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On generalized Norlund

methods of summability

Minoru Tanaka

The object of this paper is to establish some relations between
two generalized Norlund methods and also between two absolute
generalized Noriund methods. OQur theorems obtained here
generalize many known results, including McFadden's Theorems
vhich state the inclusion relations between two absolute Norlund

methods, and results of I|kuko Kayashima.

1. Introduction
Let p = {pn} and a = {an} be given sequences of real numbers such

that

n
(p * a) Z n_pap #0 (n=0)

Given a series Z a, with its partial sum 8, > if

n
1
1. p,a o
(1.1) ) TE;ET— Zg Py 8%y > 8 as n>e,

the series 3 a_ is said to be summable (¥, p, a) to s and we write
n=0
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o«

a =s (N, p, @) (see Borwein [1]). 1Ir ¥
n=0

£D50_4p 0

<
n n+l ® , the

108

0

w0
series ) a, is said to be summable IN, r, al and we write
n=0

oo
Y a € IN, p, a| . The method (N, p, @) reduces to the Norlund method
=0

(N, p) when @ =1 ; to the method (N, a) when p,=1. Let A and

B be two summability methods. If every series summable (A) +to a finite
sum is also summable (B) +to the same sum, we write A C B . We shall say

that B is totally stronger than A (written ' B t.s. A ') if, in

o] (o4

addition, . a, = to  (A) implies Y q, =i (B) . If every series
n=0 =0

summable |A| is also summable |B| , we write [A] € |B] . We shall say

that a method A is absolutely regular if every absolutely convergent series

is summable |A| .

The purpose of this paper is to investigate relations between the
methods (N, p, @) and (N, g, B) , and to establish some conditions for
lN, D, OLI < IN, q, BI . Our theorems obtained here generalize many known
results. We state all the results in §2, and they are proved in §§4-6. 1In

§3 we state some preliminary lemmas.

Throughout this paper we use the following notations. For sequences

{p,b, {q,}, {a} , ena {8},

(1.2) (c*p)n 1 m=0, =0 (nz21),

u
Q
=
v
=)

(1.3) (k=* p)n

(1.%) &

D

[
™
Q

B,/

>
SN WEN (n= 0) , when a, # 0 (n=0).

We shall write {pn} €M, ir
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pn+l qn+l
> —_— 20
p,>0, q,>0, D, 7 (n )
= - = - =0 . i
We put Aan a, - a., > Anan,k @k an+l,k s a_y Capital

letters C and H are to denote absolute constants, but are not

necessarily the same at each occurrence.

2. Inclusion theorems
THEOREM 1. If
(1) {p,} €M,
(21) {pn} € Mlq) ,
(iit) a, >0, Bn >0 (nz0),

(iv) Bn/an > Bn+l/an+l (n=nw), and

(v) (N, q, B) s regular,

tﬁen (N, ¢, B) t.s. (N, p, a) .

The case N = 0 in condition (Zv) is more precise than Das's Theorem
([4], Theorem 1, Case (A)). Putting a =8 =1 (n=0), p,=4q,=1
(n=0), and p, = Bn =1 (n =0) in this theorem, we may obtain
theorems of Rhoades [13], [74], Lorch [10], and Kuttner and Rhoades [9],

respectively.

THEOREM 2. 17
(<) {pn} €M,
(it) {q,} € Mp) ,
(iid) a« >0 (n20),
(iv) p, = Cq, (n=0), aud
(v) (N, q, a) is regular,

then (N, p, a) € (N, q, a) .

The case in which a, =1 (n 2 0) is due to Borwein and Cass ([2],
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Theorem 2). But their theorem is more precise than this.
THEQOREM 3. If
(i) {p,} €M,
(1) {qn} € M(p) ,

(111) a, >0, Bn >0 (nz20);

and either

(iv) Bn/an =B/ (n=0),

n+l 0Ln+l

(v) p,=Cq, , (1L=*8) = H(g * 8), (nz0),

(vi) (N, q, B) is regular,
or
(iv) Bn/an =B / (nzo0),

n+l OLrz+l

(v) Bn(p * a)n < Can(q * B)n (n=0),
(vi) (p * a)n +o gg no>w,

then (N, p, a) < (N, g, B) .

The case in which p,=4q,= 1 (n = 0) 1is known as Riesz's Theorem
(see Hardy [6], Theorem 14 with ny =0 ).

In the following Theorems L-7, we shall suppose that a, # 0
(nz0).

