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ON THE COMPUTATION OF INTEGRAL CLOSURES
OF CYCLIC EXTENSIONS OF FUNCTION FIELDS

ROBERT FRAATZ

Abstract

Let S be a non-empty proper subset of the set of places of
a global function field F and E a cyclic Kummer or Artin–
Schreier–Witt extension of F . We present a method of efficient-
ly computing the ring of elements of E which are integral at all
places of S. As an important tool, we include an algorithmic
version of the strong approximation theorem. We conclude
with several examples.

1. Introduction

Work by the Russian mathematician Goppa (see, for instance, [7, 8]) showed that
function fields with a large number of places of degree one can be used to define
good error-correcting codes. Such fields may be constructed by taking a small field
F where the number of places is known, and constructing extensions of F such
that the splitting behaviour of the places is known in advance from theory. Class
field theory is the most powerful technique currently available for building such
extensions. To be able to work efficiently with the resulting Abelian extensions of
large degree, it is important to develop explicit techniques for the fast computation
of integral closures of Kummer extensions, Artin–Schreier–Witt extensions and their
composita. In particular Artin–Schreier–Witt extensions have never been the focus
of algorithmic investigation.

2. Preliminaries

Let k = Fq be a finite (in particular, perfect) field, q a power of a rational prime p,
and F/k an algebraic function field over k; that is, F = k(x, ρ) with f(x, ρ) = 0 for
some irreducible polynomial f ∈ k[x, t] which is monic and separable with respect
to t. Let E/F be an extension of function fields, let P be a place of F , and let ∅ �= S
be a proper subset of the set PF of places of F . If P ′ is an extension of P to E,
then e(P ′|P ) denotes the ramification index of P ′ over P . Let OP be the valuation
ring of P in F , vP the corresponding valuation and OS :=

⋂
P∈S OP . We denote

by OP (E) and OS(E) the integral closure of OP and OS in E. If y is an element of
E, then we write χ(y,E/F )(T ) ∈ F [T ] for the the minimal polynomial of y over F .
For a divisor D of F , we denote by L(D) the Riemann–Roch space, and by AF (D)
the adele space of D, the latter being a k-subspace of the adele space AF of F . For
details on notation and background, we refer to the book by Stichtenoth [14].
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integral closures of cyclic extensions of function fields

The main result of this paper is the development of procedures and algorithms
to compute a finite set Ω of OS -generators of OS(E), where E is a cyclic Kummer
(Section 4) or Artin–Schreier–Witt extension (Section 5) of F . This is done by first
splitting S into finitely many disjoint subsets and then computing, for each P in
each of these sets, a set ΩP of S-integral generators of OP (E) over OP . Proposition
2.1 assures us that the set, which consists of the union of all ΩP , is the sought-after
set Ω of OS -generators of OS(E). The set Ω is finite since the sets ΩP will be equal
for all but finitely many P ∈ S. In Section 3 we give an algorithmic version of
the strong approximation theorem which we have developed and which we will use
frequently in the later sections. We finish by giving examples which demonstrate
the efficiency of our method for computing integral closures by comparing it with
the general method, which is based on the Round-2 algorithm.

The following proposition gives us one of the basic tools for our purpose of
computing the generators of all S-integral elements of E.

Proposition 2.1. Let E be an extension of a function field F/k, and let ∅ �= S �
PF . Suppose that there is a subset Ω of OS(E) which consists of OP -generators of
OP (E) for each P ∈ S; that is,

OP (E) = OP [Ω] ∀P ∈ S.

Then Ω is a set of generators of OS(E) over OS ; that is,

OS(E) = OS [Ω].

Proof. We have OP [Ω] = (OS [Ω])P∩OS and OP (E) = (OS(E))P∩OS , where the
modules on the right-hand side are the localizations of the OS -modules OS [Ω] and
OS(E), respectively, at the prime ideal P ∩ OS . Thus our assumption means that
(OS(E))p = (OS [Ω])p for all maximal ideals p of OS . This implies the result.

The next two results will help us to compute, for a place P of a function field F ,
a local integral basis for some field extension of F .

Corollary 2.2. Let E0 ⊆ E1 ⊆ . . . ⊆ En be a tower of field extensions of a
function field E0, let P be a place of E0 and let Si ⊂ PEi be all the places of Ei

above P . Suppose, for all 0 � i � n−1 and all Q ∈ Si, that there is ∆Q ⊂ OP (Ei+1)
such that OQ(Ei+1) = OQ[∆Q]. Then

OP (En) = OP [∆], where ∆ =
⋃

Q∈Si

0�i�n−1

∆Q.

Proof. This requires repeated application of Proposition 2.1 and the fact that
OSi

(Ei+1) =
⋂

Q∈Si+1
OQ = OSi+1 .

Proposition 2.3. Let E be a finite separable extension of a function field F of
degree n, and let P ∈ PF .

(i) Suppose that E = F (y) and χ(T ) is the minimal polynomial of y. If χ(T ) ∈
OP [T ] and vP ′(χ′(y)) = 0 for all P ′ ∈ PE with P ′|P , then P is unramified in E
and {1, y, . . . , yn−1} is a local integral basis for P in E/F .

(ii) Suppose that P ′|P (where P ′ ∈ PE) is totally ramified in E/F , and π is a
prime element for P ′. Then {1, π, . . . , πn−1} is a local integral basis for P in E/F .
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integral closures of cyclic extensions of function fields

Proof. See [14, III.5.11 and III.5.12].

Remark 2.4. Let F be a function field over the rational function field k(x) and
∅ �= S � PF . Define s := {p ∈ Pk(x) | ∃P ∈ S with P |p} and S ′ := {P ∈ PF |
P |p for some p ∈ s}. Then for each a ∈ F there exists a unique representation
a = num(a)/den(a) satisfying num(a) = a1ω1+. . .+amωm ∈ OS′ (here ai ∈ Os and
ω1, . . . , ωm is a basis of OS′ over Os), den(a) ∈ Os and gcd(den(a), a1, . . . , am) = 1.
(Note that Os is a unique factorization domain.)

Using this notation, we now can state the following proposition.

Proposition 2.5. Let E/F be a function field extension, 0 �= β ∈ E, and let
χ(β,E/F )(T ) =

∑m
i=0 αiT

i be the minimal polynomial of β over F . Let ∅ �= S � PF .
For

δβ := lcm
{

den
(

αi

αj

) ∣∣∣ 0 � i < j � m, αi, αj �= 0
}

,

we have βδβ ∈ OS(E).

