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We characterise the incompressible turbulence cascade in terms of the concurrent
inter-scale and inter-space exchanges of the scale-by-scale energy, helicity and enstrophy.
The governing equations for the scale-by-scale helicity and enstrophy are derived in a
similar fashion to that of the second order structure function following Hill (J. Fluid Mech.,
vol. 468, 2002, pp. 317–326). We examine the instantaneous dynamics, applying these
equations to forced periodic turbulence and a von Kármán flow focusing on scales in the
dissipative range r = 2.5η, the near-dissipative range r = 0.5λ and the onset inertial range
r = λ (where η and λ are the Kolmogorov and Taylor length scales, respectively). The
signature of the random sweeping effect is observed in all three individual budgets and
between the energy and enstrophy transfers. As in the energy cascade, the anti correlation
of the pressure transport and non-linear transfer is identified also in the helicity cascade.
Owing to its lack of positive definiteness, the helicity transfers are found to be decorrelated
from the others. However a connection between the energy cascade and helicity is
identified kinematically. This connection reveals the large-scale sweeping motions are
a key element in the overall energy cascade and underpins previous observations of
large-scale intermittency. Taken together, this work extends a classic framework to gain
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novel insight on turbulence dynamics that underlay the statistically steady state, and
demonstrates how transfers are interconnected.

Key words: homogeneous turbulence, turbulence theory

1. Introduction

Turbulence is an inherently multi-scale phenomenon arising from the nonlinear nature
of the motion of fluids. In general, a turbulent flow is populated by a hierarchy of
eddies, the largest of which appear through interactions between the fluid and its
boundaries (or some explicit forcing) and the smallest being conditioned by viscous forces
(Falkovich 2009), with energy flowing, on average, from the former to the latter. This
statistical picture of turbulence is described by the so-called Richardson–Kolmogorov
cascade (Richardson 1920; Kolmogorov 1941a,b). However, this cascade is a result of
dynamic interactions between eddies of various sizes (Pelz et al. 1985). The distinction
between the instantaneous interactions in the turbulence and the statistically stationary
cascade that they give rise to are a well known problem in turbulence modelling.
For example, in large eddy simulations (LES) the directionality of the cascade at any
given instant cannot be predicted from statistically stationary models (Germano et al.
1991; Alexakis & Chibbaro 2020). Recent work by Goto & Vassilicos (2016) and
Yasuda & Vassilicos (2018) highlights how viewing the cascade from a statistically
stationary viewpoint overlooks important dynamics that determine how such a stationary
state itself is established. The present work seeks to expand on that perspective by
analysing the concurrent scale-by-scale budgets of energy, helicity and enstrophy by
deriving the equations governing those cascades directly from the Navier–Stokes equations
without any averaging or statistical assumptions. We then apply these equations to two
distinct homogeneous turbulent flows: forced periodic turbulence and a von Kármán
flow.

The kinetic energy q2 = (u · u)/2 is a central quantity in characterising turbulent
flows and it has been, historically, at the core of theories of turbulence. Away from any
boundaries, q2 can only be destroyed by the turbulent dissipation ε arising from small
scale motions in the fluid (i.e. in the absence of viscosity, q2 is a conserved quantity of the
Navier–Stokes equations). Indeed, in the classical theory of Kolmogorov (1941b), where
the details of the largest scales are dispensed with, the turbulence cascade is formulated in
terms of a budget for δq2, representing, to a large extent (Davidson & Pearson 2005), the
energy density at a given scale r. This energy cascade is governed solely by the nonlinear
transfer of δq2 from large to small scales which is in equilibrium with ε. Under the
assumptions of homogeneity and isotropy, Kolmogorov closed the relationship between
q2 and ε through the 4/5-ths law leading to the inertial-scale distribution δq2 ∼ r2/3 (the
5/3-rds law for the energy spectrum), practically ubiquitous with turbulence (Kraichnan
1974).

In fact, ε arises due to the finest structures in the turbulence that are characterised by
strong vorticity ω = ∇ × u and therefore large enstrophy ω2 = ω · ω. While dynamically
distinct (see discussion of Carbone & Bragg 2020), it can be shown that the dissipation
and enstrophy are closely related (Raynal 1996) upon integration over all space (Tsinober
2001; Tennekes & Lumley 2018). Enstrophy exhibits its own cascade across scales but,
due to the presence of vortex stretching, this cascade is not inviscidly conservative.
Indeed, it is known since the work of Fjørtoft (1953) that in two dimensions (i.e.
in the absence of vortex stretching), enstrophy cascades from large to small scales,

952 A20-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

91
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.912


Simultaneous turbulence cascades

effectively reversing the direction of the energy cascade (Eyink 1996; Kraichnan 1967).
Although purely two-dimensional flows are seldom realised in nature, such an idealised
cascade is an important element in our understanding of a variety of turbulent flows
(see reviews by Boffetta & Ecke 2012; Falkovich et al. 2017) as would be the case
of geostrophic flows (Lindborg 2007; Lindborg & Nordmark 2022), strongly rotating
turbulence (Deusebio et al. 2014; van Kan & Alexakis 2022) but also in flows that
exhibit coherent structures (Dascaliuc & Grujić 2013). Recently, Bos (2021) analysed
three-dimensional turbulence, where vortex stretching is suppressed altogether; they found
that enstrophy is preserved but energy is not and showed how this modified system
displayed a dual direct cascade of both energy (no longer inviscidly conserved) and
enstrophy.

Vorticity also features in the helicity h = u · ω, which is another inviscid invariant
of the Navier–Stokes equations and acts as a measure of breakage in mirror-symmetry,
or parity-invariance, within the fluid (Moreau 1960; Moffatt 1969). Topologically, it
describes the degree of knottedness of vortex tubes (Moffatt & Tsinober 1992), a concept
which is quite useful in the study of superfluid turbulence, where very large Reynolds
numbers can be achieved (see e.g. Kleckner, Kauffman & Irvine 2016; Kivotides &
Leonard 2021). As noted by Brissaud et al. (1973), because h is not positive definite
(as are q2 and ω2), the possibility of a dual direct cascade exists in tandem with that
of one analogous to the two-dimensional scenario described above (see also Kraichnan
1973). It is established that the most physically sound scenario is that of a dual
(direct) cascade (see e.g. Chen, Chen & Eyink 2003). The bulk of the work on helicity
cascades has been carried out in Fourier space (see Scott & Wang 2005; Alexakis
2017; Alexakis & Biferale 2018; Pouquet et al. 2019), where the nonlinearity of the
Navier–Stokes equations is more easily described by triad interactions of wavenumbers
(as motivated by Waleffe 1992) at the sacrifice of requiring homogeneity. For flows
in which some degree of anisotropy or inhomogeneity is present, non-zero helicity
can give rise to the spontaneous formation of large-scale coherence in the flow (see
Yokoi & Yoshizawa 1993, and references therein). Their effect on the cascade is likely
non-trivial.

Recognising that the Richardson–Kolmogorov cascade is insufficient for a general
description of turbulence, Hill (2002) derived a budget for δq2 that reduces to that
of Kolmogorov (under the assumptions of homogeneity, isotropy and stationarity) but
is instead obtained directly from the Navier–Stokes equations without requiring any
information regarding the structure of the flow or the Reynolds number. This equation,
often referred to as the generalised Kolmogorov equation (Mollicone et al. 2018; Gatti
et al. 2020) or the Kármán–Howarth–Monin-Hill equation (Alves Portela, Papadakis &
Vassilicos 2017; Yasuda & Vassilicos 2018), characterises the energy cascade in terms of
physical and scale space exchanges of δq2 (as well as any sources or sinks) such that the
nonlinear transfer of δq2 is but one of the mechanisms in balance with ε, which always acts
as a sink of δq2. In recent years, this equation has been extensively used to characterise
the effects of inhomogeneity and anisotropy on the energy cascade (Gomes-Fernandes,
Ganapathisubramani & Vassilicos 2015; Cimarelli et al. 2016; Knutsen et al. 2020;
Zimmerman et al. 2022) and has been extended to variable density and compressible flows
(Lai, Charonko & Prestridge 2018; Arun et al. 2021).

