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Abstract. We prove that the horospherical foliations of two compact manifolds of
constant negative curvature are measurably isomorphic if and only if the two
manifolds are isometric.

0. Introduction
The aim of this note is to give an extension of M. Ratner's theorem [Ra] on the
rigidity of horocycle flows.

M. Ratner's theorem says that if F[ and F2 are two co-compact (more generally
co-finite volume) discrete subgroups of SL2(R) and iA: FASL^IR) -> F2\SL2(IR) is a
bi-measurable map which preserves the Haar-measure and is equivariant for the
action on the right of the horocycle group then there exists age SL2(R) such that

^(IV) = gl\xh = T2gxh,

where î  coincides a.e. with i/» and h is an element of the horocycle group. One can
replace SL2(R) with PSL2 (R) ~ SO0 (1,2) in which case the equivalent geometrical
formulation of the theorem states that if Mj and M2 are two oriented surfaces of
constant negative curvature —1 and i/>: TlM1-* T*M2 is a measure theoretical
isomorphism of the horocycle flow (here TlMt indicates the unit tangent bundle to
Mi) then >p, up to a constant translation along the flow, is the lift to unit tangent
bundles of an isometry ij/: M, -* M2.

In this paper we will prove the following generalization of Ratner's theorem:

THEOREM 1. Let n be an integer >2, Tx, F2 discrete co-compact subgroups ofisometries
ofW- the hyperbolic n-dimensional space - and define M, = d e fr , \H"; let i/»: TlMx -»
TlM2 be a bi-measurable isomorphism of the expanding horospherical foliation; then
i/f is the differential of an isometry i/>: Ml -* M2.

We shall specify later exactly what we mean by bi-measurable isomorphism of the
expanding horospherical foliation.

The proof of the above theorem exploits the main ideas of Ratner's paper [Ra],
that is the technique of bootstrapping, via the 'polynomial rigidity' of horospheres,
from expanding horospheres to geodesies and then to contracting horospheres.

1. Notations and preliminaries
(1.1) Hyperbolic space. For the sake of completeness, and for notational purposes
as well, we shall start by recalling well known facts about hyperbolic space.
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74 L. Flaminio

We shall write S00(1 , n) for the connected component of the identity of the
group of (« +1) by (w +1) real matrices preserving the bilinear form

SO0(l ,n) acts on R"+1 in the standard way and the orbit of the point J = 6ef

(1 ,0 , . . . , 0) consists of the sheet of hyperboloid

S=f{xefJn + 1 |xo>0,(x,x)=l};

SO0 (1, n) acts transitively and effectively on X, and the restriction of —(•,•) to the
tangent bundle of 2 defines a positive definite metric on £, which is of course
invariant under the action of SO0 (1, n).

The stability group of 3> is given by the matrices of the type

KeSO(n) .

Therefore there is an identification

£~SO 0 ( l ,n) /SO(r t )

which associates at every pel the cosets of matrices gSO(n) where g is some
matrix for which g{J>) = p.

The action of SO (n) on the two dimensional planes tangent at J1 is transitive
and therefore X has a constant (sectional) curvature; it can be computed (see for
example [Ko-No]) that the curvature equals - 1 . 1 endowed with this metric will
be denoted by H". It is well known [Ko-No] that all complete simply connected
spaces of the same dimension whose curvature is a given constant are isometric,
and therefore we are authorized to call H" the space of negative curvature - 1 .

(1.2) The geodesic flow. The metric of H" determines the geodesic flow on T'H":

1
0

0

0 . . .

K

0)

1

TlW can be identified with the homogeneous space SO0(l, n)/SO (n - 1 ) , where
SO (n - 1 ) embeds in SO0 (1, n) by

/I
0

KeSO(n-l) 0

0

0

K

\ 0 0
In fact the above copy of SO (n — 1) in SO0(l , n) is immediately seen to be the
group of isometries of H" fixing the vector e = def (0,1, 0 , . . . , 0) tangent at the point
$\ then, for every v tangent vector to H", there is a unique coset g SO (n-\) of
elements in SO0 (1, n) sending e to v.
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With this identification, the geodesic flow is easily seen to be given by the projection
to SO0(l, M)/SO (n-1) of the right action on S O 0 ( 1 , H ) of the one parameter
subgroup of SO0 (1, n) given by

def

G, =

/ cosh t
sinh t

sinh t
cosh t

\

0 0

0 0

0

Id,,-,
where te [

The fact that the right action of this group, which we will call henceforth the geodesic
group, projects from SO0 (1, n) down to TXW is a consequence of the commutation
rules:

G,K = KG, VKeSO(n-l )andVG,.

Multiplication on the right by the one-parameter subgroup (G,),eR defines a flow
on SO0(l, n) which, with abuse of language, we shall call the geodesic flow on
SOo(l.n).
(1.3) The orthogonal frame bundle. We will indicate with pr, pr; the projection maps

pr:SO0(l, n)->SO0(l, n)/SO(n)~H"

pr,: SO0 (1, n) -»SO0 (1, n)/SO (n -1) ~ TlHn;

they are given in the coordinates that we have chosen for H" and r 'H" by
goo)

and

gnoj

goo goi'

g = (g.;)u=o^pr,(O = (
\gnO gnly

SO0 (1, n) itself can be considered as the orthogonal frame bundle to T'H", which
we will indicate with FH"; in fact for every matrix ge SO0 (1, n), the first column
gives the coordinates of a point p e H" and the remaining n columns the coordinates
of n orthogonal vectors tangent to H" at p. Thus we have dual languages

algebraic geometrical
SO0(l,n) FIT

SO0(l,n)/SO(fi-l) T'H"
SO0(l,«)/SO(n) H".

