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On generalized Norlund

methods of summability

Minoru Tanaka

The object of this paper is to establish some relations between

two generalized Norlund methods and also between two absolute

generalized Norlund methods. Our theorems obtained here

generalize many known results, including McFadden's Theorems

which state the inclusion relations between two absolute Horlund

methods, and results of Ikuko Kayashima.

1 . Introduction

Let P = {p } an<i a = {a } be given sequences of real numbers such

that

n
* <*>„ = I P w _ p « p * 0 (n > 0) .

n
 p=0

 n~P p

Given a series £ a with its partial sum s , if
n=0 n n

n
(1.1) tP'a = , v T p aa s + s a s n - + ° ° ,

n p=o n"P p p

oo

the series Y, a ^-s s a i^ to be summable (N, p, a) to s and we write
n=0 n
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382 Minoru Tanaka

£ a = s (N, p , a) ( s ee Borwein [ / ] ) . I f £
n=0 n n=0

< <=° , the

ser ies £ a i s said to be summable |N, p , ot| and we write
n=0 n

00

Y, a € |N5 p5 a| . The method (N, p, a) reduces to the Norlund method
rz=O *

(N, p) when a = 1 ; to the method (N, a) when p = 1 . Let A and

B be two summability methods. If every series summable (A) to a finite

sum is also summable (B) to the same sum, we write A c B . We shall say

that B is totally stronger than A (written ' B t.s. A ') if, in

00 OO

addition, £ a = ±°° (A) implies £ a = ±°° (B) . If every series
n=0 n n=0 n

summable |A| is also summable |B| , we write |A| C |B| . We shall say

that a method A is absolutely regular if every absolutely convergent series

is summable |A| .

The purpose of this paper is to investigate relations between the

methods (N, p, a) and (N, q, 3) , and to establish some conditions for

|N, p, Ot| c |N, q, B| . Our theorems obtained here generalize many known

results. We state all the results in §2, and they are proved in §§4-6. In

§3 we state some preliminary lemmas.

Throughout this paper we use the following notations. For sequences

{pn) , {<7n}> {«„} » and {3^} ,

(1.2) (c * p)n = 1 (n = 0) , = 0 (n > 1) ,

(1.3) (* * p)n = qn (n > 0) ,

n
(l.U) K = Y. <J c B /<* (« - 0) , when a ^ 0 (n > 0) .

v=p n ~P

We shall write {p M M , if

and also {p^} «*•(<;) , i f
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Pn>o, % > o , ^ ^ f
W e p u t A a = a - a n , A a , = a , - a , , , a . = 0 . C a p i t a lF n n n+1 n n,k rik n+l,k -1

letters C and H are to denote absolute constants, but are not
necessarily the same at each occurrence.

2 . I n c l u s i o n theorems

THEOREM 1. if

(i) {pj € M ,

(ii) {pj € M(q) ,

(Hi) a. > 0 j B > 0 (n > 0) ,

(iv) en/% > 6 M + 1 / a M + 1 ln>B) t and

(v) (N, q, 6) is regular,

then (N, <?, 3) t.s. (N, p, a) .

The case N = 0 in condition fiû  is more precise than Das's Theorem

([4], Theorem 1, Case (A)). Putting a = 8 = 1 (w2 0 ) , p =<? = 1

(« > 0) , and p = B = 1 (n 2 0) in this theorem, we may obtain

theorems of Rhoades LI31, [74], Lorch [70], and Kuttner and Rhoades [9],

respectively.

THEOREM 2. If

(i) {pj € M ,

(ii) {qj € M(p) ,

(Hi) a > 0 (n > 0) .,

(iv) p ^ Cq (n > 0) , and

(v) (N, <7, a) is regular,

then (N, p, a) c (N, q, a) .

The case in which ctM = 1 (n > 0) is due to Borwein and Cass ([2],
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Theorem 2). But their theorem is more precise than this.

THEOREM 3. If

(i> {pj € M ,

(ii) {qj € M(p) ,

(Hi) a > 0 , & > 0 (n 2 0) ;

and either

(iv) Qn/an > 6n+1/«n+1 <n » 0) ,

' 3 ) (n 2 0) ,

>i) (N, q, 3) is regular,

or

(iv) Bn/an 5 6 n + 1 /« n + 1 (n > 0) ,

(v) 3 (p * a) s Co. (q * 3) (n 2: 0) ,,n n n n

(vi) (p * a ) -»• <» a s n •*• °° j

t^en (N, p , a) c (w, ^ , 3) .

The case in which p = q = 1 (n>0) is known as Riesz's Theorem

(see Hardy [6], Theorem Ik with n = 0 ).