It is clear that a full characterisation of the turbulence cascade must involve not only
the turbulent kinetic energy but also quantities such as enstrophy and helicity, as they bear
relation to dissipation (a core element of the energy cascade) and capture the presence
of coherence, intermittency and other such phenomena that are known to break with the
classical picture of turbulence. Following this observation, the objectives of the present
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study are threefold:

(i) To provide a generalised framework for analysing the transfers of energy, enstrophy
and helicity through two-point equations for these quantities, following Hill (2002).

(ii) To combine this framework with the correlation-based analysis of the energy
transfers (Yasuda & Vassilicos 2018), examining how the different mechanisms
involved in the scale-by-space energy, helicity and enstrophy budgets are related.

(iii) To leverage the two-point framework towards a deeper understanding of the
connection between the instantaneous energy cascade and helicity.

We begin with the formal derivation of the scale-space equations in § 2. A brief
description and characterisation of the data sets on which the scale-space equations will be
applied is given in § 3. The correlations between the individual terms of each of the three
transfer budgets is shown in § 4. In § 5 we discuss the role played by helicity in the energy
cascade from a two-point scale-by-scale perspective. We conclude with a summary of our
results and suggestions for future work in § 6.

2. Formulation

The single-point quantities of interest that will be cast into the scale-space framework
are the energy q2, helicity h and enstrophy ω2. The formulation begins with the familiar
single-point incompressible Navier–Stokes equations,

∂

∂t
ui + uk

∂ui

∂xk
= − 1

ρ

∂p
∂xi

+ ν
∂2ui

∂xk∂xk
, (2.1)

together with the incompressibility condition ∇ · u = 0, where ui(x, t) and p(x, t) are the
instantaneous velocity and pressure fields, respectively, with ν the kinematic viscosity and
ρ the density. In addition to (2.1), the vorticity form of the Navier–Stokes equations is
invoked taking the curl:

∂

∂t
ωi + uk

∂ωi

∂xk
= ωk

∂ui

∂xk
+ ν

∂2ωi

∂xk∂xk
, (2.2)

where ω = ∇ × u is the vorticity with the kinematic property ∇ · ω = 0.

2.1. Generalised scale-to-scale transfers
In this section we outline the general method for obtaining the scale-space energy,
helicity and enstrophy budget equations. These originate from studies focused on
the energy and can be found in the classic work of Von Kármán & Howarth
(1938) and later made general in order to account for anisotropy (Monin & Yaglom
1975) and inhomogeneity (Hill 2002). As such the evolution equations are commonly
referred to as the generalised Kármán–Howarth–Monin (KHM) equations or the
Kármán–Howarth–Monin–Hill (KHMH) equations. For the present work, these equations
will be used to describe the scale-space dynamics of three specific structure functions: the
energy structure function δq2 = δuiδui, the helicity structure function δh = δuiδωi and
the enstrophy structure function δω2 = δωiδωi. Here, δui and δωi represent, respectively,
velocity and vorticity increments, taken as the difference of that quantity at two points
xi and x′

i, i.e. δui = ui − u′
i and δωi = ωi − ω′

i. Henceforth, primed variables denote
belonging to a set of spatial points x′

i independent of xi. A detailed derivation and
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Simultaneous turbulence cascades

interpretation of the KHMH equations in the scale-space coordinates system is given in
Hill (2002) and Marati, Casciola & Piva (2004). In the present study we abstain from using
the Reynolds decomposition, instead following a similar approach to Yasuda & Vassilicos
(2018) where the instantaneous dynamics of each term at various scales can be analysed.

The derivation of the transfer equations begins with the equations for velocity and
vorticity, (2.1) and (2.2). There are three common steps in deriving the budgets for δq2, δh
and δω2:

(i) Take the difference of (2.1) and (2.2) evaluated on two independent coordinates
xk and x′

k. These constitute the two-point equations for the velocity and vorticity
differences (δui = ui − u′

i and δωi = ωi − ω′
i, respectively)

(a) For δq2: Multiply the equation for δui by 2δui.
(b) For δh: Add the product between δωi and the equation for δui to the product

between δui and the equation for δωi.
(c) For δω2: Multiply the equation for δωi by 2δωi.

(ii) Express all quantities as two-point differences (δ) or sums (Σ). The strain rate tensor,
that appears in the equation for δω2, is expressed as Sik = (∂ui/∂xk + ∂uk/∂xi)/2
with δSik = Sik − S′

ik and ΣSik = Sik + S′
ik.

(iii) Change the coordinate system from (xk, x′
k) to (Xk, rk), where Xk ≡ (xk + x′

k)/2
represents physical space (in the sense that it represents a centroid position) and
rk ≡ x′

k − xk represents the space of scales (as it relates to a distance vector).

The resulting equations describe the various budgets of the scale-space energy, helicity
and enstrophy structure functions. For the energy structure function δq2 one obtains:

∂

∂t
δq2 + ∂δukδq2

∂rk
= − ∂

∂Xk

(
Σukδq2

2

)
− 2

ρ

∂δukδp
∂Xk

+ ν

[
2

∂2

∂r2
k

+ 1
2

∂2

∂X2
k

]
δq2 − 2ν

[(
∂ui

∂xk

)2

+
(

∂u′
i

∂x′
k

)2
]

. (2.3)

In shorthand notation:

Aq2

t + Πq2 = −T q2 − T q2

p + Dq2

ν − Eq2
, (2.4)

where the superscript denotes the energy q2, and the terms of (2.4) reflect the terms
presented in (2.3) sequentially. For the helicity structure function δh one obtains:

∂

∂t
δh + ∂

∂rk

[
δukδh − 1

2
δωkδq2

]
= − ∂

∂Xk

[
Σukδh

2
− Σωkδq2

4

]

− 1
ρ

∂δωkδp
∂Xk

+ ν

[
2

∂2

∂r2
k

+ 1
2

∂2

∂X2
k

]
δh − 2ν

[(
∂ωi

∂xk

∂ui

∂xk

)
+
(

∂ω′
i

∂x′
k

∂u′
i

∂x′
k

)]
. (2.5)

In shorthand notation:

Ah
t + Πh = −T h − T h

p + Dh
ν − Eh, (2.6)
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where the superscript denotes the helicity h for the respective terms of (2.5). Finally, for
the enstrophy δω2 one obtains:

∂

∂t
δω2 + ∂δukδω

2

∂rk
= − ∂

∂Xk

(
Σukδω

2

2

)
+ (δωkδωiΣSik + ΣωkδωiδSik)

+ ν

[
2

∂2

∂r2
k

+ 1
2

∂2

∂X2
k

]
δω2 − 2ν

[(
∂ωi

∂xk

)2

+
(

∂ω′
i

∂x′
k

)2
]

. (2.7)

In shorthand notation:

Aω2

t + Πω2 = −T ω2 + Gω2

S + Dω2

ν − Eω2
, (2.8)

where the superscript denotes the enstrophy ω2.
Notice that these three budgets are similarly structured, where:

(i) At is an unsteady term and represents the temporal increase or decrease of scale
energy/helicity/enstrophy at each instant.

(ii) Π represents the nonlinear exchanges in scale space of energy/helicity/enstrophy.
(iii) T is the nonlinear turbulent transport in physical space.
(iv) Tp results from the interaction of the pressure and velocity/vorticity fields to produce

a pressure transport that acts to transport energy/helicity at a particular scale.
(v) GS is a generation term in scale space resulting from the coupling between the

rate-of-strain and the enstrophy.
(vi) Dν represents the viscous diffusion of energy/helicity/enstrophy both in scale and

physical space.
(vii) E represents the two-point average dissipation rate. This can be seen, for example for

the scale-to-scale energy transfers, dividing equation (2.3) by 4 on both sides such
that E = (ε + ε′)/2, where ε = ν(∂ui/∂xk)

2.

We refer to Marati et al. (2004), Danaila et al. (2012), Valente & Vassilicos (2015),
Alves Portela et al. (2017), Mollicone et al. (2018) and Gatti et al. (2020), who give a more
detailed interpretation of the various terms in the scale-space framework.

