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Abstract
Modelling mortality co-movements for multiple populations has significant implications for mortality/longevity
risk management. This paper assumes that multiple populations are heterogeneous sub-populations randomly drawn
from a hypothetical super-population. Those heterogeneous sub-populations may exhibit various patterns of mor-
tality dynamics across different age groups. We propose a hierarchical structure of these age patterns to ensure the
model stability and use a Vector Error Correction Model (VECM) to fit the co-movements over time. Especially,
a structural analysis based on the VECM is implemented to investigate potential interdependence among mortality
dynamics of the examined populations. An efficient Bayesian Markov Chain Monte-Carlo method is also devel-
oped to estimate the unknown parameters to address the computational complexity. Our empirical application to
the mortality data collected for the Group of Seven nations demonstrates the efficacy of our approach.

1. Introduction
Mortality modelling is an important topic in actuarial science and insurance practice, dating back to the
deterministic and one-dimensional Gompertz model. Over the past decades, stochastic approaches are
rapidly developed, represented by the seminal (Lee and Carter, 1992), or LC model. The LC model is
based on a combination of temporal trends and age patterns in logged central mortality rates, which has
become a standard for model and project dynamics of mortality rates. Its forecasting performance is well
documented in existing literature (see, for example, Lee and Miller, 2001, among others). Intrinsically,
the LC model assumes that a single time-varying index drives the temporal dynamics of mortality
rates. The associated forecast relies on the extrapolation of this index with an appropriate statistical
linear time-series model. The popularity of LC stems from its simple construction and straightforward
interpretations (Lee, 2000; Denuit et al., 2007).

This paper focuses on modelling and forecasting multi-population mortality rates, which are more
comprehensive than a single-population framework and are receiving attention from recent literature.
For example, a multi-population framework is used to study a group of countries with similar socioeco-
nomic situations or males and females in the same population (Li and Li, 2017; Boonen and Li, 2017).
These models are motivated to assess the demographic basis risk involved in an index-based longevity
hedge by comparing and projecting the reference and target populations’ mortality experience (Li and
Lee, 2005). For instance, when projecting mortality for a smaller community with a thin volume of mor-
tality data, the forecaster may aim to improve the credibility by modelling the smaller population jointly
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with a larger population. Another useful approach is to simultaneously forecast mortality rates of both
males and females of the same population, thereby ensuring consistency of the sex differentials.

Regarding the multi-population mortality modelling, Li and Lee (2005) are among the first to extend
the LC model and propose a multiple-population counterpart, or the LL model. The LL framework uses
a common factor to describe the long-term temporal trend shared by all countries within the investigated
group to model the mortality rates. A country-specific factor is also adopted to describe the short-term
country-specific patterns, effectively avoiding the undesirable divergence of mortality forecasts among
populations in the long run.

More recently, other extensions of the LC model to the multi-population framework have flourished,
and examples include Yang and Wang (2013), Zhou et al. (2014), Li et al. (2015) and Danesi et al.
(2015). For instance, Kleinow (2015) proposed a common-age-effect (CAE) model to allow more than
two populations, which extends the LL model. The age effect of CAE model, however, is assumed
identical for all populations. This is motivated by the observation that obtained age effects are close
to each other when estimated among different countries of similar socioeconomic structures. Thus, the
number of parameters (i.e., age effects) can be reduced when simultaneously modelling their mortality
experiences.

As pointed out by Chen et al. (2015), the CAE-type models might only be justified by the long-
term mortality co-integration, yet it seems too strong to model the short-term mortality dependence.
Alternatively, an ARMA-GARCH process with heavy-tailed innovations was proposed to filter the mor-
tality dynamics of each population. The residual risk could then be fitted via a one-factor copula model.
However, the increased complexity in its modelling structure is the drawback when compared with the
LC-type models.

Extended from the classic LC model, this paper proposes a new multi-population approach based
on a hierarchical structure to model all examined populations. Our approach effectively balances the
dichotomy of short-term predictive power and long-term coherence. Specifically, unlike the existing
CAE framework, in our model, population-wise age effects are allowed to improve the short-term fore-
casting accuracy. Further, similar to the models of Yang and Wang (2013) and Zhou et al. (2014), the
long-term coherence is considered, since all population-wise age effects are random vectors generated
from the same parametric distribution. More importantly, our model manages to achieve the improved
flexibility while retaining a relatively parsimonious model specification. Given the limited availabil-
ity of mortality data, such a hierarchical structure effectively utilises cross-sectional information in
the estimation and forecasting. As for the temporal dimensionality, a Vector Error Correction Model
(VECM) is employed to model the co-movements among sub-populations. Relevant parameter restric-
tions are discussed for identification purpose, which also provides asymptotically coherent forecasts of
mortality rates. The employed VECM also enables subsequent structural analyses, which examine the
interdependence of mortality dynamics of sub-populations.

In terms of the parameter estimation of our model, the traditional singular value decomposition (SVD)
for estimating the LC model is no longer feasible. Although the integrated likelihood function exists ana-
lytically, its exact computation involves large dimensional Kronecker products, resulting in difficulty to
implement the standard maximum likelihood estimation algorithms. Due to the high dimensionality and
the limited sample size of mortality data, other popular alternative such as the Expectation-Maximization
technique is not pursued in this paper. To combat against the complexity, we implement the Bayesian
estimation approach.

Over the past decades, Bayesian inference has become a popular statistical approach for its ability
to capture complicated dynamics and its inherent parameter variability assumption (Czado et al., 2005;
Pedroza, 2006; Kogure and Kurachi, 2010; Li et al., 2015; Wong et al., 2018; Lin and Tsai, 2022). The
first Bayesian attempt to implement the LC model via state-space model is made by Pedroza (2006)
for a single-population framework, followed by a two-population age-period-cohort model developed in
Cairns et al. (2011). The benefits of using Bayesian methods in mortality modelling are fourfold:
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• It is particularly suitable for constructing hierarchical models, where the inference is obtained
iteratively through the conditional likelihoods.

• It allows for the imputation of the prior knowledge that one can blend in the belief of long-term
coherence among the population groups (Hyndman et al., 2013) via prior hyper-parameters.

• Unlike the frequentist framework, the model parameters are random variables, which are con-
venient for superannuation and life insurance fund with heterogeneity among the policyholders
(Cairns, 2000).

• Bayesian methods can straightforwardly deal with missing data (Li et al., 2019).

Despite the sophisticated framework, our proposed hierarchical model can be efficiently estimated
via the Bayesian Markov Chain Monte-Carlo (MCMC) algorithm. Nevertheless, a naive implementation
of the MCMC is undesirable, due to the resulting slow mixing of the chain and poor estimation results.
To address this, we develop an efficient MCMC algorithm for sampling posterior distributions and pre-
dictive densities. The model is first rewritten as a state-space model under a matrix-variate Gaussian
formulation (Gupta and Varga, 1992). An algorithm is then proposed to sample the age random effects
for all the populations in one block. Finally, instead of using the standard Kalman filter (Koopman and
Durbin, 2003) for sampling the latent factors, we employ an efficient precision sampler of Chan and
Jeliazkov (2009) that substantially reduces the computational cost.

To demonstrate its usefulness, we apply our multi-population LC model to empirical mortality data
of the Group of Seven (G7) countries, consisting of Canada, France, Germany, Italy, Japan, the United
Kingdom and the United States. The sample ranges from 1956 to 2019. Compared with other competing
models, our baseline approach achieves favourable in-sample and out-of-sample forecasting results. A
structural analysis of mortality dynamics is further implemented.

The contributions of our research are fourfold. First, we provide a parsimonious hierarchical frame-
work and propose a multi-population LC model. This Bayesian hierarchical model extends Pedroza
(2006)’s state-space representation by introducing random age effects to account for multi-population
modelling. Compared with existing approaches, such as the CAE and those proposed in Yang and Wang
(2013) and Zhou et al. (2014), the more flexible population-wise random effects are allowed with mini-
mal additional complexity. Lin and Tsai (2022) also consider introducing Bayesian hierarchical method
to multi-population modelling, but their underlying model of log mortality rate is a random walk with
a drift process. In contrast, our paper develops a Bayesian hierarchical method based on the classical
Lee–Carter model and its multi-factor extension. Second, via the VECM approach with an appropriate
shrinkage prior, the proposed model has co-integrated temporal factors and thus achieves the desirable
long-term coherence across populations. Thus, same as the seminal LL model, the long-run divergence
in forecast mortality rates among populations is prevented, which cannot be ensured if independent LC
models were adopted (Tuljapurkar et al., 2000). Compared to the LL specification and other coherent
LC extensions (Yang and Wang, 2013; Zhou et al., 2014), our model is more flexible, such that tempo-
ral interactions across populations could be investigated. In particular, our VECM approach enables a
structural analysis to examine the interdependence of mortality dynamics of G7 populations. To the best
of our knowledge, this paper is among the first to consider such analyses. We demonstrate that structural
shock to US mortality rate can permanently lead to mortality declines of other countries. In the long run,
mortality dynamics of Japan and Germany have non-negligible contributions to US mortality changes.
Third, an associated Bayesian algorithm to implement the estimation is developed. Different from a
naive MCMC, our approach significantly reduces the computational cost and improves the reliability
of estimation. Fourth, the empirical results, demonstrate the outperformance of our model, when both
in- and out-of-sample forecasts are considered. Also, our empirical evidence shows significant variation
in the age effects and significant temporal interactions among examined populations. This supports the
importance of our hierarchical structure to more effectively utilise the cross-sectional information.

The remainder of the paper is organised as follows. Section 2 introduces our multi-population LC
model and provides appropriate parameter restrictions for identification and asymptotic coherence. The
model is then calibrated in the Bayesian framework in Section 3, and an efficient estimation algorithm
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is provided. The in-sample and out-of-sample empirical performances of our proposed models are then
presented in Section 4, along with an empirical structural analysis. Finally, we conclude the paper in
Section 5.

