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1. Correction to Lemma 2 in Zayas-Cabán et al. (2019) [1]

In our original submission (Zayas-Cabán et al., 2019) [1], we have the following lemma.

Lemma 2 in [1]. There exists a constant M > 0, independent of T, and a vector ε ≥ 0
satisfying εt ≤ bt for all t, such that

VD(ε) − VD(0) ≤ M ·
[

T∑
t=1

εt

]
= O

(
T∑

t=1

εt

)
. (1)

The above lemma is used to prove Theorems 1–2 and Propositions 1–3 in Sections 4 and
6 of [1]. It has been graciously pointed out to us that the bound in the lemma may not be
correct in general. The original proof of this lemma uses a combination of linear program (LP)
duality and sensitivity analysis results. The mistake is in the application of a known sensitivity
analysis result under a certain assumption that happens to be not necessarily satisfied by our
LP. Fortunately, it is possible to correct the bound in the above lemma. The new bound that we
will prove in this correction note is as follows:

VD(ε) − VD(0) = O
(

T · max
t

εt

)
. (2)
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1076 G. ZAYAS-CABÁN ET AL.

In what follows, we will provide enough discussion so that the correctness of (2) can be
easily verified. In Section 2, we recall the complete definition of the LP with both discounting
factor and bandit arrivals that was used in [1]. In Section 3, we provide a formal statement of
the new lemma and its proof. In Section 4, we discuss how this new bound affects the results
in subsequent theorems and propositions in [1].

2. The linear program

Recall that the original bound (1) was used to prove the results in Sections 4 and 6 of [1].
In [1, Section 4] we analyzed a ‘fixed population’ model, while in [1, Section 6] we analyzed
the more general ‘dynamic population’ model where bandits can arrive in, or depart from, the
system. Since the LP used in [1, Section 6] is a generalization of the LP used in [1, Section 4],
we only present our analysis for the general LP used in [1, Section 6]. The definition of the LP
for any discount factor δ ∈ [0, 1] and ε = (ε1, . . . , εT ) ≥ 0 is given by

LP(ε) : VD(ε) = min
x,z

T∑
t=1

A∑
a=0

J∑
j=1

δt−1ca
j · xa

j (t, ε) + δTφ · z(ε) (3)

s.t.
A∑

a=0

xa
j (t, ε) =

A∑
a=0

J∑
i=1

xa
i (t − 1, ε) · pa

ij + λjt ∀ j ≥ 1, t ≥ 2,

A∑
a=0

xa
j (1, ε) = nj + λj1 ∀ j ≥ 1,

A∑
a=1

J∑
j=1

xa
j (t, ε) ≤ bt − εt ∀ t ≥ 1,

z(ε) ≥
∑
j∈U

A∑
a=0

J∑
i=1

xa
i (T, ε) · pa

ij − m,

z(ε), xa
j (t, ε) ≥ 0 ∀ a ≥ 0, j ≥ 1, t ≥ 1.

The decision variables in the above LP are the x’s and z. It is not difficult to see that the
optimal solution will satisfy z(ε) = (∑j∈U

∑A
a=0

∑J
i=1 xa

i (T, ε) · pa
ij − m

)+. All parameters in
the above LP are non-negative. In particular, pa

ij is the probability of transitioning from state

i to state j under action a
(
i.e.,

∑
j pa

ij = 1 for all a and i
)
, λjt is the arrival rate (or expected

number) of new bandits in state j at time t, and bt is the activation budget at time t. The value
of εt is assumed to be small enough so that bt − εt ≥ 0; otherwise, the LP is not feasible. In
[1, Section 3], we used λjt = 0 for all j and t, and the bound in (1) was originally proved for this
case. We did not provide the proof for the more general case where λjt could be positive, as the
proof for this case was originally deemed to be a straightforward extension of the proof for the
simpler case. To avoid confusion, below we will prove the new bound (2) for the general case
where λjt can also be positive.
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3. The new lemma

We state our new lemma.

Lemma 1. Let cmax = maxa,j ca
j , bmax = maxt bt, bmin = mint|bt �=0 bt, and εmax = maxt εt. Let

1δ �=1 and 1δ=1 be indicators for the cases δ �= 1 and δ = 1, respectively. If εmax ≤ bmin, then
we have the following bound:

VD(ε) − VD(0)

≤ cmax · εmax · bmax

bmin
·
[(

1 − δT

1 − δ

)
· 1δ �=1 + T · 1δ=1

]
+ 2δTφ · εmax · bmax

bmin
.