In the following Theorems k-J, we shall suppose that a # 0

(n > 0) .

THEOREM 4. i4 necessary and sufficient condition that

|N, p, a| c |H, <7,3| is

The case in which a^ = 3^ = 1 (n 2 0) is Theorem (2.11) in McFadden

THEOREM 5. If the method (N, q, B) is absolutely regular, then a

necessary and sufficient condition that |N, p, a| c |u, q, g| is
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(2.2)

The case in which p = <7 = 1 (n > 0) is due to Dikshit [5].

THEOREM 6. If

I
p=0

(2.3)

(2.U) I (p *

then |N, p, a| c |N, q, B| .

(p*a),
S C (n > 0) ,

- 0

(k = 0, 1, 2, ..., n) ,

The case in which a = 3 = 1 (n > 0) is Theorem (2.12) in McFadden
n n

[77].

THEOREM 7. If

(2.5) (p * a) > 0 , (q * B) > 0 (n 2 0) ,

(2.6)

and either

(2.7)

or

(2.8)

I (p * a)
p=0

n P

B) -

(n > 0) ,

> 0 (n-p > N) ,

B) n + 1 £ 0 (n-p > N) ,

then |N, p, a| c |N, q, 3| .

When a = 3 = 1 (n 2 0) in this theorem, the cases (2.7) and (2.8)
n n

are due to McFadden [77] and Kayashima [S] , respectively.

In the following Theorems 8 to 11, we shall suppose that p > 0 ,

qn > ° ' an > ° ' and Bn > ° (" " 0) *
THEOREM 8. If
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(2.9) (q * 6) - (q * 6) +, (n > 0) ,

(2.10) 6 £ Co. , (p * a) < H(q * 0) (n > 0) ,

and either

(2.11) ii"p i 0 , / > A"+1 (n-p > iv) ,

or

(2.12) ? < 0 , / 5 f + 1 (B.p > ff) ,

then |N, p , a | c |N, q̂ , 6| •

When a = 3 = 1 (w > 0) in this theorem, the cases (2.11) and

(2.12) are also due to McFadden [//] and Kayashima [8], respectively.

From these results we get the following theorems.

THEOREM 9. If

(ii) tq > 0 (n > 0) ,

(Hi) qo/pQ = &Q/aQ ,

(iv) (.q * B)n s (q * &)n+1 (n > 0) ,

and either

A: (v) 6 /ot — 3 -, Ax (w £ 0)

Cwj Aq^/Ap^ £ Ag^., /Ap (n > 0) ,

(n > 0) ,

B: (v) &n/an < 3n+1/an+1 (» > 0) ,

(Vi) Aqn/Apn > A ^ ^ / A p ^ („ > 0) ,

(vii) &n/an s Aqw/Apn (n > 0) ,

i i i ; (p * «)„ - C(<7 * 6)n (n > 0) ,
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then |N, p , a | c |N, q, 3 | .

The case in which a = 3 = 1 (n > 0) is due to Kayashima [8].

THEOREM 10. If

(i> {pj * U , and

(ii) Bn/% > &n+1/un+1 (n > 0) ,

then |N, p , a | c | N , B| .

The cases in which a = 3 (« > 0) and a = 1 (n 2 0) are due to
n n __ w

Das [3] and Kayashima [7], respectively.

THEOREM II.1 If either

A: (i) % ~ «n+l > «n+lK ~ ̂ + 2
; V l (" - 0) •

(ii) Bn/an > 6n+1/an+1 (n > 0) ,

or

(n 2 0) ,

(n > 0) ,

then |N, a| c |N, q, e| .

The cases 3 = 1 (n 2 0) in Condition A, 3 = 1 (n 2 0) in

Condition B, and q = 1 (n > 0) in Condition B are due to Kayashima [7],

Dikshit [5], and Sunouchi [75], respectively.

3. Preliminary lemmas

LEMMA 1 . Necessary and sufficient conditions for the method
(N, p, a) to be regular are:

n
(i) ^ lpn-papl = °( ( p * a U B* n * °° '

(ii) p a = o[ip * a ) ) as n •* °° , for each p > 0 .

T h i s f o l l o w s from T o e p l i t z ' s Theorem ( s e e Hardy [ 6 ] , Theorem 2 ) . I f

https://doi.org/10.1017/S0004972700008935 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700008935


388 Minoru Tanaka

{?„} and {a } are positive sequences, then condition (i) above is

satisfied.

LEMMA 2. Let a / 0 (n > 0) . Then necessary and sufficient

conditions that (N, p, a) <= (N, q, 3) are

n

Pr 0
 p *a p p " ° { q * 3)« '

(3.2) A " = o((p * g)n) as n •*• <*> , for each p 2 0 .