2. A multi-population Lee–Carter framework
2.1. The classic Lee–Carter specification
Lee and Carter (1992) developed an approach to study mortality data of the United States, which has been
widely applied in actuarial and demographic research. The LC model to forecast mortality rates is essen-
tially via extrapolating historical trends and predicting probability distributions of age-specific death
rates (ASDR) using standard time-series procedures. The basic LC specification is displayed below:

log(mx,t) = αx + βxκt + εx,t

for ages x = x0, · · · , ω and years t = 1, · · · , T . yt = [ log(mx0,t), · · · , log(mω,t)]′ is the vector of logged
ASDR. We also have that α = [αx0 , · · · , αω]′, and n = ω − x0 + 1 denotes the number of age groups.
The popularity of LC model stems from its simple interpretation, that αx is the long term average of
log(mx,t), κt is the common temporal trend of mortality change and assumed a latent factor, and βx is the
relative sensitivity of the ASDR with respects to the time change.

To estimate this single population Lee–Carter model, the original approach is to use sample average
for αx and apply a singular value decomposition on [y1, · · · , yT] − α1′

T to extract κ = [κ1, · · · , κT]′.
Then, κ is adjusted to fit the reported life expectancy at each time. This second stage makes the model
fit historical life expectancy exactly. The adjusted κ is then modelled using standard time-series methods,
typically a random walk with a drift, as suggested in the original work of of Lee and Carter (1992), to
produce mortality forecasts.

2.2. A multi-population extension of Lee–Carted model
Despite its popularity, independently fitting single-population LC models are insufficient to comprehen-
sively study the mortality dynamics. To see this, in Figure 1, point forecasts of logged central death rates
for age 65 (spanning 2020–2119) are depicted for all the G7 countries, where the LC model is indepen-
dently fitted to each country’s mortality rate over 1956–2019, with male and female data combined.
Obviously, those point forecasts in Figure 1 are non-coherent, that is, the predicted mortality rates of
those populations diverge over time. This lack of long-term coherence motivated the class of coherent
multi-population models (Li and Lee, 2005; Li et al., 2015).

Studying mortality experience in the multiple population context is a more complicated problem.
Early explorations by Tuljapurkar et al. (2000) treated the mortality movements of each population
independently and modelled the age-specific mortality via

log(mi
x,t) = αi

x + β i
xκ

i
t + ε i

x,t

for i = 1, · · · , I, where I denoting the number of populations. Various extensions were studied in the
literature to allow dependence across populations, such as adopting population-dependent κ i

t ’s in Yang
and Wang (2013) and Zhou et al. (2014), and common age effects in Kleinow (2015).

To address the aforementioned empirical issues, this paper introduces a framework that jointly mod-
els all populations’ temporal effects and allows heterogeneous age effects. In particular, to ensure the
coherent forecasts, a common distribution is shared among these age effects. The concept of coher-
ence is formally defined and discussed in Section 2.3. Listed below is the specification of our baseline
model.

https://doi.org/10.1017/asb.2023.29 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2023.29


50 Jianjie Shi et al.

−7

−6

−5

−4

1960 1980 2000 2020 2040 2060 2080 2100 2120

Year

M
or

ta
lit

y 
ra

te
 in

 lo
g 

sc
al

e country

Canada

France

Germany

Italy

Japan

UK

USA

Age: 65

Figure 1. Point forecasts of log mortality rates for Age 65 derived from independent LC models.

Model 1 (The Multi-population LC model). Let yi
t = [ log(mi

x0,t), · · · , log(mi
ω,t)]

′ for i = 1, 2, · · · , I, we
assume that

yi
t = αi + β iκ i

t + ε i
t , ε i

t ∼ Fε( · ;�)

αi = [αi
x0

, · · · , αi
ω
]′ ∼ Fa( · |μa, �a)

β i = [β i
x0

, · · · , β i
ω
]′ ∼ Fb( · |μb, �b) (2.1)

with Fa, Fb and Fε denote some multivariate parametric distributions and

cov(ε i
t ) = �, � = diag{gx0 , · · · , gω}

E[αi] = μa, cov(αi) = �a

E[β i] = μb, cov(β i) = �b

for all i = 1, 2, · · · , I. For simplicity, we assume the covariance-variance matrix � to be a diagonal
matrix with gk being the error variance for the kth age.

For the temporal movements of latent factors, we consider a Vector Error Correction Model (VECM)
for κ t = [κ1

t , · · · , κ I
t ]′ such that

	κ t = b + 
κ t−1 + ξt, ξt ∼ N(0, �κ), (2.2)

where N denotes the multivariate Gaussian distribution. The matrix of long-run multipliers, 
, can be
written as 
 = cd′, where c and d are both full rank I × r matrices and where 0 ≤ r ≤ I is the number
of co-integrating relationships. The matrix d is called a cointegration matrix and c is sometimes called
a loading matrix. (From the Proposition 1 discussed in Section 2.4, to ensure the long-term coherent
mortality forecasts, we require that κ i

t is an I(1) process for any i ∈ {1, 2, · · · , I}. This is a common
assumption in mortality literature, for example, Li and Lee (2005), Yang and Wang (2013) and Zhou
et al. (2014) among others. In that case, both 	κ t and d′κ t are stationary, and hence, each element
of d′κ t represents a long-run equilibrium relation.) Especially, if r = I then all the elements of κ t are
stationary, while if r = 0 then all the series are I(1) processes without any existing co-integration.
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Hence, the model parameter is

θ = {b, 
, �κ , μa, μb, �a, �b, �}.
In Model 1, the co-movements of population-wise mortality rates are assumed to follow a VECM

model without lagged differences, which is equivalent to a restricted VAR(1) model. The VECM is a
theoretical-based approach which is useful for combining both long-run co-integration relationship and
short-run corrections/adjustments of co-integrated variables towards the long-run equilibrium. Also,
the VECM could be used to analyse interdependence of response variables via a structural analysis,
which is popular in empirical fields, such as macroeconomics (Kunst and Neusser, 1990; Granger, 2004)
and finance (Mukherjee and Naka, 1995). More recently, VECM/co-integration techniques have been
employed to produce coherent forecasts in mortality modelling (see, for example, Yang and Wang, 2013;
Zhou et al., 2014; Hunt and Blake, 2015; Li and Lu, 2017; Hunt and Blake, 2018; Li et al., 2021; Li
and Shi, 2021a,b, among others). This is for the property of VECM such that the distribution κ t|κ t−1

is known, which then allows coherent mortality forecasts. Please see Jarner and Jallbjørn (2020) for a
systematic review on benefits and drawbacks of co-integration based mortality models.

The second unique feature of Model 1 is the allowed heterogeneous age effects, that is, αi
x’s and

β i
x’s are different across populations. Yet, they are modelled as random effects drawn from a common

distribution. The hierarchical structure actually assumes that multiple populations are heterogeneous
sub-populations randomly drawn from a hypothetical super-population (represented by the common
distribution). The advantages of this hierarchical structure are summarised below. First, this is a parsimo-
nious specification that greatly reduces the dimension of model parameters. Second, the heterogeneity in
the age effects is retained, which often provides a better short-term predictive power (Chen et al., 2015).
Last, as will be shown below, the common distribution and restrictions on κ t coefficients will enable
asymptotic coherence in mortality forecasting (by Proposition 1, we also need β i to be deterministic
with ||μb|| < ∞). Although it is beyond the scope of this paper, the hierarchical structure could also be
extended to other LC-typed models, such as the LL. Compared to existing competitors, it is expected
that more effectively utilising the cross-sectional information, as in Model 1, can generally improve
forecasting accuracy for mortality data.

The multi-population LC model, as a special case of the linear dynamic factor models, is subject
to identification issues (Li and Lu, 2017). The dynamic factor model is a flexible but parsimonious
approach to study unobserved heterogeneity, and relevant parameter restrictions for identification pur-
poses have been well discussed in the literature (Bai and Wang, 2015). To identify dynamic factors (i.e.,
mortality indices κ t) in the Model 1, we consider two identification assumptions stated below:

Assumption 1. For all i = 1, · · · , I,

(a) αi, β i, κ i
t and ε i

t are mutually independent
(b) E[ε i

t ] = 0.

Assumption 2. We assume κ i
−1 = [κ i

2, · · · , κ i
T]′ with κ i

1 = 0, and

β i ∼ NS(μb, �b) where S = {β i
x0

= 1},
where NS denotes a multivariate normal distribution truncated on a hyper-plane defined by S.
Furthermore, we assume

αi ∼ N(μa, �a)

and

ε i
t ∼ N(0, �),

where � is a diagonal matrix while �a and �b are two general positive-semidefinite matrices.
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As a result of Assumption 1, Model 1 reduces to the independent LC model given the random effects.
The identification of our model then boils down to the identification of each single-population Lee-
Carter model. Following Lee and Carter (1992), in Assumption 2, we let β i

x0
= 1 and κ i

1 = 0 for i ∈ I.
The merits of the above constraints can be illustrated for the ease of computation and interpretation.
(The advantage of this set constraint is that the parameters could still be interpreted as in the classical
LC model, except that the interpretation of αi

x changes slightly. In our case, αi
x represents the mortality

level at the base year. That is, E[ log(mi
x,1)] = (αi

x) + (β i
x)(κ

i
1) = αi

x.) And the normality assumption is for
simplicity purpose in empirical analysis. By introducing the Gaussian assumption (and conditionally
conjugate priors in Section 3.1), one can easily obtain analytical full conditional posterior distributions
for model parameters (and dynamic factors). This enables the application of a standard Gibbs sampler
to approximate joint posterior distribution.