Proof. The proof is by construction. Let
{
xa

j (t, 0)
}

denote an optimal solution of LP(0).

We will use
{
xa

j (t, 0)
}

to construct a feasible solution
{
x̃a

j (t, ε)
}

for LP(ε), under which we

let z̃(ε) = (∑j∈U
∑A

a=0
∑J

i=1 x̃a
i (T, ε) · pa

ij − m
)+ be the feasible z variable, and show that the

gap between the objective value of LP(ε) under
{
x̃a

j (t, ε)
}

and VD(0) satisfies the bound in
Lemma 1.

For ease of exposition, we will write xa
j (t, 0) as xa

j (t) and x̃a
j (t, ε) as x̃a

j (t). Define t∗ =
arg max{t|bt �=0} εt

bt
and let β ∈ [0, 1] be such that

(1 − β) · bt ≥ εt ∀t ∈ [T]. (4)

In our construction of
{
x̃a

j (t)
}

shortly, we will see that the term βbt can be interpreted as an

upper bound of total budget consumption at time t
(
i.e.,

∑A
a=1

∑J
j=1 x̃a

j (t)
)
. In particular, we

use the following value of β:

β = 1 − εt∗

bt∗
≥ 1 − εmax

bmin
. (5)

Let γ = (γ1, γ2 . . . γT ), where γt = (1 − β) · bt. Note that, by definition of γt, we have

γt ≤ εmax

bmin
· bt ≤ εmax · bmax

bmin

for any t.
We now discuss the construction of

{
x̃a

j (t)
}
. We first describe the construction for t = 1 and

then complete the construction for t ≥ 2 by induction. For t = 1, define
{
x̃a

j (1)
}

as follows:

x̃a
j (1) = βxa

j (1) ∀ a ≥ 1,

x̃0
j (1) = βx0

j (1) + (1 − β) · [nj(1) + λj1
]

:= βx0
j (1) + �j(1),

where �j(1) = (1 − β) · [nj(1) + λj1
]
. Clearly, x̃a

j (1) ≥ 0 and so
{
x̃a

j (1)
}

satisfies the non-
negativity constraint in LP(ε). It is also not difficult to see that

∑
a≥0 x̃a

j (1) = nj(1) + λj1

(because
∑

a≥0 xa
j (1) = nj(1) + λj1, as

{
xa

j (t)
}

is feasible for LP(0)), and so
{
x̃a

j (1)
}

satisfies
the second constraint in LP(ε). Moreover, by definition of β and γ1, we have
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∑
a≥1

∑
i

x̃a
i (1) = β ·

[∑
a≥1

∑
i

xa
i (1)

]
≤ βb1 = b1 − γ1 ≤ b1 − ε1,

so that
{
x̃a

j (1)
}

satisfies the ‘budget constraint’ (i.e., the third constraint) in LP(ε).

Before we proceed with the construction of
{
x̃a

j (t)
}

for t ≥ 2, we define nj(t) and ñj(t) as
follows:

nj(t) =
∑
a≥0

∑
i

xa
i (t − 1)pa

ij and ñj(t) =
∑
a≥0

∑
i

x̃a
i (t − 1)pa

ij.

For t ≥ 2, we define �j(t) and
{
x̃a

j (t)
}

recursively as follows:

�j(t) =
∑

i

�i(t − 1) · p0
ij + (1 − β)λjt,

x̃a
j (t) = βxa

j (t) ∀ a ≥ 1,

x̃0
j (t) = βx0

j (t) + �j(t).

We prove the following identities by induction:

ñj(t) = βnj(t) +
∑

i

�i(t − 1)p0
ij, (6)

ñj(t) + λjt = β
∑
a≥0

xa
j (t) + �j(t), (7)

∑
j

�j(t) = (1 − β)
∑

j

∑
a≥0

xa
j (t), (8)

∑
a≥0

x̃a
j (t) = ñj(t) + λjt, (9)

∑
a≥1

∑
i

x̃a
i (t) = β ·

[∑
a≥1

∑
i

xa
i (t)

]
≤ β · bt = bt − γt ≤ bt − εt, (10)

∑
j

[
x̃0

j (t) − x0
j (t)
]
= (1 − β)

∑
j

∑
a≥1

xa
j (t) ≤ (1 − β)bt = γt. (11)

First note that Equation (6) follows directly from the definition of ñj(t) and
{
x̃a

j (t)
}
:

ñj(t) =
∑
a≥0

∑
i

x̃a
i (t − 1)pa

ij = βnj(t) +
∑

i

�i(t − 1)p0
ij.
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Next, Equation (7) follows from (6) and the fact that
∑

a≥0 xa
j (t) = nj(t) + λjt (because{

xa
j (t)
}

is feasible for LP(0)):

ñj(t) + λjt = βnj(t) +
∑

i

�i(t − 1)p0
ij + λjt

= β[nj(t) + λjt] +
[∑

i

�i(t − 1)p0
ij + (1 − β)λjt

]

= β[nj(t) + λjt] + �j(t)

= β
∑
a≥0

xa
j (t) + �j(t).

Equation (9) follows directly from the definition of
{
x̃a

j (t)
}

and (7), whereas Equation (10)

follows from the definition of
{
x̃a

j (t)
}

and the fact that
∑

j
∑

a≥1 xa
j (t) ≤ bt (because

{
xa

j (t)
}

is feasible for LP(0)). Equation (11) follows from the definition of
{
x̃a

j (t)
}

together with (8)
and the fact that

∑
j
∑

a≥1 xa
j (t) ≤ bt. Thus, among the six identities (6)–(11), we only need to

show (8) by induction. Note that Equations (9) and (10) imply that the constructed
{
x̃a

j (t)
}

for
t ≥ 2 satisfies the first and third constraints in LP(ε). Since x̃a

j (t) is obviously non-negative by

construction, it also satisfies the non-negative constraint. As a result, the constructed
{
x̃a

j (t)
}

is
feasible for LP(ε).

We prove (8) by induction starting with t = 2. By definition of �j(2),

∑
j

�j(2) =
∑

j

[∑
i

�i(1)p0
ij + (1 − β)λj,2

]

=
∑

i

�i(1) + (1 − β)
∑

j

λj,2

= (1 − β)

[∑
i

∑
a≥0

xa
i (1) +

∑
j

λj,2

]

= (1 − β)

[∑
j

nj(2) +
∑

j

λj,2

]

= (1 − β)
∑

j

[
nj(2) + λj,2

]

= (1 − β)
∑

j

∑
a≥0

xa
j (2),

where the third equality follows since, by definition, �i(1) = (1 − β)[ni(1) + λi,1] = (1 − β)∑
a≥0 xa

i (1) (from the second constraint in LP(0)); the fourth equality follows by the definition
of nj(2); and the last equality follows by the first constraint in LP(0).
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Now, suppose that (6)–(11) hold for all times s ≤ t. Then

∑
j

�j(t + 1) =
∑

j

[∑
i

�i(t)p
0
ij + (1 − β)λj,t+1

]

=
∑

i

�i(t) + (1 − β)
∑

j

λj,t+1

= (1 − β)

[∑
i

∑
a≥0

xa
i (t) +

∑
j

λj,t+1

]

= (1 − β)

[∑
j

nj(t + 1) +
∑

j

λj,t+1

]

= (1 − β)
∑

j

[
nj(t + 1) + λj,t+1

]

= (1 − β)
∑

j

∑
a≥0

xa
j (t + 1),

where the third equality follows by the induction hypothesis, the fourth equality follows by the
definition of nj(t), and the last equality follows by the first constraint in LP(0). This completes
our inductive step and thus the proof by induction.

We have so far shown that the constructed
{
x̃a

j (t)
}

is feasible for LP(ε). We now compute

a bound for VD(ε) − VD(0). Let VD(ε, x̃) denote the objective value of LP(ε) under
{
x̃a

j (t)
}
.

Then VD(ε) − VD(0) ≤ VD(ε, x̃) − VD(0). Now,

VD(ε, x̃) − VD(0)

=
∑

j

T∑
t=1

δt−1c0
j

[
x̃0

j (t) − x0
j (t)
]
+
∑

j,a≥1

T∑
t=1

δt−1ca
j

[
x̃a

j (t) − xa
j (t)
]
+ δTφ

[
z̃(ε) − z(0)

]

=
∑

j

T∑
t=1

δt−1c0
j

[
x̃0

j (t) − x0
j (t)
]
− (1 − β)

∑
j,a≥1

T∑
t=1

δt−1ca
j xa

j (t) + δTφ
[
z̃(ε) − z(0)

]

≤ cmax ·
T∑

t=1

δt−1γt + δTφ
[
z̃(ε) − z(0)

]

