the distance
off the wall. De Silva et al. (2015) found that the ln(r/z) scaling also applies to
velocity structure functions of arbitrary even order 2p such that for the so-called
energy-containing range z< r� δ (δ being the boundary layer thickness, estimated to
be of order of the gap half-width L/2 here)

Su
p ≡ 〈1u2p

〉
1/p/U2

τ = Eu
p +Du

p ln
r
z
. (1.1)
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FIGURE 1. (a) Reduced Nusselt number Nu/Ra0.35 from Zhu et al. (2018); blue symbols
indicate the Ra values investigated here. Note that the compensation with Ra0.35 is chosen
to highlight the transition and does not imply that the Nu versus Ra scaling saturates at
this exponent. (b,c) Instantaneous snapshots of temperature (contours for 0.36 θ/1Θ60.7
from blue to red) with rescaled velocity vectors at Ra= 1011 (b) and Ra= 1014 (c). Only
a quarter of the vertical domain (z-direction) is shown.

Here 1u(r, z) is the velocity increment between two points at a distance z off the
wall separated by r along the streamwise direction, Uτ is the mean friction velocity
and Eu

p, Du
p are constants. We use superscript u to denote quantities relating to the

velocity and θ when referring to the scalar later on. Note that (1.1) applies for scales
larger than the inertial subrange η� r� z, with η being the Kolmogorov microscale
(for an overview of all scaling regimes see Davidson et al. (2006)).

While the direct scaling according to (1.1) is only observed at relatively large
Reynolds numbers Reτ = δUτ/ν ∼ O(104), Krug et al. (2017) and de Silva et al.
(2017) have shown that a relative scaling is evident at much smaller Reτ if the
so-called extended self-similarity (ESS) framework is employed. In this case, the
scaling is not analysed as a function of r but – in the spirit of the ESS hypothesis
originally conceived for the Kolmogorov inertial range by Benzi et al. (1993, 1995)
– relative to a structure function of different order. For an arbitrary reference order
2m this results in the ‘ESS form’ of (1.1), namely

Su
p =

Du
p

Du
m

Su
m + Eu

p −
Du

p

Du
m

Eu
m. (1.2)

Krug et al. (2017) and de Silva et al. (2017) found that the linear scaling of (1.2)
could not only be observed at relatively low Reτ well within the capabilities of current
DNS, but also that the relative slopes Du

p/D
u
m exhibit non-trivial, i.e. non-Gaussian,

universal behaviour across various flow geometries, such as flat-plate boundary layers,
pipe and channel flow and even Taylor–Couette flow. Krug et al. (2017) identified
the fact that (1.2) relaxes a self-similarity assumption required for (1.1) as a potential
explanation for the efficacy of the ESS formulation.

From our experience in Taylor–Couette flow (Krug et al. 2017) we learnt that ESS
scaling according to (1.2) is not observed if large-scale structures in the bulk (such
as the Taylor rolls) contribute to the velocity component under investigation. This is
also the case for the wall-parallel velocity component in RB convection, as can be
seen from the snapshots in figure 1(b,c). Since no equivalent scaling exists for the
wall-normal component (Perry & Chong 1982), the 2D velocity field in RB convection
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is ruled out as a suitable candidate for this scaling analysis. Therefore, and due to the
fact that velocity structure functions are found to be significantly less converged, the
current study instead focuses on structure functions of the temperature field

Sθp(r)≡ 〈1θ
2p
〉

1/p/Θ2
τ . (1.3)

Here, 1θ and Θτ = −κ∂zΘ|z=0/Uτ are analogous to 1u and Uτ , respectively. ESS
scaling of scalar structure functions in the energy-containing range has not been
considered yet. It is, however, conceivable that the situation will be similar to
velocity structure functions: the theory underlying (1.1) and (1.2) is based on an
inertial assumption, which implies that momentum transport is dominated by turbulent
eddies that are larger than and therefore constrained by z� η but smaller than δ. In
the spirit of the Reynolds analogy and for Pr ≈ 1 these eddies can be assumed to
affect momentum and scalar similarly. Consequently, the relevant arguments based
on the attached-eddy hypothesis (see de Silva et al. 2015; Krug et al. 2017) can be
expected to transfer to the scalar field as well. It is therefore our objective here to
investigate whether and at what Ra the thermal boundary layers in RB convection
exhibit an ESS scaling according to

Sθp =
Dθ

p

Dθ
m

Sθm + Eθp −
Dθ

p

Dθ
m

Eθm. (1.4)

The expectation is that such a scaling regime should originate coinciding with the
Nu scaling transition, which has been link to the emergence of logarithmic boundary
layers (Grossmann & Lohse 2011). Before moving ahead, we would like to mention
that the attached-eddy framework, from which (1.1) and (1.2) can be derived (see
Krug et al. 2017), is not new in the RB context. It has already been referred to
by Ahlers, Bodenschatz & He (2014), who investigate logarithmic dependencies of
temperature profiles, and by He et al. (2014) in a study of f−1 temperature power
spectra scalings (the temporal equivalent to the k−1 scaling) in order to interpret the
observations made.