T h i s i s d u e t o D a s (142, Lemma l ) .

LEMMA 3. Let p > 0 , q > 0 , a > 0 , and 6 > 0 for all

n > 0 . Then necessary and sufficient conditions that

(N, q, 6) t . s . (N, p , a) are (3.2) and

( 3 . 3 ) ^ 0 (n > p > *) .

Proof. After Das (142, Lemma 1), given if'a and t^'^ which ar
n n

defined by (l.l), we get

t I a ̂
n p t 0 np P

where

If s^ = 1 (n > 0) in (l.l), then t^'01 = 1 , and also tq'® = 1 . Hence

n
(3.5) I anp = 1 (n > 0) .

Since the transformation defined by (3.^) is positive under our conditions,

it is sufficient for the proof to show that this transformation is regular

(see Hardy [6], Theorem 10). Hence, by Lemma 1, we need only show that

(3.1) is satisfied. Now by (3.3) and (3.5) we have
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n

p=0
P P

N-l

- 2

p=0
+ (q *

and by (3 .2) ,

N-l

P=0
(p

Hence we get

which is (3 .1) .

p=0
(p * a) A" = 0{(p * B) ) ,

Conversely the necessity of conditions (3.2) and (3.3) is immediately

obtained from Hurwitz's Theorem (Hardy [6], Theorem 10) and from Lemma 2.

Thus the proof is complete.

LEMMA 4. if {pj f(l, then

(3.6) cQ > 0 , cn 5 0 (« >
?i=0

cn -

This lemma is due to Kaluza (see Hardy [6], Theorem 22).

LEMMA 5. If {p } € M , then

(3.7) kn > 0 (n > 0) whenever {pn} € M(q) ,

(3.8) kQ > 0 , kn < 0 (n > 1) {qj € M(p) .

Cases (3.7) and (3.8) are due to Hardy ([6], p. 69) and Borwein and

Cass ([2], p. 102), respectively.

LEMMA 6. Let y = £ a x (n > 0) . Then necessary andn
 p=o np p

OO GO

sufficient conditions that ]T | Aj/ | < °° whenever £ |Ax | < «>
n=0 w «=0 "

(3.9)
p=0

a converges for all n 2 0 ,
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[3.10)
«=0

(a -a S C (fe > 0) .

This is due to Mears [JZ] and Sunouchi [/5], independently.

LEMMA 7. If

(i) pn > 0 , an > 0 (n > 0) ,

(ii) (p * a)n 5 (p * (n > 0) , and
fit VtTJ.

(Hi) pn > p n + 1 ( n i i ! ) ,

the method (N, p, a) i s absolutely regular.

Proof. We show that the conditions of Lemma 6 are sat isf ied with

anp = P n - P V ( P * a)n (" " p)

=0 (n < p) .

Then (3.9) holds. Hence it suffices to prove that

00 | n
5 C (k > 1) .

Now by using our conditions we have

k-1
f Pn-l-0

> 0 ( n 2 W+fe, fe > 1 ) .

Hence

5 2ZV + 1 (& > 1) .

This completes the proof of Lemma 7.

The case in which a =1 (n ̂  0) is due to Mears
n
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4. Proof of Theorems 1-3

4.1. Proof of Theorem 1. For the proof it is sufficient to show thai

conditions (3.2) and (3.3) are satisfied. Now by Abel's transformation, we

have

.1.1)

Then using (3.6), and by condition (iv),

vl V

>) y=p

and also, by (3.7), k _ 2 0 (n 5 p) . Hence, from (U.l.l), we get

condition (3.3). Next, also by (iv) and using (3.6),

On the other hand, for 0 £ p £ N-X ,

Therefore, by use of Lemma 1 (ii) , we obtain condition (3.2).

This completes the proof.

4.2. Proof of Theorem 2. We show that the conditions of Lemma 2 of

the case a = 6 (" - °) are satisfied. Now by (i), (ii), and (iv),

using (3..8),

{h-2-1] Z Pp|fe«-Pl
 = 2 k t f n - %

p=0 M H

Hence, by (iv) , we get
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which i s ( 3 . 1 ) , b e c a u s e tf" = k (n 2 p) when a^ = Bn (n > 0) .

N e x t , from ( U . 2 . 1 ) f o r f i x e d p i O ,

fc = 0[q ) .n-p (Hn-pJ

Therefore, by use of Lemma 1 (ii) , we can obtain condition (3.2), and thus

the proof is complete.