Proof. From the Newton polygon of χ(β,E/F ) we know that there exist 0 � r < s �
m such that 0 �= αr, αs and

vP ′(β) = e(P ′|P )
vP (αr)− vP (αs)

s− r

(see for instance [3, Chapter 6.3]). The result now follows easily.

3. Strong approximation

A main tool for all the results presented in this paper is the strong approximation
theorem. Since it is also of independent interest, we give an algorithmic solution in
this section.

Theorem 3.1 (Strong approximation). Let F/Fq be a function field, ∅ �= S �
PF and P1, . . . , Pr ∈ S. Suppose that there are given a1, . . . , ar ∈ F and n1, . . . , nr ∈
Z. Then there exists an element z ∈ F such that

vPi(z − ai) = ni 1 � i � r, and
vP (z) � 0 for all P ∈ S \ {P1, . . . , Pr}.

(3.1)

Our proof follows Stichtenoth’s [14], but is constructive. We need the following
lemma.

Lemma 3.2. Suppose that we are in the situation of the theorem. Then there exists
an element y ∈ F such that

vPi(y − ai) > ni 1 � i � r, and
vP (y) � 0 for all P ∈ S \ {P1, . . . , Pr}.

(3.2)

Proof. For 1 � i � r we set ñi := ni + 1. We take a divisor A of positive degree
whose support is disjoint to S. Then there exists l ∈ N such that the divisor
D := lA−∑r

j=1 ñjPj is non-special (see [14, I.6.8.]).
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We now describe how to find, for each 1 � i � r, an element yi ∈ F with

vPi
(yi − ai) � ñi 1 � i � r,

vPj (yi) � ñj 1 � i � r, j �= i and
vP (yi) � 0 for all P ∈ S \ {P1, . . . , Pr}.

(3.3)

The element y =
∑r

i=1 yi then satisfies (3.2).
If vPi(ai) � ñi, we can set yi := 0 and are done.
Suppose now that vPi(ai) < ñi. The non-speciality of D implies that AF =

AF (D)+F ; see[14, I.5.4.]. Therefore there exists β ∈ F such that (β−αi) ∈ AF (D),
where αi ∈ AF is the adele whose Pi-component equals ai and which is zero at all
other components. This implies that vPi(β − ai) � ñi > vPi(ai). The strict triangle
equation then yields vPi

(β) = vPi
(ai); therefore

β ∈ L := L
(

lA−
r∑

j=1

ñjPj + ñiPi − vPi
(ai)Pi

)

and yi := β satisfies (3.3). We finish the proof by showing how to actually com-
pute β.

(i) Let B := b1, . . . , bs be a basis of L (for the computation of the Riemann–Roch
spaces we refer to [10]).

(ii) For each element γ ∈ {ai} ∪ B we compute a (finite) series expansion
in the following sense. Let π be a prime element of Pi and ω1, . . . , ωl a
set of representatives of an Fq-basis of the residue class field of Pi. We set
γ̃ := γπ−vPi

(ai) and then, iteratively for vPi(ai) � w � ñi, we lift γ̃(Pi)
to γw =

∑l
µ=1 γw,µωµ and do γ̃ ← (γ̃ − γw)/π. This yields the expansion

ñi∑
w=vPi

(ai)

γwπw

of γ. (Here, γ̃(Pi) denotes the residue class of γ̃ modulo Pi.)
(iii) We construct a matrix M over Fq whose columns contain the coefficients of the

series expansion (as described in (ii)) of the elements of B. Let c = (c1, . . . , cs)
be such that Mc = ai (from what was said above, it is clear that c exists.)

(iv) Set β :=
∑s

v=1 cvbv.

We summarize the proof of the lemma in the following algorithm.

Algorithm 3.3.

Input: ∅ �= S � PF , P1, . . . , Pr ∈ S, a1, . . . , ar ∈ F , n1, . . . , nr ∈ Z.
Output: y ∈ F such that vPi(y − ai) > ni for all 1 � i � r and vP (y) � 0

for all P ∈ S \ {P1, . . . , Pr}.
1. for 1 � i � r do

2. ñi := ni + 1
3. end for
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4. Choose a divisor A with deg A > 0 whose support is disjoint to S.
5. Compute l ∈ N such that D := lA−∑r

j=1 ñjPj is non-special.
6. for 1 � i � r do
7. if vPi

(ai) � ñi then
8. yi := 0
9. else

10. Compute β as described in (i)–(iv) in the above proof.
11. yi := β

12. end if
13. end for
14. return y =

∑r
i=1 yi.

Proof of Theorem 3.1. We use algorithm 3.3 to compute y ∈ F with

vPi(y − ai) > ni 1 � i � r, and
vP (y) � 0 for all P ∈ S \ {P1, . . . , Pr}

and ỹ ∈ F with

vPi
(ỹ − πni

i ) > ni 1 � i � r, and
vP (ỹ) � 0 for all P ∈ S \ {P1, . . . , Pr}.

The strict triangle equation then shows that the element z := y + ỹ satisfies
definitions (3.1).

4. Kummer extensions

Let n be a natural number, and suppose that F contains the set µn of all nth
roots of unity, where the characteristic of F is zero or coprime to n. A cyclic
extension of F of degree n is called a Kummer extension. The following statements
are equivalent.

(i) E/F is a Kummer extension (of degree n).
(ii) E = F (y), where yn = u ∈ F ∗ and ul �= xn for all x ∈ F , l | n and l < n.
(iii) E = F (y) where yn = u ∈ F ∗ and u �= wd for all w ∈ F , d | n and d > 1.
Each element y ∈ E satisfying one of the conditions (ii) or (iii) is called a Kummer
generator of E/F .

The following proposition helps us to determine the ramification behaviour of
places in Kummer extensions of function fields.

Proposition 4.1. Let F/k be a function field and E/F a Kummer extension of
degree n with generator y ∈ E and yn =: u ∈ F ∗. If P is a place of F and P ′ an
extension of P in E, then

eE(P ) := e(P ′|P ) =
n

rP,E
, (4.1)

where rP,E := gcd(n, vP (u)) > 0.
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Proof. See [9, Section 3].