(1.4) The horospherical group. The subgroup of SO0 (1, n) that interests us the most
is the '(expanding) horospherical group'; it can be defined as the group whose
elements leave fixed the (projective) point at -oo of the geodesic issued from e and
have no other fixed point on the boundary of H". The geodesic issued from e is
given in our coordinates by the map

t e U •-»• (cosh t, sinh t, 0 , . . . , 0),
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and therefore its projective point at -oo is the point (1, - 1 , 0 , . . . , 0); the Lie-algebra
of the expanding horospherical group must have this vector as an eigenvector and
therefore its elements have the form:

a
0

o2

;

an

0
0

a2

an

a2

-a2

K

an

-an

KeSO(n-l).

But elements of the type

la
0

0

1°

0

a

0

0

0

0

K

0 \
0

/

KeSO(n-l)

also leave invariant the point (1 ,1,0. . . , 0) and, by our definition must, be excluded
from the horospherical Lie-algebra; one is then left with elements

f °
0

a2

\an

0

0

a2

•

a2

-a2

0

/

which generate the group of matrices

def

l + HI/2
-||a||/2 1

a2

an

l|a||/2
-||a||/2

o2

an

a 2 • • •

-a2 • • •

Idn_,

an

-an

\

/\
where we have set a = ( a 2 , . . . , an) and ||a|| = defV^T «?• Notice that

and therefore the horospherical group is isomorphic to the additive group W~x. Its
one-parameter subgroups are therefore given by

nsa seM,

where a is some element in R"^1. We will denote the expanding horospherical group
with the letter ̂ V.

Similarly one can define the contracting horospherical group M as the sub-group
of isometries which have, as their unique fixed point, the point at +oo of the geodesic
issued from e to the additive group R" and one can easily verify that M is given
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by the matrices

m, =

/

\

l + ||a||/2

•11/2
a2

an

-||a||/2
l-||a||/2

-a2

-an

a2

a2

• • • a n \

• • • an

wherea = (a 2 , . . . , an) is some element in Rn '. One can also see that M isisomorphic
to R""1 because

The reason for calling these groups expanding and contracting lies in their commuta-
tion properties with the geodesic flow:

Also it is important for us to notice the commutation relations of the horospherical
groups with the group SO(n -1) :

n,K = KntK Vw.e^", VK eSO ( « - l ) , (*)

m*K = Km,K Vm.e M, VXe SO (n-1) , (**)

where by aK it is meant the ordinary matrix multiplication on the right; the orbit
under N(Jl) of a point ge SO0 (1, n) is called the expanding (contracting) horos-
phere through g.

(1.5) Horospheres in TXW. The relations (*) and (**) show that, unlike the action
of the geodesic group, the actions of the horospherical groups do not project from
SO0 (1, n) to SO0 (1, n)/SO (n -1) ~ T'lHl"; nevertheless the same relations also show
that if two orbits of the horospherical group have projections in TlM" that intersect
at a point then these projections are identical: in fact, in the case of Jf, one has that
if pr, (g«a) = pr, (g'«b) for some a and b then gn, = g'nbK and therefore

(g'«c))ceR"-1

(gnc) = pri

i (gMc))ceR"

Similar computations hold for M. Then we have that the projections of the expanding
(contracting) horospheres in SO0 (1, «) are the leaves of a foliation in T'lH"; such
a foliation is called the expanding (contracting) horospherical foliation of T'lH";
in the language of Anosov systems this foliation is also called the unstable (stable)
foliation determined by the geodesic flow. The leaves of the horospherical foliation
of TlW will be called horospheres, and this may create some confusion since we
used the same name for the orbits of the horospherical group acting on SO0 (1, n).
But whenever confusion may arise we shall specify which space we are considering;
this will avoid having to expand the vocabulary unnecessarily.

It is also important for us to notice that given a point v e T'H" and a g e SO0 (1, n)
that projects to v, for every other point w belonging to the expanding horosphere
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of v one can find a unique horospherical element n, such that

pri (gnH) = w;

in other words the restriction of the projection map pr, to a expanding horosphere
in SO0 (1, n) is a one-to-one map onto a horosphere in TlW; in fact if

pri (gn.) = w = prl {gnb)
then one has

gna = gnbK, for some K eSO (n -1 )

which implies «, = «b. A similar statement is true for contracting horospheres.
We will consider on TlU" a metric invariant under the left action of O (1, n).

For every such metric, contracting horospheres, expanding horospheres and
geodesies are mutually orthogonal; therefore the metric is uniquely defined by
assigning the length of a vector tangent to a horosphere and of a vector tangent to
a geodesic. The simplest possible choice is that in which:

(a) geodesies in TlW have the same length as their projections in H"
(b) points u and v on an expanding (contracting) horosphere in T'lHT have

distance equal to ||a|| where na(ma), with aeR""1, is a horospherical element that
maps u to v. We will denote the distance induced by this metric by d( •, •).

Other foliations that we will consider are the weakly unstable (weakly stable)
foliations. Let 6 be an expanding (contracting) horosphere; then a leaf of the weakly
unstable (stable) foliation is given by L U R gfi- It can be seen that two points x, y
in T'lH" belong to the same weakly unstable (stable) leaf if and only if d(g,x, g,y)
is bounded for all t> 0 (for all t < 0).

(1.6) Horocycles and horolines

Definition. An expanding horocycle in SO0 (1, n) is an orbit of some one-parameter
subgroup of Jf:

where g is some point in SO0 (1, n) and aeR" is normalized so that ||a|| = 1.

An arc of a horocycle is a finite segment of the orbit of such a subgroup. Contracting
horocycles are defined similarly.