Since the dataset of Zhu et al. (2018) that will be employed for this endeavour
is 2D, we will also check our results by using a three-dimensional (3D) channel
simulation as a reference and for comparison. A brief overview over both datasets
will given in § 2, before presenting our results in § 3 and conclusions in § 4.

2. Datasets

The simulations of Zhu et al. (2018) were performed using the second-order
finite-difference code AFiD (van der Poel et al. 2015) on a 2D domain with periodic
boundary conditions in the lateral direction with Γ = 2 and Pr= 1.

While the original dataset spans six decades Ra ∈ [108, 1014
], only four data points

for Ra > 1011 are used here (see figure 1a). We refer to the original publication
for further details on the numerical set-up and validation of the results. One of
the particularities of the 2D set-up is that the large-scale structures, which can be
observed in the vector maps of figure 1(b,c), remain almost fixed in place, allowing
for simple temporal averaging. Since the temporal mean velocity gradient changes
sign along the plate, we take the spatial mean of its absolute value when computing
Uτ in RB convection. For the present simulations we obtain friction Reynolds numbers
Reτ ≡ L+/2= LUτ/(2ν)≈ [2400; 5700; 12 300; 34 400] at Ra= [1011

; 1012
; 1013

; 1014
],

respectively.
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Differences and similarities between 2D and 3D RB convection are discussed in
detail by Schmalzl, Breuer & Hansen (2004) and van der Poel, Stevens & Lohse
(2013). Here we only note that, with the exception of flows at high Pr, 2D simulations
of RB flow capture the integral behaviour well. In view of the fact that the Prandtl–
Blasius boundary layer theory (Schlichting & Gersten 2000) as well as the additional
scaling arguments put forward in Davidson et al. (2006) and de Silva et al. (2015)
are essentially 2D, we do not expect significant differences in the behaviour of the
BLs. An analysis of structure functions in the inertial range in the bulk of 2D RB
convection is reported by Mazzino (2017).

A DNS of channel flow was performed using the fourth-order code described in
Chung, Monty & Ooi (2014) at Reτ = hUτ/ν = 590, where h is half the channel
height. The periodic (in streamwise and spanwise directions) box of size 12h×4h×2h
was discretized by 640 × 320 × 240 grid points in the streamwise, spanwise and
wall-normal directions, respectively. A passive scalar with Pr = 1 was added with
values fixed to −0.5 at the bottom wall and 0.5 at the top wall as boundary conditions.

Convergence of the statistics computed from both datasets was checked by plotting
the premultiplied probability density function of 1θ at various r, and found acceptable
up to tenth order.

3. Results

3.1. Direct analysis of the scaling in the energy-containing range in RB convection
We begin by plotting structure functions of second, fourth and tenth order from 2D
RB convection as a function of r/z in figure 2. For all cases, we present results at
three distances from the wall, namely z+ = 30 (figure 2a–c), z+ = 100 (figure 2d–f )
and z+ = 200 (figure 2g–i), where as usual the superscript + indicates normalization
by ν/Uτ . Clearly, there is no scaling according to a scalar equivalent of (1.1) for either
Ra at the position closest to the wall (figure 2a–c). However, in the other cases an
approximately linear region appears for r/z> 1, making it tempting to fit the slopes
directly. A fitting range 5z 6 r 6 0.5L (indicated by crosses in the figure) captures
this region quite well for all Ra and the resulting fits are shown as red dashed lines.
No fits are computed at the lowest Ra, where the fitting range becomes prohibitively
small.