For the rest of this section we fix a Kummer extension E of F of degree n with
generator y, yn = u ∈ F . Let ∅ �= S � PF . The task of this section is to find a set
of OS(F ) generators of OS(E). Let us first consider the unramified places. We set

A := {P ∈ S | P unramified in E/F}
= {P ∈ S | njP =: vP (u) ≡ 0 mod n}

and A0 := {P ∈ A | vP (u) = 0 and vP (δy) = 0} (δy was defined in Proposition
2.5). Then

A \A0 = {P ∈ A | vP (u) �= 0 or vP (δy) > 0}. (4.2)

Proposition 4.2 (S-integral OP -generators of OP (E) for P ∈ A).

(i) We have yδy ∈ OS(E).
(ii) For all P ∈ A0, we have OP (E) = OP [yδy].

Using strong approximation we choose τ ∈ F with vP (τ) = −(jP +vP (δy)) for all P ∈
A \A0 and vQ(τ) � 0 for all Q ∈ S \ (A \A0). Then the following statements also
hold.
(iii) We have yδyτ ∈ OS(E).
(iv) OP (E) = OP [yδyτ ] for all P ∈ A \A0.

Proof. Part (i) follows from Proposition 2.5. Let P ∈ A0. Since χ(y,E/F )(T ) =
Tn − u ∈ OP [T ] and vP ′(χ′

(y,E/F )(y)) = vP ′(n · yn−1) = (n − 1)vP ′(y) = 0 for all
P ′ ∈ PE above P , Proposition 2.3(i) gives OP (E) = OP [y]. Since vP (δy) = 0 for
all P ∈ A0, this shows part (ii).

The element ỹ := yδyτ is a Kummer generator of E/F with ỹn = uδn
y τn =: ũ and

minimal polynomial χ(ỹ,E/F )(T ) = Tn − ũ. Now Proposition 2.5 and the definition
of τ yield vQ′(ỹ) � 0 for all Q′|Q, Q ∈ S \ (A \ A0). From vP (ũ) = 0 it follows
that vP ′(ỹ) = 0 for all P ′ ∈ PE above P , P ∈ A \ A0, and thus statement (iii)
holds. Moreover, we get χ(ỹ,E/F )(T ) ∈ OP [T ] and vP ′(χ′(ỹ)) = vP ′(n · ỹn−1) =
(n−1)vP ′(ỹ) = 0 for all P ′ ∈ PE above P , P ∈ A\A0, and therefore (by Proposition
2.3(i)) OP (E) = OP [ỹ] for all P ∈ A \A0.

Let us now consider the ramified places, that is, the set

B := S \A = {P ∈ S | vP (u) �≡ 0 mod n}.
We define

B1 := {P ∈ B | eE(P ) = n}
= {P ∈ B | rP,E = gcd(n, vP (u)) = 1} (4.3)

and
B2 := {P ∈ B | 1 < eE(P ) < n} = B \B1. (4.4)

If P ∈ B1, then P is totally ramified in E/F and there exist integers sP and lP
with lP > 0 such that nsP + lP vP (u) = 1. Using strong approximation we choose
γP ∈ F satisfying

vP (γP ) = sP − lP vP (δy) and
vQ(γP ) � 0 for all Q ∈ S \ {P}. (4.5)

146https://doi.org/10.1112/S1461157000001340 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001340


integral closures of cyclic extensions of function fields

Proposition 4.3 (S-integral OP -generators of OP (E) for P ∈ B1). If
P ∈ B has ramification index n = [E : F ] (which is the case if and only if rP,E =
gcd(n, vP (u)) = 1) and γP is as in (4.5), then

(i) γP (yδy)lP ∈ OS(E) and
(ii) OP (E) = OP [γP (yδy)lP ].

Proof. Since lP > 0, by Proposition 2.5 we get vQ′(γP (yδy)lP ) � 0 for all Q′|Q,
Q ∈ S \ {P}. Moreover, if P ′ is the place of E above P , then vP ′(γP (yδy)lP ) = 1.
The result now follows using Proposition 2.3(ii).

Suppose now that P ∈ B2; that is, P is ramified in E with ramification index
e := eE(P ), where 1 < e < n. Hence

r := rP,E =
n

e
= gcd(n, vP (u)). (4.6)

Consider the intermediate field Er := F (ye) of E/F and let Pr,1, . . . , Pr,s be all the
places of Er above P . Then Er/F is a Kummer extension of degree r with Kummer
generator ye and defining polynomial T r − u, and E/Er is a Kummer extension of
degree e with Kummer generator y and defining polynomial T e−ye. From (4.6) we
get rP,Er = gcd(r, vP (u)) = gcd(n, vP (u)) = r, and hence (see (4.1))

eEr
(P ) =

r

rP,Er

= 1. (4.7)

This implies that

e = eE(P ) = eEr (P ) · eE(Pr,i) = eE(Pr,i) (4.8)

for each 1 � i � s; that is, Er is the inertia field of P in E. Let PE,1, . . . , PE,s be
all the places of E above P and PE,i|Pr,i.

The unramified case (4.7) was dealt with in Proposition 4.2. Applied to our situa-
tion, this means that we take jP ∈ Z with vP (u) = rjP , use strong approximation to
choose τP ∈ F with vP (τP ) = −(jP + vP (δye)) and vQ(τP ) � 0 for all Q ∈ S \ {P}
and set

αP := yeδyeτP . (4.9)

Proposition 4.2 then yields

αP ∈ OS(Er) and OP (Er) = OP [αP ]. (4.10)

On the other hand, the case (4.8) of total ramification was discussed in Proposi-
tion 4.3: for all 1 � i � s we have vPE,i

(yn) = vPE,i
(u) = evP (u) and therefore

vPr,i(y
e) = (vP (u))/r. Moreover, 1 = rPr,i,E = gcd(e, vPr,i(y

e)). Hence there exist
integers sP and lP with lP > 0 such that esP + lP (vP (u))/r = 1. We use strong
approximation to find γP ∈ F satisfying vP (γP ) = sP − lP vP (δy) and vQ(γP ) �
0 for all Q ∈ S \ {P}, and we define

βP := γP (yδy)lP . (4.11)

Now vPE,i
(βP ) = 1 for all 1 � i � s and, since lP > 0, by Proposition 2.5 we get

vQ′(βP ) � 0 for all Q′|Q, Q ∈ S \ {P}. By Proposition 2.3(ii) it then follows that

βP ∈ OS(E) and OPr,i(E) = OPr,i [βP ] (4.12)
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for all 1 � i � s. Putting together (4.10) and (4.12) we get the following proposition
(by Corollary 2.2).