≤ cmax · εmax · bmax

bmin
·
[(

1 − δT

1 − δ

)
· 1δ �=1 + T · 1δ=1

]
+ δTφ

[
z̃(ε) − z(0)

]
,

where the first inequality follows from (11) and the last inequality follows since γt ≤ εmax ·
bmax/bmin. It remains to bound δTφ[z̃(ε) − z(0)].
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To this end, recall that

z̃(ε) =
⎛
⎝∑

j∈U

A∑
a=0

J∑
i=1

x̃a
i (T, ε) · pa

ij − m

⎞
⎠

+
and z(ε) =

⎛
⎝∑

j∈U

A∑
a=0

J∑
i=1

xa
i (T, ε) · pa

ij − m

⎞
⎠

+
.

Since ε = 0 corresponds to the optimal LP solution, z(0) = (
∑

j∈U
∑A

a=0
∑J

i=1 xa
i (T) · pa

ij −
m)+. Next, recall that ε corresponds to perturbing the original LP and as such represents a
generalization of this original LP. It follows that z̃(ε) ≤ z̃(0) = (

∑
j∈U
∑A

a=0
∑J

i=1 x̃a
i (T) · pa

ij −
m)+. From this it follows that z̃(ε) − z(0) is bounded above by

⎛
⎝∑

a≥0

∑
i

∑
j∈U

x̃a
i (T)pa

ij − m

⎞
⎠

+
−
⎛
⎝∑

a≥0

∑
i

∑
j∈U

xa
i (T)pa

ij − m

⎞
⎠

+
,

and this last expression is bounded above by

∣∣∣∣∣∣
⎛
⎝∑

a≥0

∑
i

∑
j∈U

x̃a
i (T)pa

ij − m

⎞
⎠

+
−
⎛
⎝∑

a≥0

∑
i

∑
j∈U

xa
i (T)pa

ij − m

⎞
⎠

+∣∣∣∣∣∣ .

Applying the property max{a, b} = 1
2 (a + b + |a − b|), where a and b are arbitrary real

numbers, yields

⎛
⎝∑

a≥0

∑
i

∑
j∈U

x̃a
i (T)pa

ij − m

⎞
⎠

+
= max

⎧⎨
⎩
∑
a≥0

∑
i

∑
j∈U

x̃a
i (T)pa

ij − m, 0

⎫⎬
⎭

= 1

2

⎛
⎝∑

a≥0

∑
i

∑
j∈U

x̃a
i (T)pa

ij − m +
∣∣∣∣∣∣
∑
a≥0

∑
i

∑
j∈U

x̃a
i (T)pa

ij − m

∣∣∣∣∣∣
⎞
⎠

and ⎛
⎝∑

a≥0

∑
i

∑
j∈U

xa
i (T)pa

ij − m

⎞
⎠

+
= max

⎧⎨
⎩
∑
a≥0

∑
i

∑
j∈U

xa
i (T)pa

ij − m, 0

⎫⎬
⎭

= 1

2

⎛
⎝∑

a≥0

∑
i

∑
j∈U

xa
i (T)pa

ij − m +
∣∣∣∣∣∣
∑
a≥0

∑
i

∑
j∈U

xa
i (T)pa

ij − m

∣∣∣∣∣∣
⎞
⎠ .

Since |a − b| ≥ |a| − |b| and, similarly, |b − a| = |a − b| ≥ |b| − |a| = −(|a| − |b|) for any two
real numbers a and b, the last calculation yields that the expression

∣∣∣∣∣∣
⎛
⎝∑

a≥0

∑
i

∑
j∈U

x̃a
i (T)pa

ij − m

⎞
⎠

+
−
⎛
⎝∑

a≥0

∑
i

∑
j∈U

xa
i (T)pa

ij − m

⎞
⎠

+∣∣∣∣∣∣
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is bounded above by ∣∣∣∣∣∣
∑
a≥0

∑
i

∑
j∈U

x̃a
i (T)pa

ij −
∑
a≥0

∑
i

∑
j∈U

xa
i (T)pa

ij

∣∣∣∣∣∣ .

The triangle inequality then implies that this last expression is bounded above by∣∣∣∣∣∣
∑

i,a≥1

∑
j∈U

x̃a
i (T)pa

ij −
∑

i,a≥1

∑
j∈U

xa
i (T)pa

ij

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑

i

∑
j∈U

x̃0
i (T)p0

ij −
∑

i

∑
j∈U

x0
i (T)pa

ij

∣∣∣∣∣∣ .