4.3. Proof of Theorem 3. Case I. Let conditions A hold. By Abel's

transformation, we have

v |p V P ̂ ) + *o |p V P ̂  •

Then, under our conditions and by use of (3.6),

n-1 (• v 6-i
V A a Y a -£ s o (n > p) ,

n n 6

T. (p * °0 Z c ~̂

Hence, by (3.5), we have

Now, by (1.2),

(U.3.2) (p * a * a ) n = an (w > 0) .

Hence, by A (v) , we get

n n B « 3 y

n 3
= E » (P * « *
y=o y

= (i * B) n

Therefore, from (i*.3.l), we obtain condition (3.3). Ilext, by use of (3.6),

we have
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On the other hand, by A (iv),

P w-P ap

Since conditions (i) , (ii) , and (iv) of Theorem 2 are fulfilled, (It.2.1)

holds. Hence we can obtain, by A (iv) and by use of Lemma 1 (ii),

condition (3.2). Thus the desired conclusion of Case I follows from Lemma

2.

CASE II. Let conditions B hold. Using (3.6) and (3.8), we have, by

B (iv) ,

(U.3.3) *J S S* *h-p S ° ( n a p ) .

Thus

p=o
* *p—u

n ̂  n

Hence, by B (v), we obtain condition (3.1). Next, by Abel's transformation,

we have, for n > p ,

= gin, p) + h(w, p) , say.

Then by B (iv) , and since {q } is non-increasing,

5 0 (n > v) .

Using (3.6), we see that
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Hence we get, from (U.3.3),

g(n, p) < tf£ 2 0 (n > p) .

On the other hand

and so we obtain, by B (v) and B (vi), for fixed p > 0 ,

Therefore we can get condition (3.2). Thus the desired conclusion of

Case II also follows.

Thus the proof of Theorem 3 is complete.

5. Proof of Theorems 4-8

5.1. Proof of Theorem 4-. Let a be given by (3.k). Then by

(3.5) we have (3.9). Condition (2.1) is the same as (3.10). Hence we can

get the required result from Lemma 6.

5.2. Proof of Theorem 5. We show that condition (2.1) is satisfied.

Now by (4.3.2),

n
1P=k

(P *

1

=

1

a) }
p

f n

LP=O

9

k-i

- z
p=0

ty1 h. y *JL V
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Thus

n

P-k

we have

( *J
' a)p{(P*B)

+

- 1

f
{A1 n

J
w-1

\

3 fe-l

Now a condition of the absolute regularity of the method (K, q, 3) is

equivalent to

i

n=k
;c U > l) .

Hence condition (2.1) is equivalent to (2.2). Thus the required conclusion

follows from Lemma k.

5.3. Proof of Theorem 6. Let a^ be given by (3-U), and k > 1 .

Then under our conditions we have, for m > k ,

1
n=k

m m

p=k n=p

m

p=0
a 5 C .1 mp1

Hence we get (2 .1) when m •*• °° , and thus the proof i s complete.

5 .4 . Proof of Theorem 7. Let a be given by (3.1*), and & > 1 .

Now, for m - +k ,

w=fe

Then, by (2.6), we have

(5.1*.2) I

n (N+k-X m

=k "" n~1'p <• w=fe n^+fe

s a y "

li+k-1 n

CASE I. Let (2.5), (2.6), and (2.7) hold. When n > ff+Zc and

p = 0, 1, ..., fe-1 , it is clear that n - p - X > tl , and so by (2.5) and
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from (2 .6) we ge t

Hence, by ( 2 . 6 ) ,

(5.1*. 3)

* - i

> o .

= I I
2 n=N+k p=k

{a -a
n p "~
N+k-l

f!

T h e r e f o r e , a p p l y i n g ( 5 . ^ - 2 ) and ( 5 . ^ . 3 ) t o ( 5 - 1 * . ! ) , we can o b t a i n ( 2 . 1 ) .

CASE I I . L e t ( 2 . 5 ) , ( 2 . 6 ) , and ( 2 . 8 ) h o l d . S i m i l a r l y we h a v e , by

( 2 . 8 ) a n d ( 2 . 6 ) ,

nm

N+k-l

5 2C .

m

p ? 0 '

Hence we can also obtain (2.1). The statements of Theorem 7 thus follow

from Theorem h.

5.5. Proof of Theorem 8. We shall show that the conditions of

Theorem 7 are fulfilled for each case.

