
Appendix E

Symmetry properties of matrix elements

In this appendix we derive symmetry properties of matrix elements of the
electromagnetic multipole operators that follow from hermiticity of the
current and time-reversal invariance of the strong and electromagnetic
interactions [Pr65, Wa84].1 The electromagnetic current is an observable
and an hermitian operator

Ĵ(x)† = Ĵ(x)

ρ̂(x)† = ρ̂(x) (E.1)

The properties of the spherical and vector spherical harmonics under
complex conjugation follow by inspection

Y �
JM = (−1)M YJ,−M

YM�
JJ1 = (−1)1+M Y−M

JJ1 (E.2)

The adjoints of the multipole operators then follow from their definition

T̂JMJ
(κ)† = (−1)MJ+η T̂J,−MJ

(κ)

η ≡ 1 ; current multipoles

≡ 0 ; charge multipoles (E.3)

It is useful to include isospin in the analysis. Define spherical components
of τ

τ±1 = ∓ 1√
2
(τ1 ± iτ2)

τ0 = τ3 (E.4)

1 Selection rules from parity invariance of these interactions are discussed in the text.
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Now isolate the isospin dependence of a multipole operator in a factor

ITMT
≡ 1

2
; T = 0

≡ 1

2
τ1,MT

; T = 1 (E.5)

It follows that the multipole adjoints further satisfy

T̂†
TMT

= (−1)MT T̂T ,−MT
(E.6)

A combination of these results gives the full adjoints of the multipole
operators

T̂JMJ ;TMT
(κ)† = (−1)MT+MJ+η T̂J,−MJ ;T ,−MT

(κ) (E.7)

We shall now derive from this the following relation on a general
reduced matrix element of a multipole operator

〈JfTf

...
... T̂J,T (κ)

...
... JiTi〉� = (−1)Jf−Ji+Tf−Ti+η〈JiTi

...
... T̂J,T (κ)

...
... JfTf〉

(E.8)

Here the symbol
...
... indicates a reduced matrix element with respect to both

angular momentum and isospin. The proof of this relation follows from
the Wigner–Eckart theorem [Ed74]

〈JfMfTfM̄f |T̂JMJ ;TMT
|JiMiTiM̄i〉 = (−1)Jf−Mf

(
Jf J Ji

−Mf MJ Mi

)

×[J ⇀↽ T ] × 〈JfTf

...
... T̂J,T

...
... JiTi〉 (E.9)

Now take the complex conjugate of this relation and use the definition of
the adjoint 〈f|T̂|i〉� = 〈i|T̂†|f〉

(−1)Jf−Mf

(
Jf J Ji

−Mf MJ Mi

)
× [J ⇀↽ T ] × 〈JfTf

...
... T̂J,T

...
... JiTi〉�

= (−1)MJ+MT+η(−1)Ji−Mi

(
Ji J Jf

−Mi −MJ Mf

)

×[J ⇀↽ T ] × 〈JiTi

...
... T̂J,T

...
... JfTf〉 (E.10)

Here the Wigner–Eckart theorem has been used once more on the last
matrix element. Now use the properties of the 3-j symbols [Ed74] to
rewrite the right hand side

r.h.s = (−1)Jf−Ji+Tf−Ti+η(−1)Jf−Mf

(
Jf J Ji

−Mf MJ Mi

)

×[J ⇀↽ T ] × 〈JiTi

...
... T̂J,T

...
... JfTf〉 (E.11)

Equation (E.8) has now been established.
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Let us now investigate the restrictions imposed by time-reversal invari-
ance. Recall that the time-reversal operator is anti-unitary and satisfies

T̂ i T̂−1 = −i

〈f|T̂−1|i〉 = 〈Tf|i〉� (E.12)

The properties of the electromagnetic current under time reversal follow
from classical correspondence

T̂ Ĵ(x) T̂−1 = −Ĵ(x)

T̂ ρ̂(x) T̂−1 = ρ̂(x) (E.13)

Thus the multipole operators satisfy

T̂ T̂JMJ,TMT
T̂−1 = (−1)MJ T̂J,−MJ ;TMT

(E.14)

Note that the current only involves MT = 0 and hence time reversal does
not affect the isospin here. Our states are defined to transform according
to 2

T̂ |JMJ;TMT 〉 = (−1)J+MJ |J,−MJ;TMT 〉 (E.15)

Time-reversal invariance then says

〈JfMfTfM̄f |T̂JMJ ;TMT
|JiMiTiM̄i〉

= 〈JfMfTfM̄f |T̂−1T̂ T̂JMJ ;TMT
T̂−1T̂ |JiMiTiM̄i〉

= (−1)Ji+Mi(−1)Jf+Mf (−1)MJ

×〈Jf,−MfTfM̄f |T̂J,−MJ ;TMT
|Ji,−MiTiM̄i〉� (E.16)

Now use the Wigner–Eckart theorem on both sides and the properties of
the 3-j symbols [Ed74]

(−1)Jf−Mf

(
Jf J Ji

−Mf MJ Mi

)
× [J ⇀↽ T ](1) × 〈JfTf

...
... T̂J,T

...
... JiTi〉

= (−1)Ji+Mi(−1)Jf+Mf (−1)MJ (−1)Jf+Mf

(
Jf J Ji
Mf −MJ −Mi

)

×[J ⇀↽ T ](1) × 〈JfTf

...
... T̂J,T

...
... JiTi〉� (E.17)

Since the isospin factors are identical, this relation implies

〈JfTf

...
... T̂J,T

...
... JiTi〉� = (−1)J〈JfTf

...
... T̂J,T

...
... JiTi〉 (E.18)

2 Note that this involves a phase convention.
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Table E.1. Selection rules for multipole operators from parity and time reversal
in elastic scattering; this quantity must be +1.

M̂JM(κ) T̂ el
JM(κ) T̂

mag
JM (κ)

Parity (−1)J (−1)J (−1)J+1

Time Reversal (−1)J (−1)J+1 (−1)J+1

A combination of Eq. (E.8) and Eq. (E.18) then leads to

〈JfTf

...
... T̂J,T

...
... JiTi〉 = (−1)J+η+Jf−Ji+Tf−Ti〈JiTi

...
... T̂J,T

...
... JfTf〉 (E.19)

This is the basic result of this appendix. It follows from the hermiticity
of the current, time-reversal invariance of the strong and electromagnetic
interactions, and a phase convention on the states. This relation allows
one to turn around the matrix elements. If the initial and final states are
identical, as is the case in elastic electron scattering, this relation leads to
a selection rule. It states that

(−1)J+η = 1 ; elastic scattering (E.20)

Thus J + η must be an even integer in elastic scattering. Hence only
the even charge multipoles and odd current multipoles can contribute
to elastic scattering. The selection rules for the various multipoles from
both parity and time reversal in the case of elastic scattering are shown
in Table E.1. For the charge and transverse magnetic multipoles, time-
reversal and parity invariance lead to identical selection rules, that is, only
charge multipoles with even J and transverse magnetic multipoles with
odd J contribute to elastic electron scattering. For the transverse electric
multipoles, parity implies J must be even while time reversal implies
J must be odd. Hence invariance under both parity and time-reversal
invariance implies there are no transverse electric multipoles in elastic
electron scattering

〈i|T̂ el
JM(κ)|i〉 = 0 ; parity and time reversal (E.21)
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