The property (10) implies that the terms inside the first set of absolute values equals
(1 − β)

∑
a≥1
∑

i
∑

j∈U xa
i (T)pa

ij, so that the expression above equals

(1 − β)
∑
a≥1

∑
i

∑
j∈U

xa
i (T)pa

ij +
∣∣∣∣∣∣
∑

i

∑
j∈U

x̃0
i (T)p0

ij −
∑

i

∑
j∈U

x0
i (T)p0

ij

∣∣∣∣∣∣ ,
which is bounded above by

(1 − β)
∑
a≥1

∑
i

∑
j

xa
i (T)pa

ij +
∣∣∣∣∣∣
∑

i

∑
j∈U

x̃0
i (T)p0

ij −
∑

i

∑
j∈U

x0
i (T)p0

ij

∣∣∣∣∣∣ ,
which, by (10), equals

(1 − β)
∑
a≥1

∑
i

xa
i (T) + (1 − β)

∑
j∈U

∑
i

∑
a≥1

xa
i (T)p0

ij.

This last expression is bounded above by 2(1 − β)
∑

a≥1
∑

i xa
i (T) ≤ 2(1 − β)bT ≤ 2γT .

The choice of β and definition of γT yield that 2γT is bounded above by 2εmax · bmax
bmin

, as
claimed. �

4. Impact on other results in Zayas-Cabán et al. (2019) [1]

As noted earlier, the bound in the original version of [1, Lemma 2] was used to prove
Theorems 1–2 and Propositions 1–3 in Sections 4 and 6 of [1]. It turns out that the new bound
in Lemma 1 does not change the results of Theorem 1, Theorem 2, or Proposition 3, but it does
slightly change the bounds in Propositions 1 and 2. We discuss all of these below.

Theorem 1 in [1, Section 4]. In this theorem, we consider the setting where λjt = 0 for all
j and t, and δ = 1. We can use exactly the same εt as defined in the original version of
[1, Theorem 1]. By the new lemma (Lemma 1 of this paper), we still have VD

θ (ε) − VD
θ (0) =

O(T
√

d · θ ln θ ). As a result, there are no changes and we still get exactly the same bound as
in the original Theorem 1. �
Proposition 1 in [1, Section 4]. In this proposition, we consider the same setting considered
in [1, Theorem 1], with the exception that we set δ ∈ (0, 1). If we use the same εt as defined in the
original [1, Proposition 1], by the new Lemma 1 we have VD

θ (ε) − VD
θ (0) = O(

√
d · ln T · θ ln θ )
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(the original bound under the old Lemma 2 of [1] was O(
√

d · θ ln θ )). This implies that the
new bound for [1, Proposition 1] is given by

VRAC
θ − VD

θ (0)

VD
θ (0)

= O

(
1

θd
+
√

d · ln T · ln θ

θ

)
.

Note that if we instead apply the same εt as defined in [1, Theorem 1] to [1, Proposition 1], it
is not difficult to check that the bound becomes

VRAC
θ − VD

θ (0)

VD
θ (0)

= O

(
T2

θd
+
√

d · ln θ

θ

)
,

which, with a proper choice of d, essentially has the same order of magnitude as the bound in
Theorem 1. �
Theorem 2 in [1, Section 6]. In this theorem, we consider the setting where λjt could be
positive, and δ = 1. We can use exactly the same εt as defined in the original version of
[1, Theorem 2]. By the new Lemma 1, we still have VD

θ (ε) − VD
θ (0) = O(T3/2

√
d · θ ln θ ).

As a result, nothing changes and we still get exactly the same bound as in the original
Theorem 2. �
Proposition 2 in [1, Section 6]. In this proposition, we consider the setting where λjt may be
positive and δ ∈ (0, 1). If we use the same εt as defined in the original version of [1, Proposition
2], the new bound in Proposition 2 is given by

VRAC
θ − VD

θ (0)

VD
θ (0)

= O

(
1

θd/2
+
√

d · T ln T · ln θ

θ

)
.

�
Proposition 3 in [1, Section 6]. In this proposition, we consider the setting where bandits

can complete service or abandon. Since α ∈ (0, 1), we have εmax = O
(√

dθ ln θ
1−β

)
. So, by the

new Lemma 1, VD
θ (ε) − VD

θ (0) = O
(

T
√

d·θ ln θ
1−β

)
. This does not change anything in the proof

of Proposition 3, and so the final bound in Proposition 3 also does not change. �
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