THEOREM 4. A necessary and sufficient condition that
¥, p, al < [N, q, 8] is

= | 5w
2.1 - =< > .
I D (e mit e e | KOS
The case in which o, = Bn =1 (n=0) is Theorem (2.11) in McFadden
£r11.

THEOREM 5. If the method (N, q, B) <s absolutely regular, then a
necessary and sufficient condition that |N, p, a| < |N, q, B| 1is
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(<]

® -1 B k-1
M - < >
(2.2) Z% |A"{ZZZ 3, Q1 u Y (p* a) TE;ETi:I}| <C (k=21).

n= p=0

The case in which p =g, =1 (n = 0) is aue to Dikshit [5].

n

THEOREM 6. If

n |(p*a)
—L K < >
(2.3) o= @B, o ¢c (nz0),
n —-1
(2.1) pgk (p * a>p{i;/(q * 8, - K7/ (g » B)n-l} =0

then [N, P, O.l < IN’ q, BI .

385

The case in which @ = B =1 (n =0) is Theorem (2.12) in McFadden

(113,
THEOREM 7. If

(2.5) (p*a)n>0,(q*8)n>o(nzo),
) Py
(2.6) pgo (p * a)p| 5| SClgwB), (nz0),
and either
(2.7) £/ 8), - KB /qe8), 20 (mpz0),
or
(2.8) £/iq«8), - B/ig8), =0 (npzn),

then |n, p, o < I¥, q, 8] .

When a = Bn =1 (n=0) in this theorem, the cases (2.7) and (2.8)

are due to McFadden [11] and Kayashima [8], respectively.

In the following Theorems 8 to 11, we shall suppose that p, >0,

q,>0, a >0, and Bn >0 (n=0).

n

THEOREM 8., If
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(2.9) (q+8,s(@*8 . (=0,
(2.10) B, SCa , (pxa) SHq*B (nz0),
and either

(2.11) K"‘) >0, K’; zlc’“;l (n-p 2 ) ,

or

(2.12) 1{; <o, 1(; slféﬂ (n-p = W) ,

then [N, p, a| c |V, q, B] .
When o = Bn =1 (n 20) in this theorem, the cases (2.11) and
(2.12) are also due to McFadden [11] and Kayashima [8], respectively.
From these results we get the following theorems.
THEOREM 9., 1r
(<) {pn} €M,
(i) bq, >0 n=zo0),

(Zii) qo/p0 = By/a,

v
o
M

(iv) (q = B)n s (q * B, (n

and either

/o

A: w) Bn/an =B 1

41 (n=0),
(i) Aqn/Apn = Aqml/Apnﬂ (nz0),
wit) B /o = bq /bp (n=0),

or

B: ) Bn/an = Bn+1/an+1 (n=20),
wt) Aqn/Apn > Aqn+l/Apn+l (nzo0),
(wii) Bn/an = Aqn/Apn (nz0) ,

wiii) (p+*a) =C(qg*8), (nz0),
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then [N, p, a| < |V, q, B .

The case in which o, = B =1 (n=0) is due to Kayashima [§].

THEOREM 10. If
() {pn} €M, and

(ii) Bn/an 2B ./

p41/%4 (22 0),
then |N, p, a| < |N, 8] .

The cases in which a = Bn (n =2 0) and a =1 (n = 0) are due to

Das [3] and Kayashima [7], respectively.

THEOREM 11, If either
Ar (Z) q,=q,,, qn+l/qn z que/qn+l (n=0),

(it) Bn/an 2B ./

1 (nz20),

an+l
or
(n20),

B: (1) q,2q,,, (q*B) =(q= B),e1

(ii) Bn+1(l * u)n = Can+l(q * B)n+l {(n=z0),
then |N, o] < |N, ¢, B] .
The cases Bn =1 (n=0) in Condition A, Bn =1 (n=0) in

Condition B, and q, = 1 (n =0) in Condition B are due to Kayashima [7],

Dikshit [5], and Sunouchi [15], respectively.

3. Preliminary lemmas

LEMMA 1, WNecessary and sufficient conditions for the method
(N, p, a) to be regular are:
n
i) go lpn—papl =0((p * a)n) as n > o,

(it) Pp-p% = o((p * a)n) as n~+, for each p=20 .

This follows from Toeplitz's Theorem (see Hardy [6], Theorem 2). If
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{pn} and {an} are positive sequences, then condition (Z) above is

satisfied.
LEMMA 2. Let a #0 (n=0) . Then necessary and sufficient

conditions that (N, p, a) < (N, q, B) are

n
(3.1) Y (p *a)pKn

p=0 o] 0((q * B)n) ’

(3.2) Il‘p

o((p*B)n] as n+o , foreach p=0.

