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LETTER TO THE EDITOR

Dear Editor,
Remarks on the asymptotics of the Luria–Delbrück

and related distributions

The Luria–Delbrück distribution models the number of mutant cells in a cell population
initiated with one or more wild-type cells. The distribution is defined by the generating function

G0(z) ≡
∑
j�0

pjz
j = exp

{
m

(
1

z
− 1

)
log(1 − z)

}
, (1)

wherem is a positive real number. In the 1990s several authors investigated the asymptotics of
this distribution, including Ma et al. [5], Pakes [6], Kemp [4], Goldie [2], and Prodinger [7].
Thus, there exist several proofs of the asymptotic relations

pn ∼ m

n2 and p̃n ≡
∑
j>n

pj ∼ m

n
(n → ∞). (2)

The approach taken by Prodinger [7] to derive (2), which is based on the singularity analysis
technique perfected by Flajolet and Odlyzko [1], seems the most suitable for studying asymp-
totics of so-called mutant distributions that include the Luria–Delbrück distribution and several
related distributions.

One important mutant distribution sprang from the assumption that, at the end of the
experiment, each mutant has a probability ε ∈ (0, 1) of being observed (see [8] and [10]).
The generating function for the number of observed mutants is thus G0(1 − ε − εz), which
takes the form

G1(z) = exp

{
mξ

(1 − z) log[ε(1 − z)]
1 + ξz

}

with ξ = ε/(1 − ε). Asymptotics of this distribution are currently unknown.
Following Flajolet and Odlyzko [1], we let [zn]f (z) be the nth Maclaurin coefficient of

f (z), that is, the coefficient an in a power series expansion f (z) = ∑∞
n=0 anz

n. Furthermore,
for η > 0 and ψ ∈ (0, π/2), we define �(ψ, η) to be the region

{z : |z| � 1 + η, |arg(z− 1)| � ψ}
in the complex plane. Asymptotic information about mutant distributions can often be obtained
by applying results similar to Corollary 2 of [1], which we quote as follows.

Proposition 1. ([1].) Let f (z) be analytic in�(ψ, η) \ {1} for some η > 0 and ψ ∈ (0, π/2).
Assume that, as z → 1 in �(ψ, η),

f (z) ∼ K(1 − z)α

for some real constants α and K . If α is a nonnegative integer then

[zn]f (z) = o(n−α−1).
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Otherwise,

[zn]f (z) ∼ K

�(−α)n
−α−1.

We now apply Proposition 1 to the generating functionG1(z) to establish an analogue of (2).
Note that the point z = −1/ξ is a removable singularity of G1(z). Since we use the principal
branch of the logarithm,G1(z) has only one singularity at z = 1 in�(ψ, η) for arbitrarily fixed
η > 0 and ψ ∈ (0, π/2). After a little calculation we find that

(1 − z) log[ε(1 − z)]
1 + ξz

= (1 − ε)(1 − z) log(1 − z)+ R0

with

R0 = (log ε)(1 − ε)(1 − z)+ ε
log(1 − z)+ log ε

1 + ξz
(1 − z)2.

Clearly,
R0 ∼ (log ε)(1 − ε)(1 − z) as z → 1 in �(ψ, η).

Consequently,
G1(z) = 1 +mε(1 − z) log(1 − z)+ R1 (3)

with
R1 ∼ K(1 − z) as z → 1 in �(ψ, η)

for some real constant K . Because G1(z) is analytic in �(ψ, η) \ {1}, so is R1 in view of (3).
If follows at once from Proposition 1 that

[zn]R1 = o(n−2).

Furthermore, [zn](1 − z) log(1 − z) = n−2 + o(n−2). Combining these two results, we infer
from (3) that

pn ∼ εm

n2 .

(We henceforth use pn and p̃n as generic symbols for the probability and tail probability,
respectively.) Because

∑
j>n 1/j2 ∼ 1/n as n → ∞, we further obtain

p̃n ∼ εm

n
.

