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Abstract

Let Nn(w) be the number of real roots of the random algebraic equation ^2l=oaviv(w)x1' = 0 .
where the £v{w) 's are independent, identically distributed random variables belonging to the
domain of attraction of the normal law with mean zero and /"{<!;„ (u>) ^ 0} > 0 ; also the
av 's are nonzero real numbers such that {kjtn) = O(logn) where kn = max 0 < j / < n \av\ and
tn = m i n 0 < I / < n \av\. It is shown that for any sequence of positive constants (e n , n > 0)
satisfying en —» 0 and en log n —• oo there is a positive constant fi so that

en\^ e^ logn,,)"1

for all n0 sufficiently large.
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1. Introduction

Let Nn(w) be the number of real roots of the algebraic equation

(1.1) / ( J C , t y ) = 2 j ^ ( t o ) j c = 0 ; x e R
i/=0

where the £v(w) 's are independent, identically distributed real-valued ran-
dom variables. Samal [7] has considered the general case when the ^{w) 's
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are independent random variables identically distributed with expectation
zero, the variance and the third absolute moment finite and nonzero. He has
shown that Nn(w) > en logn outside an exceptional set whose measure tends
to zero as n tends to infinity, where en —> 0 but en log n -» oo .

Mishra et al. [4] consider the equation

(1.2)
i/=0

in which the £v(w)'s are independent, identically distributed random vari-
ables belonging to the domain of attraction of the normal law with
P{iv(w) 7̂  0} > 0 and av 's are nonzero real numbers such that

They show that when n > n0 ,

(1.4) Nn(R, w)>(n log n)l log { ^ log n\

outside a set of measure at most

(1.5) A i ' / j l o g ^ l o g n ) . (log/i)1"'}

for 0 < e < 1 and positive constants n and / / .
Mishra et al. [5] consider the polynomial equation (1.2) under the con-

ditions (1.3) and prove that there exists a positive integer «0 such that for
n > n0 and positive constants C and C',

r fk w1/2

(1.6) iVn( /? ,u;)>c | log«/ logMloglog«J |

outside a set of measure at most
(1.7) C'jlogf-^loglog/ioj/log/iol ; 0 < e < l .

The result (1.4) and (1.5) is of the form

PrlNn(R, w)llogn < ft/log (-f-logn\ J - 0,

while the result contained in (1.6) and (1.7) is of the form:

Pr J mf Nn{R, w)/ log n < c/ (log n log (-*• loglog n\\ I -* 0.
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The latter result is called the 'strong result' and may be referred to as the
strong-version or 0-version of the former.

Mishra et al. [6] solve the same problem, obtaining for n > n0,

(1.8) Nn(R, w)>en log n

outside an exceptional set of measure at most

(1.9) n/{en log n + (kn/tJ

(0<fi<2-e,0<e<2), provided that limn_>oo(^n/^) is finite.
Earlier Samal and Pratihari [10] had obtained the lower bound (1.8) with

an exceptional set of measure smaller than (1.9) in case the £,v{w) 's are in-
dependent and identically distributed random variables with common char-
acteristic function e\p(-C\t\a); C being a positive constant and a > 1.
Samal and Pratihari [8] have proved the 0-version of their theorems in [10]
with refinement of their exceptional set and they have extended this result
to the general case in [9] when the £v(w) 's are independent, identically dis-
tributed random variables with mean zero and the variance and the third ab-
solute moment finite and nonzero. They have obtained the lower bound (1.8)
outside an exceptional set of measure at most ,«/(£„ log«0) for n > nQ, «0

being sufficiently large and // a positive constant. It is apparent that Mishra,
Nayak and Pattanayak are not aware of [8, 9, 10].

In this paper our object is to prove the following theorem.

THEOREM. Let Nn(w) be the number of real roots of the equation f(x,w)
= 12"=oai>€v(w)x'' ~ 0 of degree n, where the coefficients £u(w) are in-
dependent, identically distributed random variables belonging to the domain
of attraction of the normal law with mean zero and PT{^V(W) ^ 0} > 0.
Let the av 's be nonzero real numbers such that kn/tn = 0(log«), where
kn = maxo<J/<n \av\, tn = mino<(/<n \av\. Then, for any sequence of positive

constants ( £„ ,«> 0) satisfying en —> 0 and e2
n log' n —> oo, there is a positive

constant n so that

Pr{ inf AT (u>)/logw < en \ < fi(e log/!„)' '

for all n0 sufficiently large.

This theorem gives the strong result of Mishra et al. [5] as a particular
case. Choosing en — c/{log«log(^ log log n)}1^2 in our theorem, their lower
bound (1.6) is obtained. Moreover, for this choice of en our exceptional set
becomes smaller than theirs (1.7). Of course, for such choice of en , e2

n log«

https://doi.org/10.1017/S1446788700037009 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700037009


[4] Real roots of a random algebraic equation 89

tends to zero instead of oo, but {aen logn)2 tends to infinity. It will be seen
in the sequel that k appearing in (2.8) is a positive integer tending to infinity.