This is due to Das ([4], Lemma 1).
LEMMA 3. Let p, >0, q, > o, o > 0, and Bn >0 for all
n =2 0 . Then necessary and sufficient conditions that

(N, g, B) t.s. (N, p, @) are (3.2) and

(3.3) Il‘pzo(nzpzlv)

Proof. After Das ([4], Lemma 1), given tg’q and tZ’B vhich are

defined by (1.1), we get

n
t0F = Y a, b,
n 0=0 np p
where
(p*t)
15;§75 Kg (nzp),
(3.4) Qo =
0 (n < p)
If 5 =1 (n20) in (1.1), then tfl’“ =1 , and also tZ’B =1 . Hence
n
. =1 >0) .
(3.5) o L. (n )

Since the transformation defined by (3.4) is positive under our conditions,
it is sufficient for the proof to show that this transformation is regular
(see Hardy [6], Theorem 10). Hence, by Lemma 1, we need only show that
(3.1) is satisfied. Now by (3.3) and (3.5) we have
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|(p*a) 1(1‘<2 Z (p *a) ‘J(pl +(q*8)n,

and by (3.2),

N-1
PR a || = olta + ®,)

Hence we get

n
L e ragl-olen,)

which is (3.1).

Conversely the necessity of conditions (3.2) and (3.3) is immediately
obtained from Hurwitz's Theorem (Hardy [6], Theorem 10) and from Lemma 2.

Thus the proof is complete.

LEMMA 4, Iy {pn} € M, then

(3.6) e. >0, cnSO(nzl), Z_cnzo

This lemma is due to Kaluza (see Hardy [6], Theorem 22).

LEMMA 5. Ir {p} € M, then

(3.7) k,z 0 (n=0) whenever {p} € Mq) ,
or
(3.8) k,>0, k =0 (nz1) whenever {qn} € M(p)

Cases (3.7) and (3.8) are due to Hardy ([6], p. 69) and Borwein and
Cass ([2], p. 102), respectively.

LEMMA 6. Let y, = )} a x (n2z0) . Then necessary and
p=

o M P
© o

sufficient conditions that ), |4y, | < = whenever Y |ax | <w are
n=0 n=0 n

(3.9) Z a, converges for all nz 0,

p_
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(3.10) nz=:0 pgk [anp-an_l’p) =C (kzo0)

This is due to Mears [12] and Sunouchi [15], independently.
LEMMA 7. IF

<) p, > o, o, >0 (n=z0),

(ii) (p = cx)n = (p * (at)n+l (n=z20), and

(iit) p, 2 p, ., (nzm,

then the method (N, p, a) is absolutely regular.
Proof. We show that the conditions of Lemma 6 are satisfied with
= >
@0 pn_pap/(p *a) {(n=p)
=0 {(n < p)
Then (3.9) holds. Hence it suffices to prove that

E |§ {pn-pap 4 n—l—pap}

- =¢ (k=z1)
n=k lp=k (p*a)n (p*a)n—l

Now by using our conditions we have

= % n-p’p P n—l-pap}
k =k (p*a)n (p*ajn-l
- kol o { Py 1p _ Ppo }
o0 P (p*ﬂl)n_l (pm)rz
=20 (n= Nk, k21) .
Hence
T |z e LR
= +
= k ok k By k

n
=oy+1 (k=1)
This completes the proof of Lemma 7.

The case in which an =1 (n =0) is due to Mears [12].
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4. Proof of Theorems 1-3

4.1. Proof of Theorem 1. For the proof it is sufficient to show that

conditions (3.2) and (3.3) are satisfied. Now by Abel's transformation, we

have
n-1 (B B

(k.1.1) K = \gp A[%) ug oo a—: Koo
Then using (3.6), and by condition (Zv),

n-1 Bv

v_:ip A[a—\)} E % Cup 20 (P20,
and also, by (3.7), kn—p >0 (n=p) . Hence, from (4.1.1), we get
condition (3.3). Next, also by (iv) and using (3.6),

B

KZScoaQqn_p (p = W)
P

On the other hand, for 0 < p = ¥-1 ,

AL 1)

Therefore, by use of Lemma 1 (ZZ), we obtain condition (3.2).

1A

| g

N

This completes the proof.