Proposition 4.4 (S-integral OP -generators of OP (E) for P ∈ B2). Let
P be in B2. With the notation just defined, we get

(i) αP , βP ∈ OS(E) and
(ii) OP (E) = OP [αP , βP ]. �

We are now able to give an algorithm which computes, for a Kummer extension
E of a function field F and each ∅ �= S � PF , a set of OS -generators of OS(E).

Algorithm 4.5.

Input: A Kummer extension E/F with generator y and ∅ �= S � PF .
Output: A finite set Ω of OS -generators of OS(E).

1. Compute the sets A \A0, B1 and B2 (see (4.2), (4.3) and (4.4)).
2. Compute ΩA0 := {yδy}, where δy is as in Proposition 2.5.
3. Compute τ (see Proposition 4.2) and set ΩA\A0 := {yδyτ}.
4. For each P ∈ B1 compute γP satisfying (4.5) and set

ΩB1 := {γP (yδy)lP | P ∈ B1}.
5. For each P ∈ B2 compute αP and βP as in (4.9) and (4.11), respectively, and

set

ΩB2 := {αP , βP | P ∈ B2}.
6. return Ω := ΩA0 ∪ ΩA\A0 ∪ ΩB1 ∪ ΩB2 .

The correctness of this algorithm follows from S = A0 ∪ A \ A0 ∪ B1 ∪ B2 and
Proposition 2.1. The set Ω is finite and contained in OS(E), since this is true for
each of the sets ΩA0 , ΩA\A0 , ΩB1 and ΩB2 . (Note that A \A0, B1 and B2 are finite.)

5. Artin–Schreier–Witt extensions

Let F be a function field of characteristic p > 0, and let F̄ be the separable closure
of F in some algebraic closure of F . Then F̄ is the maximal Galois extension of F .
In this section we study cyclic extensions of degree pn, n � 1.

We begin with the special case n = 1. Let ℘ : F̄ −→ F̄ be defined by ℘(x) :=
xp − x. Then the following assertions for a field extension E/F with E ⊆ F̄ are
equivalent.

(1) E/F is cyclic of degree p.

(2) E = F (y), ℘(y) = yp − y = u ∈ F and u �= αp − α for all α ∈ F .
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An extension for which (1) or (2) holds is called an Artin–Schreier extension. The
elements of Gal(E/F ) are given by σ(y) = y + ν, ν ∈ Fp. Each y′ ∈ E with
E = F (y′) and ℘(y′) = y′p − y′ ∈ F is called an Artin–Schreier generator of
E/F . An element y′ ∈ E is an Artin–Schreier generator if and only if there exist
µ ∈ Fp ⊂ F and ζ ∈ F such that y′ = µy + ζ and y′p−y′ = u′ = µu+(ζp− ζ); that
is, if and only if y′ ∈ ℘−1(u′) with u′ ∈ F and u′ − µu ∈ ℘(F ) for some µ ∈ Fp.
The minimal polynomial of y′ over F is T p − T − u′ ∈ F [T ].

Proposition 5.1. Let F/k be a function field of characteristic p > 0, k perfect and
P ∈ PF a place of F .

(i) For each u ∈ F we can define a unique

λP (u) :=




λ if there exists an element ζ := ζ(P, u) ∈ F with
vP

(
u + (ζp − ζ)

)
= −λ < 0, λ �≡ 0 mod p

0 if there exists an element ζ := ζ(P, u) ∈ F with
vP

(
u + (ζp − ζ)

)
� 0.

(ii) If E/F is an Artin–Schreier extension and y ∈ E an Artin–Schreier generator
of E/F with ℘(y) = u ∈ F , then

• P is unramified in E if and only if λP (u) = 0, and
• P is totally ramified in E if and only if λP (u) > 0.

Moreover, from (i) it follows that, if y′ is another Artin–Schreier generator of E/F
with ℘(y′) = u′ ∈ F , then λP (u) = λP (u′).

Proof. See [14, III.7.7 and III.7.8].

For later applications it will be important to compute λP (u) from Proposition
5.1(i). We describe the procedure for doing this in the following algorithm. We
retain the notation of Proposition 5.1.

Algorithm 5.2. Reduction-AS

Input: P ∈ PF , u ∈ F , charF = p > 0.
Output: ζ := ζ(P, u) ∈ F and λ = λP (u) ∈ Z (see Proposition 5.1(i)) with

either
vP (u + (ζp − ζ)) � 0 (in this case λ := 0)
or
vP (u + (ζp − ζ)) = −λ < 0, λ �≡ 0 mod p.

1. ζ ← 0, λ← vP (u), x← u
2. while λ < 0 and λ ≡ 0 mod p do
3. l← λ/p
4. Choose t ∈ F with vP (t) = l.
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5. Choose α ∈ O∗
P with

x

tp
+ P =

(
α + P

)p = αp + P. (5.1)

(In the paragraph following the statement of this algorithm
we show how to find α.)

6. ζ ← ζ − αt
7. x← u + (ζp − ζ)
8. λ← vP (x)
9. end while

10. if λ < 0 then
11. λ := −λ
12. else
13. λ := 0
14. end if
15. return ζ, λ.

We proceed by showing the correctness of this algorithm (following the proof
of [14, III.7.7]). First we note that x = u + (ζp − ζ) and tp are non-zero. Since
vP (tp) = vP (x), we have vP (x/tp) = 0; hence 0 �= x/tp + P ∈ OP /P . Then there
exists an α ∈ OP satisfying (5.1), since OP /P is perfect. Moreover, α ∈ O∗

P since
vP (αp) = vP (x/tp) = 0.

Now (5.1) implies (x/tp−αp) ∈ P ; that is, vP (x/tp − αp) > 0. This implies that

vP

(
x− (αt)p

)
> vP (tp) = λ. (5.2)

It now remains to show that

vP

(
u +

(
(ζ − αt)p − (ζ − αt)

))
> vP (u + (ζp − ζ))
= vP (x) = λ,

(5.3)

because it follows that λ strictly increases in every step of the ‘while’ loop, and so
the algorithm terminates with the correct result. Since

vP

(
u +

(
(ζ − αt)p − (ζ − αt)

))
= vP

(
u + (ζp − ζ)− ((αt)p − αt)

)
= vP

(
x− ((αt)p − αt)

)
,

(5.3) follows from vP (αt) = vP (t) = l > lp = λ and (5.2). (Note that during the
‘while’ loop, λ — and therefore l — is negative.)