Throughout this paper [x] denotes the greatest integer not exceeding x ,
V(t]) the variance of the random variable r\. We assume that all inequalities
are satisfied for n sufficiently large. Positive constants are denoted by fi 's.

2. Proof of the theorem

Since the £u{w) 's belong to the domain of attraction of the normal law,
their characteristic function is given by (cf. Ibragimov and Linnik [3, page
91])

(2.1) W) = expj-yA(0|

where h(t) is a slowly varying function as t —> 0 with the property that

(2.2) h

Let
f ReA(0 i

h.{t) = < ,l W \a2 i

which is a slowly varying function in a neighbourhood of the origin. By (2.2),
h(t) = h{(t){\ + o(l)} in both the cases as t -* 0.

2.1. Take absolute constants A and B such that A > 1 and 0 < B < 1 .
Choose

(2.3) / ^

where C{ is a constant to be chosen later. Let, for constants d{ > 1, e =
exp(l),

(2-4) K= 16 M?) '[if) + 1

so that

(2.5) ^{{kjtjfij2 <Mn<n- 2{(kJtn)Pn}
2

Let

(2.6) </>(A:) = xx

and fc be an integer determined by

(2.7)
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The first inequality of (2.7) gives

(ik + 7){log(8fc + 7) + logMJ < logn

and ultimately

k <M"(logn)/log (^-fi

The second inequality of (2.7) gives

log«< (8fc +

l l ) 2 + (8A:+ll)logAfn

so that k > n'{{logn)/lo%(knPnltn)}
X11. Thus, from (2.7) we have

(2.8) J i ^ ^ 2

We consider f(xm, w) = Um(w) + Rm{w) at the points

( 2-9 )

for m = [k/2] + 1, [k/2] + 2, [k/2] + 3 , . . . , k, where

1 \ 2 3 /

the index v ranging from vx + 1 = <f>{Am - l)M*m~l + 1 to v2 =

^ 3+ 3)A/^m+3 in ^ p from 0 to i/, in ^ 2
 a n d f r o m vi + l t 0 "

in £ 3 . So

(2.10)

f(x2m, w) = U2m(w) + R2m(w); f(x2m+1, w) = U2m+l(w) + R2m+l(w)

where U2m(w) and U2m+i(w) are independent. Let Vm be given by the
relation

(2-11) X E ^^(a^d/VJ^l

where 6 is a small positive number to be chosen later. Ibragimov and
Maslova [2] show that normalising constants such as Vm exist under con-
ditions of our theorem for 6 sufficiently small.
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If F(^(u;)) = ff2<oo,then

y,2 2 v ^ 2 2 » v 2 .2 v ^ 2i/
Fm = ff E fl,*m ^ ff '» E Xm

> <r2t2
n<f>{4m + l)M*m(B/Ae)

or,

(2.12) 0(4/n + l)M*m < (Ae/B)£[.

If ^(^(to)) = oo, then we have by (2.2) lim^oA,^) = oo so that we
choose 6 such that h{(t) > 1 for |;| < 6 . Hence, in this case we have

(2.13) <£(4m + l)M*m < (Ae/B)(V*/t2
n).

2.2. We give here three lemmas to be used in the proof.

LEMMA 1. \Y,2a
v£v(

w)xV
m\ < (m^n^m except for a set of measure at

most ti/{mf}n)
2~e for e > 0, where

(2.14) <

LEMMA 2. \Yl3a^v(
w)xm\ < (m^«)^m except for a set of measure at

st f

(2.15)

most fi/(mPn)
2~e for e > 0, where

3

These lemmas are proved in the same way as in Mishra et al. [4].

LEMMA 3. \Rm(w)\ < Vm except for a set of measure at most /j,/(mPn) "e

for m = m0, m0 + 1, mo + 2, ... , k; mQ = [k/2] + 1.

PROOF. (CASE I.) Let V(£v(w)) = oo Then by Lemmas 1 and 2, \Rm\ <
mpn{Wm + Zm

 2

e > 0. That is

m

for any m , except for a set of measure at most ///(m/?n)2~£,

1/2 ( -, 1/2N

1/2N

https://doi.org/10.1017/S1446788700037009 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700037009


92 D. Pratihari, R. K. Panda and B. P. Pattanaik [7]

where d = max0^({hl(aux
l
m0/WJ}l/2, {hx{avx"m0IZm)Y12).