4.2. Proof of Theorem 2., We show that the conditions of Lemma 2 of

the case & = Bn (n 2 0) are satisfied. Now by (%), (i), and (iv),

using (3.8),

(b.2.1) Z pp] - p| =2kp -4,
= 0(q,,)
Hence, by (iv), we get
n n n
DR RN D SNTAN)
=0(lg*a)) ,
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. . = > =
which is (3.1), because KZ kn-p (n = p) when @, Bn (n =0)

Next, from (4.2.1) for fixed p =0 ,

k,_o = 0la,_)

Ve

Therefore, by use of Lemma 1 (iZ£), we can obtain condition (3.2), and thus
the proof is complete.

4.3. Proof of Theorem 3. Case I. Let conditions A hold. By Abel's

transformation, we have

e By L By
= A .
vZL [ Fn-v uZ; “p 0‘u] " UZ; hep @y

Then, under our conditions and by use of (3.6),

Aq [ )<0 (n>p)s
vp VPV WP Oy
n B
HE>
q Z _0(._0 (n > p) .
05 HP %
Hence, by (3.5), we have
& n n B
(4.3.1) pég (p * a) pl = 2q, p§ (p * a)p uZ; Cyp a - (q * B),,
Now, by (1.2},
(L.3.2) (p » o * c)n =a (n = 0)
Hence, by A (v), we get
n B n B U
(p*a), ZC —U=Z—E2(p*a)c
0=0 Pusp P % 120 % =0 pH-p
n B8
= Z aE(p*a*c)
u=0 “u
= (1+8),
= H(q * B),

Therefore, from (4.3.1), we obtain condition (3.3). Hext, by use of (3.6),

we have
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)
L
Kz = coqn_p @
p
On the other hand, by A (iv),
8
K=k L.
p n-p &,

Since conditions (%), (iZ), and (Zv) of Theorem 2 are fulfilled, (k.2.1)
holds. Hence we can obtain, by A (Zv) and by use of Lemma 1 (ZZ),

condition (3.2). Thus the desired conclusion of Case I follows from Lemma

2.
CASE II. Let conditions B hold. Using (3.6) and (3.8), we have, by
B (iv),
o< o

(4.3.3) o= 5, koS0 (nz0)
Thus

3 7 P % P

(p * a) l l =2(p * a) g.cp — - (p * a)
0=0 Py P nt0 0 a, 0=0 pp
B (p*a)

=2‘100a(q*85 (q+8), - (qg+8),

Hence, by B (v), we obtain condition (3.1). Next, by Abel's transformation,

we have, for n > p ,

n-1 B n
= Yy A [ ][ Z e, ] +-Lgq [ Y e ]
=\ O e -
Pz, v w-p) "o, Mol 2 u-p
= g(n, p)} + h(n, p) , say.
Then by B (Zv), and since {qn} is non-increasing,
tfe 'Bi] g,
vi'n-v o n-v o n-1-v av+l

Using (3.6), we see that

0 £ o B o) o

v=p
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(n, o) o 5
hin, p =—q[ e ]20.
% Oly=p H-P

Hence we get, from (4.3.3),
gin, p)SKZSO (n>p) .

On the other hand

n-1 v
L 8, [qn-\) E_]co
p
8

v

gln, p)
v= AV

v

- 2
ofoa
n
and so we obtain, by B (v) and B (vi), for fixed p = 0 ,

B, (p*a)
(n,p) n n_ 1 s w
iq*Bgn 2 (~e4) o (q+B) (pxa), 0 as n .

Therefore we can get condition (3.2). Thus the desired conclusion of

Case II also follows.

Thus the proof of Theorem 3 is complete.

5. Proof of Theorems 4-8
5.1. Proof of Theorem 4. Let a0 be given by (3.4). Then by

(3.5) we have (3.9). Condition (2.1) is the same as (3.10). Hence we can

get the required result from Lemma 6.

5.2. Proof of Theorem 5. We show that condition (2.1) is satisfied.
Now by (k.3.2),

n

p=k P - u)pf:’

n k-1

-2 - %)

=0 p:o
k-1 Bu n _B_E k-1

=+ B)n - {ugo qqn_u(p vawe) ‘En @, T pE—:O P« a)pcu—p

=(q*8)-{ B g + q Y (pxra)e }
ooso MM s, &y T 500 H-p
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Thus we have

n ( Kg Kn—l k=1
el e

p=k

+ A (p * a) ou /(q * B) .
n ) au n-l -u 0=0 n-1
Now a condition of the absolute regularity of the method (N, g, B) 1is

equivalent to

o«

)

n=k

=¢ (k =1)

k-1
o[ 2o 0.