There are several useful observations that follow immediately from deriving the
evolution equations for the scale energy, helicity and enstrophy. These equations resemble
their one-point counterparts except that they account for nonlinear exchanges across scales
through Π . Closer inspection reveals several differences amongst the three budgets. It is
clear that transfers of helicity (2.5) not only arise from the interactions of the scale to
scale helicity δh with the velocity increment δuk, but also from the interaction of the
scale-to-scale energy δq2 with the vorticity increment δωk. This is consistent with the
two channels of inter-scale transfer identified in the study of Yan et al. (2020), who
highlight distinct helicity transfers through the combined action of vortex twisting and
vortex stretching arising naturally from the vorticity equation. The pressure term only has
an explicit role in the scale energy and helicity budgets. For the scale enstrophy budget,
the pressure transport is effectively ‘curled out’; however a non-conservative generation
GS term emerges whose role is dynamically distinct compared to the pressure transport.

3. Experimental and numerical datasets

To exemplify the scale-space framework, two homogeneous turbulence data sets, one
experimental and one numerical, are selected. We opt to limit the present scope to
homogeneous turbulence for its relative simplicity, but remark that the instantaneous
framework is equally applicable to inhomogeneous flows.
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3.1. Von-Kármán mixing tank
The experimental data set considered in this work was gathered in the Göttingen
Turbulence Facility #3. The experimental rig consisted of a steel cylinder of diameter
and height equal to 48 cm and 58 cm respectively. It featured 8 axial baffles, attached to
its inside wall, and two counter-rotating impellers of diameter 25 cm driving the flow
inside the cylinder. The rotation frequency was set to 0.2 Hz. Water was used as the
working fluid (kinematic viscosity of ν = 0.98 mm2 s−1). The flow was seeded with
PMMA microspheres with mean diameter 6.0 m and specific gravity ρseeding/ρ = 1.22
(the resultant particle Stokes number was estimated as 6 × 10−5 � 1). A high-speed
Nd:YAG pulse laser was used as the source of illumination. Two high-speed Phantom
v640 cameras were used to record the flow. A more in-depth description can be found in
Knutsen et al. (2020).

The flow inside a cubic domain of 8.5 × 8.5 × 8.5 mm3 located at the centre of the tank
(where the mean flow vanishes) was measured using scanning particle image velocimetry
(scanning PIV). This measurement technique is extensively discussed in Lawson &
Dawson (2014), and here we only include a brief summary of its principles. In the first step,
two cameras acquire multiple stereo PIV images, with a very small time separation, as the
laser sheet traverses the measurement volume. A volumetric snapshot of the scattered light
intensity is subsequently reconstructed from the recorded series of images. Ultimately,
cross-correlation of the reconstructed snapshots is performed, yielding a single, volumetric
velocity field.

Short, time-resolved sequences of velocity snapshots were captured during the
experiment (a correction proposed by Wang et al. 2017, was used to reduce the residual
divergence of the data). Each sequence consisted of six snapshots with the time separation
below one-tenth of the Kolmogorov time scale. A vast collection of 2 × 105 such
sequences was gathered throughout the experiment. They were considered independent
samples of the velocity field as the time separation between sequences was of the order of
the impeller revolution period. A Lagrangian filtering, similar to that proposed by Novara
& Scarano (2013), was applied to the data in the post-processing phase. Each sequence was
used to advect artificial tracers, whose initial positions coincided with the measurement
grid points, forward and backward in time. The resultant traces were utilised to evaluate
the filtered velocity and Lagrangian acceleration vectors. The approach described by
Lawson & Dawson (2015) was subsequently employed to reconstruct pressure fields. The
discretised momentum equation was rearranged to form an over-determined set of linear
equations used to solve for pressure in the least-square sense.

The experimental data was stored as cubes containing fields for all components of
the velocity, material derivatives and pressure field (each cube corresponded to one
time-resolved measurement sequence). A fourth-order central difference scheme was used
to evaluate spatial derivatives.

3.2. Direct numerical simulation
A direct numerical simulation (DNS) data set of forced homogeneous and isotropic
turbulence (HIT) provided by the Johns Hopkins University (JHU) turbulence database
was used to provide numerical comparison (Li et al. 2008). The DNS is triply periodic
on a cubic domain of size length 2π with Reynolds number Reλ = 433 on a regular grid
of 10243 points. In time intervals of one second, 256 spatially independent sub-cubes of
side length 5λ (0.4L) were extracted from the database at full resolution for a total of 2560
sub-cubes over 10 time units (or 5TL, where TL = urms/L is the large eddy turnover time
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scale), for which third-order statistics (such as the structure functions reported in § 3.4.2)
were found to satisfactorily converge.

The DNS data were stored similarly to the experimental data, where each cube contained
fields for all components of the velocity, the material derivatives (accounting for the
numerical forcing) and the pressure field. Fourth-order differentiation in physical space
was applied directly to the fields as necessary to calculate gradient quantities used in the
analysis. As the JHU database enforces the divergence-free condition via spectral methods,
a small but non-negligible divergence residual was found for the gradients in physical
space. This error was found to propagate to higher-order derivatives, impacting the energy,
helicity and enstrophy budget residuals at approximately 2 %, 5 %, and 15 %, respectively
(Appendix A). Though this error is non-negligible, it is not believed to overshadow
the correlation-based conclusions drawn in this study that are primarily rooted in phase
information. For the Von-Kármán (VK) data, the error propagation of gradients in physical
space is more significant as a result of the limited sub-pixel accuracy. This is discussed in
more detail in Appendix A but is particularly problematic for enstrophy dissipation (fourth
order gradients). As a result, conclusions based on such high-order gradients in the VK
data are avoided.

3.3. Characterisation of the data sets
In this section we characterise the data sets to elucidate the statistical nature of the
scale-space energy, helicity and enstrophy quantities before investigating their transfers
in § 4. Basic statistical quantities for both data sets are reported in table 1.

The probability density functions (p.d.f.s) of the dissipation rates of the energy, helicity
and enstrophy are shown in figure 1. These distributions are of central importance towards
comprehending the scale-by-scale cascades, as both energy and helicity can only be
destroyed by viscous dissipation. The wide tails of these p.d.f.s extend to extreme values
resulting in large flatness (Van Atta & Antonia 1980) and are indicative of small-scale
intermittency, characteristic of turbulent flows (Sreenivasan & Antonia 1997; Laval,
Dubrulle & Nazarenko 2001). The dissipation p.d.f.s agree well between data sets for the
energy and helicity but deviate at extreme values for the dissipation of enstrophy. This is
due to the unavoidable PIV error propagation (see Appendix A).

3.4. Ensemble-averaged structure functions
In this section, in addition to the classical energy structure function, the structure functions
associated with the helicity and enstrophy are probed; these are central to core theories of
turbulence (Zhou 2021). This analysis provides further context on the extension of the
scale-space framework beyond that of the scale-space energy budget.

3.4.1. Energy, helicity and enstrophy structure functions
The energy, helicity and enstrophy structure functions are presented in figure 2. Here, and
for all scale-space quantities, the overbar denotes both ensemble averaging and averages
over all scale-space orientations at a particular scale r = ‖r‖. We note that here (and
elsewhere in this study) the error bars correspond to statistical errors obtained using the
convergence of the moments of the p.d.f.s (using a 95 % confidence interval). Though bias
errors arising from experimental artefacts and discretisation are also of concern, they do
not dominate the uncertainty. This is supported by the small residual in the energy, helicity
and enstrophy budgets (Appendix A).