Clearly d > 1 since 6 is small. Again, we can choose 6 so that hx are
bounded (cf. Mishra et al. [6, page 23]). Hence d is bounded above. Let d{

be a positive constant such that d < dl . Then

V12 ( l 1

j {}
Again

xm <<f>(4m- \)Mn

(2.16)

Also

2s Xn

Now ^(4m + 3)Mn
4m+3 > 0(4/w + l)M*m(4m + \)2M2

n so that

(2.17)

2u < (f)(4m + l)M*mexp{-(4m + l)2M2} < <j>{4m + l)M*m/(l6m2Mn)
3

Therefore, using (2.16), (2.17) and (2.13) we get

(CASE II.) When V({v(w)) = a2 < oo, we have
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Hence \Rm\ < Vm in both cases and for m = m0, mo+l, ... , k except for
a set of measure at most fi/(mfin)

2~E.

2.3. We define events Em as the sets of w for which U2m(w) > V2m

and U2m+i(w) < — Vim+l
 anc* t n e e v e n t s Fm

 a s t n e sets of w for which
U2m(w)<-V2m and t / 2 m + 1 ( ^ ) > F 2 m + 1 .

Let S+ , Sm be the sets of w in which !/„,(«>) > Vm and *7m(w) < -Vm

respectively. Hence Eml>Fm = (S2
+
m n S ^ , ) U(S2mnS2

+
w+1). Since the two

sets within the braces on the right hand side are disjoint and since U2m(w)
and U2m+l(w) are independent random variables, we have

(2.18) P = P(Em U Fm) = P(S2m)P(S2m+l) +

= P{u2m>v2m)p{uM<-v2m+l)
+ P (U2m < ~V2m) P (U2m+l > V2m+l) = 8m (say).

Let Gm(x) and gm(t) be respectively the distribution function and the

characteristic function of (Um/Vm). Then

'k'yi E ^hia^tlvA.

Let F(x) = (l/\/27t)/^ooexp(-M2/2)rfM. As in [6], as m - » o o , gm{t) -»
<exp(-< /2) in any bounded interval of ^-values. Hence

sup\Gm(x)-F(x)\ =

So \G2m{-\) - / ( - 1 ) | < e and \G2m+l{-\) - F{-\)\ < e; e > 0. Thus,
from (2.18), we get

P = 8m > 2{F{-\) - e}{l - F( l ) - £} = <5 (say).

Obviously 8m > 8 > 0 for large values of m .

2.4. Let r\m be a random variable such that it takes values 1 on Em U Fm

and zero elsewhere. In other words,

J 1 wit
t1m ~ { 0 wit

The w 's are thus random variables with E(rj ) = 8 and V{r\ ) = 8m -

1 with probability 8m

"» ~ 1 o with probability 1 - 6m.

Let /9m be defined as follows:

1 elsewhere,

where (2.10) holds.

Pm =
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i f ?« = * a l l dm = nm- VmPm • N ° W dm =
implies the occurrence of one of the events:

[9]

= 0, which

V2m

It is obvious that (i) implies f(x2m) > 0 and f(x2m+l) < 0 and (ii) implies
that f{x2m) < 0 and f{x2m+l) > 0 . Thus, if 0m = 1, there is a root of the
polynomial in the interval (x2m , x2m+l). Hence the number of roots in the

interval (x2m<), x2k+x) must exceed £ * =Wo dm where m0 = [k/2] + 1.

2.5. We have

(2.19)

Let A(w) be the set of w for which

1
sup -

k-mo+l>ko k. - mQ-\-

B{w) be the set of w for which

sup
1

and C{w) be the set of w for which

SUP k -

= 1),

> V2m) U

>e/2

>e/2.

>^2 m +.)}

Since

Using Lemma 3 and (2.3) we have E(pm) < p/m e. Therefore

k , k
1

- mn + 1 ^
0 m=mn

< k_l ., E 2-e

and so

P{C(w)} <

< (2/i'/e)

P ( i r Y P > £ / 2

« m=m0

A:—mo+l>ito
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Here we need the strong law of large numbers in following form, which is
a consequence of the Hajek-Renyi inequality (see [1]):

LEMMA 4. Let nx, n2, ... be a sequence of independent random variables
with V(nt) < 1 for all i. Then, for each e > 0 ,

where D is a positive constant.

Applying Lemma 4, we have

From (2.19) it follows that A(w) c B(w) U C{w). Therefore

k-mo+l>ko

Hence

sup
fc-mo+l>A:o

< e

o u t s i d e t h e s e t A(w) w h e r e P{A(w)} < /n3/k0 + ^412k-m(1+\>ko(
l/mo * ) •

Therefore

I k k

k-mn+ 1

for all k such that fc - m0 + 1 > kQ. So that

^ m > ( ^ - ' " o + 1 ) ^ - « )

= (k- [k/2])(S-e) > k(S-e)/2 > ^ ~E)enlogn,

for all k such that k - m0 + 1 > k0, that is, for all n > nQ. We have

k>k0

Now the result follows by taking C, = fi2(S - e)2/4.
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