Note that our model offers a generalised framework and nests a range of specifications. For instance,
if both 
 and �κ are diagonal matrices, it essentially becomes independent LC models for each pop-
ulation group (especially when 
 is a zero matrix, all the κ i

t s will follow independent random walks
with drifts). It could also be shown that CAE-type models (Kleinow, 2015) are nested, when associated
parameter restrictions are implemented in Model 1. Specifically, the hierarchical random effects can eas-
ily reduce to the homogeneous models when �a or �b are zeros, which suggests that the age effects are
the same among all populations. In our subsequent study, Bayesian shrinkage priors will be employed
to impose the belief of certain nested model when performing the MCMC estimation for Model 1. The
implementation of those priors will not enforce a draconian parameter restriction to make Model 1 a
reduced structure. In other words, this effectively balances between the prior belief of the long-term
coherence as for the CAE model and inherent features of the empirical data.

In comparison, we also consider two restricted cases, namely Model 2 and Model 3. Specifically,
Model 2 assumes a homogeneous age effect such that all the β i’s are the same across different popula-
tions. As will be discussed in Section 2.3, this condition is necessary to ensure the coherent forecasts. In
that sense, Model 2 is a special case of Model 1 where �b is a zero matrix. Instead of a random effect,
Fb( · |μb, �b) in Model 2 just serves as a hierarchical prior for the age effect β.

Model 2 (The multi-population LC model with homogeneous age effect β).

yi
t = αi + βκ i

t + ε i
t , ε i

t ∼ Fε( · ;�)

αi = [αi
x0

, · · · , αi
ω
]′ ∼ Fa( · |μa, �a)

β = [βx0 , · · · , βω]′ ∼ Fb( · |μb, �b) (2.3)

with a VAR(1) in the VECM representation for κ t = [κ1
t , · · · , κ I

t ]′ such that

	κ t = b + 
κ t−1 + ξt, ξt ∼ N(0, �κ). (2.4)

Hence, the model parameter is θ = {b, 
, �κ , μa, μb, �a, �b, �}.
In Model 3, we retain hierarchical structures of αi and β i but assume that they are population-

invariant. That is, in contrast to Model 1, Model 3 is a multi-population LC model with homogeneous
age effects α and β. This is also a special case of Model 1, where both �a and �b in Model 1 are zeros.
Similar to Model 2, Fa( · |μa, �a) and Fb( · |μb, �b) are essentially hierarchical priors for the age effects
α and β, respectively, rather than random effects.

Model 3 (The Multi-population LC model with homogeneous age effects α and β).

yi
t = α + βκ i

t + ε i
t , ε i

t ∼ Fε( · ;�)

α = [αx0 , · · · , αω]′ ∼ Fa( · |μa, �a)

β = [βx0 , · · · , βω]′ ∼ Fb( · |μb, �b) (2.5)
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with a VAR(1) in the VECM representation for κ t = [κ1
t , · · · , κ I

t ]′ such that

	κ t = b + 
κ t−1 + ξt, ξt ∼ N(0, �κ). (2.6)

Hence, the model parameter is θ = {b, 
, �κ , μa, μb, �a, �b, �}.

2.3. Multi-population coherence
In this section, we discuss the concept of long-term coherence in the multi-population mortality mod-
elling framework. Generally speaking, it means that death rates in two modelled populations do not
diverge in the long run. Following Li and Lee (2005), the formal definition is stated below.

Definition 1. The forecasts of a multi-population mortality model are asymptotically coherent if

lim
t→∞

E

[
mi

x,t

mj
x,t

∣∣∣∣∣θ
]k

< ∞ (2.7)

for i, j ∈ {1, 2, · · · , I} and k = 1, 2.

As outlined above, forecasting of the original LC model is the extrapolation of historical temporal
trends. However, the price to pay for this simplicity is the incapability to ensure coherence. As demon-
strated in Figure 1, a clear long-term divergence of the forecast mortality is demonstrated when LC
models are independently fitted.

To realise the coherent forecasting, a simple strategy is to assume that β i = β j and that the spread
κ i

t − κ j
t is mean-reverting. It can be shown that this condition is sufficient for a standard LC formulation.

To see this, if all populations have the same βx and long term κ i
t , then the ratios of the mean ASDRs

among populations would be constant over time at each age in the forecasts. Otherwise, its projections
of some ASDR would differ from those of others over time. In the Proposition described below, the
conditions for coherent modelling are derived.

Proposition 1. Suppose that

1. Assumptions 1 and 2 are satisfied,
2. β i are deterministic vectors with ||μb|| < ∞ for all i = 1, 2, · · · , I (i.e., �b is a zero matrix);

and
3. κ i

t is an I(1) process for any i ∈ {1, 2, · · · , I} and κ i
t − κ j

t is a weakly stationary process for i, j ∈
{1, 2, · · · , I} and i 	= j, the forecast ASDR produced by Model 1 are asymptotically coherent.

Proof. We need to justify that under the parameter constraints in Proposition 1, the mortality
forecasts are not divergent for any i, j ∈ {1, 2, · · · , I} and i 	= j. Since

E

[
mi

x,t

mj
x,t

∣∣∣∣∣θ
]

=E

{
exp

[
log(mi

x,t) − log(mj
x,t)
] ∣∣∣θ}

=E

{
exp

[
(αi

x − αj
x) + (β i

xκ
i
t − β j

xκ
j
t ) + (ε i

x,t − ε j
x,t)
] ∣∣∣θ}

=E
[
exp(αi

x − αj
x)
∣∣θ] ·E[exp(β i

xκ
i
t − β j

xκ
j
t )
∣∣∣θ] ·E

[
exp(ε i

x,t − ε j
x,t)
∣∣∣θ] ,

it is sufficient to prove mortality forecasts to be coherent (i.e., limt→∞ E

[
mi

x,t

mj
x,t

∣∣∣∣∣θ
]

< ∞) by demon-

strating that all the limits of E
[
exp(αi

x − αj
x)
∣∣θ], E[exp(β i

xκ
i
t − β j

xκ
j
t )
∣∣∣θ] and E

[
exp(ε i

x,t − ε j
x,t)
∣∣∣θ] are

finite when t → ∞ under the assumptions in Proposition 1. To do so, it is then sufficient to show
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that E
[
exp(αi

x − αj
x)
∣∣θ], E[exp(β i

xκ
i
t − β j

xκ
j
t )
∣∣∣θ] and E

[
exp(ε i

x,t − ε j
x,t)
∣∣∣θ] are all upper-bounded by their

respective time-invariant constants.
We first prove that for any t, both E

[
exp(αi

x − αj
x)
∣∣θ] and E

[
exp(ε i

x,t − ε j
x,t)
∣∣∣θ] are upper-bounded.

Based on the prior setting, αi
x|θ ∼ N([μa]x, [�a]x) for age group x in population i, where [μa]x denotes

the x-th element in the mean vector μa and [�a]x is the x-th diagonal element of the variance-covariance
matrix �a. Therefore, exp(αi

x)|θ ∼ log-N([μa]x, [�a]x); here, log-N is the log-normal distribution. We
can further deduce that exp(αi

x − αj
x)|θ ∼ log-N(0, 2[�a]x) since exp(αi

x) and exp(αj
x) are identically,

independently distributed. Hence, we can see

E
[
exp(αi

x − αj
x)
∣∣θ]= exp([�a]x) < ∞,

which is a bounded value dependent on the age only. Similarly, for any t,

E

[
exp(ε i

x,t − ε j
x,t)
∣∣∣θ]= exp([�]x) < ∞,

where [�]x represents the x-th value on the diagonal line of �.
The remaining task is to prove that limt→∞ E

[
exp(β i

xκ
i
t − β j

xκ
j
t )
∣∣∣θ] is finite. Based on the prior setting

of β i
x, β i

x|θ ∼ N([μb]x, [�b]x), and it is easy to show that exp(β i
xκ

i
t − β j

xκ
j
t )|θ , κ i

t , κ
j
t ∼ log-N([μb]i

x(κ
i
t −

κ j
t ), [�b]x[(κ i

t )
2 + (κ j

t )
2]). Then according to the assumptions in Proposition 1, that is, [�b]x = 0 and κ i

t −
κ j

t being a weakly stationary process, for any t, we will have

E

[
exp(β i

xκ
i
t − β j

xκ
j
t )
∣∣∣θ]=E

{
E

[
exp(β i

xκ
i
t − β j

xκ
j
t )
∣∣∣θ , κ i

t , κ
j
t

]}

=E

{
exp

(
[μb]x(κ

i
t − κ j

t ) + 1

2
[�b]x[(κ

i
t )

2 + (κ j
t )

2]

) ∣∣∣∣∣θ
}

=E

{
exp

(
[μb]x(κ

i
t − κ j

t )
) ∣∣∣θ}

= exp

(
kij[μb]x + 1

2
Kij[μb]

2
x

)
< ∞

where kij and Kij represent the stationary mean and variance of κ i
t − κ j

t , respectively. The last equality
holds because κ i

t − κ j
t follows a stationary Gaussian process. To prove this, it is enough to show that κ t

follows a Gaussian process (stationarity of κ i
t − κ j

t holds by assumption). Starting with an initial state
κ1 = 0, the VECM form in Equation (2.2) gives us:

κ t =
t−2∑
i=0


∗
i b + 
∗

t−1κ1 +
t−2∑
i=0


∗
i ξt−i

=
t−2∑
i=0


∗
i b +

t−2∑
i=0


∗
i ξt−i, ξt−i

iid∼ N(0, �κ).

where 
∗
i = (I+ 
)i for i = 0, · · · , t − 1. Hence, κ t follows a Gaussian distribution since it is a linear

combination of several i.i.d Gaussian error terms.
In conclusion, under the assumptions of Proposition 1, we could prove that

lim
t→∞

E

[
mi

x,t

mj
x,t

∣∣∣∣∣θ
]

< ∞

Similarly, we can further prove that

E

[(
mi

x,t

mj
x,t

)2
∣∣∣∣∣θ
]

=E

{
exp

[
2
(
log(mi

x,t) − log(mj
x,t)
)] ∣∣∣θ}< ∞,
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which deduces that

var

[
mi

x,t

mj
x,t

∣∣∣∣∣θ
]

< ∞.
�

Note that the above requirements for long-term coherence restricts our model towards one with con-
stant β’s. Furthermore, unlike a standard LL approach, where the underlying co-movement is modelled
via a multivariate random walk with drift, we assume that the κ i

t ’s are co-integrated I(1) processes. Those
then boil Model 1 down to Model 2. However, Model 1 is much more flexible and might be able to pro-
vide more accurate short/medium-term forecasts than Models 2 and 3. In the next section, we discuss
the use of Bayesian prior techniques in Model 1 to balance both the desirable long-term coherence and
short-term data-specific dynamics.

