Canad. Math. Bull. Vol. 19 (2), 1976

LOCAL COMPACTNESS IN SET VALUED FUNCTION SPACES

вч SAROOP K. KAUL

1. Recently Hunsaker and Naimpally [2] have proved: The pointwise closure of an equicontinuous family of point compact relations from a compact T_2 -space to a locally compact uniform space is locally compact in the topology of uniform convergence. This is a generalization of the same result of Fuller [1] for single valued continuous functions.

For a range space which is locally compact normal and uniform theorem B below is an improvement on the result of Hunsaker and Naimpally quoted above [see Remark 3 at the end of this paper].

For general topological spaces the notion of equicontinuity has been generalized to "even-continuity" [see [5]] and "regularity" [4] which are equivalent under reasonable conditions [4]. Their natural generalizations [3], however, for the set valued function spaces are quite distinct and together yield, as shown in [3], an Ascoli type theorem for the set of all set valued functions with point compact images, continuous with respect to the finite topology [6] on the hyperspace of the range space, and having the "compactopen" topology. It seems natural to ask if these conditions would also give a result analogous to that of Fuller quoted above. The purpose of this paper is to prove that they do.

We need a few notations and definitions before stating the main results. For any space Y let 2^{Y} denote the set of all non-empty closed subsets of Y and $C(Y) = \{A \in 2^{Y} : A \text{ is compact}\}$. For any set $U \subset Y$ let L(U) = $\{A \in 2^{Y} : A \cap U \neq \emptyset\}$ and $M(U) = \{A \in 2^{Y} : A \subset U\}$. Then the topology generated by all sets L(U)[M(U)] as a sub-base [base], where U is any open set in Y, will be denoted by $\tau[\kappa]$ and are the so called lower semi finite [upper semi finite] topologies. The smallest topology containing both τ and κ is the so called finite topology [6] and will be denoted by ν . A set valued function $f: X \to Y$ assigns to each $x \in X$ a closed and non-empty subset f(x) of Y. Thus f defines a single valued function $\hat{f}: X \to 2^{Y}$ and conversely. For any topology t on 2^{Y} , f is t-continuous if \hat{f} is continuous with respect to t. In particular f is said to be continuous [l.s.c.; u.s.c.] if f is ν -[τ -; κ -] continuous.

Let F = F(X, Y) denote the set of all set valued functions from X into Y,

5

Received by the editors May 8, 1974.

 $C(X, Y) = \{f \in F: f(x) \text{ is compact for each } x \in X\}$ and S(X, Y) be the set of all continuous functions in C(X, Y). For any subset G of F and $A \subset X$, let $G(A) = \bigcup \{f(x): f \in G \text{ and } x \in A\}$, and $G(x) = G(\{x\})$. We say that G is regular at $x \in X$ if given any open set U in Y and $H \subset G$ such that $\overline{H(x)} \subset U$, there exists an open set V containing x such that $H(V) \subset U$. G is regular if it is regular at each $x \in X$. We say that G is evenly continuous at $x \in X$ if given any $y \in Y$ and closed neighbourhood U of y there exist open sets V and W containing x and y respectively such that if for any $g \in G$, $g(x) \cap W \neq \emptyset$, then $g^{-1}[U] = \{z \in Y: g(z) \cap U \neq \emptyset\} \supset V$. The point open topology $P_{\kappa}[P_{\tau}]$ on F is the topology generated by all sets of the type $M(x, U) = \{f \in F: f(x) \subset U\}$, $[L(x, U) = \{f \in F: f(x) \cap U \neq \emptyset\}]$, where $x \in X$ and $U \subset Y$ is open. The topology P_{ν} is the smallest topology containing P_{τ} and P_{κ} . Finally, for any $f \in F$, $\mathscr{G}(f) = \bigcup \{x \times f(x): x \in X\}$ is called the graph of f. Note that if $G \subseteq C(X, Y)$ is regular and evenly continuous then $G \subset S(X, Y)$ provided Y is regular.

The main results of this paper are:

THEOREM A. Let X be a compact T_2 -space and Y be a locally compact T_2 -space. If $F \subset C(X, Y)$ is regular and evenly continuous, then \overline{F} , the closure of F in $(C(X, Y), P_{\nu})$, is locally compact.

THEOREM B. Let X be a compact T_2 -space and Y be a locally compact, normal T_2 -space. If $F \subset C(X, Y)$ is regular, then \overline{F} , the closure of F in $(C(X, Y), P_{\nu})$, is locally compact.