We now generalize the above to powers of p. Let n be a fixed natural number.
For a field L we denote by Wn(L) the ring of Witt vectors over L of length n. We
define the homomorphism

℘ : Wn(F̄ ) −→Wn(F̄ ), (x1, . . . , xn) −→ (xp
1, . . . , x

p
n)− (x1, . . . , xn). (5.4)

The proofs of the following two statements can be found in [11] or [4].

Theorem 5.3. The following statements are equivalent.

(i) E/F is a cyclic extension of degree pn.
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(ii) E = F (y) for some y ∈ Wn(F̄ ), where ℘(y) = u ∈ Wn(F ) and pn−1u �∈
℘
(
Wn(F )

)
.

(iii) E = F (y) for some y ∈ Wn(F̄ ), where u = (u1, . . . , un) ∈ Wn(F ) with
℘(y) = u and u1 �= αp − α for all α ∈ F .

(Here, F (y) is the subfield of F̄ which is obtained by adjoining all the coordinates
of y to F.) An extension E of F satisfying the above conditions is called an Artin–
Schreier–Witt extension and y an Artin–Schreier–Witt generator of E/F .

Proposition 5.4. Suppose that E/F is an Artin–Schreier–Witt extension with
generator y ∈ ℘−1(u) for some u ∈ Wn(F ). Then, for y′ ∈ Wn(F̄ ), the following
assertions are equivalent.

(i) y′ is an Artin–Schreier–Witt generator of E/F .

(ii) y′ ∈ ℘−1(u′) with u′ ∈ Wn(F ) and u′ − λu ∈ ℘
(
Wn(F )

)
for some λ ∈(

Z/pnZ
)∗.

(iii) y′ = λy + ζ for some λ ∈ (
Z/pnZ

)∗ and ζ ∈Wn(F ).

For the rest of this section we fix an Artin–Schreier–Witt extension E/F with
generator y = (y1, . . . , yn) ∈ ℘−1(u) for some u ∈ Wn(F ). We set E0 := F ,
En := E and Ei := F (y1, . . . , yi) for each 1 � i � n. Note that, since Ei/F
is cyclic, E1, . . . , Ei−1 are the only intermediate fields of Ei/F , and therefore
Ei = F (y1, . . . , yi) = F (yi).

Remark 5.5. We have the following recursive formulas:

u1 = yp
1 − y1,

u2 = yp
2 − y2 − z1,

...
un = yp

n − yn − zn−1,

where z0 = 0 and zi ∈ Ei are polynomial expressions in yl, ul and zl−1 (1 � l � i)
with coefficients in the prime field of F (see, for instance, [13]). Each extension
Ei/Ei−1 is an Artin–Schreier extension with generator yi.

Let ∅ �= S � PF . Now we have all the necessary tools to compute a set of
generators of OS(E) over OS . We will give a brief survey of the rest of this section.
Let P ∈ PF . We begin by defining a vector ΛP ∈ Zn, a vector ζP ∈ Wn(F ) and a
natural number tP which will give us information about the ramification behaviour
of P in E. We use these vectors to split S in finitely many disjoint subsets. Then
we compute for each P in each of these sets a set of S-integral generators of OP (E)
over OP . As mentioned above, Proposition 2.1 then guarantees that the set Ω,
which consists of all these generators and will turn out to be finite, has the desired
properties.

We define ΛP , ζP and tP with the following algorithm, which essentially applies
the reduction algorithm 5.2 successively to the coordinates of the vector u ∈Wn(F ).
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Algorithm 5.6. Reduction-ASW

Input: P ∈ PF .

Output: ζP ∈Wn(F ), ΛP ∈ Zn and tP ∈ N.
1. ζP ← (0, . . . , 0), ΛP ← (0, . . . , 0), λ← 0, i← 0
2. while λ = 0 and i < n do
3. i← i + 1
4. ζ, λ← Reduction-AS(P, ui)
5. u← u + ℘(Z), where Z ∈Wn(F ) is given by

Zj =

{
ζ j = i

0 else

6. (ζP )i ← ζ
7. end while
8. (ΛP )i ← λ
9. if i = n and λ = 0 then

10. tP ← n
11. else
12. tP ← i− 1
13. end if
14. return ζP , ΛP , tP

The new Artin–Schreier–Witt generator of E/F which is obtained by the above
procedure is

yP := y + ζP (5.5)

with
uP := ℘(yP ) = u + ℘ (ζP ) ; (5.6)

that is, Ej = Ej−1((yP )j) and

(yP )p
j − (yP )j = (uP )j + zP,j−1,

where zP,j−1 ∈ Ej−1 is as in Remark 5.5.

Remark 5.7. Let P ∈ PF .
(i) We denote by Pj an arbitrary place of Ej over P . Since the Ej (0 � j � n) are

the only subfields of En, the inertia field of Pn over P equals Et for some 0 � t � n.
We claim that

t = tP . (5.7)

From Proposition 5.1 we know that Pj−1 is unramified in Ej/Ej−1 if and only if
λPj−1 ((uP )j + zP,j−1) = 0. Therefore we will have established (5.7) if we show that

(ΛP )j = λPj−1((uP )j + zP,j−1) for 1 � j � t + 1. (5.8)
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Since (ΛP )1 = . . . = (ΛP )t = 0 and zP,j−1 is a polynomial expression in (yP )l,
(uP )l and zP,l−1 (1 � l < j − 1) with coefficients in the prime field of F , we have

vPj−1(zP,j−1) � 0, 1 � j � t + 1. (5.9)

For 1 � j � t we have (ΛP )j = 0 and vP ((uP )j) � 0. Therefore

vPj−1((uP )j + zP,j−1) � 0 (5.10)

and thus λPj−1((uP )j + zP,j−1) = 0. It follows that P is unramified in Et/E.
On the other hand, if t < n and j = t+1 (that is, vP ((uP )t+1) = −(ΛP )t+1 < 0),

then strict triangularity and (5.9) yield

vPt((uP )t+1 + zP,t) = vPt((uP )t+1) = vP ((uP )t+1) (5.11)

and we have proved (5.8) and hence (5.7).