Hence condition (2.1) is equivalent to (2.2). Thus the required conclusion

follows from Lemma L.

5.3. Proof of Theorem 6, Let a,, be given by (3.4), and k 21 .

Then under our conditions we have, for m > k ,

m n m m
ngk pgk g 2,0) | = pgk ngp (15721,0)
m
B pgo Ia”’pl =¢-

Hence we get (2.1) when m -+ © , and thus the proof is complete.

5.4. Proof of Theorem 7. Let @ be given by (3.4), and k = 1

Now, for m = +k ,

m n N+k-1 m
(5.4.1) Y X (am\-a‘1 N ]‘ = [ y - 3 J
n=k ‘p=k P =P n=k n=N+k

Zl + 22 , say.

Then, by (2.6), we have

(5.4.2) £

N+k-1 , n

nek ook (anp_an-l,p]l

= 2ic .

CASE 1. Let (2.5), (2.6), and (2.7) hold. When n = H+k and
p=0,1, ..., k-1 , it is clear that n - p - 1 > /¥ , and so by (2.5) and
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from (2.6) we get

p=k p=0
20 .
Hence, by (2.6),
T T )
(5.4.3) L, =
2 nli+k p=k np n-1,p
P e 1+ 5 |
< a |+ a
p=0 mp 0=0 +k-1,p
=2C.

Therefore, applying (5.4.2) and (5.4%.3) to (5.4.1), we can obtain (2.1).

CASE II., ©Let (2.5), (2.6), and (2.8) hold. Similarly we have, by
(2.8) and (2.6),

m n
2y = n:%—l (-1) pgk (anp_an-l,p)
N+k-1 m
) ogo 2 i1l * pgo Iy
=2 .

Hence we can also obtain (2.1). The statements of Theorem 7 thus follow

from Theorem L.

5.5. Proof of Theorem 8. We shall show that the conditions of

Theorem T are fulfilled for each case.

CASE I. ©rLet (2.9), (2.10), and (2.11) hold. Condition (2.5) is
clear. Let n = N ; then we have, by (2.11),

n (p*a) n (pxa)
- —_p
(5.5.1) pgo G, Kgl ["E;V) + pmﬁu) (q*B),, ’fpl
n (p*a) )
=1+ 2 { } L. 5 .
n-JV+1<p_n p=n-+1 (q+6 ”}

Here, by (2.9) and (2.10),
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n (pra) n (p*a)

?azéji =M .

On the other hand, when 7n- +1 < p = N-1 , then 0 = n-p < ¥-1 , and so, by

<
p=n-N+1 q*B n p=n-Hf+1

(2.10),
] < & |
< q, le
e H=p au L
=C q.][ c. )
i=0 Jlj=o 7
Hence we get
max {lknl} =C <o,
n-m+1<psn \1 P

Therefore from (5.5.1) we can obtain condition (2.6). Also by (2.9) and
(2.10),

+1
Kg _ Kﬁ ! [Kn—Kn+l)
(q*8),, = (q#B) ., ~ (q#8), "o "0

v

0 (n-p=W) ,
which is (2.7).

CASE II. Let (2.9), (2.10), and (2.12) hold. The proof of this case

follows in a similar manner as above, and so it may be omitted. Finally

suppose that KZ 20 and Kz > Kz+l (n-p = 0) . Then we have

g Py )l
oo @B, [fol =1 (200

and hence the desired result immediately follows.

Thus our theorem is proved.

6. Proof of Theorems 9-11

6.1. Proof of Theorem 9. CASE I. Let conditions A hold. 1In this

case we shall show that the conditions of Theorem 8 with ¥ = 0 are

fulfilled. Then under our hypotheses it suffices to show that Kg > 0 and
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KZ z KZ+1 (n-p 2 0) . Since {pn} € M, (3.6) nolds, and so by A (v), we

have

k

n-p °

le
i)

ng

P
Then by A (v) and A (vii) we get qo/pO 2 Aqn/Apn (n 2 0) , and thus we

can obtain kn 20 (n=0) (see Kayashima [§]). Hence

Kﬁ 20 (n-p20)

On the other hand, by A {vi) and A (vii), and since Che1op <0
(n-pz20),
n-p B B
P Z: p+k q nl q
p p k=0 p+k k nin-p-k = @, ntl-p 0
Bo = Anqn-p—k B 1
= E_'Anq p s B q ) %n+1-p%0
P =P =0 n'n-p nel T
A
> Bo nqn-D Z . _ Bl . q
p npn-p %20 k nP n-p-k an+1 n+l-pt0
> Bp Anp poc Bnlrl R q
p an -0 0 n+l-p an+l n+l-p?0
A
> (_c )q [Bn+l nqn—o)
n+l-p’ *0{Q +1 npn—p
20 (n-pz0)

Thus we have the conclusion.