Another mutant distribution of practical interest is defined by the generating function

G2(z) = exp

{
m

φ

(
1

z
− 1

)
log(1 − φz)

}
,

where φ ∈ (0, 1). Pakes [6] was the first to give an asymptotic expression equivalent to

pn

φn
∼ 1

�(m(1 − φ)/φ)
nm(1−φ)/φ−1. (4)

It is easy to see that, as z → 1− on the real axis,

G2(φ
−1z) ∼ (1 − z)−m(1−φ)/φ. (5)
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Citing a Tauberian theorem, Jaeger and Sarkar [3] used (5) to conclude (4). However, as
Flajolet and Odlyzko [1] noted, application of Tauberian theorems requires so-called Tauberian
side conditions. In this case positivity of φ−npn is easy to verify, and, hence, the asymptotic
relation holds at least in the following Cesàro sense:

1

n

n−1∑
j=0

pj

φj
∼ 1

�(m(1 − φ)/φ + 1)
nm(1−φ)/φ−1.

To prove (4) itself, we need to verify the monotonicity condition thatpn+1 < φpn for sufficiently
large n, which seems a cumbersome task. On the other hand, it is simple to verify that

G2(φ
−1z) = exp

{
m

(
1

z
− 1

φ

)
log(1 − z)

}

has just one (logarithmic) singularity at z = 1 in the whole region of �(ψ, η), the point z = 0
being a removable singularity. Moreover, (5) holds for z → 1 in �(ψ, η). The validity of (4)
therefore follows readily from Proposition 1 (see [11]).

Our third mutant distribution is defined by the generating function

G3(z) =
[

(1 − φ)z

1 − φz− (1 − z)(1 − φz)α

]k
, (6)

where α, φ ∈ (0, 1) and k is a positive integer. A detailed derivation of G3(z) as a valid
probability generating function for k = 1 is given in [9]. It was shown in [11] that, as z → 1
in �(ψ, η),

G3(φ
−1z) ∼ (1 − z)−kα.

This expression implies that

pn ∼ φn

�(kα)
nkα−1,

provided that G3(φ
−1z) is analytic in �(ψ, η) \ {1} for some η > 0 and ψ ∈ (0, π/2). But a

proof of the analyticity of G3(φ
−1z) in �(ψ, η) \ {1} was missing in [11]. For completeness,

we give one here. It is readily seen from (6) that

G3(φ
−1z) =

[
1 − φ

φ
a(z)(1 − z)−α

]k

with
a(z) = z

(1 − z)1−α − (1 − φ−1z)
.

Since we use the principal branch of the logarithm, both (1 − z)−α and (1 − z)1−α are analytic
in �(ψ, η) \ {1}. Furthermore, because a(z) → φ−1[1 − (1 − α)φ] as z → 0, zero is not
a singularity of a(z). Therefore, it suffices to ascertain that the denominator of a(z) does not
vanish in �(ψ, η) \ {0, 1}. This can be accomplished by considering three cases. First, if
z ∈ (0, 1) then

(1 − z)1−α > 1 − z > 1 − z

φ
.

Second, if z ∈ (−∞, 0) then

(1 − z)1−α < 1 − z < 1 − z

φ
.
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Third, consider the case Im(z) �= 0. Let arg z denote the principal branch satisfying −π <

arg z ≤ π . Because 0 < φ < 1, we have

|arg(1 − z)| < |arg(1 − φ−1z)|.
Using the above inequality and the fact that 0 < 1 − α < 1, we arrive at

|arg(1 − z)1−α| = |(1 − α) arg(1 − z)| = (1 − α)|arg(1 − z)| < |arg(1 − φ−1z)|.
Combining the above three cases we conclude that the denominator of a(z) has no zeros in
�(ψ, η) \ {0, 1}.

In summary, singularity analysis is a powerful tool for tackling asymptotics of mutant
distributions. To reinforce this message, we conclude by outlining a proof of the first expression
in (2). We note that (1) implies that

G0(z) = 1 +m

(
1

z
− 1

)
log(1 − z)+ R, (7)

where R = O((1 − z)2 log2(1 − z)) as z → 1 in �(ψ, η). According to another result
(Theorem 2) of [1], we have

[zn]R = O(n−3 log2(n)).

Thus, pn ∼ m/n2 is evident from (7).
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