CASE I. Let (2.9), (2.10), and (2.11) hold. Condition (2.5) is

clear. Let n >N ; then we have, by (2.11),

, l + 2 max
3

Here, by (2.9) and (2.10),
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On the other hand, when n- +1 £ p £ N-l , then 0 £ n-p £ N-l , and so, by

(2.10),

n 6
2 I ^ q |e |

" ex n-u' u—o1

y=P P M K

ff-1 -i ,N-1 -,

H=0 > lj=0 J ^

Hence we get

Therefore from (5.5-1) we can obtain condition (2.6). Also by (2.9) and

(2.10),

1
7*6)

i+l

> 0 (n-p > N) ,

which is (2.7).

CASE II. Let (2.9), (2.10), and (2.12) hold. The proof of this case

follows in a similar manner as above, and so it may be omitted. Finally

suppose that K[ > 0 and JT>)r (n-p > 0) . Then we have

n (p*a)

and hence the desired result immediately follows.

Thus our theorem is proved.

6. Proof of Theorems 9-11

6.1. Proof of Theorem 9. CASE I. Let conditions A hold. In this

case we shall show that the conditions of Theorem 8 with N = 0 are

fulfilled. Then under our hypotheses it suffices to show that x" > 0 and
P
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I?1 > ^ + 1 (n-P > o) . Since {pn\ € M , (3 .6) h o l d s , and so by A (v), we

have

« * .p <xp n-p

Then by A (v) and A (vii) we get <70/P0 - &Q /&Pn (« - 0) , and thus we

can obtain k - 0 (« - 0) (see Kayashima [S]). Hence

^ > 0 (w-P 2 0) .

On the other hand, by A (vi) and A (vii), and since a +. 5 0

(n-p 5 0) ,

7/2 ,n+l W^-P P+fe « n+l

6 A £7 «_p
> _P n V P V A p -

3 A a 6
_p rFn-P n+l

° ^ ^ I " ° n+1"P " % "+1"P °
> f e«+l-PJ?ola , A p

^ n+l rfn-P

2 0 (n-P ^ 0) .

Thus we have the conclusion.

CASE I I . Let conditions B hold. Similarly i t suffices to show that
(2.12) is satisfied with N = 1 . Now by B (vi) and B (vii) we have
qQ/p0 - Ac? /Ap (n 2 0) , and also we can get k £ 0 (n 5 l) (see
Kayashima [S]). Therefore

*S S a ; kn-P ~ ° (M"P " 1] •

Next, by B (vi) andB (vii), we get in a similar manner,
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- l"cn+l-pJ<7o1ap p " <• -n+l-P^O)«_n A ^ p j

£ 0 (n-p > 1) ,

which is (2.12). This completes the proof of Theorem 9-

6.2. Proof of Theorem 10. It suffices to show that the conditions of

Theorem 8 are fulfilled with N = 0 and q = 1 (n 5 0) . Then (2.9) is

obvious. Now by (i) and (ii), and by use of (3.6), we have, for n-p > 0 ,

n 6 B

P u=p \ W \ X L '•

Thus the proof is complete.

6.3. Proof of Theorem 11. CASE I. Let conditions A hold. We show

that the conditions of Theorem 6 with p = 1 (n > 0) are satisfied. Now

by (1.3) we get

(6.3.1) oQ = 1 , e1 = -1 , on = 0 (n > 2) .

Let a be given by (3.M; then, by A (i) and A (ii),

(l*a)

a = 7—prv^ ̂

Thus we have, immediately, condition (2 .3) . Hence i t is sufficient to show

that condition (2.3) holds. By Abel's transformation, we have

n rn-k \ (l*a), .8, a ,

l a = I B q\/[lq • B) ) + f1 Jf n~k .
p=fe "P lp=o *-

p P' M afe(?*6)n
Hence
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say.

Since \q /q } is non-increasing,q /q

C -k
-l-k

n-X k-X

i=k j=0

> 0 .

Hence we obtain j" 5 0 . Thus if f1 > 0 , then it is clear that

I - 0 . On the other hand suppose that I- < 0 . Then, since \q } is

non-decreasing and {3 /a } is non-increasing, we get, for 0 £ m S k ,

B, C 5 , n , -\

and so

ft _
2 "

)fe-1
Bfe f Vfc Vl-fe \

qn-m Bmqn-l-m\

m=0

Therefore we have

= 0 .
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Thus the required conclusion follows.

* CASE II. Let conditions B hold. By Lemma 6 we see that (H, q, g)

is absolutely regular. Hence it is sufficient to show that condition (2.2)

of Theorem 5 is satisfied with p = 1 (n 2 0) . Now, by use of (6.3.1)

and by B (i) , we have

I
n=k

V

(p

Hence i t follows from hypothesis B (ii) tha t condition (2.2) i s sa t i s f ied .

Thus the proof of Theorem 11 i s complete.
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