952 A20-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

91
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.912


Simultaneous turbulence cascades

Description Symbol VK Tank JHU DNS

Taylor-microscale Reynolds number Reλ 199 433
Normalised grid resolution �x/η 0.76 2.2
Normalised temporal resolution �t/τη 0.09 0.005
Integral length scale (mm) L 33.7 1.36
Taylor microscale (mm) λ 5.810 0.113
Kolmogorov length scale (mm) η 0.209 0.0028
Kolmogorov time scale (ms) τη 45 0.042
Root-mean-square velocity fluctuation (mm s−1) urms 33.6 0.686
Root-mean-square helicity fluctuation (mm s−2) hrms 838.5 16.67
Root-mean-square vorticity fluctuation (s−1) ωrms 13.12 13.29
Kinetic energy dissipation rate (mm2 s−3) εq2 492 0.103
Helicity dissipation rate (mm s−3) εh 9.35 −0.0395
Helicity dissipation rate std. dev. (mm s−3) εh

std 936 8.88
Enstrophy dissipation rate (s−3) εω2 2407 1078

Table 1. Parameters from the Von-Kármán mixing tank scanning PIV experiment (Knutsen et al. 2020) and
the Johns Hopkins University DNS of homogeneous and isotropic turbulence (Li et al. 2008). Note the symbols
�x and �t denote the grid spacing and temporal spacing of the data sets.
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(b) highlights the range of helicity dissipation between ±5 standard deviations.
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Figure 2. Normalised mean energy structure function δq2 (a), helicity structure function δ̄h (b) and enstrophy
structure function δω2 (c).
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Figure 3. Normalised orientation-averaged NLF structure functions corresponding to the nonlinear
scale-to-scale flux of energy δq2 (a), helicity δ̄h via advection (b) and vortex stretching (c), and enstrophy
δω2 (d).

The energy structure functions in figure 2(a) are compensated by the classical inertial
range scaling (rεq2

)2/3 (Kolmogorov 1941a). The universal constant for the analogous
longitudinal second-order structure function is C2 ≈ 2.0 ± 0.2 (Sreenivasan 1995; Pope
2001); however, the energy structure functions feature a sum over two transverse
components (that scale as 4

3 C2) and one longitudinal component. Therefore, in the inertial
range, the energy structure function is expected to plateau at a value of approximately
7.3 ± 0.7. For the VK data, this value is achieved only at the largest available separation.
This is likely due to the limited range of separations but may also be attributed to the
Reynolds number (Reλ = 199) for which the inertial range is expected to be limited in
breadth (Ishihara, Gotoh & Kaneda 2009). For the JHU data the plateau is more evident;
however, it is also considerably limited due to the sizes of the extracted sub-cubes of side
length 5λ.

The helicity structure functions are shown in figure 2(b). As the helicity is not a
sign-definite quantity, the structure functions were found to converge very slowly due to
their characteristically high variation (Kurien, Taylor & Matsumoto 2004). The helicity
structure functions are normalised using the inertial range scaling in physical space as
δ̄h/εh(r2/εq2

)1/3, outlined by Brissaud et al. (1973). A developing plateau is observed for
the JHU data for r > λ, in agreement with the energy structure function. Also consistent
with its energy structure function and limited range of separations, the VK data does
not show a clear plateau for δ̄h. The overlap within uncertainty between the two data
sets indicates satisfactory collapse, though curiously this occurs mostly for r in the
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near-dissipative range. The lack of large separations r in the VK data prevents from
evaluating the collapse of the data sets for r > λ (in the inertial range).

Despite the lack of explicit helical forcing in the DNS, the scale-space helicity is
non-zero for both data sets. This is consistent with the helicity spectrum computed over a
wide range of simulations (Chen et al. 2003; Mininni, Alexakis & Pouquet 2006) with and
without helical forcing (Alexakis 2017). This can be seen directly through an expansion
of δ̄h, i.e. for homogeneous turbulence, (ui − u′

i)(ωi − ω′
i) = 2h̄ − 2uiω

′
i. This reveals that

even when small-scale mirror symmetry holds (h̄ = 0), the non-zero scale space helicity
(and spectrum of helicity) arises from the coherence in the velocity–vorticity correlation
(Levich & Shtilman 1988). This was shown explicitly for isotropic turbulence by Deusebio
et al. (2014). The present results confirm this non-zero correlation as well as the tendency
of the turbulence cascade to restore small-scale mirror symmetry with decreasing scale
(Kraichnan 1973; Chen et al. 2003).

The enstrophy structure functions are presented in figure 2(c), normalised using the

energy dissipation rate and the Kolmogorov length scale η = (ν3/εq2
)1/4 as (εq2

/η2)2/3. A
normalisation using εω2 was tested but found to give unsatisfactory agreement (likely due
to error propagation, see Appendix A). The close relationship between the enstrophy and
the dissipative small scales (Jiménez et al. 1993) implies a constant scaling in the inertial
range. Consistent with the energy and helicity structure functions, the enstrophy structure
functions reach a maximum only for the largest separations and more conclusively for the
JHU data. This reaffirms enstrophy as a quantity that is confined to small scales (Jiménez
et al. 1993; Davidson, Morishita & Kaneda 2008; Ishihara, Kaneda & Hunt 2013; Elsinga
et al. 2017).

3.4.2. Nonlinear flux energy, helicity and enstrophy structure functions
In this section the nonlinear flux (NLF) structure functions, of which the divergence is
taken in the nonlinear inter-scale transfers Π , are explored. A small departure to justify
this terminology will be taken here. These structure functions are commonly referred to
as ‘third-order structure functions’, but as the origin of ‘third order’ is in the statistical
moment of the increment of a single quantity (i.e. δu3), a different terminology is adopted
for improved generality. As noted by Hill (2002), making use of Gauss’ theorem when
integrating the nonlinear energy transfer term of (2.3) inside a ball VR (defined in the
space of scales as {r ∈ R

3 : |r| ≤ R}) gives
�

Πq2
dVR = �

∂VR
δukδq2nk dS with nk

the outward normal vector and dS the surface of the spherical shell (the boundary of
VR). The orientation average over the spherical shell is identically zero, leaving only a
flux in the radial direction. This motivates referring to these quantities as NLF structure
functions in the present context. In addition to the central role of NLF structure functions
in classical turbulence theory, i.e. the 4/5ths (K41) and 2/15ths laws (Chkhetiani 1996;
L’vov, Podivilov & Procaccia 1997), their physical significance is well documented in
the context of a spherical scale-space coordinate system (Gomes-Fernandes et al. 2015;
Valente & Vassilicos 2015; Alves Portela et al. 2017). The NLF structure functions for the
experimental and numerical data sets are presented in figure 3.

The orientation-averaged NLF energy structure function is shown in figure 3(a),
normalised using the classical 4/3rds law (Hill 2002). The subscript r is used to denote
the radial flux as described above. For r > λ the plateau seen in the JHU data suggests
classical behavior of δurδq2. Consistent with figure 2, the VK data does not show a
clear plateau developing for δurδq2/4

3εq2r but does reach value close to one at r ≈ λ
952 A20-11
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(the largest available separation). This may imply the nonlinear inter-scale transfer is
dominant at r = λ (Yasuda & Vassilicos 2018), but it must be noted that such an apparent
balance is possible when some inhomogeneous effects are at play (Alves Portela et al.
2017).

The orientation-averaged NLF helicity structure functions are shown in figures 3(b,c),
normalised using the product of r and dissipation rate of helicity εh. This normalisation
is chosen to compare the two distinct mechanisms associated with Πh in (2.5). The
first, δukδh, originates from the advective term and the second, δωkδq2, from the vortex
stretching term of (2.2) (Yan et al. 2020). It is again seen that, due to its non-positive
definiteness and inherently high variation, the nonlinear flux of helicity is very slow
to converge, leading to large uncertainty bars. Despite this, the fluxes are found to be
non-zero, and the JHU data appears to exhibit a plateau (albeit within large uncertainty
bars).

Finally, the normalised NLF enstrophy structure functions can be seen in figure 3(d).
Similarly to the enstrophy structure function, a collapse of the data sets is observed in
the near-dissipation range between r/η = 10 and r/λ = 1. The flux is seen to decrease
as r−3 (r−2 in the figure due to compensating −δurδω2 by r) into the inertial range.
This power law decrease is consistent with the results of Davidson et al. (2008) (in
their case, a scale-by-scale enstrophy flux is defined that is not motivated by the present
spherical scale-space coordinate system. This necessitates compensating −δurδω2 by r for
a one-to-one comparison).