Definition. A horoline (an arc of a horoline) in r 'H" is the projection to T'H" of a
horocycle (of an arc of horocycle).

Note that horolines are well defined; in other words if one considers a horocyle on
some horosphere in SO0 (1, n), projects it down to TlW and finally lifts it back to
a different covering horosphere in SO0 (1, n), the curve one obtains is still a horocycle.

Definition. Two horolines (arcs of horoline) are parallel if they are the projection
to r 'H" of horocycles in SO0 (1, n) given by the action of the same one-parameter
subgroup of Jf on points on the same horosphere in SO0 (1, n).

Once again, parallelicity is well defined because it is independent of the lift that
one considers. Note that in particular parallel arcs of horolines lie in the same
horosphere. To denote a horoline we shall use the notation

(«,)s e , for / an interval in U and us e T'H"
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and with this it is meant that there exists a g e SO0 (1, n) and an.ejV, with ||a|| = 1,
such that

K* = pri(gns.) Vsel

It is interesting to notice that horolines are geodesic lines on horospheres in TlW
with respect to the induced metric.

LEMMA. Let ( u j ^ , (vs)^ be two arcs of horolines in TlH" such that

sup d(us, vs)<+<x>.
0<s<oo

Then (us)^ and (vs)™ belong to the same horosphere and are parallel; in particular
this implies d(us,vs) = constant.

The proof is immediate: by the hypothesis the two horolines have the same point
at +oo and therefore belong to the same weakly unstable leaf; this easily implies
that they are actually on the same horosphere. On the other hand the geometry of
a horosphere with the metric we are considering is euclidean and the distance of
two horolines on a horosphere is bounded if and only if their distance is bounded
in the metric of the horosphere; and this ends the proof.

(1.7) Compact quotients. Now let F be a discrete co-compact group of isometries
of H", i.e. a discrete subgroup of SO0 (1, n) such that r\Hn is compact; to keep the
notation short we write M for the n- dimensional manifold r\H" and we will call
manifolds obtained in this way compact quotients of H". Then r \SO0(l ,n) /
SO (n -1) is the unit tangent bundle TlM of M, and r\SO0 (1,R) is the orthonormal
frame bundle FM of M. Since T acts on H" on the left, the action of the geodesic
group on TlM and FM still makes sense, and so does the action of the horospherical
group and its one-parameter groups on FM; if / is a frame of FM we will denote
the action of the geodesic group, of the horospherical groups, arid of SO (n — 1), by

«,(/), ».(/), »».(/), K(f).

On TXM we can still consider the horospherical foliation whose leaves are the
projection from FM to TlM of the orbits under the horospherical group of frames
of FM; similarly one defines horolines and parallel horolines in TlM as we did
for TXW. Notice also that since the metric on TlH" that we are considering is left
invariant, it also determines a metric on TlM which has the property that arcs of
geodesies and horolines have lengths equal to their parametrization.

Now, if Af, and M2 are two compact quotients of H", it is clear what we mean
for a bi-measurable map t/»: T1Ml-> TlM2 to be an isomorphism of the expanding
horospherical foliation: we mean that i/f maps almost every expanding horosphere
in T'M, to an expanding horosphere preserving the induced metric.

(1.8) Measure on TlM and FM. The geodesic flow has a canonical smooth
measure associated with it, the so-called Liouville measure. In the case that we are
considering, this measure also has a group theoretical interpretation. In fact FH" ~
SO0 (1, n) is a unimodular group, that is to say, has a measure invariant under both
left and right translations; such a measure, by pullback of the projection map from
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SO0(l, n) to SO0(l, n)/G', determines a measure on every coset space SO0 (1, n)/G'
(here G' stands for any subgroup of SO0 (1, «)) which will be invariant under the
left-action on SO0 (1, n)/G' of SO0 (1, n) and by the right-action on SO0 (1, n)/G'
of those elements in SO0 (1, n) that commute with G'. In particular in this way we
can construct a measure on TXW which will be invariant under the action of
SO0 (1, n) and will also be preserved by the geodesic flow: such a measure coincides
with the Liouville measure. Now let T be a discrete group of isometries of H" and
M the smooth manifold r\H"; the left invariance of the Liouville measure on T'H"
allows us to project it on the quotient space r\T1H" ~ T'M to obtain the Liouville
measure on TlM; henceforth when we will talk about the measure of any compact
quotient of T'OHl" we will refer to the above measure normalized to have total mass
1. It is well known [Mo] that the Haar measure on compact quotients of SO0 (1, n)
is an ergodic measure for the action of any element of the horospherical group; in
particular this implies that the action of the full (expanding) horospherical group
on compact quotients of SO0 (1, n) is ergodic which in turn implies that the horo-
spherical foliation of a compact quotient of T'H" is ergodic.

We also will use the fact that the geodesic flow on any compact quotient of
SO0 (1, n)/SO (n-1) and SO0(l,n) is ergodic which is again a consequence of
Moore's theorem [Mo].

(1.9) Sets of full measure in T'M. Here we present an argument that we will consider
often in the sequel. Let A be some subset in TlM and A = pr^(A) its lift to the
frame bundle of M. Given a horospherical element na we have that the set of frames
/ for which

Jo'
is a set Atyp of full measure; therefore the set of v e TlM for which pr[ ({v}) D Atyp)
is a set of full measure in prj ({u}) is also a set of full measure in TlM. This amounts
to saying that, for any Ac T*M, the set of v e T^M having the property that almost
every horoline through v visits the set A with frequency eventually equal to /x(A)
is a set of full measure in T'M.

