LETTER TO THE EDITOR

Dear Editor,

Remarks on the asymptotics of the Luria-Delbrück and related distributions

The Luria-Delbrück distribution models the number of mutant cells in a cell population initiated with one or more wild-type cells. The distribution is defined by the generating function

$$
\begin{equation*}
G_{0}(z) \equiv \sum_{j \geqslant 0} p_{j} z^{j}=\exp \left\{m\left(\frac{1}{z}-1\right) \log (1-z)\right\}, \tag{1}
\end{equation*}
$$

where m is a positive real number. In the 1990s several authors investigated the asymptotics of this distribution, including Ma et al. [5], Pakes [6], Kemp [4], Goldie [2], and Prodinger [7]. Thus, there exist several proofs of the asymptotic relations

$$
\begin{equation*}
p_{n} \sim \frac{m}{n^{2}} \quad \text { and } \quad \tilde{p}_{n} \equiv \sum_{j>n} p_{j} \sim \frac{m}{n} \quad(n \rightarrow \infty) \tag{2}
\end{equation*}
$$

The approach taken by Prodinger [7] to derive (2), which is based on the singularity analysis technique perfected by Flajolet and Odlyzko [1], seems the most suitable for studying asymptotics of so-called mutant distributions that include the Luria-Delbrück distribution and several related distributions.

One important mutant distribution sprang from the assumption that, at the end of the experiment, each mutant has a probability $\varepsilon \in(0,1)$ of being observed (see [8] and [10]). The generating function for the number of observed mutants is thus $G_{0}(1-\varepsilon-\varepsilon z)$, which takes the form

$$
G_{1}(z)=\exp \left\{m \xi \frac{(1-z) \log [\varepsilon(1-z)]}{1+\xi z}\right\}
$$

with $\xi=\varepsilon /(1-\varepsilon)$. Asymptotics of this distribution are currently unknown.
Following Flajolet and Odlyzko [1], we let $\left[z^{n}\right] f(z)$ be the nth Maclaurin coefficient of $f(z)$, that is, the coefficient a_{n} in a power series expansion $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$. Furthermore, for $\eta>0$ and $\psi \in(0, \pi / 2)$, we define $\Delta(\psi, \eta)$ to be the region

$$
\{z:|z| \leqslant 1+\eta,|\arg (z-1)| \geqslant \psi\}
$$

in the complex plane. Asymptotic information about mutant distributions can often be obtained by applying results similar to Corollary 2 of [1], which we quote as follows.

Proposition 1. ([1].) Let $f(z)$ be analytic in $\Delta(\psi, \eta) \backslash\{1\}$ for some $\eta>0$ and $\psi \in(0, \pi / 2)$. Assume that, as $z \rightarrow 1$ in $\Delta(\psi, \eta)$,

$$
f(z) \sim K(1-z)^{\alpha}
$$

for some real constants α and K. If α is a nonnegative integer then

$$
\left[z^{n}\right] f(z)=o\left(n^{-\alpha-1}\right)
$$

[^0]Otherwise,

$$
\left[z^{n}\right] f(z) \sim \frac{K}{\Gamma(-\alpha)} n^{-\alpha-1}
$$

We now apply Proposition 1 to the generating function $G_{1}(z)$ to establish an analogue of (2). Note that the point $z=-1 / \xi$ is a removable singularity of $G_{1}(z)$. Since we use the principal branch of the logarithm, $G_{1}(z)$ has only one singularity at $z=1$ in $\Delta(\psi, \eta)$ for arbitrarily fixed $\eta>0$ and $\psi \in(0, \pi / 2)$. After a little calculation we find that

$$
\frac{(1-z) \log [\varepsilon(1-z)]}{1+\xi z}=(1-\varepsilon)(1-z) \log (1-z)+R_{0}
$$

with

$$
R_{0}=(\log \varepsilon)(1-\varepsilon)(1-z)+\varepsilon \frac{\log (1-z)+\log \varepsilon}{1+\xi z}(1-z)^{2}
$$

Clearly,

$$
R_{0} \sim(\log \varepsilon)(1-\varepsilon)(1-z) \quad \text { as } z \rightarrow 1 \text { in } \Delta(\psi, \eta)
$$

