A NOTE ON THE ERDŐS-GRAHAM THEOREM

WENHUI WANG and MIN TANG ${ }^{\boxtimes}$

(Received 10 December 2017; accepted 11 January 2018; first published online 23 April 2018)

Abstract

Let $\mathcal{A}=\left\{a_{1}<a_{2}<\cdots\right\}$ be a set of nonnegative integers. Put $D(\mathcal{A})=\operatorname{gcd}\left\{a_{k+1}-a_{k}: k=1,2, \ldots\right\}$. The set \mathcal{A} is an asymptotic basis if there exists h such that every sufficiently large integer is a sum of at most h (not necessarily distinct) elements of \mathcal{A}. We prove that if the difference of consecutive integers of \mathcal{A} is bounded, then \mathcal{A} is an asymptotic basis if and only if there exists an integer $a \in \mathcal{A}$ such that $(a, D(\mathcal{A}))=1$.

2010 Mathematics subject classification: primary 11B13; secondary 11B50.
Keywords and phrases: asymptotic basis, exact order.

1. Introduction

A set \mathcal{A} of nonnegative integers is said to be an asymptotic basis if there exists h such that every sufficiently large integer is a sum of at most h (not necessarily distinct) elements of \mathcal{A}. An asymptotic basis \mathcal{A} is said to have an exact order if there exists h^{\prime} such that every sufficiently large integer is the sum of exactly h^{\prime} (not necessarily distinct) elements taken from \mathcal{A}. Obviously, when $0 \in \mathcal{A}$, an asymptotic basis \mathcal{A} has an exact order.

For the remainder of the paper, we write $\mathcal{A}=\left\{a_{1}<a_{2}<\cdots\right\}$. For a positive integer h, define $h \mathcal{A}$ to be the h-fold sum set of \mathcal{A}, that is

$$
h \mathcal{A}=\left\{n: n=a_{i_{1}}+\cdots+a_{i_{h}}, a_{i_{1}}, \ldots, a_{i_{n}} \in \mathcal{A}\right\},
$$

and define $D(\mathcal{A})=\operatorname{gcd}\left\{a_{k+1}-a_{k}: k=1,2, \ldots\right\}$.
In 1980, Erdős and Graham [2] provided a necessary and sufficient condition for an asymptotic basis of the nonnegative integers to possess an exact order.

Theorem 1.1. An asymptotic basis $\mathcal{A}=\left\{a_{1}, a_{2}, \ldots\right\}$ has an exact order if and only if $D(\mathcal{A})=1$.

Remark 1.2. Put $\mathcal{A}(x)=|\{a \in \mathcal{A}: 1 \leq a \leq x\}|$. The density of \mathcal{A} is defined by $d(\mathcal{A})=$ $\lim _{x \rightarrow+\infty} \mathcal{A}(x) / x$. An asymptotic basis $\mathcal{A}=\left\{a_{1}, a_{2}, \ldots\right\}$ has an exact order r if and only if the density of integers which can be represented as the sum of exactly r elements

[^0]taken from \mathcal{A} (allowing repetitions) is 1 . The necessity is obvious. To prove the sufficiency, suppose that the density of integers which can be represented as the sum of exactly r elements taken from \mathcal{A} (allowing repetitions) is 1 . If $D(\mathcal{A})>1$ and n is the sum of exactly r elements of \mathcal{A}, then $n \equiv r a_{1}(\bmod D(\mathcal{A}))$. The density of such n is $1 / D(\mathcal{A})<1$, a contradiction. Thus, we have $D(\mathcal{F})=1$. By Theorem 1.1, we know that the asymptotic basis \mathcal{A} has an exact order.

For related problems about exact orders and asymptotic bases, one may refer to [1, 3-6].

It is natural to consider the necessary and sufficient condition for a set of nonnegative integers to be an asymptotic basis. The results in this paper arise from two observations. First, if $\mathcal{A}=\left\{a_{1}, a_{2}, \ldots\right\}$ is an asymptotic basis, then $\left(a_{k}, D(\mathcal{A})\right)=1$ for all positive integers k (see [7, Lemma 3]). Second, $\mathcal{A}=\{1\} \cup\left\{2,2^{2}, 2^{4}, \ldots, 2^{2^{n}}, \ldots\right\}$ is not an asymptotic basis.

Theorem 1.3. Let $\mathcal{A}=\left\{a_{1}<a_{2}<\ldots\right\}$ be a set of nonnegative integers such that the difference of consecutive integers of \mathcal{A} is bounded. Then \mathcal{A} is an asymptotic basis if and only if there exists an integer $a \in \mathcal{A}$ such that $\operatorname{gcd}(a, D(\mathcal{A}))=1$.