2.4. Structural analysis
Structural analysis is commonly employed to investigate the interdependence of modelled response
variables, especially in the macroeconomic literature (see, for example, Forni and Gambetti, 2010;
Barigozzi et al., 2021). Such an analysis is also applicable in our multi-population LC model to study
the interdependence of mortality dynamics across sub-populations.

To implement a structural analysis, uncorrelated structural shocks need to be constructed first. In a
VECM, a usual way is to consider the forecast errors (i.e., ξt in Equation (2.2)) as linear combinations
of the structural shocks:

ξt = 
0ut, (2.8)

where ut are usually assumed to be orthonormal white noises, that is, ut ∼ N(0, II) with II being an
identity matrix of size I . This normalization assumption implies that

�κ = 
0

′
0. (2.9)

The structural shocks could then be explained as random, unexpected events which can influence the
mortality rates but exogenous to the currently employed mortality model.

It is widely known that the structural shocks described above are not unique. A common practice is
to derive a unique 
0 via a Cholesky decomposition of the variance-covariance matrix �κ . This implies
that the resulting structural model has a recursive structure. The recursive method identifies structural
shocks by imposing short-run restrictions. (There also exists some alternative identification schemes for
VAR and VECM via, e.g., long-run restrictions or sign restrictions. Please refer to Lütkepohl, 2005 and
Kilian, 2013 for more details about structural VAR and structural VECM.) Specifically, structural shocks
of one response variable can only contemporaneously affect variables that ranked after that response.
Consequently, a meaningful (non-sample) information is usually needed for identifying the recursive
order of the structural shocks.

2.4.1. Impulse Response Function
Impulse response function (IRF) is a popular type of structural analysis. Specifically, this measures
the response of one mortality index to an impulse (i.e., an exogenous structural shock) of another.
Based on the normalization condition (2.9), ∂

∂uj
t
κ i

t+h is defined as the the h-step IRF of the response
of ith population’s mortality index κ i

t+h to a one-standard deviation exogenous change in jth structural
shock uj

t.
To derive an analytical form of IRF, we can rewrite the VECM described in Equation (2.2) as

κ t+h =
t+h−2∑

i=0


∗
i b +

t+h−2∑
i=0

(
∗
i 
0)ut+h−i,
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where 
∗
i = (I+ 
)i for i = 0, · · · , t + h − 1. Hence, the aforementioned h-step IRF ∂

∂uj
t
κ i

t+h is given by

∂

∂uj
t

κ i
t+h = e′

i(

∗
hB)ej = e′

i[(I+ 
)h
0]ej,

where ei denotes the ith column of the identity matrix II .

2.4.2. Forecast error variance decomposition
Another important component of structural analysis is the forecast error variance decomposition
(FEVD). This metric decomposes the variance of forecast error into the contributions from specific
exogenous structural shocks. Essentially, FEVD provides information on how much a structural shock
contributes to variations of a particular response variable, and the dynamics of those contributions.
Specifically, the proportion ph

ij of the h-step forecast error variance of ith population’s mortality index
explained by the jth structural shock uj

t, is given by:

ph
ij =

∑h−1
k=0{e′

i[(I+ 
)k
0]ej}2∑I
j=1

∑h−1
k=0{e′

i[(I+ 
)k
0]ej}2
,

where the denominator
∑I

j=1

∑h−1
k=0{e′

i[(I+ 
)k
0]ej}2 is the h-step forecast error variance of κ i
t+h. For

more details about FEVD in the VAR or VECM, please refer to Lütkepohl (2005).

2.5. A multi-population and multi-factor Lee–Carter model
In the previous sections, we mainly focus on extending the classical single-factor LC model to a multi-
population specification (please refer to Model 1). It is possible to further incorporate multiple factors,
which is discussed in this section.

Model 4 (The multi-population multi-factor LC model). Let yi
t = [ log(mi

x0,t), · · · , log(mi
ω,t)]

′ for i =
1, 2, · · · , I, we assume that

yi
t = αi +

p∑
k=1

β i
kκ

i
kt + ε i

t , ε i
t ∼ Fε( · ;�)

αi = [αi
x0

, · · · , αi
ω
]′ ∼ Fa( · |μa, �a)

β i
k = [β i

k,x0
, · · · , β i

k,ω]′ ∼ Fk,b( · |μk,b, �k,b) (2.10)

with Fa, Fk,b and Fε denote some multivariate parametric distributions and

cov(ε i
t ) = �, � = diag{gx0 , · · · , gω}

E[αi] = μa, cov(αi) = �a

E[β i
k] = μk,b, cov(β i

k) = �k,b

for all i = 1, 2, · · · , I and k = 1, 2, · · · , p. For simplicity, we assume the covariance-variance matrix �

to be a diagonal matrix with gk being the error variance for the kth age.
For the temporal movements of latent factors, if κ kt = [κ1

kt, · · · , κ I
kt]

′ is non-stationary, as investigated
above, we consider a VECM such that

	κ kt = bk + 
kκ k,t−1 + ξkt, ξkt ∼ N(0, �k
κ
), (2.11)

where N denotes the multivariate Gaussian distribution. While if κ kt = [κ1
kt, · · · , κ I

kt]
′ is stationary, we

consider a VAR model such that

κ kt = bk + Bkκ k,t−1 + ξkt, ξkt ∼ N(0, �k
κ
), (2.12)
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Hence, the model parameter is

θ = {{bk}p
k=1, {
k or Bk}p

k=1, {�k
κ
}p

k=1, μa, {μk,b}p
k=1, �a, {�k,b}p

k=1, �}.
Similar to Model 1, as a special case of the linear dynamic factor model, we need to impose some

additional constraints to identify dynamic factors. Following the discussion in Bai and Wang (2015),
two identification assumptions are employed and stated below:

Assumption 3. For all i = 1, · · · , I and k = 1, · · · , p,

(a) αi, β i
k, κ

i
kt and ε i

t are mutually independent
(b) E[ε i

t ] = 0.

Assumption 4. We assume κ i
k,−1 = [κ i

k2, · · · , κ i
kT]′ with κ i

k1 = 0, and

β i
k ∼ NS(μk,b, �k,b) where S = {β i

k,x0
= · · · = β i

k,xk−2
= 0, β i

k,xk−1
= 1},

where NS denotes a multivariate normal distribution truncated on a hyper-plane defined by S. That is,
we constrain the first k − 1 elements of β i

k to be zeros and the kth element to be one. Furthermore, we
assume

αi ∼ N(μa, �a)

and

ε i
t ∼ N(0, �),

where � is a diagonal matrix, and �a and �k,b are general positive-semidefinite matrices.

Finally, we discuss the relevant conditions for coherent modelling of Model 4. The proof of these
conditions follows straightforwardly from the the process delineated in the Section 2.3. As such, only
the sufficient conditions to achieve coherence are presented below.

Proposition 2. Suppose that

1. Assumptions 3 and 4 are satisfied;
2. For k = 1, · · · , p, at least one of κ i

kt is an I(1) process for any i ∈ {1, 2, · · · , I}. And for such a κ i
kt,

κ i
kt − κ

j
kt should be weakly stationary for i, j ∈ {1, 2, · · · , I} and i 	= j, and β i

k are deterministic
vectors with ||μk,b|| < ∞ for all i = 1, 2, · · · , I (i.e., �k,b is a zero matrix); and

3. The remaining κ i
kts are stationary, that is, I(0) processes of any i ∈ {1, 2, · · · , I}.

the forecast ASDR produced by Model 4 are asymptotically coherent.

In particular, for a two-factor Model 4, it is plausible to assume that κ i
1t is an I(1) process characterized

by mean-reverting κ i
1t − κ

j
1t, while κ i

2t is an I(0) process. Thus, κ i
1t can be described by a VECM, whereas

κ i
2t conforms to a VAR model.

3. Efficient Bayesian estimation
As discussed above, the co-integration relationship justifies the long-term coherence assumption.
However, focusing on this long-run property only may be too strong to model short/medium-term
mortality dependence. In this section, we provide a Bayesian method for Model 1 to allow for more
flexibility in the short/medium term. The extension of the subsequent Bayesian method to a multi-factor
model, specifically Model 4, is convenient. Consequently, a detailed repetition of this process will be
forgone.
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3.1. Imposing shrinkage priors
Prior specification of Bayesian inference has two components: the parametric class and the prior hyper-
parameters given in the parametric family. For the prior parametric distribution, we adopt conditionally
conjugate priors structure that implies known conditional density, which is common in the literature for
dynamic factor models (see Chan and Jeliazkov, 2009; Bańbura et al., 2010; Njenga and Sherris, 2020,
for details). In particular, we set the distribution of the random effect parameters

μa ∼ N(m1, P−1
1 ), μb ∼ N(m2, P−1

2 )

and
�a ∼ IW(φ3IN , ν3), �b ∼ IW(φ4IN , ν4)

where IW denote the inverse wishart distribution. For the error variance, we set

gx ∼ IG

(
φx

5

2
,
νx

5

2

)
for x = x0, . . . , ω. For the VECM coefficients, we consider

b ∼ N(m6, P−1
6 ), vec(
) ∼ N(m7, P−1

7 )

and
�κ ∼ IW(φ8II , ν8).

Under this construction, all conditional distributions are tractable, and this avoids the use of non-smooth
samplers such as the Metropolis–Hasting algorithm. One can employ the standard Gibbs sampling
algorithm to estimate the posterior distribution, leading to the algorithm’s geometric convergence.