(ii) For each 1 � i � tP consider the minimal polynomial

χi(T ) := χ(
(yP )i, Ei

/
Ei−1

)(T ) = T p − T − (
(uP )i + zP,i−1

)
of (yP )i ∈ Ei over Ei−1. For each Pi−1 ∈ PEi−1 with Pi−1|P we know from (5.10)
that χi(T ) ∈ OPi−1 [T ]. This implies that for each 1 � i � tP the element (yP )i

is integral at P . Moreover, vPi(χ
′
i((yP )i)) = 0 for all Pi ∈ P(Ei) with Pi|Pi−1.

Proposition 2.3(i) then yields

OPi−1(Ei) = OPi−1

[
(yP )i

]
. �

For later reference we note the following: since Pt+1|Pt is totally ramified and
Pt|P is unramified, we have

0 > p · vPt

(
(uP )t+1 + zP,t

)
= vPt+1

(
(uP )t+1 + zP,t

)
� min

{
vPt+1

(
(yP )p

t+1

)
, vPt+1

(
(yP )t+1

)}
= p · vPt+1

(
(yP )t+1

)
;

that is, (together with (5.11))

−(ΛP )t+1 = vP

(
(uP )t+1

)
= vPt

(
(uP )t+1 + zP,t

)
= vPt+1

(
(yP )t+1

)
. (5.12)

Note that all the above expressions do not depend on the choice of the place Pj

over P for all 1 � j � t + 1.
We now split S into subsets. We define

A := {P ∈ S | vP (ui) � 0 for all 1 � i � n},
B := Bn+1 :=

{
P ∈ S \A | tP = n

}
=

{
P ∈ S \A | (ΛP )i = 0 for all 1 � i � n

}
,

and for 1 � j � n,

Bj := {P ∈ S | tP = j − 1}
= {P ∈ S | (ΛP )i = 0 for 1 � i < j and (ΛP )j > 0}.

Note that all the above sets are pairwise disjoint, their union equals S and that
A ∪ B equals the set of places of S which are unramified in E/F . Moreover, A :=
S \A =

⋃n+1
j=1 Bj .
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Remark 5.8. The sets B1, . . . , Bn+1 can be computed in the following way:

• Compute, for each 1 � i � n,

Ai := {P ∈ S | vP (ui) < 0 and vP (uj) � 0 for all 1 � j < i}
= {P ∈ S | vP (ui) < 0 and P /∈ Aj for all 1 � j < i}.

These sets are also pairwise disjoint and their union equals A. Moreover, they can
easily be derived from the vector u.

• For each P ∈ Al, 1 � l � n, compute tP using algorithm 5.6.

For each P we can now also compute yP and uP as in (5.5) and (5.6). Of course,
yP = y and uP = u for all P ∈ A.

In the following propositions we will show how to compute S-integral generators
of OP (E) over OP successively for the places P in the sets A, B1, . . . , Bn+1.

Using the definition in Proposition 2.5 we define the following subset of A:

A′ := {P ∈ A | vP (δyi
) > 0 for some 1 � i � n}. (5.13)

Proposition 5.9. Let ΩA\A′ := {yiδyi
| 1 � i � n}. Then

(i) yiδyi ∈ OS(E) for each 1 � i � n;
(ii) for all P ∈ A \A′ we have OP (E) = OP

[
ΩA\A′

]
.

Proof. Part (i) follows from Proposition 2.5. Let P ∈ A \ A′. For all 1 � i � n
we have vP (δyi

) = 0, and hence δyi
is a unit in OP . Therefore (by Remark 5.7(ii))

OPi−1(Ei) = OPi−1 [yiδyi ] for each place Pi−1 of Ei−1 over P . Part (ii) then follows
from Corollary 2.2.

Proposition 5.10. Let P ∈ A′ ∪ B1 ∪ . . . ∪ Bn+1. For each 1 � i � tP we use
strong approximation to find γP,i ∈ F with vP (γP,i) = −vP (δ(yP )i

) and vQ(γP,i) �
0 for all Q ∈ S \ {P}. Then

(i) (yP )iδ(yP )i
γP,i ∈ OS(E) for each 1 � i � tP ;

(ii) OP (EtP
) = OP

[
Ω̃P

]
, where Ω̃P := {(yP )i δ(yP )i

γP,i | 1 � i � tP }.
In particular, for P ∈ A′ ∪B we have OP (E) = OP

[
ΩP

]
, where ΩP := Ω̃P .

Proof. Part (i) follows from Proposition 2.5. For part (ii) we use the same argument
as in the proof of Proposition 5.9(ii): for each 1 � i � tP we have vP (δ(yP )i

γP,i) = 0;
hence δ(yP )i

γP,i is a unit in OP . From Remark 5.7(ii) we then get OPi−1(Ei) =
OPi−1 [δ(yP )i

γP,i] for each place Pi−1 of Ei−1 over P , and the result follows, by
Corollary 2.2.

Proposition 5.11. Let P ∈ Bn. Since for all Pn ∈ PEn with Pn|P we have
vPn((yP )n) = −(ΛP )n �≡ 0 mod p (which was shown in (5.12)), there exist lP and
sP ∈ Z�0 such that sP · p− lP · (ΛP )n = 1. Using strong approximation we choose
θP,n ∈ F with vP (θP,n) = sP − lP ·vP (δ(yP )n

) and vQ(θP,n) � 0 for all Q ∈ S \{P}.
Then

(i) θP,n((yP )nδ(yP )n
)lP ∈ OS(E);

(ii) OP (En) = OP [ΩP ], where ΩP := Ω̃P ∪ {((yP )nδ(yP )n
)lP θP,n}.
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Proof. (i) Since lP � 0, it follows from Proposition 2.5 and the definition of θP,n

that vQ′(θP,n((yP )nδ(yP )n
)lP ) � 0 for all places Q′ of E over Q with Q ∈ S \ {P}.

Moreover, vPn
(θP,n((yP )nδ(yP )n

)lP ) = 1 for all places Pn of E over P . This gives
part (i) and (using Proposition 2.3(ii)) we have

OPt(En) = OPt

[
θP,n

(
(yP )nδ(yP )n

)lP
]

(5.14)

for all Pt ∈ PEt
with Pt|P . Part (ii) follows with Corollary 2.2 from (5.14) and

Proposition 5.10.