Corollary 1.4. Let $\mathcal{A}=\left\{a_{1}, a_{2}, \ldots\right\}$ be a set of nonnegative integers such that the difference of consecutive integers of \mathcal{A} is bounded. Let \mathcal{F} be a subset of \mathbb{N}. If $\mathcal{A} \cup \mathcal{F}$ is an asymptotic basis and $D(\mathcal{A} \cup \mathcal{F})=D(\mathcal{A})$, then \mathcal{A} is an asymptotic basis.

Example 1.5. Let $\mathcal{A}=\{1,3,5, \ldots\}$. Then every positive integer can be represented as the sum of at most two elements of \mathcal{A}, and thus \mathcal{A} is an asymptotic basis. If there exists an integer s such that every sufficiently large integer is the sum of exactly s elements of \mathcal{A}, then the parity of every sufficiently large integer is the same as the parity of s, and thus \mathcal{A} does not have an exact order.

Example 1.6. Let $\mathcal{A}=\{2,4, \ldots, 2 n, \ldots\}$ and $\mathcal{F}=\{1\}$, we know that every positive integer can be represented as the sum of at most two elements of $\mathcal{A} \cup \mathcal{F}$, and thus $\mathcal{A} \cup \mathcal{F}$ is an asymptotic basis. But \mathcal{A} is not an asymptotic basis because any sum of elements taken from \mathcal{A} is even.

2. Proof of Theorem 1.3

Proof of necessity. If for all positive integers k we have $\operatorname{gcd}\left(a_{k}, D(\mathcal{A})\right)=d>1$, then $d \mid a_{k}$. Therefore, any sum of elements taken from \mathcal{A} is a multiple of d, which contradicts the assumption that \mathcal{A} is an asymptotic basis.
Proof of sufficiency. We write $g_{n}=\operatorname{gcd}\left(a_{2}-a_{1}, a_{3}-a_{2}, \ldots, a_{n+1}-a_{n}\right)$. Since $g_{1} \geq g_{2} \geq \cdots$, it follows that $\lim _{n \rightarrow+\infty} g_{n}=D(\mathcal{A})$. Then there exists a positive integer n_{0} such that $\left|g_{n}-D(\mathcal{A})\right|<1$ for $n \geq n_{0}$. Since the g_{n} and $D(\mathcal{A})$ are integers, $g_{n}=D(\mathcal{A})$ for $n \geq n_{0}$. This means that $\operatorname{gcd}\left(a_{2}-a_{1}, a_{3}-a_{2}, \ldots, a_{n_{0}+1}-a_{n_{0}}\right)=D(\mathcal{A})$. Moreover, $\operatorname{gcd}\left(a_{i}, D(\mathcal{A})\right)=1$ for some $a_{i} \in \mathcal{A}$.

If $1 \leq i \leq n_{0}+1$, then $D(\mathcal{A}) \mid a_{i+1}-a_{i}$. Also, $D(\mathcal{A}) \mid a_{n_{0}+1}-a_{1}$. Thus,

$$
\begin{aligned}
\operatorname{gcd}\left(a_{i}, D(\mathcal{A})\right) & =\operatorname{gcd}\left(a_{i}, D(\mathcal{A}), a_{n_{0}+1}-a_{1}\right) \\
& =\operatorname{gcd}\left(a_{i}, a_{2}-a_{1}, \ldots, a_{i+1}-a_{i}, \ldots, a_{n_{0}+1}-a_{n_{0}}, a_{n_{0}+1}-a_{1}\right) \\
& =\operatorname{gcd}\left(a_{i}, a_{2}-a_{1}, \ldots, a_{i+1}, \ldots, a_{n_{0}+1}, a_{n_{0}+1}-a_{1}\right) \\
& =\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{n_{0}+1}\right) .
\end{aligned}
$$

If $i>n_{0}+1$, then $D(\mathcal{A})=\operatorname{gcd}\left(D(\mathcal{A}), a_{n_{0}+2}-a_{n_{0}+1}, \ldots, a_{i}-a_{i-1}\right)$, and thus

$$
\begin{aligned}
\operatorname{gcd}\left(a_{i}, D(\mathcal{A})\right) & =\operatorname{gcd}\left(a_{i}, D(\mathcal{A}), a_{n_{0}+2}-a_{n_{0}+1}, \ldots, a_{i}-a_{i-1}, a_{i}-a_{1}\right) \\
& =\operatorname{gcd}\left(a_{i}, a_{2}-a_{1}, \ldots, a_{i}-a_{i-1}, a_{i}-a_{1}\right) \\
& =\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{i}\right) .
\end{aligned}
$$