2. A lemma on the average distance of horolines
LEMMA 2.1. Let (us),(vs) - seU - be continuous curves in a metric space (X,d)
and suppose that for every interval (a, f3)<^M in which d(us, vs)^R there exists a
polynomial Pd of degree at most d for which

for all s e {a, 13); then W > 0 either

Rif'
- d(us,vs
' Jo

)ds>-
72Cd'

Cd being a constant depending only on d - or

d(us,vs)<R Vse(0,0-
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Proof. The set A = def{se(O, t)\d(us, vs)<R} is an open set and hence union of
open intervals (a,, /3,); on the complement of A the average of d{us, vs) is certainly
greater than R/y2Cd, so we need to worry only about the intervals (a,, /?,). But on
each such an interval the average of d{us, vs) is bounded from below by the average
of a polynomial y~lPd(s) and the average of a polynomial is bounded from below
by its sup norm divided by a constant Cd which depends only upon its degree. But

PAs) 1 ._ . . R

a^s^p, yCd yCd y Cd

Therefore the average of d(us> vs) can be smaller than R/y2Cd only if it never

reaches R.

LEMMA 2.2. Let (us),(vs) be horolines in TlM2\ there exists an R smaller than the
radius of injectivity ofTlM2 such that ifd(us, vs)<R, Vs<=[a, )3], then in the same
interval one has

y
where P is some polynomial of degree at most 4, and y some universal constant.

Proof. d(us,vs) being always less than R, us and vs can be lifted to points us and
vs in TlH" so that d(us, vs) = d(us, vs) for all s e [a, ;B]. (us), (vs) are projections to
T'lHl" of the orbits of two points g i , g2 e G under two one-parameter subgroups
"sa, "sb of the horospherical group N^ G. By the invariance of d under isometries
of H" the distance between us and vs equals the distance of the projection of the
identity of G from the projection of n-sag71g2«Sb, and the entries of the latter matrix
are polynomials of degree at most 4 in s. If R is small enough one has that this
distance is well approximated by the ordinary euclidean distance between the first
two columns of the matrices id and n_sxg^1g2nsb, which proves the statement.

LEMMA 2.3. Let (us), (vs) be horolines in T1M2, D the diameter ofTxM2 and R, y
as in the above lemma. Suppose that on a set of density greater than (1 — £) ofs e [0, t]
one has d(us, vs) < 77. Then ifg<R/2y2DC4 and r\ < i?/2y2C4 one also has

d(us,vs)<R V S G [ 0 , t].

Proof. From the hypotheses one has

Then the two previous lemmas imply the conclusion.

It should be pointed out that, although the above lemmas require the compactness
of M2, with a subtler argument (see [Ra]) rigidity can be proved for finite volume
manifolds.

3. In which it is shown that the geodesic flow commutes with ip
Henceforth M, and M2 will indicate two compact quotients of H"; their unit tangent
bundle will be endowed with a left invariant metric as in § 1.7 and i/> will be a
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bi-measurable map that maps isometrically almost every expanding horosphere to
an expanding horosphere.

For every 0 > 0 there exists a set Ae c TXM^ on which i/» is uniformly continuous
(cf. lemma 3.1 in [Ra]) and such that /xiAs > 1 — 6.

As we have shown in § 1.9, by the ergodicity of the action of one-parameter
subgroups of the horospherical group on FMX, there exists a set A e c TXMX of full
/^-measure such that Vx€ Ae almost every horoline through x intersects Ae - the
set of continuity of ip - with frequency eventually larger than 1 -0 : such horolines
will be said to be 'typical' for Ae. Define

def

ft = {xe TXMX |almost every point of the horosphere of x belongs to Ae}.

ft is a set of full measure in TlMl entirely made of horospheres. Let us also introduce
the notation TTX to denote the horosphere to which the point x belongs.

PROPOSITION 3.1. For every 5 > 0 there exists an 17 > 0 such that if \t\ < 77 and x, g,x

belong to ft, we have that:

(a) *,(«Kwx)) = *(w,,x);
(b) if ( u j is a horoline in TTX, then g,{i^{us)) and </>g,(us) are parallel horolines.

(c) d(4ig,y,g,iljy)<28, Vyeirx.

Proof. For all 5 > 0 there exists an TJ > 0 such that

x j £ A , and d(x,y)<7] =S> d(tj/x, ifjy) < 8.

We can assume 17 < 5, and t < 17. Since x and g,x both belong to ft there is a point
z e nx such that z and g,z both belong to Ae; thus we can then assume without loss
of generality that x and g,x actually belong to A9.

Let (us) be a horoline through x and consider the horolines

def def

ws = gA<pue-s) and vs = tfr(g,ue-'s);

one has

d(vs, ws) < d(vs, fl/ue-s) + d(\fjue-s, ws)

< d(tl>(g,ue-s), tA(Ue-'s)) +1;
since the distance between g,ue-<s and ue->s is less than 17, if both these points belong
to Ae, one also has d(4>{g,ue-'s), tf>(ue-s)) < 8 and therefore

d(u,,w,)<28.

But almost every horoline (us) through x has the property that both (us) and (g,us)
are typical horolines for Afl, so both g,ue-s and ue->s will be in Ae with frequency
eventually larger than 1-26. For such a horoline (us), if 6 and 8 are chosen small
enough, by lemma 2.3 one has that

d{vs, ws)<R Vs£R.

But then lemma 1.6 implies that {vs) and (ws) are parallel horolines; in particular
they lie on the same horosphere; so we have proved that
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In fact more is true: since we have that for a set of full measure of horolines (us),
the corresponding horolines (vs) and (ws) are parallel, and since the map i/> is
assumed to be an isometry on horospheres, the same conclusion will actually hold
for every horoline (us) in ITX and for a set of full measure of x, which is what (b)
states. Finally, (c) follows from (a), (b), the fact that (/> is an isometry on horospheres
and the fact that it holds on a dense set of y e irx. The proof of proposition 3.1 is
now complete.