We are now left with the task of finding a set of generators for OP (E), P ∈ Br,
1 � r < n. Let PtP ,1, . . . , PtP ,r be all the places of EtP

, Pn−1,1, . . . , Pn−1,r be
all the places of En−1 and Pn,1, . . . , Pn,r be all the places of En above P with
Pn,j |Pn−1,j |PtP ,j . We recall from Remark 5.5 that for the generator yn of the Artin–
Schreier extension En/En−1, it holds that yp

n− yn = un + zn−1 ∈ En−1. Since each
Pn−1,j is totally ramified in En/En−1, there exists an element ρP,j of En−1 such
that

vPn−1,j

(
un + zn−1 + (ρp

P,j − ρP,j)
)

= λPn−1,j (un + zn−1) =: −mP,j < 0

with mP,j �≡ 0 mod p (see Proposition 5.1). Therefore we can choose lP,j and
sP,j ∈ Z�0 such that sP,j ·pn−tP−lP,j ·mP,j = 1. (Note that pn−tP = e(Pn,j |PtP ,j) =
e(Pn,j |P ).) Now yn + ρP,j is an Artin–Schreier generator of En/En−1 with

(yn + ρP,j)p − (yn + ρP,j) = un + zn−1 + (ρp
P,j − ρP,j)

and
vPn,j (yn + ρP,j) =

1
p
· vPn,j

(
un + zn−1 + (ρp

P,j − ρP,j)
)

= −mP,j .

Select θP,n,j ∈ F with

vP (θP,n,j) = sP,j − lP,j · vP

(
δ(yn+ρP,j)

)
and

vQ(θP,n,j) � 0 for all Q ∈ S, Q �= P.

Proposition 5.12. Suppose that we are in the situation just described. Then

(i) θP,n,j((yn + ρP,j)δ(yn+ρP,j))
lP,j ∈ OS(E) for all 1 � j � r;

(ii) OP (En) = OP [ΩP ], where

ΩP := Ω̃P ∪
{(

(yn + ρP,j)δ(yn+ρP,j)θP,n,j

)lP,j | 1 � j � r
}
.

Proof. This is similar to the proof of Proposition 5.11. For all 1 � j � r, we get

vQ′
(
θP,n,j

(
(yn + ρP,j)δ(yn+ρP,j)

)lP,j
)

� 0

for all places Q′ of E over Q with Q ∈ S \ {P} and

vPn,j

(
θP,n,j

(
(yn + ρP,j)δ(yn+ρP,j)

)lP,j
)

= 1.

This gives part (i) and

OPtP ,j (En) = OPtP ,j

[
θP,n,j

(
(yn + ρP,j)δ(yn+ρP,j)

)lP,j
]

(5.15)
for all 1 � j � r.

Part (ii) follows using Corollary 2.2 from (5.15) and Proposition 5.10.
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To finish this section we now summarize the above results and give an algorithm
which computes, for an Artin–Schreier–Witt extension E of a function field F and
each ∅ �= S � PF , a set of OS -generators of OS(E).

Algorithm 5.13.

Input: An Artin–Schreier–Witt extension E/F with generator y and ∅ �=
S � PF .

Output: A finite set Ω of OS -generators of OS(E).

1. Compute the set A′ (see (5.13)).
2. Compute the sets B1, . . . , Bn+1 (see Remark 5.8).
3. Compute ΩA\A′ as in Proposition 5.9.
4. For each P ∈ A′ ∪B compute ΩP (see Proposition 5.10) and

ΩA′∪B :=
⋃

P∈A′∪B

ΩP .

5. For each 1 � i � n and each P ∈ Bi compute ΩP (see Propositions 5.11 and
5.12) and set

ΩBi
:=

⋃
P∈Bi

ΩP .

6. return Ω := ΩA\A′ ∪ ΩA′∪B ∪ ΩB1 ∪ . . . ∪ ΩBn .

The correctness of this algorithm follows from S = A\A′∪A′∪B∪B1∪ . . .∪Bn

and Proposition 2.1. We have shown that the sets ΩA\A′ , ΩA′∪B and ΩBi , 1 � i � n,
are contained in OS(E). They are finite since A′, B and Bi, 1 � i � n, are finite.
Therefore Ω is a finite subset of OS(E).

6. Examples

The set of places of the rational function field k(x)/k consists of the infinite place
P∞ := {g/h | g, h ∈ k[x], deg g < deg h} and the finite places Pπ := {g/h | g, h ∈
k[x], h �= 0, π | g, π � h}, π ∈ k[x] irreducible. Let F be a global function field, and
let S be the set of places of F lying above the finite places.

In this final section we examine a list of examples and compare our method to
compute the finite maximal order OE := OS(E) of a Kummer or Artin–Schreier–
Witt extension E of F with the Round-2-based method (see for instance [12], [5]
and [6]). A comparison of the complexity analysis of the two approaches is beyond
the scope of this paper since the complexity of the ideal arithmetic in relative
extensions has yet to be analyzed. What we can say is that out method uses only
linear algebra over Fq, whereas the Round-2 algorithm needs Fq[t].
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We use the following notation. We denote by T1 the time that our algorithm
needed for the computation (all times are given in seconds), and by T2 the time
which the Round-2 algorithm needed to compute OE as an overorder of OE,eq,
where OE,eq is defined in the following way. Let F/k be a function field with finite
maximal order OF and let E = F (y), g(y) = 0 for some irreducible polynomial

g(t) = tn +
an−1

bn−1
tn−1 + . . . +

a0

b0
∈ F [t],

where ai, bi ∈ OF . If d is a (lowest) common multiple of b0, . . . , bn−1, then dy is a
zero of the irreducible polynomial

(dt)n +
an−1

bn−1
d(dt)n−1 + . . . +

a0

b0
dn,

which has coefficients in OF . We set OE,eq := OF [dy]. Since in our cases the index
of OE over OE,eq is an ideal which has prime factors of fairly high degree, this
method soon reaches its limits. To overcome this problem and get more realistic
times with which to compare our algorithm, in most of the examples we also include
the time T3, which the Round-2 algorithm needed to compute OE as an overorder
of another order OE,1 ⊇ OE,eq, whose index in OE has fewer prime factors with
smaller powers. To get OE,1, we set h := gd/(t− y) ∈ E[t]. Then g is a polynomial
with coefficients β0, . . . , βn−1 ∈ OE and

OE,1 := OF [β0, . . . , βn−1]

is an overorder of OE,eq (see [1, p. 88]).
We write ‘???’ in the cases where the computation of the maximal order was not

finished after more than two days. All computations have been carried out using
the computer algebra system Magma V2.11 [2] on a Pentium IV, 2.8 GHz, 1024
MB-RAM.