4. Correlations of instantaneous cascades

4.1. Correlations within budgets
Normalised correlations (−1: perfectly anti-correlated, 0: uncorrelated, and 1: perfectly
correlated) were tabulated as outlined in Appendix A. We shall focus on the separations
r = 2.5η, 0.5λ and λ that correspond to the dissipative and near-dissipative ranges and
the onset of inertial range, respectively. The latter is of particular interest, as it is the
scale for which Yasuda & Vassilicos (2018) identified the largest variations in energy
transfers (standard deviation) in periodic box turbulence with Reλ = 178, indicative of
strong dynamics at that scale.

The correlations of the terms in the scale energy, helicity and enstrophy budgets are
presented in figures 4, 5 and 7, respectively. Starting with the energy in figure 4, the
correlations of terms are in good agreement across the three considered scales between
both the JHU and VK data. At the smallest r, the high correlation between the viscous

diffusion and dissipation seen in figure 4(a,d) reflects the average balance between Dq2

ν

and Eq2
, as noted by (Valente & Vassilicos 2015).

The most robust correlation of figure 4 lies between the unsteady transport Aq2

t and
the turbulent transport T q2

. This is taken to be the signature of the random sweeping
effect identified by Yasuda & Vassilicos (2018), who found that random sweeping indeed
extends from single- to two-point quantities. (Strictly speaking, the random sweeping

effect is reflected in the correlation between Aq2

t and (T q2 − Πq2
). However, in the present

analysis, we restrict to correlations between individual terms but remark that the signature
of random sweeping is consistent with the results of Yasuda & Vassilicos (2018).) As T is

associated with transport in physical space, its high correlation with Aq2

t is likely a result
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Figure 4. Correlation coefficients between terms of (2.4) for δq2 at various separations; results based on VK
(a–c) and JHU (d–f ) datasets.

of the known preferential anti-alignment between the unsteady acceleration (∂/∂t)ui and
the convective acceleration uk(∂/∂xk)ui (Tsinober 2001).

Turning attention to the nonlinear transfer Πq2
, an anti-correlation with the pressure

transport term T q2

p is seen to persist across all scales investigated here. As the pressure
(and resulting pressure transport) results from a volumetric integration of the velocity
field over the entire flow domain, the non-local influence of the baffles of the VK
tank and the numerical forcing of the JHU data could non-trivially impact the role of

the pressure transport. Despite this, a significant anti-correlation between T q2

p and Πq2

persists between both data sets, indicating a dynamical link between those quantities.
As seen in figure 5, the correlations between the terms involved in the scale to scale

helicity budget show some similarities with those observed for the energy budget. At the
smallest scales, the same positive correlation between Dh

ν and Eh is seen just as in the
energy, reflecting the destruction of helicity by viscous forces. The signature of the random
sweeping effect is again identified from the correlation between Ah

t and T h at all r. In
contrast to the energy transfers, however, the pressure transport T h

p appears to have an
increasing correlation with the nonlinear transfer Πh as r decreases.

Before this result is discussed for the helicity cascade in more depth, it is necessary to
adopt the framework presented by Yasuda & Vassilicos (2018) for the energy budget. As

in their work, the correlation of T q2

p and |δu| |δ∇p| is confirmed to be negligible in the
present study. On the other hand, defining the cosine of the angle between δu and −δ∇p
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Figure 5. Correlation coefficients between terms of (2.6) for δh at various separations; results based on VK
(a–c) and JHU (d–f ) datasets.
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Figure 6. Mean value of the alignment between unit vectors of the velocity (a) and vorticity (b) increments
via ((4.1)) and ((4.2)). The correlations of the nonlinear helicity transfer mechanisms Πh,u and Πh,ω (see text
for definitions) with the pressure transport of helicity T h

p are shown in (c). All results are from the JHU data.

as
cos φu = (δ̂u · r̂)(−δ̂∇p · r̂) + (δ̂u × r̂) · (−δ̂∇p × r̂), (4.1)

where ·̂ denotes unit norm, we find that the correlation of T q2

p with cos φu is substantial.
This is shown in figure 6(a) for the JHU data, but similar results were found for the VK
data (these are omitted for brevity).

From both the dot product and cross product contributions of (4.1), Yasuda & Vassilicos
(2018) found that the mean was small but positive. This implies that in the averaged
picture, the convergence events (i.e. δu · r̂ < 0) occur simultaneously with compressing
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forces (i.e. −δ̂∇p · r̂ < 0), and vice-versa: divergence events are coupled to expanding
pressure forces. Importantly, one may conclude based on the identity between the
(scale-space) volume integral

�
VR

Πq2
dVR and surface integral

�
∂VR

δu · r̂δq2 dS that
the convergence events facilitate the forward δq2 cascade, whereas divergence events
facilitate the inverse cascade (Yasuda & Vassilicos 2018). And further, it can be inferred
from the positive value of mean cos φu that the forward cascading of δq2 coincides also
with compressing forces.

Returning to the correlation of Πh with T h
p in the present study, it is apparent that the

role of the pressure transport is comparatively more complex. This is because Πh features
two distinct NLF structure functions arising from the vortex twisting and stretching
mechanisms (Yan et al. 2020). The mechanisms are separated here such that Πh = Πh,u −
Πh,ω, where Πh,u = (∂/∂rk)δukδh (vortex twisting) and Πh,ω = 1

2(∂/∂rk)δωkδq2 (vortex
stretching). As a near-zero correlation of T h

p with |δω||δ∇p| was found, an analogous
analysis to Yasuda & Vassilicos (2018) may be attempted using the angle defined via

cos φω = (δ̂ω · r̂)(−δ̂∇p · r̂) + (δ̂ω × r̂) · (−δ̂∇p × r̂). (4.2)

The alignment for both the dot product and cross product contributions were similarly
found to be small but positive, as can be seen in figure 6(b). The meaning of this alignment,
however, is not trivial in the case of helicity. Such a correlation is expected to vanish in
mirror-symmetric flow for lack of a preference for any specific sense of rotation (imposed
by the sign of δ̂ω · r̂). The non-zero average of cos φω, increasing with r, is reminiscent of
the scale-to-scale helicity itself (figure 2b).

To reconcile the meaning of this result, we shall clarify the direction of the helicity
cascade in the following. In contrast to δq2, the terms ‘forward cascade’ and ‘inverse
cascade’ are not well-established in the context of helicity (Alexakis 2017), due to the
lack of positive definiteness of δh. To address this, an auxiliary quantity HR is introduced
as a reference for the sense of rotation as

HR =
�
VR

(δu · r̂)(δω · r̂)︸ ︷︷ ︸
δhR

dVR. (4.3)

The forward and backward directions of the helicity cascade is then defined
based on the sign of HR (i.e. HR/|HR|). The helicity cascading events causing
(HR/|HR|)�

VR
Πh dVR < 0 are deemed to cascade forward, while (HR/|HR|)�

VR
Πh

dVR > 0 implies inverse cascading. Similarly to δq2, analogous relations invoking the
divergence theorem may be drawn for the nonlinear transfer terms:

�
VR

Πh,u dVR =
�
∂VR

δu · r̂δh dS and
�
VR

Πh,ω dVR = 1
2

�
∂VR

δω · r̂δq2 dS. (4.4)

It follows that events of (δhHR/|δh||HR|)δu · r̂ < 0 and (HR/|HR|)δω · r̂ > 0 facilitate the
forward helicity cascade and vice-versa for the inverse cascade.

It is important to note that the two mechanisms (i.e. stretching and twisting) cascade
helicity in the same direction (either upscale or downscale) only when δhδhr < 0.
Additionally, a positive mean value of cos φω (as in figure 6b) suggests that when the
signs of HR and δω · r̂ are in agreement, the downscale helicity cascade couples with
expanding pressure forces and the upscale helicity cascade associates with compressing
pressure forces (in the averaged sense).
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Figure 7. Correlation coefficients between terms of (2.8) for δω2 at various separations of JHU data (a–c).