Now let

the weakly unstable leaf of x 1
intersects d o n a set of full measure!'

deff
n: =\xeTlMl

Hi is then the set of points whose geodesies visit il with frequency 1 and is a set
of full measure completely made of weakly unstable leaves.

If x e O n n , and we denote its weakly unstable leaf by W(x), we have that i/»
maps W(x)nCl, which is dense in W(x), to points in the weakly unstable leaf of
4>{x); by proposition 3.1 this mapping is uniformly continuous on W(x)r\Q, and
therefore there is a unique continuous extension i// of ip to the whole W(x) that
coincides a.e. with i// and maps the weakly unstable leaves of points in il1 to weakly
unstable leaves. Thus we can assume without loss of generality that ip is continuous
on the weakly unstable leaves in Q,x.

Now let x 6 ft,; by proposition 3.1 for every t e R there is a unique point Tr [x; t]
on the horosphere of x which has the following properties:

(1) *(g,(Tr[x; *])) = *,(*(*));
(2) d(x,Tr[x; t])<S(t) and lim,^0 S(t) = O.

Our aim now is to show that for almost all x and for all t, one has Tr [x; t] = x, in
other words

To this purpose let us first note that

and therefore the continuity in t of Tr [x; t] at t = 0 implies that Tr [x; /] is continuous
in the variable t for all t and all x e ft,. Thus we need only to prove that Tr [x; t] = x
for rational f's and for a subset of full measure of x's in ft,: henceforth the reader
may assume that t is a rational number.

Let us consider a frame fe FMl such that / belongs to pri"1 (Hi); for such an /
let us define A,(/) e R""1 in such a way that nAi(/)(/) is the point on the horosphere
of/that projects in T^M^ to Trfpr^/); t].

Notice that if x e Oj and x is another point on the same horosphere of x, the
horoline from x to Tr [x; t] will be parallel to and will have the same length as the
horoline from x to Tr[x; t] (this is in fact a consequence of the proposition 3.1
and the fact that ip is an isometry on horospheres). Thus the map f ^/\,(f) is a
bounded measurable map which is constant along the horospheres of FMX. By the
ergodicity of the horospherical foliation of FMt, we have that there exists a subset
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£1, of pri"1 (Hi) entirely made of horospheres such that A,(/) equals a constant A,
for a l l /ef t , .

Let K be a rotation in SO (n -1) and K(f) be the frame obtained by rotating /
by K; one has that

K(f) belongs to fl, for almost every feCl, and for almost every KeSO(n-l),
and therefore

A, = A, • K for almost every K,

which obviously implies A, =0.
This is true for all rational t, hence there is a set of full measure of points x in

Six such that Tr[x; t] = x for all rational t - and therefore for all real t. We have
therefore proved the following proposition:

PROPOSITION 3.2. Let ty:TxMx >-* T1M2 be a bi-measurable isomorphism of the
expanding horospherical foliation. Then t}i coincides on a set of full measure with a
map ijj: T1 M, *-* T1 M2 with the property that

g,(<A(x)) = <Mg,(x))

for all t and almost all xeTlMx.

4. Investigation of the effect of </* on contracting horospheres
Thanks to proposition 3.2 we are now in a situation in which we can assume that
we have a bi-measurable map

which is defined on a set SI of measure 1 of weakly unstable leaves, with the property
that:

(1) *g,(x) = g^(x), VfeR.VxeO;
(2) 4> maps expanding horospheres to expanding horospheres isometrically.

To investigate further the properties of this map we need to define the notion of
conjugacy of contracting and expanding horospheres.

Let («s)se/ be a possibly infinite arc of expanding horoline and assume that Oe / ;
then, if/o is a frame that projects down to u0, the horoline (us)seI lifts to a horocycle
(nsa/o)S€E/ for some (a2,..., an) e S""2, where §"~2 is the unit sphere in R""1; the
contracting horoline through u0 conjugate to (us) will be defined to be the projection
to TlMx of the contracting horocycle (mS!kf0)s&u) with the same (a 2 , . . . , an) e §"~\

Notice that conjugate horolines through a point u0 and the geodesic through u0

lie in a three-dimensional manifold which can be thought of as the unit tangent
bundle of a two-dimensional hyperbolic surface sitting in Mj.

The notion of conjugacy of horolines also introduces a correspondence among
points of the expanding and contracting horospheres of a point uoe TlMx: in fact
if v is a point on the expanding (contracting) horosphere of u0 we can define its
conjugate to be the point v on the contracting (expanding) horosphere of u0 such
that the horoline from u0 to v is conjugate to and has the same length as the horoline
from u0 to v.
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As usual when we say 'almost every point on a horosphere' we will refer implicitly
to the euclidean measure on the horosphere.

LEMMA 4.1. Assume that ip satisfies, besides the properties (1) and (2), the following
property:

(3) there exists a s c f f l ^ f l of measure 1 such that for all u0 e ft, and almost every
point w on the contracting horosphere ofu0 one has that: (a) w is mapped to a point
which lies on the contracting horosphere ofip(u0); (b) tp(w) is conjugate to the point
4>{v), v being the point conjugate to w on the expanding horosphere of u0.
Then we can conclude that:

(a) 3e > 0 such that Vu eft2 , where ft2 is defined by

the weakly unstable leaf of v 1

intersects ft, on a set of full measure)'

one has that the restriction of ip to the ball of radius e around u coincides almost
everywhere with a continuous map.
This implies that:

(b) ip coincides a.e. on ft with a continuous map ip: TlMx-* TlM2 which satisfies
the following properties:

(1) ip commutes with the geodesic flow;
(2) ip maps contracting as well as expanding horospheres to contracting and

expanding horospheres isometrically;
(3) conjugate points on the horospheres of any point u e T'M, are mapped to

conjugate points on the horospheres ofip(u).