6.1. Kummer extensions
Here we look at some examples of Kummer extensions E/F . We examine the

runtime of both methods with increasing degree n of the extension E/F , where E
and F are defined in the following way. We start with the field k of p = 3 elements,
adjoin a primitive nth root of unity to k to get the field Fq, q a power of p, and
construct F = Fq(x, ρ) with ρ2 + 2ρ + x3 + x + 1 = 0. The field E = F (y) is then
the Kummer extension given by yn − ((1/x2)ρ + x2) = 0. See Table 1.

Table 1: Examples of Kummer extensions.

n q T1 T2 T3

28 36 5 2581 539
31 330 14 15989 4160
40 34 15 6894 1720
61 310 37 ??? 29264
100 320 975 ??? ???
122 310 367 ??? ???
140 312 1751 ??? ???
160 38 3276 ??? ???
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6.2. Artin–Schreier–Witt extensions
We begin by presenting a small example in detail. Let F = F5(x, ρ), where

ρ3 − ρ2 + 2xρ− x4 = 0, and let E = F (y) be the Artin–Schreier extension with

yp − y =
4
x5

ρ2 +
x2 + 4x + 2

x4
ρ +

4
x

=: u.

Then P1 := (x, 4ρ+1) is the only finite place of F where u has a negative valuation,
vP1(u) = −5. (Note that every place has a two-element representation; see for
instance [12, Theorem 5.39(d)].) Therefore A = S \{P1}. We compute δy = x5 (see
Proposition 2.5) and get ΩA\A′ = {yx5} (Proposition 5.9) and

A′ =
{(

x,
3
x

ρ2 +
x + 2

x
ρ + 1

)
,
(
x,

2
x

ρ2 +
3
x

ρ + x
)}

(see (5.13)).
Now we calculate B and B1 using Algorithm 5.6 (see Remark 5.8). In our case

this essentially means applying the reduction algorithm 5.2 to (P1, u). This yields
ζ = (1/x)ρ and vP1(u + (ζp − ζ)) = −4 �≡ 0 mod 5. Therefore B1 = {P1} and
B = ∅.

We finish the example by computing (see Proposition 5.10)

ΩA′∪B =
{

yx5 3(ρ+2)(ρ+3)(ρ2+(2x+4)ρ+x2)
(x+2)x(ρ2+(2x+4)ρ+4x3+x2+2x) , yx5 (ρ+2)(ρ+3)(ρ+2x+4)(ρ+3x)

(x+2)x(ρ2+4ρ+3x3)

}
and (using Proposition 5.11)

ΩB1 = {(4xρ2 + 2x2ρ)y + (2x + 4)ρ2 + 2xρ + 4x4}.
Next we compute the finite maximal order of different Artin–Schreier extensions
E/F . In every step we increase the degree p of the extension. The fields E and F
are defined in the following way: F = Fp(x, ρ) is the extension of Fp(x) given by
ρ3 − (x + 1)ρ2 + 2xρ− x5 = 0 and E = F (y) is the Artin–Schreier extension with

yp − y =
x5

x3 − 1
ρ2 +

x6 + x2 + 1
x6 − 1

ρ +
1
x5

.

See Table 2.

Table 2: Examples of Artin–Schreier–Witt extensions of degree p.

p T1 T2 T3

5 3 22 16
7 4 77 18
11 5 499 63
13 9 1141 192
23 20 15073 1829
31 36 57512 4240
53 475 691322 35290
61 300 ??? 79350
71 488 ??? ???
83 1859 ??? ???
97 62226 ??? ???
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In the last group of examples we compute the finite maximal order of Artin–
Schreier–Witt extensions E/F of degree p2 for p = 3, 5, 7 and p3 for p = 2, 3,
respectively. Here ℘ : Wn(F̄ ) → Wn(F̄ ), n = 2, 3, is the Artin–Schreier–Witt map
which was defined in (5.4); see Tables 3 and 4.

Table 3: Examples of Artin–Schreier–Witt extensions of degree p2.

F = Fp(x, ρ), where ρ2 + x3 + x + 1 = 0
p = 3 E = F

(
(y1, y2)

)
: T1 = 3 T2 = 33

℘
(
(y1, y2)

)
=

(
1
x2 ρ + x2, 1

x−1ρ + x
)

F = Fp(x, ρ), where ρ2 + x3 + x + 1 = 0
p = 5 E = F

(
(y1, y2)

)
: T1 = 658 T2 = 2175

℘
(
(y1, y2)

)
=

(
1

x2+3ρ + x2, 1
x−1ρ + x

)
F = Fp(x, ρ), where ρ2 + x3 + x + 1 = 0

p = 7 E = F
(
(y1, y2)

)
: T1 = 542 T2 = ???

℘
(
(y1, y2)

)
=

(
1

x2+3ρ + x2, 1
x−1ρ + x

)

Table 4: Examples of Artin-Schreier-Witt extensions of degree p3.

p = 2 F = Fp(x, ρ), where ρ3 − ρ2 + 2xρ− x5 = 0
T1 = 451 E = F

(
(y1, y2, y3)

)
:

T2 = ??? ℘
(
(y1, y2, y3)

)
=

(
(x + 1)ρ2 + 1

x2+1ρ + x2, (x3 + x2)ρ2 + 1
x+1ρ + x,

1
x2+1ρ2 + (x6 + 1)ρ + 1

x12

)
p = 3 F = Fp(x, ρ), where ρ2 + x3 + x + 1 = 0
T1 = 34586 E = F

(
(y1, y2, y3)

)
:

T2 = ??? ℘
(
(y1, y2, y3)

)
=

(
(x + 2)ρ + 1

x2 , (x3 + x2)ρ + 1
x+2 , 1

x2 ρ + x6 + 2
)
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