The correlations of the individual vortex twisting and stretching mechanisms with T h
p in

figure 6(c) shows a clear distinction between mechanisms. In the former, the correlation is
relatively steady within the probed separation range, similar to what is seen in the context
of δq2. On the other hand, the stretching mechanism exhibits strong interactions with
pressure forces (stronger than the twisting) at dissipative scales, which diminish almost
entirely by the time r reaches λ.

Finally, we turn out attention to the correlations of the transfer terms of the scale-to-scale
enstrophy are presented in figure 7. As explained in Appendix A, noise propagation in the
VK data renders correlations of Aω2

t and Eω2
particularly erroneous. The results of the

VK data are therefore omitted.
A striking similarity with the energy and helicity budgets is immediately apparent

through the anti-correlation of the unsteady transport Aω2

t and turbulent transport T ω2
.

This confirms the random sweeping effect persists across all budgets and across all
scales. The generation term Gω2

s exhibits a positive correlation with Eω2
and a negative

correlation with Dω2

ν . This implies a concurrent enstrophy generation and dissipation
mechanism (Davidson et al. 2008). This simultaneous generation and dissipation is tied
to a reduction (during high dissipative events) or increase (during low dissipative events)
in the diffusion of enstrophy. This is seen to persist across all scales considered. A small
positive correlation between Dω2

ν and Eω2
, akin to the energy and helicity cascades, is seen

only for r = 2.5η.

4.2. Correlations between budgets
We now explore possible connections between budget equations, i.e. correlations between
the mechanisms involved in the budget of a given scale-by-scale structure function and
those of the others, as shown in figure 8. The correlations between both the scale energy
and enstrophy transfers and the helicity transfers were found to be universally of order 10−2

and are thus omitted. At first glance, this appears to contradict a wealth of research that
has identified clear causal relationships between the three quantities (Bershadskii et al.
1994; Biferale, Musacchio & Toschi 2013; Alexakis 2017; Bos 2021), even analytically
(via Lagrangian closure theory, see Inagaki 2021). As discussed by Tsinober (2001),
near-zero correlations are necessary, but not sufficient, to determine that two quantities
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Figure 8. Correlation coefficients between terms of (2.4) and (2.8) (respectively transfer terms of δq2 and
δω2 on the horizontal and vertical axis) at various separations of JHU data (a–c).

are unrelated. For example, the unsteady term ∂ui/∂t (2.1) is almost entirely decorrelated
with the material acceleration Dui/Dt simply due to the underlying anti-correlation of
∂ui/∂t with uk(∂ui/∂xk).

In the present case, the root of the decorrelation is likely to be the fact that helicity
is not positive-definite (Kurien et al. 2004). Alternatively, a geometric approach allows
to separate the transfer quantities into the product of a (positive-definite) norm with an
appropriately defined angle (Yasuda & Vassilicos 2018). This avenue for further insight is
explored in § 5.

Let us now return to figure 8, which shows correlations between energy and enstrophy
budgets. The most robust correlation is that between dissipation rate of energy Eq2

and the
dissipation rate of enstrophy Eω2

, with a magnitude exceeding 0.5 across all considered
scales. Figure 8 also shows that the energy dissipation Eq2

and enstrophy diffusion Dω2

ν

are negatively correlated, whereas the energy dissipation Eq2
and enstrophy generation Gω2

s
(for r = 0.5λ and r = λ) are positively correlated. Together, these observations support
the classical picture that the generation of scale enstrophy at small scales (Siggia 1981) is
largely responsible for the dissipation of energy (as well as enstrophy generation, Siggia
1981). Finally, the signature of the random sweeping effect can be clearly seen amongst
the correlations between At and T in figure 8, particularly at the smallest scales. Together,
these mechanisms point to the interconnected nature of the simultaneous turbulence
exchanges.

5. Influence of scale-space helicity on the energy cascade

5.1. Application of Lamb decomposition
In the previous section, it was found that the correlation between transfers of energy and
transfers of helicity was zero. There is however evidence that the magnitude of the helicity
itself has an impact on the local transfer of energy. Regions of high helicity are thought
to suppress nonlinear energy transfer and dissipation (Pelz et al. 1985; Stepanov et al.
2015), though some results suggest otherwise (Zhou et al. 2016). To probe more closely
the connection between the helicity and the energy cascade in the present study, the Lamb
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decomposition is invoked on the nonlinear term of (2.1):

uk
∂

∂xk
ui = 1

2
∂

∂xi
(ukuk) + εjkiωjuk, (5.1)

where εjkiωjuk = ω × u is known as the Lamb vector. This quantity is central to the
nonlinear turbulence cascade as maximal helicity h = ω · u, i.e. the alignment of u and
ω, corresponds to a suppression of nonlinearity ω × u in the Navier–Stokes equation.

A kinematic connection can be gleaned from (2.1), invoking (5.1). Similarly to the
derivation of the KHMH energy (§ 2) but focusing on the nonlinear terms exclusively,
it follows that

2δui

(
uk

∂

∂xk
ui − u′

k
∂

∂x′
k

u′
i

)
= −2Σukεjikδωjδui

+ ∂

∂rk
(δq2δuk) − 1

2
∂

∂Xk
(Σukδq2) + 2

∂

∂ri
(δuiΣq2). (5.2)

After simplification, this leads to the triple product relation

Σu · (δω × δu) = Πq2> − T q2<, (5.3)

where Πq2> = (∂/∂ri)(δuiΣq2) is the nonlinear scale-to-scale transfer for the energy sum
Σq2 = ΣuiΣui, and T q2< = 1

2 (∂/∂Xk)(Σukδq2) is the usual nonlinear energy transport
from (2.4). Hereafter the superscripts < and > are used for shorthand to refer to transfer
of the increment and the sum quantities, respectively. A detailed derivation of this result
is provided in Appendix B.

An immediate curiosity stems from the presence of the energy sum nonlinear transfer
Πq2>. The dynamical significance of the energy (or velocity) sum is a matter of some
debate but has been linked to so-called ‘large-scale intermittency’ in previous studies
(Sreenivasan & Antonia 1997; Blum et al. 2010; Chien, Blum & Voth 2013; Carter &
Coletti 2018). To summarise, instances when the energy sum is large and within the
range of correlated scales (large-scale sweeping motions) have been shown to increase the
content of the energy structure functions relative to the mean at each scale. This implies a
connection between large and small scales in turbulence (Mininni et al. 2006; Hosokawa
2007). Equation (5.3) indicates that these sweeping motions play a central role in nonlinear
energy transport. It shows that sufficiently large Σu can overcome the alignment of δu
and δω (as long as they not perfectly aligned). This could explain some conflicting results
where strong dissipation is found even when these quantities are aligned and helicity is
maximal (Zhou et al. 2016).

Particularly for turbulence theory, the kinematic connection revealed by (5.2) provides
novel insight into the mechanics of the energy cascade. By substituting for T q2< in
(2.4) using (5.2) and invoking steady, homogeneous turbulence within an independent
intermediate range of scales (Kolmogorov 1941a,b), it is found upon ensemble averaging
that

Σu · (δω × δu) = 4εq2
. (5.4)

By virtue of homogeneity, the sum Πq2> + Πq2< = 0 and therefore no longer features
in the balance with the dissipation rate of energy. This can be shown analytically and was
verified for both data sets in the present study (not shown for brevity). This demonstrates
the high relevance of the triple product on the left-hand side of (5.4). It is not only a feature
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of the instantaneous kinematics but also central to the overall dynamics. It is perhaps
unwelcome to see the velocity sum play a central role in the mean rate of energy dissipation
in the inertial range, as this challenges the possibility that there exists a range of scales
independent of the large-scale effects (or of the forcing). Such an observation has been
previously identified in terms of triadic interactions (Yeung & Brasseur 1991), but to the
authors’ knowledge this is the first such demonstration in real space. This provides direct
insight on the role of large-scale intermittency (via Σu) on the inertial range in the cascade
of energy (Sreenivasan & Antonia 1997).