In Bayesian data analysis, the prior distribution usually demonstrates one’s prior beliefs, which could
be independent of empirical data. For example, since mortality rates of all ages are expected to continue
to decline in the future, we could set the mean value m6 of mortality index’s drift term b as negative and
the mean value m2 of age effect μb to be positive. In other words, this prior structure effectively balances
long-term belief (i.e., coherent mortality forecasts) and short-term empirical dynamics.

Bayesian shrinkage priors have been widely employed in the literature (Litterman, 1986) and are
adopted in our estimation. To fulfil the first requirement in Proposition 1, that is, β i should be a con-
stant, one can set a small value of φ4 for the prior of �b. The second condition is equivalent to the fact
that coefficient matrix 
 in the VECM model of κ t should be of a reduced rank. This is to shrink the
movements of κ t towards a co-integrated I(1) process. In particular, the rank of the coefficient matrix 


should be I − 1, or equivalently, 
 should have a zero eigenvalue.
To specify the prior distribution of 
, we follow a similar procedure developed in Litterman (1986)

and employ the Minnesota prior. The basic idea is to “center” the distribution of coefficients in II + 


so that the behaviour of each element in κ t approximates a random walk with drift. Similarly, our prior
belief that κ t’s are co-integrated over time could be formulated by setting the following moments for the
prior distributions of the entries in 
:

E[(
ij)] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−λ1, if i = j

λ1, if i = j − 1 & j > 1

λ1, if i = J & j = 1

0, otherwise

and V[(
ij)] = λ2
2 (3.1)

where λ1 and λ2 are two hyper-parameters of the prior distribution of 
. The vec(
) is assumed to be
normally distributed with a diagonal variance-covariance matrix. (As for a multi-factor Model 4, if κ kt

is a I(0) process, we can just assign E[(Bk)] as a null matrix.)
Roughly speaking, this prior specification assumes that κ i

t is a weighted average of κ i
t−1 and κ i+1

t−1 with
the weight λ1. In order to avoid the existence of explosive roots, the range of λ1 should be between 0
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Table 1. Hyperparameters used in the empirical analysis in Section 4.

μa m1= (−5)1N P1=(0.1)2
IN

μb m2= (0.5)1N−1 P2=(0.1)2
IN−1

�a φ3=(0.01)2 ν3= N + 3
�b φ4= (0.01)2 ν3= (N − 1) + 3
gx φ5=(0.01)2 ν5=3
b m6= (−0.1)1I P6=(0.01)2

II


 m7: given by Equation (3.1) P7: given by Equation (3.1)
�κ φ8= (0.1)2 ν8= I + 3

and 1. In addition, the hyper-parameter λ2 controls the overall tightness of the prior distribution and
represents the relative importance of prior beliefs compared with data-specific information. When λ2

increases, the prior beliefs become less informative, and the sample information will be more dominant.
For example, when J = 3, the prior belief is that⎡

⎢⎣
	κ1

t

	κ2
t

	κ3
t

⎤
⎥⎦=

⎡
⎢⎣

b1

b2

b3

⎤
⎥⎦+

⎡
⎢⎣

−λ1 λ1 0

0 −λ1 λ1

λ1 0 −λ1

⎤
⎥⎦
⎡
⎢⎣

κ1
t−1

κ2
t−1

κ3
t−1

⎤
⎥⎦+

⎡
⎢⎣

ω1
t

ω2
t

ω3
t

⎤
⎥⎦

=
⎡
⎢⎣

b1

b2

b3

⎤
⎥⎦+ λ1

⎡
⎢⎣

1 0

0 1

−1 −1

⎤
⎥⎦
[−1 1 0

0 −1 1

]⎡⎢⎣
κ1

t−1

κ2
t−1

κ3
t−1

⎤
⎥⎦+

⎡
⎢⎣

ω1
t

ω2
t

ω3
t

⎤
⎥⎦

=
⎡
⎢⎣

b1

b2

b3

⎤
⎥⎦+ λ1

⎡
⎢⎣

1 0

0 1

−1 −1

⎤
⎥⎦
[
κ2

t−1 − κ1
t−1

κ3
t−1 − κ2

t−1

]
+
⎡
⎢⎣

ω1
t

ω2
t

ω3
t

⎤
⎥⎦

(3.2)

which is equivalent to expressing κ t in the VAR form of⎡
⎢⎣

κ1
t

κ2
t

κ3
t

⎤
⎥⎦=

⎡
⎢⎣

b1

b2

b3

⎤
⎥⎦+

⎡
⎢⎣

1 − λ1 λ1 0

0 1 − λ1 λ1

λ1 0 1 − λ1

⎤
⎥⎦
⎡
⎢⎣

κ1
t−1

κ2
t−1

κ3
t−1

⎤
⎥⎦+

⎡
⎢⎣

ω1
t

ω2
t

ω3
t

⎤
⎥⎦

Equation (3.2) is exactly a VECM form of κ t with the co-integrating vectors being
[−1 1 0

]
and[

0 −1 1
]
. In other words, this prior specification supposes that κ i

t − κ j
t is mean-reverting for any choice

of i and j. Table 1 summarise all the hyperparameters that will be used in our empirical analysis.
Alternatively, instead of using shrinkage prior, it is also possible to restrict parameters of Model 1

to satisfy the long-term coherence assumptions. For instance, we can make use of Model 2 in which
age effect βi = β are assumed to be the same across different populations. Additionally, in the VECM
form of κ t, the coefficient 
 can be written as a matrix product cd′. Then we can apply the co-integration
relations (i.e., κ i

t − κ j
t is weakly stationary) by setting the co-integration matrix d′ as a (I − 1) × I matrix⎡

⎢⎢⎢⎢⎢⎢⎣

−1 1 0 · · · 0 0

0 −1 1 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · −1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.
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It can be shown that such specifications produce the long-term coherent forecasts. However, as will be
discussed in Section 4, this would be too restrictive for short/medium-term forecasting performance.
Instead, imposing Bayesian prior to Model 1 is therefore a more flexible method.

3.2. The proposed MCMC algorithm
In this section, we discuss a block-based Gibbs sampler to estimate the proposed multi-population LC
models. Note that high-dimensional latent random states are to be sampled (i.e., the αi’s, β i’s and κ t’s),
in addition to the model parameters. Given the model parameters, random effects αi and β i can be
sampled iteratively, and the VECM/VAR can be obtained via the Kalman Filter. However, due to the
high dimensionality of mortality data, a naive implementation of such a sampler will lead to extensive
computational costs. In this section, we present an efficient precision sampler.

3.2.1. Jointly sampling the random age effects
As the discussion in Chan and Jeliazkov (2009), the efficiency of MCMC can be greatly improved, if
the number of blocks could be reduced. Therefore, the following joint conditional posterior of all the
random age effects is developed, which allows us to sample them as a whole block.

First, rewrite the general model as

Yt = A + βdiag(κ t) + ε t

where Yt = [y1
t , · · · , yI

t ], A = [α1, · · · , αI], β = [β1, · · · , β I], ε t = [ε1
t , · · · , εI

t ]. Since β i
x0

= 1 for i ∈ I,
β can be expressed as [1I , β

′
(−1)]

′
. Based on this, we can sample

vec(A)|(β, θ , Y, κ) ∼ N(μ̃a, K−1
a )

with

Ka = TII ⊗ �−1 + II ⊗ �−1
a

μ̃a = K−1
a

[
vec

(
�−1

T∑
t=1

(Yt − βdiag(κ t))

)
+ 1I ⊗ (

�−1
a μa

)]

and

vec(β (−1))|(A, θ , Y, κ) ∼ N(μ̃b, K−1
b )

where

Kb =
T∑

t=1

diag(κ2
t ) ⊗ �−1

(−1) + II ⊗ �−1
b

μ̃b =K−1
b

[
vec

(
�−1

(−1)

T∑
t=1

(Y(−1)
t − A(−1))diag(κ t)

)
+ 1I ⊗ (

�−1
b μb

)]
.

In this formulation, �(−1) means � without the first row and column. β (−1), Y(−1)
t and A(−1), respectively,

represent β, Yt and A with the first rows removed. This is equivalent to sampling them independently
for each population, yet avoiding using a loop.

3.2.2. Precision sampler for all the κ’s
The sampling of all the κ t’s usually involves the Kalman filter. In this paper, we develop the precision
sampler that allows us to sample all the latent time-series jointly. This improves the transparency in the
integrated likelihood and, consequently, allows for the associated model comparison. Recall that for the
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identification purpose, we have set κ1 = 0. Hence, sampling is only required for κ = [κ ′
2, · · · , κ ′

T]. For
the proposed model, we can rewrite

Y = 1T−1 ⊗ vec(A) +Bκ + ε

where Y = [vec(Y2)′, ..., vec(YT)′]′, ε = [vec(ε2)′, ..., vec(εT)′]′, and

B = IT−1 ⊗ ((II ⊗ β)MI)

where MI is a matrix of dimension I2 × I that first converts the column vector into a diagonal matrix
and then vectorizes it, that is,

MIκ t = vec(diag(κ t)).

In a similar fashion, we can write the VECM of latent factors as

Hκ = 1T−1 ⊗ b + ξ

where ξ = [ξ ′
2, · · · , ξ ′

T]′ and

H =

⎡
⎢⎢⎢⎢⎣

II 0 ... ... ...

−(II + 
) II 0 ... ...

... ... ... ... ...

... ... ... −(II + 
) II

⎤
⎥⎥⎥⎥⎦

Hence, we derive the precision sampler

κ |(θ , Y, β, A) ∼ N(μk, K−1
k )

with

Kk = H′(IT−1 ⊗ �−1
κ

)H +B′(I(T−1)I ⊗ �−1)B
μk = K−1

k

[B′(I(T−1)I ⊗ �−1) (Y − 1T−1 ⊗ vec(A)) + H′(1T−1 ⊗ (�−1
κ

b))
]

.