2. REMARK 1. Let X be compact and Y be regular.

If $f \in S(X, Y)$, then $\mathscr{G}(f) \in C(X \times Y)$: since f is continuous clearly the set valued function $f': X \to X \times Y$ defined by $f'(x) = \{(x, y): y \in f(x)\}$ for each $x \in X$ is also continuous, that is, $\hat{f}': X \to C(X \times Y)$ is ν -continuous. Hence $\hat{f}'(X) = \{\{x\} \times f(x) \in C(X \times Y): x \in X\}$ is a compact subset of $(C(X \times Y), \nu)$. Thus by theorem (2.5.2) [6, p. 157], $\mathscr{G}(f) = \{(x, y): x \in X, y \in f(x)\} = \bigcup \{\hat{f}'(x): x \in X\}$ is a compact subset of $X \times Y$.

THEOREM 1. Let Y be a regular space. Let $G \subseteq C(X, Y)$ be regular and evenly continuous and $\{f_{\alpha} : \alpha \in D\}$ be a net in G converging to $f \in C(X, Y)$ with respect to P_{ν} . Then f is continuous.

Proof. We shall show that (a) f is u.s.c. and (b) f is l.s.c.

f is u.s.c.: Let $x \in X$ and $U \supset f(x)$ be open in Y. Then there is an open set V in Y containing f(x), such that, $\overline{V} \subset U$. Since $\{f_{\alpha}\}$ converges to f with respect to P_{κ} there exists an $\alpha_0 \in D$ such that for all $\alpha \ge \alpha_o$, $\alpha \in D$, $f_{\alpha}(x) \subset V$. Hence $\overline{G(x)} \subset U$, where $G = \{f_{\alpha} : \alpha \in D \text{ and } \alpha \ge \alpha_0\}$. By regularity there exists an open set W containing x such that $G(W) \subset U$. We claim that $f(W) \subset U$: Suppose not. Then there exists a $z \in W$ such that $f(z) \not\subset U$. Let 0 be an open set in Y such that $0 \cap f(z) \neq \emptyset$ and $0 \cap U = \emptyset$, for one may assume without loss of

June

generality, because Y is regular, that U is a closed neighbourhood of f(x). But then for all $\alpha \ge \alpha_0$, $f_{\alpha}(z) \cap 0 = \emptyset$ contradicting that $\{f_{\alpha}\}$ converges to f with respect to P_{τ} . This establishes the above claim and proves that f is u.s.c.

f is l.s.c.: Let $x \in X$, U_0 be an open set in Y and $f(x) \cap U_0 \neq \emptyset$. Let $U \subset U_0$ be a closed neighbourhood of $y \in U_0 \cup f(x)$. Then by even continuity of F there exist open sets V containing y and W containing x such that $f \in F$ and $f(x) \cap V \neq \emptyset$ then $W \subset F^{-1}(U)$. Since $\{f_\alpha\}$ converges to f with respect to P_τ and $f(x) \cap (U \cap V) \neq \emptyset$, there exists an $\alpha_0 \in D$, such that, for all $\alpha \in D$ and $\alpha \ge \alpha_0$, $f_\alpha(x) \cap V \neq \emptyset$. Hence for any $z \in W$, $f_\alpha(z) \cap U \neq \emptyset$ for all $a \in D$ and $\alpha \ge \alpha_0$. We claim that for any $z \in W$, $f(z) \cap U \neq \emptyset$: Suppose not, then there exists in Y an open set $0 \supset f(z)$ such that $0 \cap U = \emptyset$, but then $f_\alpha(z) \neq 0$ for any $\alpha \in D$ and $\alpha \ge \alpha_0$ contradicting the fact that $\{f_\alpha\}$ converges to f with respect to P_κ . The above claim thus proves that f is l.s.c.

THEOREM 2. Let $F \subseteq C(X, Y)$ be regular and evenly continuous, X be compact T_2 and Y be a regular space. If $\{f_{\alpha}\}$ is a net in F converging to $g \in F$ with respect to P_{ν} , then $\mathscr{G}(f_{\alpha})$ converges to $\mathscr{G}(g)$ in $X \times Y$ with respect to ν .

Proof. We shall show that $\mathscr{G}(f_{\alpha})$ converges to $\mathscr{G}(g)$, (a) with respect to τ , and (b) with respect to κ . Note that by theorem 1, g is continuous and hence $\mathscr{G}(g) \in C(X \times Y)$ by Remark 1 and the fact that ν on $C(X \times Y)$ is T_2 .