Equation (5.4) highlights a geometric perspective of the energy dissipation, where the
mean projection of the velocity sum onto the cross product of the velocity and vorticity
increment balances the mean dissipation rate. By virtue of the fact that ‖δu × δω‖2 =
‖δu‖2‖δω‖2 − ‖δh‖2, there is an implicit connection between the dissipation of energy
and the scale-by-scale helicity. Although this does not necessarily connect the transfers, or
dynamics, of the two quantities together, it does show that the magnitude of the scale-space
helicity influences the dissipation of energy (but also, critically, depends on the alignment
with sweeping motions).

Having identified the statistical significance of the triple product, we turn our attention
to the instantaneous behaviour. Motivated by the kinematics of (5.3), the joint p.d.f.s of
the triple product with the nonlinear energy sum transfer Πq2> and the nonlinear energy
transport T q2< were computed for the VK and JHU data sets and plotted in figure 9.
There is a clear positive and negative correlation between the triple product and Πq2>

and T q2<, respectively, with very close agreement in terms of the slope (±0.5) of the
major axis of the ellipse formed by the joint p.d.f.s. In fact, (5.2) requires the slopes be
complementary. The slope, and therefore the underlying correlation, is robust across all
scales considered and for both the experimental and numerical data sets. The increase in
intermittency (i.e. the flatness of the joint p.d.f.s) with increasing scale is reminiscent of
large-scale intermittency (Sreenivasan & Antonia 1997).

It is of interest that the triple product reveals a similar correlation to both Πq2>

and T q2< separately. This originates with the velocity sum Σu, featuring both in the
triple product and via T q2< = Σu · (∂/∂X )(δq2/2). This establishes an immediate and
scale-independent connection between the two quantities. The remaining correlation
between the triple product and Πq2> follows as a direct consequence of (5.3). Despite their
closely tied kinematics, there are important dynamic distinctions amongst the quantities
involved in terms of their statistical behaviour. Under the assumption of homogeneity, the
ensemble average T q2< = 0, whereas Πq2> = −Πq2<, and Σu · (δω × δu) = 4εq2 . This
motivates the interpretation of Πq2> as a transfer of energy to larger scales whose average
is a complement to Πq2<.

The establishment of an overall balance between the triple product and the dissipation
of energy in the inertial range (5.4) motivates further insight into the alignment of Σu and
(δω × δu). This is quantified using the angle defined by

cos θ = Σu · (δω × δu)

‖Σu‖ ‖δu × δω‖ . (5.5)

The p.d.f. is presented for both data sets in figure 10. Note that an extra separation at
r = 4.7λ (the maximum separation attainable using the sub-cubes extracted from the JHU
database) is presented for further insight. As required by (5.4) to maintain dissipation
downscale, the alignment is found to be biased towards positive values of cos θ for
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Figure 9. Joint p.d.f.s of the triple product of (5.3) with the nonlinear energy sum transfer Πq2> (a,c,e) and
nonlinear energy transport T q2< (b,d, f ) for r = 2.5η (a,b), r = 0.5λ (c,d) and r = λ (e, f ). Contour values
range from 10−12 to 10−8 (counting from the outermost line).

all separations such that cos θ > 0. The distributions appear approximately quadratic in
nature, with an inflection occurring somewhere between 2.5η and 0.5λ.

As the separation increases, the probability of parallel (cos θ = 1) and anti-parallel
(cos θ = −1) alignment is increasingly likely. Most evident from the JHU distributions
(figure 10b), the increase in likelihood across separations is more rapid for anti-parallel
alignment than parallel alignment. A linear regression for these points with increasing
scale indicates they will be equal in probability at r ≈ 13λ, corresponding almost exactly
to the integral scale of the DNS data set (figure 10c). This implies that at r = L, the p.d.f.
will be symmetric about zero and, due to the parabolic shape, with equal likelihood of
parallel and anti-parallel alignment, a minimum at cos θ = 0 and cos θ = 0. A similar
extrapolation for the experimental data was not conclusive due to the limited number of
available separations.
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Figure 10. P.d.f. of cos θ characterising the alignment between the velocity sum and the cross product (5.3)
for the VK data (a) and JHU data (b), and an extrapolation of the p.d.f. at extreme values of cos θ for JHU data
(c) (L marks the integral length scale).

6. Conclusions

A scale-space framework, already well established for generalisation of the turbulent
energy transfers via the KHMH equation (Hill 2002; Valente & Vassilicos 2015), has
been extended analogously to the scale-space helicity and enstrophy together for the first
time. This has provided a novel framework for insight on the instantaneous turbulence
dynamics that are responsible for establishing the statistically steady state. To exemplify
this framework, an analysis of the various inter-scale and inter-space transfers of energy,
helicity, and enstrophy in two homogeneous turbulent flows focusing on scales up to the
Taylor microscale has been presented.

The correlation-based analysis has revealed that the random sweeping effect is
indeed present within all three considered budgets. This was identified through the
significant anti-correlation of the unsteady and physical-space transport terms (At and
T , respectively) within the individual budgets. A significant correlation of these transfers
between budgets was also identified via the energy and enstrophy, suggesting that random
sweeping also occurs simultaneously across budgets. In addition, the energy and enstrophy
transfers were also found to correlate through the generation/dissipation of enstrophy and
dissipation of energy, consistent with previous studies (Davidson et al. 2008). This again
points to the connection of mechanisms across budgets.

The anti-correlation between the pressure transport and nonlinear inter-scale transfer
terms (Π and Tp, respectively), already reported by Yasuda & Vassilicos (2018) in the
context of the energy cascade, was also observed in the helicity cascade. In contrast to
the energy cascade, this anti-correlation was strongest at the dissipative scales, where both
vortex-stretching and twisting mechanisms correlate equally. Overall (i.e. on average) it
was found that the downscale helicity cascade couples with expanding pressure forces,
and the upscale helicity cascade associates with compressing pressure forces.

As a direct consequence of the non-positive definiteness of helicity, it was found that the
terms governing the transfers of helicity were entirely decorrelated from those governing
the energy and enstrophy. Despite this, it was shown that the scale-to-scale helicity itself
influences the energy transfers. On the basis of kinematic arguments, it was demonstrated
that the alignment between the two-point velocity sum and the cross product of the velocity
and vorticity increments is connected to the overall inter-scale transfer of energy (5.4).
This is at odds with the theoretical independence of small-scale dynamics from large-scale
motions but is consistent with so-called large-scale intermittency phenomena observed in
numerous studies (e.g. Sreenivasan & Antonia 1997; Blum et al. 2010; Carter & Coletti
2018). It is further seen that, to maintain the dissipation of energy, this alignment is
non-zero and positive on average.
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Taken together, the present work illustrates how the the extended scale-space framework
(introduced here in its most general form) can be used to probe the various mechanisms
involved in the concurrent exchanges of energy, enstrophy and helicity. In this first
iteration, this framework was applied to homogeneous turbulence, allowing us to identify
links and similarities between the various transfers. Furthermore, by dissecting the term
associated with inter-scale energy exchanges, we find that the scale helicity regulates the
imbalance between inter-scale exchanges of large-scale energy (Σq2) and the inter-space
exchanges of small-scale energy (δq2) through Σu · (δω × δu).

Future applications of the present framework to other canonical problems, such as
a Taylor–Green vortex, but also (and perhaps more importantly) to flows where the
turbulence is markedly inhomogeneous, such as wall-bounded and free-shear flows, are
warranted. A detailed analysis of the scale-space triple product, particularly as it pertains
to the large scale sweeping motions (e.g. a conditional analysis for when uk and u′

k
are aligned/anti-aligned) is also low-hanging fruit. Finally, the use of physics-driven
instantaneous correlations (as in the present study) as parameters in the loss functions
of neural networks for sub-grid stress models in LES is a promising avenue for future
research.
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Appendix A. Energy, enstrophy and helicity transfer budgets

The extensive size of the data sets makes tabulating all data points at each location in
scale space into a single storage variable prohibitively expensive. For this reason, a limited
number of separations were chosen in order to store the relevant information in confined
memory.