The most significant advantage of our precision sampler is that the precision matrix Kk is a symmet-
ric block-banded matrix with very few non-zero elements. In Section A of Supplementary Material, we
provide a simplified example of κt’s precision matrix with red points representing non-zero elements in
the matrix. Our sampling algorithm’s exact computational advantages are also demonstrated via simu-
lation explorations in Section A of Supplementary Material. The presented precision matrix there is an
intermediate product during the simulation, when the empirical analysis detailed in Section 4 is con-
ducted. It can be seen that only a small number of non-zero entries falling in a narrow band around
the precision matrix’s diagonal. From a computational point of view, this implies that we could reduce
storage and computational costs by exploiting efficient algorithms designed for the sparse matrix. More
details regarding the precision sampler can be found in Chan and Jeliazkov (2009).

4. Empirical application to the modelling of G7 mortality data
In this section, we examine the mortality data of the G7 countries, which are sourced from Human
Mortality Database (2019). In a related study, the empirical results of Tuljapurkar et al. (2000) with data
over 1950–1994 suggest a universal decline in mortality across all age groups in the G7 populations.
They alluded that this trend places a constraint on any theory of society-driven mortality decline and
provides a basis for stochastic mortality forecasting via the LC-type model. Instead of independently
fitting LC models, this section presents a comprehensive analysis of the G7 mortality data based on our
proposed multi-population LC models.

https://doi.org/10.1017/asb.2023.29 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2023.29


62 Jianjie Shi et al.

Table 2. Logarithm of marginal likelihoods for different mortality models.
(a) Marginal log-likelihood for the single-factor mortality models.

λ2 Model 1 Model 2 Model 3 Lee-Carter Li & Lee
0.01 51963 45786 26425
0.1 51980 45787 26429 54890 30830
0.00001 51961 45778 26423

(b) Marginal log-likelihood for the two-factor mortality models.

λ2 Model 4 LC Li & Lee
0.01 62949
0.1 62944 65254 55676
0.00001 62946

4.1. Empirical data set
We use the crude (un-smoothed) annual data for the period 1956–2019 for all the G7 countries. For
each country, age-sex-specific death rates are available annually, from age 0 to age 110. Since mortality
measures at very old ages are unreliable (Lee and Carter, 1992), we constrain the maximum age as 89,
such that ω = 89 as in the model. Also, male and female mortality rates are combined for the following
analyses.

4.2. Model comparison: preliminary results
To demonstrate the usefulness of our model, we first undertake a preliminary comparative analysis of
a range of popular single-factor and two-factor models. For the single-factor case, our consideration
encompasses Model 1, Model 2, Model 3, the LC model (Lee and Carter, 1992), and the single-factor
Li & Lee model (Li and Lee, 2005). With respect to the two-factor models, we compare the performance
of Model 4, the two-factor LC model, and the two-factor Li & Lee model (Li and Lee, 2005).

To obtain comparable results, both the LC models and the Li & Lee models have been reformu-
lated according to the state-space representations suggested by Pedroza (2006) (please refer to Section
B of Supplementary Material for details). In particular, we consider the marginal likelihood as the basis
for model comparison, which is a standard technique in Bayesian analysis (Koop, 2003). It is worth
mentioning that evaluating the marginal likelihood is usually a computationally challenging task. In
practice, the most commonly used Bayesian information criteria (or BIC) approximates twice the log
of the marginal likelihood (Schwarz, 1978). To address the computational issue, Newton and Raftery
(1994) proposed a simple way to calculate marginal likelihood by using the posterior harmonic mean of
the likelihood. Please refer to the Section C of Supplementary Material for more details. To more com-
prehensively compare the prediction accuracy of each model, we present the out-of-sample forecasting
results in Section 4.4.

In Table 2, we present the marginal log-likelihoods for Model 1–4, the LC model, and the Li & Lee
model. For Model 1–3, we consider three distinct values of the hyper-parameter λ2: 0.01 (moderate),
0.1 (weak), and 0.00001 (strong). These same values of λ2 are also considered for the first factor in
Model 4.

In general, two-factor models significantly outperform single-factor mortality models in terms of the
marginal likelihood. Geweke and Amisano (2011) demonstrated that the in-sample marginal likelihood
is intimately connected to the one-step-ahead predictive likelihood, thereby making it a good measure of
short-term forecasting accuracy. Thus, the two-factor models showcase superior short-term forecasting
capabilities compared to their single-factor counterparts.
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Figure 2. Temporal plots of estimated mortality index κ i
t for all the G7 countries (solid line: posterior

mean of; grey area: 99% credible interval).

Among all the single-factor models, the LC model exhibits the greatest marginal likelihood. In con-
trast, the Li & Lee model only outperforms Model 3, ranking it as the second-worst model. Among
Model 1–3, Model 1, which incorporates heterogeneous random age effects, has the highest marginal
likelihood. Conversely, Model 3, characterized by homogeneous age effects, has the lowest marginal like-
lihood. The marginal likelihood of Model 2 considerably surpasses Model 3, although it remains inferior
to Model 1. Therefore, even though Model 2 satisfies long-term coherence conditions, Model 1 emerges
as the preferred model when we focus on its superior short-term predictive performance. Moreover,
Model 1 exhibits greater flexibility than Model 2, considering that Model 2 is actually a special case
of Model 1 when �b converges to a zero matrix. Essentially, Model 1, employing a Bayesian shrink-
age prior, more appropriately balances the trade-off between short to medium-term predictive accuracy
and long-term coherence. The superior short- to medium-term predictive accuracy is attributable to the
heterogeneous random age effects, while the long-term coherence is approximately attained by impos-
ing a Bayesian shrinkage prior. Furthermore, in the selection of hyper-parameters, the optimal choice is
determined to be λ2 = 0.1 among three distinct λ2 values.

Similarly, when considering two-factor mortality models, the two-factor LC model has the highest
marginal likelihood. Conversely, the two-factor Li & Lee model results in the lowest marginal likelihood,
which suggests comparatively less accurate short-term forecasting performance. Regarding the selection
of the hyper-parameter λ2 for Model 4, it is discerned that λ2 = 0.01 is the optimal choice.

4.3. Fitted in-sample results and inferences
4.3.1. The temporal trend of mortality rates
In this subsection concerning in-sample results, our primary focus is on the single-factor model.
Specifically, we utilize Model 1, setting λ2 = 0.1 for the in-sample analyses within this subsection. This
selection is premised on its superior short-term forecasting performance relative to other competitive
specifications. (Please refer to the Section E of Supplementary Material for the in-sample analyses for
Model 4.) Figure 2 exhibits the temporal plot of fitted κ i

t separately for each country. The solid line
represents the posterior mean of κ i

t , and the grey area depicts the corresponding 99% credible band. It
appears that κ i

t has a persistent declining trend and thus indicates a non-stationary process. Those pos-
terior means are consistent with the downward trends of historical mortality data of the G7 countries.
The narrow widths of the credible band imply that the estimation of κ t is reliable.

To compare the differences in mortality declines over years, we plot all the estimated posteriors means
of κ i

t ’s in Figure 3. Despite some slowed mortality improvements over recent periods, the overall patterns
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Figure 3. Comparison of estimated mortality index κ i
t for all the G7 countries.

might be roughly fitted by linear trends, especially for those post-1970s. According to the behaviours of
κ i

t , G7 countries can be divided into three distinct groups:

1. Japan has the lowest mortality index across all seven countries, and the Japanese κ i
t declines at

almost a constant rate (linear pattern) over the examined six decades.
2. Canada, France, (West) Germany, Italy and the UK: Although their κ i

t ’s decline rates are sub-
stantially lower than the Japanese counterpart before 1980s, all those countries’ κ i

t ’s tend to
exhibit similar speeds of decline after 1990. Figure 3 shows that the estimated κ i

t ’s of the six
countries are almost parallel to each other over 1990–2019.

3. USA has the highest mortality rates among G7 countries over the sample period. Unlike the
other G7 countries, the marginal decline rate of the USA’s κt decelerates, especially over most
recent years. A flat curve is displayed since 2010. This somewhat deviates from the rest G7
countries’ overall temporal trend.

4.3.2. The age effects of mortality rates
In Figure 4, we plot the estimated age effects, that is, μa and μb, respectively. Recall that the hetero-
geneous age effects in Model 1 are drawn randomly from a common distribution characterised by μa

and μb, to ensure the coherence. For age x, μx
a represents the (common) first-year (i.e., 1956) level of

log mortality rate, and μb indicates the (common) age-specific loading of κ i
t . From the widths of 99%

credible bands shown in Figures 4 and 5, the estimation uncertainty is relatively lower for μa than for μb.
The age pattern of μa has a classic ‘tick’ shape, which declines from age 0 to reach a minimum around
age 12. The pattern then almost uniformly increases, except for a famous ‘accidental-hump’ over ages
15–25. The estimates of μx

b are also consistent with empirical findings, such that mortality declines are
faster at young ages than at very old ages.

In addition to μa and μb, Figures 5 and 6 present estimated age effects αi and β i for each country,
respectively. Recall that those are the unique feature of Model 1 to allow flexible population-wise age
effects. Despite some minor differences, all the αi’s demonstrate rather similar patterns. More differences
can be observed for the country-dependent β i’s, suggesting various age-specific decline speeds across
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Figure 4. Estimated age effects μa and μb (solid line: posterior mean; grey area: 99% credible interval).
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Figure 5. Estimated age effects αi’s (solid line: posterior mean; grey area: 99% credible interval).

the G7 countries. In Figure 7, we plot the posterior means of αi’s and β i’s for all the G7 countries together
to facilitate comparison. The population-specific variations are demonstrated by differences among the
corresponding curves. This validates the effectiveness of our specification to enable heterogeneous age
effects in the Model 1. Again, we observe that αi’s of all the countries are relatively close to each other,
whereas the β i’s are more heterogeneous, especially for ages over 20–40 and 50–80.