Consequently,

$$
\begin{equation*}
G_{1}(z)=1+m \varepsilon(1-z) \log (1-z)+R_{1} \tag{3}
\end{equation*}
$$

with

$$
R_{1} \sim K(1-z) \quad \text { as } z \rightarrow 1 \text { in } \Delta(\psi, \eta)
$$

for some real constant K. Because $G_{1}(z)$ is analytic in $\Delta(\psi, \eta) \backslash\{1\}$, so is R_{1} in view of (3). If follows at once from Proposition 1 that

$$
\left[z^{n}\right] R_{1}=o\left(n^{-2}\right)
$$

Furthermore, $\left[z^{n}\right](1-z) \log (1-z)=n^{-2}+o\left(n^{-2}\right)$. Combining these two results, we infer from (3) that

$$
p_{n} \sim \frac{\varepsilon m}{n^{2}} .
$$

(We henceforth use p_{n} and \tilde{p}_{n} as generic symbols for the probability and tail probability, respectively.) Because $\sum_{j>n} 1 / j^{2} \sim 1 / n$ as $n \rightarrow \infty$, we further obtain

$$
\tilde{p}_{n} \sim \frac{\varepsilon m}{n} .
$$

Another mutant distribution of practical interest is defined by the generating function

$$
G_{2}(z)=\exp \left\{\frac{m}{\phi}\left(\frac{1}{z}-1\right) \log (1-\phi z)\right\},
$$

where $\phi \in(0,1)$. Pakes [6] was the first to give an asymptotic expression equivalent to

$$
\begin{equation*}
\frac{p_{n}}{\phi^{n}} \sim \frac{1}{\Gamma(m(1-\phi) / \phi)} n^{m(1-\phi) / \phi-1} \tag{4}
\end{equation*}
$$

It is easy to see that, as $z \rightarrow 1-$ on the real axis,

$$
\begin{equation*}
G_{2}\left(\phi^{-1} z\right) \sim(1-z)^{-m(1-\phi) / \phi} \tag{5}
\end{equation*}
$$

Citing a Tauberian theorem, Jaeger and Sarkar [3] used (5) to conclude (4). However, as Flajolet and Odlyzko [1] noted, application of Tauberian theorems requires so-called Tauberian side conditions. In this case positivity of $\phi^{-n} p_{n}$ is easy to verify, and, hence, the asymptotic relation holds at least in the following Cesàro sense:

$$
\frac{1}{n} \sum_{j=0}^{n-1} \frac{p_{j}}{\phi^{j}} \sim \frac{1}{\Gamma(m(1-\phi) / \phi+1)} n^{m(1-\phi) / \phi-1}
$$

To prove (4) itself, we need to verify the monotonicity condition that $p_{n+1}<\phi p_{n}$ for sufficiently large n, which seems a cumbersome task. On the other hand, it is simple to verify that

$$
G_{2}\left(\phi^{-1} z\right)=\exp \left\{m\left(\frac{1}{z}-\frac{1}{\phi}\right) \log (1-z)\right\}
$$

has just one (logarithmic) singularity at $z=1$ in the whole region of $\Delta(\psi, \eta)$, the point $z=0$ being a removable singularity. Moreover, (5) holds for $z \rightarrow 1$ in $\Delta(\psi, \eta$). The validity of (4) therefore follows readily from Proposition 1 (see [11]).

Our third mutant distribution is defined by the generating function

$$
\begin{equation*}
G_{3}(z)=\left[\frac{(1-\phi) z}{1-\phi z-(1-z)(1-\phi z)^{\alpha}}\right]^{k}, \tag{6}
\end{equation*}
$$

where $\alpha, \phi \in(0,1)$ and k is a positive integer. A detailed derivation of $G_{3}(z)$ as a valid probability generating function for $k=1$ is given in [9]. It was shown in [11] that, as $z \rightarrow 1$ in $\Delta(\psi, \eta)$,

$$
G_{3}\left(\phi^{-1} z\right) \sim(1-z)^{-k \alpha} .
$$

This expression implies that

$$
p_{n} \sim \frac{\phi^{n}}{\Gamma(k \alpha)} n^{k \alpha-1},
$$

provided that $G_{3}\left(\phi^{-1} z\right)$ is analytic in $\Delta(\psi, \eta) \backslash\{1\}$ for some $\eta>0$ and $\psi \in(0, \pi / 2)$. But a proof of the analyticity of $G_{3}\left(\phi^{-1} z\right)$ in $\Delta(\psi, \eta) \backslash\{1\}$ was missing in [11]. For completeness, we give one here. It is readily seen from (6) that

$$
G_{3}\left(\phi^{-1} z\right)=\left[\frac{1-\phi}{\phi} a(z)(1-z)^{-\alpha}\right]^{k}
$$