A detailed comparison of the values of Dθ
p obtained in this way (figure 3a) reveals

that the results depend on both Ra and z+ in the investigated range. Generally, values
of Dθ

p are higher at z+ = 100, and this difference becomes larger with increasing
Ra. In most cases, Dθ

p is very low and it is only at z+ = 100 and Ra = 1014 (and
small p) that the values of Dθ

p are of comparable magnitude to results for Du
p in

high-Re turbulent boundary layers (TBLs). We point out that the decrease of Dθ
p with

increasing p observed in some cases at higher p is unphysical and likely related to the
insufficient fitting range at higher orders (potentially in combination with somewhat
inferior convergence at the highest orders). We further emphasize that even at high Re
a direct match between Dθ

p and Du
p is not necessarily expected. It is well established

(see for example Warhaft 2000, for passive scalars) that intermittency in the inertial
range η� r� z is higher for scalars as compared to the velocity itself. This translates
to lower scaling exponents ξ2p in the corresponding scaling relation Sθ1 ∼ (r/z)

ξ θ2p/p as
compared to the velocity counterpart ξ u

2p. From matching the inertial scaling with (1.1)
at r= z de Silva et al. (2015) semiempirically derived a linear relationship between Du

p
and ξ u

2p, suggesting that (disregarding other dependencies) these differences may persist
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FIGURE 2. Temperature structure functions of second (a,d,g), fourth (b,e,h) and tenth
order (c, f,i) from 2D RB convection at three different locations off the wall: z+ = 30
(a–c), z+= 100 (d–f ) and z+= 200 (g–i) for various Rayleigh numbers. The legend in (a)
applies to all panels. Red dashed lines represent fits in the range 5z 6 r 6 0.5L, symbols
mark r/z= 1 (circles) and the extent of the fitting range (crosses), respectively, for later
reference.

in the energy-containing range investigated here. However, a definitive answer to this
question will have to be based on high-Re data of the scalar field in wall-bounded
turbulent flows.

While the direct analysis of the slopes Dθ
p remains inconclusive, additional insight

can be gained from studying the second-order structure function Sθ1 . In this case,
the difference 1Sθ1 = Sθ1(r2) − Sθ1(r1) between the structure function at two different
separation distances r1 and r2 can be interpreted as the contribution of eddies with
sizes in the range between r1 and r2 to the overall (scalar) energy. Consequently, when
using the bounds of the log-linear scaling regime for r1, r2, as indicated in figure 2(d),
this increment 1Sθ1 , characterizes the contribution of the energy-containing range to
the overall energy. Note that here we adopted the bounds of the fitting region used
above for simplicity, but other reasonable choices give qualitatively similar results.
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FIGURE 3. (a) Slopes Dθ
p obtained from directly fitting the structure functions in the range

5z6 r 6 0.5L as indicated in figure 2 compared to high-Reτ reference data from de Silva
et al. (2015). (b) 1Sθ1 as a function of Ra normalized by 1Sθ1(Ra=1014). Colours indicate
increasing Ra from light to dark (see legend in figure 2).

Figure 3(b), where 1Sθ1 is normalized by the result obtained at Ra = 1014, shows
that this quantity only increases mildly at low Ra. However, it rises steeply between
Ra = 1013 and Ra = 1014, consistent with transitional behaviour in this range. No
significant differences arise between z+ = 100 and z+ = 200 in this case.

3.2. Scalar ESS scaling in RB convection

We now focus on the relative scalings Dθ
p/D

θ
1 according to (1.4). The ESS framework

has been demonstrated to extend the scaling regime not only to low Re but also
to a wider range of wall-normal distances. In particular, Krug et al. (2017) found
convincing scaling for Du

p/D
u
1 as low as z+=30. From figure 4(a–c), it is clear that the

same does not hold for the scalar structure functions in 2D RB convection. Even at the
highest Ra, there is no linear relationship between Sθ1 and Sθp for any orders considered
at this location. The situation improves at z+ = 100 (figure 4d–f ), where particularly
at the highest Ra and low orders the curves begin to exhibit an approximately linear
range. However, deviations become more apparent with increasing p, and results at
the higher orders in figure 4(e, f ) demonstrate that the ESS scaling is not yet fully
attained at this position. It is only at z+ = 200 (figure 4g–i) that a convincing ESS
scaling according to (1.4) is obtained up to tenth order. The scaling range is well
established at Ra = 1014, already significantly decreases in size at Ra = 1013, and is
basically non-existent at Ra= 1011. This behaviour is in very good correspondence to
the changes in the Nu scaling in figure 1(a), corroborating that the change in scaling
observed there is indeed due to a transition in the BL structure from laminar (no
scaling) to turbulent (with ESS scaling). It should be noted that, just as for velocity
structure functions, ESS scaling at z+= 200 is observed for r/z' 1 for all Ra, i.e. the
spatial scaling range is the same. However, consistent with the results in figures 2
and 3(b), there is hardly any energy in this range at Ra below transition to the ultimate
regime. Remarkably, the relative slopes attained for the temperature structure functions
in 2D RB convection at z+ = 200 appear to be the same as those measured for their
velocity counterparts and reported in de Silva et al. (2017). This is remarkable since,
as pointed out in § 3.1, the directly measured slopes Dθ