Proof of (a): Let $U \times V$ be a basic open set in $X \times Y$ and $\mathscr{G}(g) \cap U \times V \neq \emptyset$. Then there is an $x \in X$ such that $x \times g(x) \cap U \times V \neq \emptyset$. Since $\{f_{\alpha}\}$ converges to g with respect to P_{τ} and $g(x) \cap V \neq \emptyset$ there exists an α_0 such that $\alpha \ge \alpha_0$ implies $f_{\alpha}(x) \cap V \neq \emptyset$. Hence, $x \times f_{\alpha}(x) \cap U \times V \neq \emptyset$ for $\alpha \ge \alpha_0$ and $\mathscr{G}(f_{\alpha})$ converges to $\mathscr{G}(g)$ with respect to τ .

Proof of (b): Let W be an open set in $X \times Y$ containing $\mathscr{G}(g)$. Since $x \times g(x)$ is compact there are open sets U(x) and V(x) containing x and g(x), such that, $\overline{U(x)} \times \overline{V(x)} \subset W$. Since $\{f_{\alpha}\}$ converges to g with respect to P_{κ} there exists an $\alpha(x)$, such that, $\alpha \ge \alpha(x)$ implies $f_{\alpha}(x) \subset V(x)$. Since g(x) is compact we may assume without loss of generality that $\overline{F_x(x)} \subset V(x)$ where $F_x = \{f_a : \alpha \ge \alpha(x)\}$. By regularity of F there exists an open set 0(x) containing x such that $F_x(0(x)) \subset V(x)$ and $0(x) \subset U(x)$. Hence for any $z \in 0(x)$ and $f \in F_x$, $z \times f(z) \subset W$. Now, since X is compact there exists a finite open cover $\{0(x_i): 1 \le i \le n\}$ of X and if $\alpha_0 \ge \alpha(x_i)$, $i = 1, \ldots, n$, then for any $\alpha \ge \alpha_0$, $x \times f_{\alpha}(x) \subset W$ for each $x \in X$. That is, $\mathscr{G}(f_{\alpha}) \subset W$ for all $\alpha \ge \alpha_0$ and the proof is complete.

THEOREM 3. Let Y be a regular space and $F \subset C(X, Y)$ be evenly continuous and regular. Let $\{f_{\alpha}\}$ be a net in F and $\mathscr{G}(f_{\alpha})$ converge to $A \in C(X \times Y)$ with respect to v. Then $A = \mathscr{G}(g)$ for some $g \in S(X, Y)$, and $\{f_{\alpha}\}$ converges to g with respect to P_{ν} .

Proof. Let $g(x) = \{y: (x, y) \in A\}$. Then clearly g(x) is compact for each $x \in X$ and to show that $g \in C(X, Y)$ it is enough to note that $g(x) \neq \emptyset$ for each x.

Indeed, if this were not so then for some $x \in X$, $x \times Y \cap A = \emptyset$, that is, $A \subset (X - \{x\}) \times Y = W$. But from the given convergence there exists an α_0 such that for $\alpha \ge \alpha_0$, $\mathscr{G}(f_\alpha) \subset W$ implying that $f_\alpha(x) = \emptyset$ for all $\alpha \ge \alpha_0$ which is false. Clearly $\mathscr{G}(g) = A$.

To prove that $\{f_{\alpha}\}$ converges to g with respect to P_{ν} , we prove (a) convergence with respect to $P_{\kappa'}$ (b) convergence with respect to P_{τ} .

(a) Let $x \in X$ and U be an open set containing g(x). Then $X \times U \cup (X - \{x\}) \times Y = W$ is an open set containing $\mathscr{G}(g) = A$, and since $\{\mathscr{G}(f_{\alpha})\}$ converges to $\mathscr{G}(g)$ with respect to κ there exists an α_0 such that $\mathscr{G}(f_{\alpha}) \subset W$ for all $\alpha \ge \alpha_0$. Hence $x \times f_{\alpha}(x) \subset X \times U$, that is, $f_{\alpha}(x) \subset U$, and this proves (a).

(b) Let $x \in X$, U be open in Y and $g(x) \cap U \neq \emptyset$. Suppose that for a cofinal set E of values of α , $f_{\alpha}(x) \cap U = \emptyset$. Let $H = \{f_{\alpha} : \alpha \in E\}$ and $V \subset U$ be a closed neighbourhood of some point $z \in g(x) \cap U$. Then $\overline{H(x)} \subset Y - V = W$, and by regularity of F there exists an open set 0 containing x such that $H(0) \subset W$. Now $\mathscr{G}(g) \cap 0 \times V \neq \emptyset$, but for all $\alpha \in E$, $\mathscr{G}(f_{\alpha}) \cap 0 \times V = \emptyset$ contradicting that $\{\mathscr{G}(f_{\alpha})\}$ converges to $\mathscr{G}(g)$ with respect to τ . Hence $f_{\alpha}(x) \cap U \neq \emptyset$ for all $\alpha \ge \alpha_0$ for some α_0 , and this proves (b).