CASE II, Let conditions B hold. Similarly it suffices to show that
(2.12) is satisfied with N =1 . Now by B (vi) and B (vii) we have
= A > = b
qo/pO Aqn/ P, (n =2 0) , and also we can get kn 0 (n2z21) (see
Kayashima [§]). Therefore

B

sk =0 (np=1)
p

Next, by B (vi) andB (vii), we get in a similar manner,
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+1 Bn+l ‘

A

P

1A

0 (n-p=1)
which is (2.12). This completes the proof of Theorem 9.

6.2. Proof of Theorem 10. It suffices to show that the conditions of
Theorem 8 are fulfilled with ¥ = 0 and q,=1 (n 20) . Then (2.9) is

obvious. Now by (%) and (Z%Z), and by use of (3.6), we have, for n-p =0 ,

n B 8 -p
=3 EE ep 2 69 [Zzg
p =

P u=p U
+1 Bn+l
Kz - KZ " ( cn+l-p) 0.
n+l

Thus the proof is complete.

6.3. Proof of Theorem 11. CASE 1. Let conditions A hold. We show

that the conditions of Theorem 6 with p,=1 (n 2 0) are satisfied. Now

by (1.3) we get

(6.3.1) e.=1, e, ==1, e =0 (n=2)

Let aﬂp be given by (3.4); then, by A (<) and A (ii),

(1%0) B
anp - Tazgji Ap[ap qn—D) 20 (n-p=20)

Thus we have, immediately, condition (2.3). Hence it is sufficient to show
that conditicn (2.3) holds. By Abel's transformation, we have
n n-k (1+a), -B,q
k-1"k"n-k
a = B ]/ (g + .
z np [ Z n_pqp, ( q B)n) akzq*s)n

p=k p=0

Hence
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' -1k )
- { § B, o9 ] ((g 1)) p§0 Bn_l_pqp]/((q * e)n_l)J
L Pliade { Uk -1k }
% (q+B),, ~ (q+B)
= I? + IZ , say.
Since {qn+1/qn} is non-increasing,
=k
o Bn—pqo) (g * By - lanb), Z Bn—l-qu)
k-1 n-1 k-1
= Bnqo[jég qn l-g J] * Z% Jgé BkBJ( n— zqn 1-7 qn an-l—z)
Z20.

Hence we obtain IT =2 0 . Thus if Ig 2 0 , then it is clear that

= 0 . On the other hand suppose that Ig < 0 . Then, since {qn} is

non-decreasing and {Bn/an} is non-increasing, we get, for 0 <m=<k ,

Ek.{ -k _ In-1-%k } > 8 { Up-m Yp-1-m }
(q*B),, (q*B)n_l (q*B),, (q*B)n_l

and so

(l*a)

m"&

klk{ n-k_ _ qn—l—k}
a (q+B) (q*B)n_l

L {qunqw _ Qan-l-m}
(q*B)n (q*B)n_1 :

Therefore we have

{[ng; Pn-oo )/[(q *8),) - [";é;k B 1o p]/((q * 8) 1)}

k1 (Bflpm  Brlp-1om
) {(q*B7n_ (q*B)n_l}

bole

v
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Thus the required conclusion follows.

* CASE II. Let conditions B hold. By Lemma 6 we see that (N, g, B)
is absolutely regular. Hence it is sufficient to show that condition (2.2)

of Theorem 5 is satisfied with p, = 1 (n=0) . Now, by use of (6.3.1)

and by B (7), we have

o n-1 EE H
nE% b uéi “ -1 p=0 o a)pcu_p/(p . B)n_l
B q q q
_ _k n=l-k _ _'n-k 0
B oy (L waly ) n=%;l {(q*B)n_l (q*B)n} * (q+B)
<2 Bpl1eady o
- 710 ak(q*B)k :

Hence it follows from hypothesis B (ZZ/) that condition (2.2) is satisfied.

Thus the proof of Theorem 11 is complete.
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