with

$$
a(z)=\frac{z}{(1-z)^{1-\alpha}-\left(1-\phi^{-1} z\right)} .
$$

Since we use the principal branch of the logarithm, both $(1-z)^{-\alpha}$ and $(1-z)^{1-\alpha}$ are analytic in $\Delta(\psi, \eta) \backslash\{1\}$. Furthermore, because $a(z) \rightarrow \phi^{-1}[1-(1-\alpha) \phi]$ as $z \rightarrow 0$, zero is not a singularity of $a(z)$. Therefore, it suffices to ascertain that the denominator of $a(z)$ does not vanish in $\Delta(\psi, \eta) \backslash\{0,1\}$. This can be accomplished by considering three cases. First, if $z \in(0,1)$ then

$$
(1-z)^{1-\alpha}>1-z>1-\frac{z}{\phi}
$$

Second, if $z \in(-\infty, 0)$ then

$$
(1-z)^{1-\alpha}<1-z<1-\frac{z}{\phi}
$$

Third, consider the case $\operatorname{Im}(z) \neq 0$. Let $\arg z$ denote the principal branch satisfying $-\pi<$ $\arg z \leq \pi$. Because $0<\phi<1$, we have

$$
|\arg (1-z)|<\left|\arg \left(1-\phi^{-1} z\right)\right|
$$

Using the above inequality and the fact that $0<1-\alpha<1$, we arrive at

$$
\left|\arg (1-z)^{1-\alpha}\right|=|(1-\alpha) \arg (1-z)|=(1-\alpha)|\arg (1-z)|<\left|\arg \left(1-\phi^{-1} z\right)\right|
$$

Combining the above three cases we conclude that the denominator of $a(z)$ has no zeros in $\Delta(\psi, \eta) \backslash\{0,1\}$.

In summary, singularity analysis is a powerful tool for tackling asymptotics of mutant distributions. To reinforce this message, we conclude by outlining a proof of the first expression in (2). We note that (1) implies that

$$
\begin{equation*}
G_{0}(z)=1+m\left(\frac{1}{z}-1\right) \log (1-z)+R \tag{7}
\end{equation*}
$$

where $R=O\left((1-z)^{2} \log ^{2}(1-z)\right)$ as $z \rightarrow 1$ in $\Delta(\psi, \eta)$. According to another result (Theorem 2) of [1], we have

$$
\left[z^{n}\right] R=O\left(n^{-3} \log ^{2}(n)\right)
$$

Thus, $p_{n} \sim m / n^{2}$ is evident from (7).

Acknowledgement

The author is grateful to an anonymous referee for helpful comments.

References

[1] Flajolet, P. and Odlyzko, A. (1990). Singularity analysis of generating functions. SIAM J. Discrete Math. 3, 216-240.
[2] Goldie, C. M. (1995). Asymptotics of the Luria-Delbrück distribution. J. Appl. Prob. 32, 840-841.
[3] Jaeger, D. and Sarkar, S. (1995). On the distribution of bacterial mutants: the effects of differential fitness of mutants and non-mutants. Genetica 96, 217-223.
[4] Kemp, A. W. (1994). Comments on the Luria-Delbrück distribution. J. Appl. Prob. 31, 822-828.
[5] Ma, W. T., Sandri, G. vH. and Sarkar. S. (1992). Analysis of the Luria-Delbrück distribution using discrete convolution powers. J. Appl. Prob. 29, 255-267.
[6] Pakes, A. G. (1993). Remarks on the Luria-Delbrück distribution. J. Appl. Prob. 30, 991-994.
[7] Prodinger, H. (1996). Asymptotics of the Luria-Delbrück distribution via singularity analysis. J. Appl. Prob. 33, 282-283.
[8] Stewart, F. M. (1991). Fluctuation analysis: the effect of plating efficiency. Genetica 54, 51-55.
[9] Zheng, Q. (1999). Progress of a half century in the study of the Luria-Delbrück distribution. Math. Biosci. 162, 1-32.
[10] Zheng, Q. (2008). A note on plating efficiency in fluctuation experiments. Math. Biosci. 216, 150-153.
[11] Zheng, Q. (2008). On Bartlett's formulation of the Luria-Delbrück mutation model. Math. Biosci. 215, 48-54.
Yours sincerely,
Qi Zheng
Department of Epidemiology and Biostatistics, School of Rural Public Health, Texas A\&M Health Science Center, College Station, Texas 77843, USA.
Email address: qzheng@srph.tamhsc.edu

[^0]: Received 20 July 2009; revision received 28 September 2009.