Finally it follows from theorem 1 that $g \in S(X, Y)$.

Proof of theorem A. Since F is regular and evenly continuous by theorem 1, $\overline{F} \subset S(X, Y)$. By remark 1, the mapping $f \to \mathscr{G}(f)$ associates to each element f of \overline{F} an element $\mathscr{G}(f)$ of $C(X \times Y)$ and is clearly 1–1. Theorems 2 and 3 imply that the above correspondence is a homeomorphism of (\overline{F}, P_{ν}) into $(C(X, Y), \nu)$ and furthermore that $\{G(f): f \in \overline{F}\}$ is a closed subset of $C(X \times Y)$. Hence $(C(X, Y), \nu)$ being locally compact [6, prop (4.4.1), p. 162] so is (F, P_{ν}) . This proves theorem A.

We need the following result to prove Theorem B.

THEOREM 4. Let Y be a normal T_2 -space and $F \subseteq F(X, Y)$ be regular. Then \overline{F} , the closure of F in $(F(X, Y), P_{\nu})$, is also regular.

Proof. Let $x \in X$ be arbitrary. We shall show that \overline{F} is regular at x. So let U be an open set in $Y, H \subset \overline{F}$ and $\overline{H(x)} \subset U$. Since Y is normal there is an open set $W \supset \overline{H(x)}$ and $\overline{W} \subset U$. Let $G = \{f \in F: f(x) \subset W\}$. Then $H_1 = H \cap F \subset G$, $\overline{G(x)} \subset U$, and by regularity of F there exists an open set V containing x such that $G(V) \subseteq U$. We claim that if $g \in H$ then $g(V) \subset U$. Suppose not. Then $g \in H - H_1$ and there exists a net $\{f_{\alpha}, \alpha \in D, \geq\}$ in F converging to g with respect to P_{ν} . Since $g(x) \subset W$ and convergence of the net with respect to P_{ν} implies convergence with respect to P_{κ} there exist an $\alpha_0 \in D$ such that if $\alpha \in D$ and $\alpha \geq \alpha_0$, then $f_{\alpha}(x) \subset W$, that is, $f_{\alpha} \in G$. But if $g(V) \not\subset U$ then there exists a $z \in V$ such that $g(z) - U \neq \emptyset$, and hence an open set 0, such that, $0 \cap g(z) \neq \emptyset$ but $0 \cap U = \emptyset$ [For using normality of Y we may get another open set W' such that $W \subseteq W'$ and $\overline{W'} \subseteq U$ and work with W' if necessary]. But this leads to a

196

June

contradiction, since the net $\{f_{\alpha}\}$ converges to g also with respect to p_{τ} implying that there exists an $\alpha_1 \in D$ such that for all $\alpha \in D$ and $\alpha \ge \alpha_1$, $f_{\alpha}(z) \cap 0 \neq \emptyset$. This completes the proof.

Proof of theorem B. Let $f \in \overline{F}$. We shall exhibit a compact neighbourhood in P_{ν} of f in \overline{F} . By theorem 4, \overline{F} is regular, so f is u.s.c. By [7, Prop. (2.3), p. 34], f(X) is compact. Let U be an open subset of Y containing f(X) and having compact closure. We shall show that $N = \overline{F} \cap C(X, \overline{U})$ is the required neighbourhood of f. Now $C(X, \overline{U}) = F(X, \overline{U})$, and $(F(X, \overline{U}), P_{\nu})$ is homeomorphic to $\prod \{Z_x : x \in X\}$ with the product topology, where Z_x is a copy of $2^{\overline{U}}$ with topology ν for each $x \in X$. Since (Z_x, ν) is compact [6, th (4.2), p. 161], $(C(X, \overline{U}), P_{\nu})$ is compact. Since N is a closed subset it is compact. Thus to complete the proof it is enough to show that N is a P_{ν} -neighbourhood of f.