4.3.3. Cross-sectional dynamic structure
We now investigate relationships among κ t in the VECM, characterised by the coefficient matrix 
.
In Table 3, posterior means of parameter 
 are presented, together with their corresponding standard
errors. Those estimates could provide more information about interdependence of temporal factors in
each country. We firstly verify the impact of prior belief of long-term coherence on the coefficient matrix

. Specifically, recall that our prior belief suggests that κ i

t − κ j
t is weakly stationary for any i 	= j. It can

be seen that most of the diagonal elements of 
 are shrunk to −λ1 (-0.1), and most of the first super-
diagonal elements are also close to λ1 (0.1). Most of the remaining cross-sectional relationships are
insignificant, since a small λ2 (0.1) is adopted to be consistent with our prior belief of the long-term
coherence.

In Figure 8, we report posterior distributions of eigenvalues’ modulus computed from the simulated
VECM coefficient 
. Recall that to meet the coherence conditions, the Minnesota-type prior is adopted
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interval).
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Figure 7. Comparison of estimated age effects αi’s and β i’s for all G7 countries.

such that the coefficient 
 has a reduced rank. Figure 8 shows that the smallest eigenvalue (measured by
modulus) of 
 is close to 0. Hence, the VECM coefficient 
 is indeed of rank I − 1. This supports the
desirable co-integration of temporal factors, and thus all the countries’ mortality rates will not diverge
in the long run (Li and Lu, 2017).

4.3.4. Structural analysis
As stated in Section 2.4, a meaningful recursive relationship is needed to identify unique structural
shocks. In this section, since GDP is believed an important factor on the mortality improvements
(Boonen and Li, 2017), we choose an order according to G7 countries’ total GDP as of 2019, which
are retrieved from World Bank Open Data (https://data.worldbank.org). Specifically, the response vari-
ables are ranked as USA, Japan, Germany, UK, France, Italy and Canada. Thus, this recursive structure
implies that the US structural shock could contemporaneously affect mortality indices of others, while
the shock of Canadian population cannot affect any of other contemporaneous mortality indices.

In Figure 9, we plot the responses of all the mortality indices to the US mortality shock of one
standard deviation (around 3%). The solid blue lines represent posterior means of IRFs, and the grey
areas and dashed red lines correspond to 68% and 95% credible intervals, respectively (It is common
to use 68% and 95% credible intervals in the macroeconometrics literature, for example, see baumeis-
ter2019structural). Since mortality rates are consistently improving (reducing), our results suggest that
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Table 3. Estimated coefficient matrix 
 in the VECM of κ t (with standard errors displayed in
parentheses).

USA Japan Germany UK France Italy Canada
USA −0.1789∗ 0.0997∗ −0.0000 −0.0000 0.0000 0.0000 −0.0000

(0.009) (0.0023) (0.0005) (0.0004) (0.0003) (0.0002) (0.0002)
Japan −0.1183 −0.0049 0.0881∗ −0.0065 −0.0036 −0.0039 −0.0010

(0.0966) (0.0445) (0.0196) (0.0159) (0.0133) (0.011) (0.0099)
Germany 0.1701 0.0179 −0.1507∗ 0.0023 0.0123 0.0048 0.0055

(0.1188) (0.0433) (0.0647) (0.059) (0.0579) (0.0466) (0.047)
UK 0.0478 −0.0121 0.0143 −0.1981∗ 0.0780 0.0414 0.0248

(0.1062) (0.0385) (0.0713) (0.0674) (0.0676) (0.0552) (0.0566)
France 0.0915 0.0360 0.0388 0.0776 −0.2859∗ 0.0510∗ 0.0128

(0.1296) (0.0476) (0.0817) (0.0784) (0.0796) (0.065) (0.0673)
Italy −0.0948 0.0511 0.1021 0.1794∗ −0.0555 −0.2808∗ 0.1308∗

(0.1442) (0.0538) (0.0951) (0.0921) (0.0951) (0.0782) (0.0798)
Canada 0.1289∗ 0.0238 0.0340 −0.0023 0.0070 0.0203 −0.1876∗

(0.0785) (0.032) (0.0678) (0.0793) (0.0862) (0.0737) (0.0802)
Note: ∗ 0 is outside the 90% credible interval;
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Figure 8. Posteriors of eigenvalues’ modulus of the simulated coefficient matrix 
 (ordered by the size
of modulus).

a reduction in the US mortality rates may significantly lead to permanent decline of mortality rates in
other G7 countries. For the contemporaneous impact, the point estimates of IRF range from 1 to 3%,
whereas the influence at the 50th step varies within roughly the same range.

In Figure 10, the dynamics of FEVD of the US mortality index contributed by structural shocks of G7
populations are plotted. First, we observe that contributions of shocks of US mortality rates constantly
reduce over time and achieves a minimum just below 30% at the 50th step. As for the contributions
of other G7 countries, shocks of Japanese mortality rates is the largest (around 60% at the 50th step),
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Figure 9. IRFs of G7 countries’ mortality indices to a one standard deviation US mortality shock. (blue
solid line: posterior mean; grey area: 68% credible interval; red dashed line: 95% credible interval.

Figure 10. FEVD of the US mortality index with relative contributions of all the population-specific
structural shocks (posterior means).

followed by those of Germany population (around 10% at the 50th step). This is consistent with the
assumed recursive order that Japan and German are the second and third largest economies, respectively,
among all G7 countries.

Interpreting the impacts of mortality rates among different countries is typically challenging due
to the multitude of influencing factors. Despite this, changes of Japan’s mortality rates could poten-
tially influence US mortality rates through the following channels, given the tight social and economic
connections between the two countries.

First, a significant shift in Japan’s mortality rates could indicate a new health trend, disease emer-
gence or healthcare breakthrough. If these factors are globally pervasive or if the associated research is
disseminated worldwidely, they could potentially impact US mortality rates. For instance, if a medical
breakthrough originates in Japan and later adopted by the US, it could potentially reduce the US mor-
tality rates. Given that Japan has the highest life expectancy worldwidely, it is plausible that Japanese
mortality rates serve as an upper limit for other countries.
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Second, as a significant global economy and a key trading partner of the US, shocks to Japan’s
mortality rates could affect the size and productivity of its workforce, which could have a long-term
economic impacts. Those impacts could then lead to non-negligible impacts to the US economy, which
eventually affects factors such as the healthcare conditions and thus influence the US mortality rates.
Specifically, a significant rise in mortality among Japan’s working-age population could have negative
impacts on labour economics and thus reduce its economic outputs. Consequently, this might introduce
economic downturns in the US, which then lead to increased mortality rates due to factors such as
increased stress level and reduced healthcare spending.

4.4. Out-of-sample forecasting results
The out-of-sample forecasts of our proposed models can be obtained using the posterior predictive dis-
tributions of log mortality rates yT+s, where s = 1, 2, . . . , h, with h the largest forecasting step. This will
be based on the simulations of latent random states and model parameters. Please see the Section D of
Supplementary Material for more details on the simulation of posterior predictive distributions.

4.4.1. Out-of-sample forecasting performance comparison
In this section, we evaluate and compare forecasting performances of popular mortality models as con-
sidered in Section 4.2, including Models 1–4, the LC model and Li & Lee model. Our complete sample
period is from 1956 to 2019, with the training sample spanning 1956–2009 and the test sample cover-
ing 2010–2019. At each step, we use only the data up to time t, denoted as Ft, to obtain the posterior
predictive density of the h-step ahead forecast yt+h.

Consistent with existing studies, such as Li and Lu (2017) and Li and Shi (2021a), the popular met-
ric root mean squared forecast error (RMSFE) is employed to evaluate forecasting accuracy. Denote
E(yx,T+h|FT) as the h-step-ahead point forecast (posterior expectation) for age x at year T , the RMSFE
for the next h years is defined as

RMSFE(h) = RMSFE(i)(h) = 1

n

n∑
i=1

√∑N
x=0

∑T−h
t=t0

[yo
x,t+h −E(yx,t+h|Ft)]2

(N + 1)(T − h − t0 + 1)
,

where yo
x,T+t is the observed values of log mortality rate log(mx,T+t) for age x at year T + t.

Table 4 provides a comprehensive comparison of the RMSFEs for all fitted single-factor mortality
models. The RMSFEs are calculated at different forecast horizons, ranging from 1 to 10, and three var-
ious shrinkage hyperparameters (λ2 = 0.1, 0.01, 0.00001) are used for Models 1–3. Our results suggest
that the forecasting performance varies with the forecast horizon and the shrinkage hyperparameter.
Overall, the single-factor LC model demonstrates the best forecasting performance, while the com-
mon factor Li & Lee model substantially underperforms others. Despite this, it is worth noting that
the LC model achieves a higher forecasting accuracy at the cost of producing incoherent forecasts in a
longer term, whereas the single-factor Li & Lee model achieves the long-run coherence with the least
accurate forecasts. Our proposed models, namely Model 1–3, manage to balance the trade-off between
short-term forecasting performance and long-term coherence. Across different shrinkage hyperparame-
ters and among the three proposed specifications, Model 1 is the best performing candidate in terms of
forecasting accuracy.

Table 4 also indicates that the RMSFEs of the three proposed models are influenced by the shrinkage
hyperparameters. Regardless of the model used, both weak (λ2 = 0.1) and strong (λ2 = 0.00001) priors
outperform the moderate prior (λ2 = 0.01). This may be attributed to the flexibility of the weak prior and
the strong prior’s ability to capture the long-term trend. Conversely, the moderate prior lacks these two
advantages, resulting in poor forecasting performance. In particular, it is worth mentioning that Model 1
with a weak prior performs as the second best model across all competitors (including LC and Lee &
Li models).
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Table 4. RMSFEs of single-factor mortality models with different shrinkage hyperparameters and
forecast horizons.