Proof. By the compactness of TxMt there exist constants e and C such that, if two
points M, v € T*M\ have distance smaller than e, then the disc of radius C about u
in the weakly unstable leaf of u intersects the disc of radius C about v in the
contracting horosphere of v in a unique point [«, v].

Let M0 e ft2 and fix a system of rectangular coordinates on the expanding horo-
sphere of M0. Every point w in the weakly unstable leaf of u0 can be given coordinates
(t,w2,...,wn)e W, where t is the number such that g,(w) belongs to the expanding
horosphere of u0 and (w2,..., wn) are the coordinates of g,(w) on such horosphere.

Then every point z in an e-ball around u0 can be given coordinates

(f, z 2 , . . . , z n , f 2 , . . . , f n )

in the following way: (t, z 2 , . . . , zn) will be the coordinates of [u0, z] and ( z 2 , . . . , zn)
will be the coordinates of z in the contracting horosphere of [u0, z] with respect to
the rectangular system of coordinates conjugate to the system of coordinates on the
horosphere of M0.

In this way we have defined a (real analytic) one-to-one map from a neighbourhood
of 0 in R2""1 onto the ball of radius e around M0. The hypotheses (1) and (2) on
the map ip imply that whenever u0 belongs to ft, ip maps the rectangular system of
coordinates on the expanding horosphere of u0 to a rectangular system of coordinates
on the expanding horosphere of ip(u0): points which have the given coordinates on
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the weakly unstable leaf of u0 are mapped to points which have the same coordinates
in the weakly unstable leaf of u0.

The hypothesis (3) allows us to say that for all uo£ft2 and for almost every
((, u2, . . . , « „ , 0 , . . . , 0), the point with such coordinates in the BE(u0) belongs to
flj and therefore for almost every (w 2 , . . . ,w n ) the point of coordinates
(t,u2,... ,un, w2,..., wn) is mapped to the point with the same coordinates in
Be(i/j(u0)). Thus ip coincides a.e. with the map which sends points in Be(w0) to
points with the same coordinates in BE(ip(u0)). This completes the proof of (a).

The proof of (b) is trivial because we can cover TlMx with balls B, around points
u, in ft2 and in each of these balls i/» coincides with a continuous map i/f, denned
on B,; but i^B, n B, = ipj | B, n B, whenever Bt n Bj ̂  0 ; so the collection of maps
t/f, define a unique continuous function ^ on TlMx which satisfies the conditions
(1), (2), (3) on a dense set of points and therefore at every point.

Now we will proceed to construct a set £li for which condition (3) of the above
lemma holds.

Let Ao be a subset of ft on which ty is uniformly continuous; Ao can be chosen
of measure larger than 1 - £ for every | > 0; we assume £ < i Let Ao be the pre-image
of Ao in FM^ under the projection map

by the ergodicity of the horocycle flow h,(f) = def M,(1 0 0 )( /) we have that 3L0 and
A, c pr^'(ft) such that:

(a) the measure of A, is greater than 1 - £;
(b) V/e A,, VA > Lo, (I/A) meas {*e |0, A]| h,(f) e Ao}> 1 - 2 f

Now let A2 be the subset of pr7!(ft) defined by the condition

if .
/ e A 2 =» l im- Xkon\SsJ) ^ = / I (A o nA, )> 1 - 2 f > | .

The set A2 by ergodicity has measure 1 in FMX. Define

def_

A3 = A2 n {/e FM, | wr(10 0 ) / e A2 for almost every t};

(notice that w,(10 0) is the contracting horocycle flow conjugate to h,). Finally define
def

fti = f tn{ t ;6 T1 Mjlpr^dv})n A3 is a set of full measure in prj~'({u})}.

We claim that, if £ is chosen sufficiently small, fti is a set that enjoys the property
(3) of lemma 4.1.

In fact if v belongs to il1 then for almost every direction on the contracting
horosphere of v, the contracting horoline through v with that direction has the
property that for almost every point w on that horoline the following statements
are true:
(*) if (us)f=0. (Wj)f=0 are arcs of expanding horolines through v = v0 and vv= vv0

which are conjugate to the contracting horoline from v to w, then for infinitely many
times t (in fact with frequency at least j) one has that:
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(1) the images under the geodesic flow g, of the arcs (us)?=o and (ws)f=0 are arcs
Of expanding horolines, of length greater than Lo, which visit the set Ao, on which
ip is uniformly continuous, with frequency greater than 1 -2f;

(2) g,(v0) and g,{w0) belong to the continuity set Ao.
Note also that, by our definition, v and w belong to O and therefore ip maps their
weakly unstable leaves 'nicely' in T'M2.

PROPOSITION 4.2. If v and w are points satisfying the conditions of paragraph (*) we
can say that:

(a) <A(f) andtp(w) arepointsin T[M2 belonging to the same contracting horosphere;
and moreover

(b) the arcs of expanding horolines (vs)f=0, (ws)f=0 ore mapped exactly to the arcs
of expanding horolines through ip(v) and ip{w) which are conjugate to the contracting
horoline from ip(v) to ip(w).