For each volumetric cube of Cartesian data and for each separation, spheres
corresponding to scale-space radius r were positioned at all possible centroid locations on
the grid. As the number of possible centroid locations decreases with increasing sphere
radius, the number of samples used for calculating statistics decreases as r increases
(Camussi et al. 1996), leading to increased uncertainty at larger separations (e.g. see the
error bars of figure 3). Statistics (i.e. the first and second moments of the quantities of
interest) were calculated by averaging over the sphere. As the grid points did not provide
a uniform probing of the sphere, a weighting procedure was adopted to account for the
non-uniformity. The number of surface points on the sphere was chosen to be Ns = 96,
with no significant impact on the results tested with a variety of Ns between 24 and 288.
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Simultaneous turbulence cascades

The correlation between two quantities, ζ and ξ , is obtained as

corr(ζ, ξ) = ζ ξ − ζ̄ ξ̄√
ζ 2 − ζ̄

2
√

ξ2 − ξ̄2
. (A1)

By normalising by the product of the square root of the variance of both quantities,
values of 1, 0 and −1 correspond to perfectly correlated, uncorrelated and anti-correlated
quantities, respectively.

The histogram for each sphere at each separation and for all quantities of interest was
tabulated and stored in 2500 linearly spaced bins. Similarly, the joint histogram for each
pair of investigated quantities was stored in a 500 × 500 bin matrix. The large number of
bins allowed to capture the most extreme values of the highly intermittent quantities. As
these extreme values are not known a priori, an adaptive histogram approach was used in
which the bins and bin counts were adjusted when a value exceeding the current limits of
the bins was encountered. Once tabulated, the histograms were normalised into p.d.f.s (or
joint p.d.f.s).

To validate the adopted approach, the budget equations representing the balance of the
various inter-scale transfers are presented for the VK and JHU data in figure 11. Similar
results are obtained for both data sets. The energy budgets exhibit the classical behaviour:

they are dominated by terms Πq2
and Eq2

at larger separations, while Dq2

ν and Eq2
are

the most significant at the smallest separation. The accuracy of the method and overall
statistics is also supported by the small residuals in each case. However, it must be noted
that the particularly small residuals associated with the VK data are largely artificial. The
post-processing routine applied to the scanning PIV data yielded the acceleration and
pressure fields in addition to the measured velocity fields. This extra information was
resolved by minimization of the instantaneous momentum equation residual (i.e. a data
assimilation approach). Therefore, small values of the budgets residuals are enforced in
the case of VK data.

Although there is a generally good match between budgets based on the two data sets,
this is certainly not the case when it comes to the unsteady term of the enstrophy budget
Aω2

t and enstrophy dissipation rate Eω2
. The former term ought to vanish in a statistically

stationary flow, such as the two considered in this manuscript, yet it dominates the VK
enstrophy budget (for the JHU case Aω2

t is indeed small and of the order of the residual).
The dissipation term Eω2

, on the other hand, is twice as large in the VK case than in the
JHU data. This mismatch is due to bias error propagation via discrete differentiation. This
effect is expected to be the strongest for the enstrophy transfer terms, owing to the high
order derivatives involved (acting as noise amplifiers). For example, the measured value
of Eω2

is proportional to (∂ωi/∂xj)
2
meas. = (∂ωi/∂xj)

2
true + 2e(∂ωi/∂xj)true + e2, where e

represents error. The non-negative term e2 is the dominating source of bias error (a similar
example in the context of the energy dissipation rate is given by Tanaka & Eaton 2007).
Since the VK data is the noisier of the two sets, it follows that the measured value of Eω2

is larger, in agreement with figure 11.
Taking into account the above considerations, any conclusions regarding terms Aω2

t and
Eω2

based on the VK data are questionable. This ambiguity is avoided in the manuscript
by discarding the VK data and relying purely on the JHU data for the enstrophy transfers.
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Figure 11. Budgets of terms of (2.4) (a,b), (2.6) (c,d) and (2.8) (e, f ) evaluated for VK (a,c,e) and JHU
(b,d, f ) datasets (res. stands for residuals of the respective budgets).

Appendix B. Derivation of triple product relation

We start by introducing shorthand notation for the KHMH equation for the energy structure
function and the energy sum, respectively:

Aq2<
t +Πq2<=−T q2<−T q2<

p +Dq2<
ν −Eq2︷ ︸︸ ︷

∂

∂t
δq2 + ∂δukδq2

∂rk
= − ∂

∂Xk

(
Σukδq2

2

)
− 2

ρ

∂δukδp
∂Xk

+ ν

[
2

∂2

∂r2
k

+ 1
2

∂2

∂X2
k

]
δq2 − 2ν

[(
∂ui

∂xk

)2

+
(

∂u′
i

∂x′
k

)2
]

, (B1)
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Aq2>
t +Πq2>=−T q2>−T q2>

p +Dq2>
ν −Eq2︷ ︸︸ ︷

∂

∂t
Σq2 + ∂δukΣq2

∂rk
= − ∂

∂Xk

(
ΣukΣq2

2

)
− 2

ρ

∂Σukδp
∂Xk

+ ν

[
2

∂2

∂r2
k

+ 1
2

∂2

∂X2
k

]
Σq2 − 2ν

[(
∂ui

∂xk

)2

+
(

∂u′
i

∂x′
k

)2
]

. (B2)

Simplification starts with the Lamb decomposition applied to the nonlinear terms. This
can begin with the nonlinear terms of either (B1) or (B2) and leads to the same result:

T q2<+Πq2<︷ ︸︸ ︷
2δui

(
uj

∂

∂xj
ui − u′

j
∂

∂x′
j
u′

i

)

= 2δui

(
εkjiωkuj − εkjiω

′
ku′

j + 1
2

∂

∂xi
(ujuj) − 1

2
∂

∂x′
i
(u′

ju
′
j)

)
= 2δuiεkji

(
δωkΣuj + ω′

kuj − ωku′
j

)
+ 2δui

(
1
2

∂

∂xi
(ujuj) − 1

2
∂

∂x′
i
(u′

ju
′
j)

)
= −2Σujεkijδωkδui + 2δuiεkji(ω

′
kuj − ωku′

j)

+ 2δui

(
1
2

∂

∂xi
(ujuj) − 1

2
∂

∂x′
i
(u′

ju
′
j)

)
= −2Σujεkijδωkδui + 2δuiεkjiεmlk

(
uj

∂

∂x′
m

u′
l − u′

j
∂

∂xm
ul

)
+ 2δui

(
1
2

∂

∂xi
(ujuj) − 1

2
∂

∂x′
i
(u′

ju
′
j)

)
= −2Σujεkijδωkδui + 2δui(δjmδil − δjlδim)

(
uj

∂

∂x′
m

u′
l − u′

j
∂

∂xm
ul

)
+ 2δui

(
1
2

∂

∂xi
(ujuj) − 1

2
∂

∂x′
i
(u′

ju
′
j)

)

= −2Σujεkijδωkδui + 2δui

(
uj

∂

∂x′
j
u′

i − u′
j

∂

∂xj
ui

)

+ 2δui

(
−uj

∂

∂x′
i
u′

j + u′
j

∂

∂xi
uj + 1

2
∂

∂xi
(ujuj) − 1

2
∂

∂x′
i
(u′

ju
′
j)

)

= −2Σujεkijδωkδui + 2δui

(
−uj

∂

∂x′
j
δui − u′

j
∂

∂xj
δui

)
+ δui

(
∂

∂xi
Σq2 − ∂

∂x′
i
Σq2

)

=
−2Σu·(δω×δu)︷ ︸︸ ︷

−2Σujεkijδωkδui +

+Πq2<︷ ︸︸ ︷
∂

∂rj
(δujδq2) −

−T q2<︷ ︸︸ ︷
1
2

∂

∂Xj
(Σujδq2)+

+2Πq2>︷ ︸︸ ︷
2

∂

∂rj
(δujΣq2) (B3)
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The final expression in shorthand notation is

T q2< + Πq2< = −2Σu · (δω × δu) + Πq2< − T q2< + 2Πq2>. (B4)

Subtracting Πq2< from both sides, dividing by two and rearranging, we arrive at (5.3).
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