For each $x \in X$ there exists an open neighbourhood V(x) containing f(x), with $\overline{V(x)} \subset U$. Let $H_x = \{h \in C(X, Y) : h(x) \subset V(x)\}$. Then H_x is an open neighbourhood of f in P_{ν} and $\overline{H_x(x)} \subset U$. Since \overline{F} is regular, there exists an open set W(x) containing x such that $(H_x \cap \overline{F})(W(x)) \subset U$. Let $W(x_1), \ldots, W(x_n)$ cover X. Then $H = H_{x_1} \cap \cdots \cap H_{x_n}$ is open in $P_{\nu}, f \in H$ and $(H \cap \overline{F})(X) \subset U$. Therefore N which contains $H \cap \overline{F}$ is a neighbourhood of f in P_{ν} .

REMARK 2. The author is thankful to the referee for correcting earlier proof of this theorem.

REMARK 3. For this remark see the definition of equicontinuity of Hausaker and Naimpally [2]. It is easy to see that if Y is a compact uniform space then equicontinuity implies regularity. In fact $G \subset F(X, Y)^*$ is equicontinuous if and only if it is regular and evenly continuous. To see that regularity is decidedly weaker than equicontinuity it is enough to consider a sequence of continuous functions converging pointwise to an u.s.c. function which is not l.s.c. then the sequence is regular but not evenly continuous and hence not equicontinuous.

EXAMPLE. Let N be the set of all positive integers and $A = \{0\} \cup \{1/n : n \in N\}$. We define a topology in terms of neighbourhoods of points in $Y = N \times N \cup \{0\} \times A$ as follows: For $y \in N \times N$ any subset of Y containing y is a neighbourhood of y. If y = (0, 1/n) then any set containing y and a cofinite subset of $n \times N$ is a neighbourhood of y. If y = (0, 0) then any set containing a set of the type

$$\{(0,0)\} \cup \{(m,n): m \in N_1, n \in F_m\} \cup \{(0,1/n): n \ge k \text{ for some } k\}$$

is a neighbourhood, where N_1 is a cofinite subset of N and $F_m = N$ except for a finite number of elements $N_2 \subseteq N_1$, for each of which F_m is cofinite in N. Y with the topology generated by these neighbourhoods is compact T_2 . T_2 is

1976]

^{* [}It is enough to assume that $\overline{G(x)}$ is compact for each $x \in X$].

S. K. KAUL

clear. To see compactness consider an open covering \mathcal{U} of Y. First pick an open set $U \in \mathcal{U}$ containing (0, 0). This leaves a finite number of "rows" $m \times N$, $m \in N - N_1$, together with a finite set of elements of Y not covered by U. Next pick one element from \mathcal{U} containing (0, 1/m) for each $m \in N - N_1$. Then the finite set thus obtained from \mathcal{U} leaves only a finite set in Y still not covered.

Let X be the space obtained by giving A the relative topology from the usual topology of the reals.

We now define the functions $f_n: X \to Y$, n = 0, 1, 2, ... as follows:

For $n \neq 0$, $f_n(1/m) = 1/m$ if $m \le n$, and for m > n, that is m = n + k,

$$f_n(1/m) = \{(i, j+n): j = 1, \ldots, k; i \le j\}$$

and

$$f_n(0) = \{(0, 0)\} \cup \{(i, j+n) : j \in N, i \le j\} \cup \{(0, 1), \dots, (0, 1/n)\}.$$

For n = 0, $f_0(1/m) = (0, 1/m)$, and $f_0(0) = \{0\} \times A$.

It is then easy to check that each f_n , $n \neq 0$, is continuous, and f_0 is u.s.c. but not l.s.c. Also for each $x \in X$,

$$\limsup_{n \in \mathbb{N}} f_n(x) = \liminf_{n \in \mathbb{N}} f_n(x) = f_0(x)$$

Since Y is compact T_2 this implies that $\{f_n\}$ converges to f_0 in p_{ν} . This is thus the type of example mentioned in Remark 3.

REFERENCES

1. R. V. Fuller, Conditions for a function space to be locally compact, Proc. Amer. Math. Soc. 36 (1972), pp. 615–617.

2. W. N. Hunsaker and S. A. Naimpally, Local compactness of families of point-compact relations, Pac. Jour. Math. 52 (1974), 101-105.

3. S. K. Kaul, Ascoli theorem and the exponential map in set values function spaces, to appear.

4. S. K. Kaul, Compact subsets in function spaces, Can. Math. Bull., 12 (1969), pp. 461-466.

5. J. L. Kelley, General Topology, Van Nostrand, 1955.

6. E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), pp. 152-182.

7. R. E. Smithson, Multifunctions. Nieuw Archief voor Wiskunde XX (1972), pp. 31-53.

UNIVERSITY OF REGINA

REGINA, SASKATCHEWAN