(c) the length of the contracting horoline from v to w equals the length of the
contracting horoline from ip(v) to </*(w)-

Now it is easy to understand that the conclusions of the above proposition together
with the facts established before, are merely a more symmetric rephrasing of the
condition (3) of lemma 4.1; in fact we have seen that for all t e f t , (and fli is a set
of measure (1) and for almost every point w on the contracting horosphere of v the
conditions of paragraph (*) are true; then proposition 4.2 says that, by (a), tp(w)
lies on the horosphere of ip(v), and, by (b), </»(w) is conjugate to the point ip(vy)
on the horoline (<A(t>s))seR that extends the horoline (iA(us))f=0. But, by (c), w is
conjugate to vy and therefore we have that i/»(vv) is conjugate to the image under
ip of the point to which w is conjugate. So, if the above proposition is true, we see
that fl] is a subset of il that satisfies the condition (3) of lemma 4.1.

We shall postpone the proof of the above proposition to next section; for now
let us notice that from proposition 3.2, proposition 4.2 and lemma 4.1 we have the
following

PROPOSITION 4.3. Let ip: TlM\ -> T1M2 be a measurable map which maps expanding
horospheres to expanding horospheres isometrically. Then tp coincides a.e. with a
continuous map ijt:Tl M, -* TlM2 which commutes with the geodesic flow, maps expand-
ing and contracting horospheres isometrically to expanding and contracting horospheres
and sends conjugate horolines to conjugate horolines.

We can now prove the following theorem:

THEOREM 1. Let M, = d e fr , \SO0 (1, n)/SO (n) and let ifr: T'M, -> TlM2 be a measur-
able map which sends expanding horospheres to expanding horospheres isometrically;
then tp = d<}> almost everywhere, 4> being an isometry from M, to M2.

Proof. We claim that a continuous map t£: TxMi^> T1M2 satisfying the conclusion
of proposition 4.3 is the lift to the unit tangent bundles of an isometry <f>:Ml-*M2.
The proof of this claim is trivial: we want to prove that if u, v are vectors in TlMx

at the same point p e M,, then ip(u) and *p(v) are vectors at the same point in M2;
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if this is the case then there is a unique map 4>: Mj -» M2 such that the diagram

T1M1 t T'Mt

M, -t M2

commutes; </> will be an isometry because if px,p2 belong to A^ and y(pi,p2) is
the shortest geodesic connecting px to p2, by lifting the geodesic to TXMX, mapping
over in T1M2 and projecting down in M2, we see that <£(/>i) and (f>{p2) have the
same distance as px and p2.

To prove the claim that vectors above the same point in M, are mapped to vectors
above the same point in M2 it is enough to prove it locally. Assume that u, v are
vectors in TlMx that project to the same point p e M , and d(u, v) < 8; let U be a
disc of radius e in the surface containing p, tangent to u and v and locally isometric
to a subset of H2; then u, v can be uniquely connected by a path in T11/<= TXMX

made of three arcs yx, y2, y3, where
(a) -yj is an arc of expanding horoline from u = u0 to Mt;
(b) y2 is a (conjugate) arc of contracting horoline from ux to u2;
(c) y3 is an arc of geodesic from u2 to «3 = v.

The corresponding arcs in TlM2 to which t// maps -yj, y2, y3 will also lie in the
tangent bundle to some two-dimensional surface locally isometric to hyperbolic
two-space H2 and will have the same lengths; therefore their projections in M2 will
give a path which closes up in M2; and this completes the proof of our claim.

The above theorem can be rephrased in the following way:

THEOREM 1'. Under the hypotheses of theorem 1, one can conclude that there exists
g e O (1, n) such that

and the map <$> is given by

Proof. An isometry <j>: M1 -» M2 induces an isometry of the universal covers of M,
and M2 and such an isometry is given by a map

x e H " >-». gxeH",

where g e O ( l , n ) . But the diagram

H" i H"

r,\Hn -» r2\Hn

commutes if and only if F2 = g r , g ~ \

Now we turn to the proof of proposition 4.2.
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5. Proof of proposition 4.2
The ideas of the proof of proposition 4.2 follow the lines of [Ra]; we need to
estimate the distance between starting points of horolines which stay close for
time L.

LEMMA 5.1. Let (ws), (vs) be horolines in T^W such thatd(us, vs) < e for all 0< 5 < L
and e sufficiently small; then v0 can be connected to u0 by a path made of three arcs
71,72,73, where:

(a) y-i is an arc of expanding horoline of length less than Ce;
(b) y2 is an arc of contracting horoline of length less than C e L~2;
(c) y3 is an arc of geodesic of length less than Ce.

Proof. By the left invariance of the metric d we can assume that u0 is the vector e
of coordinates

/ I 0 \

0 1

e = 0 0

\0 0/

and v0 is some vector such that d(e,vo)<e. Then by the transversality of the
horospherical foliations and the geodesic flow we can find a unique path yx, y2, 73
of arcs as in the statement of the lemma such that each of these arcs has length less
than Ce, where C is some positive constant. Let f0 be the frame

1 0 • • • ON

0 1 • • • 0

0

then a frame covering v0 is given by

where \a\< Ce, |/3| < Ce, |y| < Ce. Horolines of length L from e and v0 will be given
by the projection in T^W of the orbits

(«sc)s=o ((naampbGy)nsi) J=o.

By the left invariance under SO0 (1, n) of metric d on TlW we have:

d(pri (nsc), pr, {{naamphGy)nsi))= d{e,pvx (n_scnaxmpbGyns<i));

after tedious computations one can show that the entries of the first two columns
of the matrix

n-sc{naampbGy)nsi

are polynomials in 5 whose common leading term is given by

2e~yl32s4.

Since such entries must be less than a constant times e for all 0 < s < L one has that

)3 < Const e/L2.

And this concludes the proof of lemma 5.1.
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For the convenience of the reader, let us now restate proposition 4.2.