Horizons Model 1 Model 2 Model 3 LC Li & Lee

λ2 0.1 0.01 0.00001 0.1 0.01 0.00001 0.1 0.01 0.00001 / /
h = 1 0.1219 0.1252 0.1214 0.1364 0.1398 0.1384 0.1785 0.1777 0.1769 0.1179 0.1732
h = 2 0.1312 0.1409 0.1312 0.1436 0.1538 0.1482 0.1833 0.1840 0.1820 0.1266 0.1808
h = 3 0.1383 0.1567 0.1395 0.1486 0.1682 0.1565 0.1849 0.1880 0.1854 0.1332 0.1890
h = 4 0.1493 0.1799 0.1514 0.1579 0.1911 0.1686 0.1895 0.1977 0.1921 0.1430 0.1978
h = 5 0.1595 0.2064 0.1622 0.1669 0.2184 0.1799 0.1945 0.2103 0.1993 0.1512 0.2059
h = 6 0.1688 0.2343 0.1715 0.1754 0.2477 0.1895 0.1989 0.2237 0.2056 0.1587 0.2124
h = 7 0.1811 0.2660 0.1838 0.1859 0.2817 0.2016 0.2041 0.2394 0.2136 0.1686 0.2211
h = 8 0.1881 0.2959 0.1906 0.1926 0.3161 0.2085 0.2060 0.2532 0.2174 0.1733 0.2251
h = 9 0.1952 0.3326 0.2013 0.1995 0.3574 0.2199 0.2077 0.2761 0.2235 0.1798 0.2330
h = 10 0.1977 0.3610 0.2104 0.2034 0.3908 0.2280 0.2112 0.2949 0.2297 0.1831 0.2378

Table 5. RMSFEs of two-factor mortality models with different shrink-
age hyperparameters and forecast horizons.

Horizons Model 4 Lee–Carter Li & Lee

λ2 0.1 0.01 0.00001 / /
h = 1 0.1082 0.1077 0.1071 0.1018 0.1173
h = 2 0.1212 0.1205 0.1201 0.1120 0.1271
h = 3 0.1325 0.1325 0.1318 0.1205 0.1369
h = 4 0.1473 0.1484 0.1462 0.1339 0.1488
h = 5 0.1612 0.1636 0.1587 0.1494 0.1631
h = 6 0.1736 0.1795 0.1689 0.1713 0.2030
h = 7 0.1885 0.1983 0.1816 0.2021 0.2987
h = 8 0.1981 0.2137 0.1889 0.2430 0.7311
h = 9 0.2097 0.2118 0.1999 0.3208 1.5741
h = 10 0.2134 0.2060 0.2085 0.4188 5.5744

In Table 5, we further compare the forecasting performances of three two-factor mortality models:
Model 4, the two-factor LC model and the augmented common factor Li & Lee model. Among them,
Model 4 is the best performing model. When compared to single-factor counterparts, the improvements
achieved by the two-factor models are primarily evident in short-term forecasting, particularly when the
forecast horizon h is small. When the forecast horizon expands, Model 4 exhibits forecasting accuracy
comparable to that of its single-factor counterpart. However, for the LC model and the Li & Lee model,
the forecasting performances significantly deteriorate when h > 5. This may be attributed to the hier-
archical structure employed by Model 4, which results in fewer parameters than the LC and Li & Lee
models and consequently reduces the possibility of overfitting. Finally, unlike the single-factor models,
we find that the choice of hyperparameters does not have substantially affect the forecasting performance
of Model 4.

Apart from the point forecasts, prediction intervals with high coverage are usually more important
for mortality models to be used in actuarial practices. In Tables 6 and 7, we present the coverage ratios
of the 95% prediction intervals of single-factor models and two-factor models, respectively. The aver-
age widths of the prediction intervals (to demonstrate the efficiency) are displayed in the Section F
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Table 6. Coverage ratios of the 95% prediction intervals produced by the single-factor mortality
models.

Horizons Model 1 Model 2 Model 3 Lee-Carter Li & Lee

λ2 0.1 0.01 0.00001 0.1 0.01 0.00001 0.1 0.01 0.00001 / /
h = 1 0.8737 0.8630 0.8640 0.8708 0.8633 0.8684 0.9181 0.9205 0.9178 0.8629 0.8500
h = 2 0.8621 0.8337 0.8407 0.8665 0.8432 0.8617 0.9086 0.9189 0.9044 0.8568 0.8340
h = 3 0.8520 0.7937 0.8252 0.8629 0.8139 0.8423 0.8946 0.9163 0.8956 0.8500 0.8139
h = 4 0.8354 0.7347 0.8052 0.8528 0.7612 0.8070 0.8782 0.9120 0.8862 0.8361 0.7900
h = 5 0.8196 0.6783 0.7804 0.8497 0.6966 0.7786 0.8619 0.9132 0.8757 0.8204 0.7743
h = 6 0.8187 0.6149 0.7635 0.8460 0.6260 0.7559 0.8467 0.9143 0.8740 0.8108 0.7648
h = 7 0.8099 0.5611 0.7317 0.8433 0.5671 0.7349 0.8325 0.9115 0.8675 0.7952 0.7571
h = 8 0.8127 0.5106 0.7212 0.8508 0.5021 0.7296 0.8148 0.9148 0.8667 0.8021 0.7508
h = 9 0.8151 0.4532 0.7048 0.8476 0.4325 0.7183 0.8040 0.9222 0.8675 0.7944 0.7341
h = 10 0.8127 0.4333 0.6952 0.8556 0.4175 0.7159 0.8079 0.9222 0.8730 0.7873 0.7317

Table 7. Coverage ratios of the 95% prediction intervals produced by
the two-factor mortality models.

Horizons Model 4 Lee-Carter Li & Lee

λ2 0.1 0.01 0.00001 / /
h = 1 0.8822 0.8837 0.8759 0.9508 0.9392
h = 2 0.8624 0.8663 0.8478 0.9499 0.9683
h = 3 0.8482 0.8496 0.8242 0.9528 0.9863
h = 4 0.8311 0.8195 0.7941 0.9599 0.9943
h = 5 0.8130 0.7995 0.7627 0.9672 0.9979
h = 6 0.8092 0.7797 0.7438 0.9705 1.0000
h = 7 0.8071 0.7667 0.7321 0.9730 1.0000
h = 8 0.8085 0.7661 0.7201 0.9799 1.0000
h = 9 0.8373 0.7730 0.7071 0.9873 1.0000
h = 10 0.8571 0.7905 0.6905 0.9968 1.0000

of Supplementary Material. It is worth noting that, for single-factor models, our proposed models can
provide larger coverage ratios with comparable forecasting efficiency. In the case of two-factor mod-
els, LC and Li % Lee models results in abnormally wide prediction intervals at almost all forecasting
steps. Despite the resulting large coverage ratios, those intervals are undesirable, compared with those
of Model 4.

4.4.2. Long-run predictions of mortality rates
We now compare the long-run predictions of mortality rates for all the G7 countries using the Model 1,
for its best out-of-sample performance among the four proposed specifications. The forecast horizon h is
chosen as 30 years beyond 2019 (up to 2049). To facilitate the comparison, the point forecasts (posterior
means) are presented and discussed in this section.

To illustrate the long-term and age-specific forecasts, we present point forecasts of log mortality rates
at age 65 for all the G7 countries in Figure 11. The left, middle and right panel displays results corre-
sponding to Model 1 with a weak (λ2 = 0.1), moderate (λ2 = 0.01) and strong (λ2 = 0.00001) shrinkage
parameter, respectively. We also display long-run forecasts of log mortality rates at age 65 using

https://doi.org/10.1017/asb.2023.29 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2023.29


72 Jianjie Shi et al.

2020 2025 2030 2035 2040 2045 2050
year

–5.6

–5.4

–5.2

–5

–4.8

–4.6

–4.4

–4.2

lo
g 

m
or

ta
lit

y 
ra

te

Age: 65 (posterior mean)
(a) (b) (c)

USA
Japan
Germany
UK
France
Italy
Canada

2020 2025 2030 2035 2040 2045 2050
year

2020 2025 2030 2035 2040 2045 2050
year

–6.2

–6

–5.8

–5.6

–5.4

–5.2

–5

–4.8

–4.6

–4.4

lo
g 

m
or

ta
lit

y 
ra

te

Age: 65 (posterior mean)

USA
Japan
Germany
UK
France
Italy
Canada

–5.6

–5.4

–5.2

–5

–4.8

–4.6

–4.4

lo
g 

m
or

ta
lit

y 
ra

te

Age: 65 (posterior mean)

USA
Japan
Germany
UK
France
Italy
Canada

Figure 11. Point forecasts of log mortality rates at age 65 for all G7 countries.

Model 2 in the Section G of Supplementary Material, where the results are similar to those from
Model 1. When λ2 = 0.00001, despite the presence of some short-term fluctuations, the age-specific
mortality rates exhibit parallel declining trends, implying their non-divergence over the long term. In
contrast, when λ2 = 0.1, the data demonstrate relatively more diversified declining patterns, signifying
the long-term divergence of these age-specific mortality rates across the G7 countries. This underscores
the effectiveness of our prior parameter (λ2) in achieving the long-term coherence. Similar observations
can be made from the plots of future life expectancy at birth provided in the Section H of Supplementary
Material. By employing a strong shrinkage prior, the future life expectancy also appears to be nearly
parallel across different countries.

5. Conclusion
In this paper, we present a new multi-population mortality framework based on the seminal Lee–Carter
model. In particular, a hierarchical structure is assumed for the age effects, and a (structural) VECM is
employed to fit the co-movements of the mortality dynamics. By employing the Bayesian inference with
a shrinkage prior, the proposed model is flexible on balancing the short-term empirical patterns and
long-term coherence in mortality forecasting. Building on the Bayesian MCMC literature, we construct
an efficient precision block sampler that largely reduces the extensive computational cost of Kalman
filter and small-blocked sampling. The application to the G7 data set demonstrates the usefulness of our
model in understanding the mortality dynamics for actuarial practice.

Supplementary Material. To view supplementary material for this article, please visit https://doi.org/10.1017/asb.2023.29.
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