Hence, in both cases, there exists a positive integer t such that

$$
\operatorname{gcd}\left(a_{1}, \ldots, a_{t}\right)=1
$$

and there are integer constants c_{i} with $\sum_{i=1}^{t} c_{i} a_{i}=1$. Let $A=a_{1} \cdots a_{t}$ and $b_{i}=c_{i}+k_{i} A$, where k_{i} is the smallest nonnegative integer with $b_{i}>0$. Then $\sum_{i=1}^{t} b_{i} a_{i}=k A+1$ for some nonnegative integer k. Let $N=\sum_{i=1}^{t} b_{i} a_{i}+k A$, then

$$
N+1=\sum_{i=1}^{t} b_{i} a_{i}+k A+1=2 \sum_{i=1}^{t} b_{i} a_{i} .
$$

Thus, there exists a positive integer h_{1} such that

$$
\{N, N+1\} \subset \bigcup_{i=1}^{h_{1}} i \mathcal{A} .
$$

Hence, for every positive integer l,

$$
\{l N, l N+1, \ldots, l N+l\} \subset \bigcup_{i=1}^{l h_{1}} i \mathcal{A} .
$$

Moreover, when $l \geq N$,

$$
\{l N, l N+1, \ldots, l N+l\} \cap\{(l+1) N,(l+1) N+1, \ldots,(l+1) N+l+1\} \neq \emptyset .
$$

Therefore, for every positive integer $s \geq N$,

$$
\left\{N^{2}, N^{2}+1, \ldots, s N+s\right\} \subset \bigcup_{i=1}^{s h_{1}} i \mathcal{A}
$$

Since the difference of consecutive integers of \mathcal{A} is bounded, we may assume that

$$
\max \left\{a_{k+1}-a_{k}: k=1,2, \ldots\right\} \leq M
$$

Then there exists a positive integer $q \geq N$ such that $N^{2}+M \leq q N+q$. For every integer $n \geq N^{2}+a_{1}$, there must exist an integer k such that $a_{k} \leq n-N^{2}<a_{k+1}$. Thus,

$$
N^{2} \leq n-a_{k}=n-a_{k+1}+a_{k+1}-a_{k}<N^{2}+M .
$$

Hence,

$$
n-a_{k} \in\left\{N^{2}, N^{2}+1, \ldots, q N+q\right\} \subset \bigcup_{i=1}^{q h_{1}} i \mathcal{A},
$$

that is, $n=n-a_{k}+a_{k} \in \bigcup_{i=1}^{q h_{1}+1} i \mathcal{A}$.
This completes the proof of Theorem 1.3.

3. Proof of Corollary 1.4

In 2011, Yang and Chen [7, Lemma 3] showed that if $\mathcal{A}=\left\{a_{1}, a_{2}, \ldots\right\}$ is an asymptotic basis, then $\left(a_{k}, D(\mathcal{A})\right)=1$ for all positive integers k. By this result, it follows that $\operatorname{gcd}\left(a_{k}, D(\mathcal{A} \cup \mathcal{F})\right)=1$ for all positive integers k. Since $D(\mathcal{A} \cup \mathcal{F})=D(\mathcal{A})$, we see that $\operatorname{gcd}\left(a_{k}, D(\mathcal{A})\right)=1$ for all positive integers k. Thus, by Theorem 1.3, \mathcal{A} is an asymptotic basis.

References

[1] S. Chen and W. Z. Gu, 'Exact order of subsets of asymptotic bases', J. Number Theory 41 (1992), 15-21.
[2] P. Erdős and R. L. Graham, 'On bases with an exact order', Acta Arith. 37 (1980), 201-207.
[3] X. D. Jia, 'Exact order of subsets of asympotic bases in additive number theory', J. Number Theory 28 (1988), 205-218.
[4] J. C. M. Nash and M. B. Nathanson, 'Cofinite subsets of asymptotic bases for the positive integers', J. Number Theory 20 (1985), 363-372.
[5] M. B. Nathanson, 'The exact order of subsets of additive bases', in: Number Theory (New York, 1982), Lecture Notes in Mathematics, 1052 (Springer, Berlin, 1984), 273-277.
[6] A. Plagne, 'Removing one element from an exact additive basis', J. Number Theory 87 (2001), 306-314.
[7] Q. H. Yang and F. J. Chen, 'On bases with a T-order', Integers 11 (2011), A5.

WENHUI WANG, School of Mathematics and Computer Science,
Anhui Normal University, Wuhu 241003, China
e-mail: wangwenhui96@163.com
MIN TANG, School of Mathematics and Computer Science,
Anhui Normal University, Wuhu 241003, China
e-mail: tmzzz2000@163.com

[^0]: This work was supported by the National Natural Science Foundation of China (Grant No.11471017). © 2018 Australian Mathematical Publishing Association Inc.