p and Du
p need not be the same.
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FIGURE 4. Scalar structure functions from 2D RB convection plotted versus S1 at z+= 30
(a–c), z+ = 100 (d–f ), and z+ = 200 (g–i) for various Ra (legend of figure 2 applies).
Dashed lines correspond to the relative slopes Du

p/D
u
1 from de Silva et al. (2017) with

the y-axis cutoff fit at S1(r= 5z), symbols mark the locations of r/z= 1 (circles) and the
fitting region indicated in figure 2 (crosses) for reference.

3.3. Scalar ESS scaling in channel flow

The question remains why ESS scaling is only observed at a larger distance from
the wall in the present case as compared to previous findings for velocity structure
functions. At this point, possible explanations to be considered are that this might be
either a consequence of the 2D set-up, a property of RB convection or a feature of
the scalar field. To address this, we present ESS results of scalar structure functions in
turbulent channel flow in figure 5(a–c) at different orders. Indeed, the results are very
similar to what was observed for 2D RB convection before, in that there is no ESS
scaling for z+=30 and z+=100. And again ESS scaling is recovered at z+=200, with
relative slopes matching those measured for velocity structure functions, mirroring the
observations made for RB convection. So the onset of ESS scaling slightly further off
the wall seems to be a general feature of scalar fields.
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FIGURE 5. Structure function results for a passive scalar in turbulent channel flow at
Reτ = 590 in ESS form at fourth (a), sixth (b) and tenth order (c) relative to Sθ1 . Results
at different z+ are shifted by 4 on the x-axis for clarity. Dashed lines correspond to the
relative slopes Du

p/D
u
1 from de Silva et al. (2017) and circles indicate the location where

r= z for reference.

4. Discussion and conclusions

We have analysed the temperature boundary layers in the energy-containing range
of 2D RB convection by means of temperature structure functions. Even though the
RB structure functions exhibit log-linear scaling for r/z ' 1 when plotted against
separation distance, the slopes remain small at low Ra. They were also found to
vary significantly with both Ra and z+, rendering the analysis inconclusive in this
point. While a dependence of the slopes on Reτ and wall-normal position is also
observed for velocity structure functions (see Krug et al. 2017), typically the log-
linear scaling is much less evident in these cases compared to figure 2 at z+ > 100.
Also for the scalar in channel flow investigated here (plots not shown), a direct scaling
regime is not discernible, such that it appears likely that the more prominent log-
linear regimes in figure 2 are a consequence of the 2D set-up. An important point
remains, however, that the contribution of the energy-containing range to the total
energy increases significantly beyond Ra = 1013, which coincides with the transition
in Nu versus Ra scaling.

The main finding of the paper is the clear evidence that the temperature structure
function in the BLs of turbulent 2D RB flows exhibit ESS scaling in the energy-
containing range for large enough wall distances z+ ' 100. The extent of the scaling
range thereby reflects the behaviour of Nu very well in increasing from non-existent
at Ra = 1011 (well in the classical regime) to considerable beyond the Nu scaling
transition at Ra= 1014. This provides further evidence that the said transition is indeed
related to a switch from laminar type to turbulent type thermal BLs. Given that the
underlying scaling argument is 2D (Davidson et al. 2006; de Silva et al. 2015), we
would expect a similar behaviour also in a 3D flow.

Moreover, we establish that the relative slopes for scalar structure functions in
the ESS form are the same as those previously obtained when analysing velocity
BLs. This is confirmed by comparing the RB results to those obtained in a planar
channel geometry. In both cases, ESS scaling is only established at z+ = 200, which
is different from velocity structure functions and appears to be a feature of the scalar
field. Interestingly enough, already Perry & Chong (1982) pointed out differences
between the scalar and the velocity field. They argued that at the end of the ‘lifetime’
of an eddy, the vorticity contributions in the two rods of the assumed hairpin cancel
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such that no induced velocity field remains. However, such a cancellation does not
apply for the scalar transported by the eddy, such that the ‘debris’, as they called it,
of past eddies sets up a scalar background profile. However, if and how exactly this
is related to the observations made here remains unclear.

At least for the present cases, there also appears to be no difference between active
(in RB flow) and passive (in the channel flow) scalars. In other regards, the deviations
close to the wall underline, in addition to the fact the observed values of Dp/Dm are
sub-Gaussian, that the ESS scaling and the values of the relative slopes are indeed
non-trivial.
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