PROPOSITION 4.2. Let v0 and w0 be points in fl that belong to the same horosphere
and let (i>s)?i0 and (ws)^i0 be arcs of expanding horolines through v0 and w0 which
are conjugate to the contracting horoline from v0 to w0. Assume that there are infinitely
many t's such that:

(1) the images under the map g, of the arcs (vs)%0 and (ws)^l0 are arcs of expanding
horolines, of length greater than Lo, which visit the set Ao (on which i/> is uniformly
continuous) with frequency greater than l - 2 £ ;

(2) the points g,v0 and g,w0 belong to the continuity set Ao.
Then we can say that:

(a) «A(u0) and il/(w0) are points in TlM2 belonging to the same contracting horo-
sphere; and moreover

(b) the arcs of expanding horolines (vs)%=0, (ws)f=0 are mapped exactly to the arcs
of expanding horolines through ip(v0) and ip(w0) which are conjugate to the contracting
horoline from i/*(t)0) to i/s(w0);

(c) the length of the contracting horoline from v0 to w0 equals the length of the
contracting horoline from <p(v0) to <p(w0).

Proof. Without loss of generality we can assume that the distance between v0 and
w0 is as small as we like. Let wq(s) be the point where the weakly stable leaf through
vs intersects the horoline (ws); q(s) is a function which depends only upon s and
the distance between v0 and w0, since the horolines (vs) and (ws) are conjugate to
the same contracting horoline. Moreover we have

sup |q(s ) -s | -»0 as d(vo, t>0)-»0
Osssl

sup as d(v0, vo)-*0.
ds

Fix an e > 0; corresponding to this e there is a 77 such that

d(x,y)<7) and :

Let the distance between v0 and w0 be so small that for all t > 0
(a) supOsssld(g,(vs),g,(wqU)))<r);
(b) supOss==i \q(s)-s\<a;
(c) suposjs! \(dq/ds) -1| < a, where a = <*(£) is a number to be denned later.

Then the horolines

have lengths greater than e' min ( l , g ( l ) ) > e ' ( l - a ) which for large t will be greater
than Lo. By our assumptions there are infinitely many t for which these horolines
will visit the continuity set Ao with frequency greater than 1 - 2 £ This implies

XA0(g,Vs)ds>\-2£ and XAo(g,wr)
Jo Jo

dr> l -
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But then

fl if1 fin
do-P w W ^ J L P W )^

Jo A ° ' q(<r) l + « J o A° ' ds

= ^ ( g r ^ ) dr

-if (i'-r)
l + a \ J o J,(i)/1

1 + a

So if we choose a small enough we have

Jo

and therefore for at least a fraction (1 — 5£) of s's one has simultaneously

gi».eA0 g«w,(l)eA0.

Therefore for these s's, since d(g,(vs), g,(wq(s))) < 17, one has

v.)), g,(*(w,(j)))) < e.

Let w0 be the point on the contracting horoline of i/>(u0) conjugate to the horoline
</'(i's)J=o. whose distance from i/Ktfo) equals the distance of vv0 from v0. Let (ws) be
the expanding horoline through w0 conjugate to the horoline from i[i(v0) to w0. We
have

d(g,wq(s),g,ilj(vs))<T)

for all t > 0 and 0 < s < 1; therefore

rf(g<w,(s), g,(iA( w,(l)))) < e + 77,

whenever g,t?s and g,w,(s) belong to Ao. But then

f*(1) f1

rf(g,tv(r,gr(^(w<r)))d(7= d(g
Jo Jo

Jo
+ a) d(g,w,(CT), g,(^(w,((r)))) do-

J

where D is the radius of injectivity of T1M2. By lemma 2.1 if £ and a are chosen
small enough, this implies that

d(g,w,, g,(<Kw,))) < Ce for all 0 < 5 < q(l);

the horolines (g&jfJZ and (g,(</Kws)))?=o have length greater than e'q{\)> \/2e'
and therefore by the lemma 5.1 we have that g,vt>0 and g,{ip{w0)) can be connected
by a path yi, T2, 73 where y^ and y3 are arcs respectively of expanding horoline
and of geodesic both of length less than C, e, and y2 is an arc of contracting horoline
of length less than C,£/c"2'. This implies that H>0 and ilf(w0) can be connected by
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a path y[, y'2, 73, where:
(1) y[ is an arc of expanding horoline of length less than C,e/e~';
(2) y'2 is an arc of contracting horoline of length less than C,e/e~';
(3) y3 is an arc of geodesic length less than C^e.

Since this holds for infinitely many positive values of t we must have y[ = 0, y'2 = 0
and w0 and <p{w0) must lie on the same geodesic. We claim wo= (/»(w0); in fact, by
the assumption (2), for some subsequence of t's we have that:

d(g,vo,g,wo)-*0 => d(<l>(gtvo), iKg,wo))-»0;

on the other hand, since w0 and iKwo) are on the same geodesic, d(w0, ip(wo)) =
d(g,w0, g,tp(w0)) for all t and

therefore wo= </Kw0). And this concludes the proof.

Added in proof. After this work was completed we have learned that D. Witte [Wi]
has proved results similar to ours concerning the rigidity of the action of horos-
pherical elements. More exactly his results imply the rigidity of the horospherical
foliation of the frame bundle: let ^ : r i \ S O 0 ( l , « ) -*r 2 \SO 0 ( l , n) be a measure
preserving map that is an isometry when restricted to expanding horospheres. For
each xeFiXSOo (1, n) there is a < £ x e S O ( n - l ) with ij/(nsax) = n^(J,)i/'(x); since
<j>x = (f>y whenever x and y are on the same horosphere <$>x is independent of x. In
Witte's terminology, this means that tj/ is affine for the horospherical group. Hence
Witte's theorem implies that <p is an affine map.
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