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Abstract

Left restriction semigroups are the unary semigroups that abstractly characterize semigroups of partial
maps on a set, where the unary operation associates to a map the identity element on its domain. This
paper is the sequel to two recent papers by the author, melding the results of the first, on membership
in the variety B of left restriction semigroups generated by Brandt semigroups and monoids, with the
connection established in the second between subvarieties of the variety BR of two-sided restriction
semigroups similarly generated and varieties of categories, in the sense of Tilson. We show that the
respective lattices L(B) and L(BR) of subvarieties are almost isomorphic, in a very specific sense. With
the exception of the members of the interval [D,D ∨M], every subvariety of B is induced from a member
of BR and vice versa. Here D is generated by the three-element left restriction semigroup D and M is the
variety of monoids. The analogues hold for pseudovarieties.

2010 Mathematics subject classification: primary 20M07; secondary 08A15.
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1. Introduction
This paper is the sequel to the author’s papers [10, 9], melding the results of the
former, on membership in the variety B of left restriction semigroups generated by
Brandt semigroups and monoids, with the connection established in the latter between
subvarieties of the variety BR of two-sided restriction semigroups similarly generated
and varieties of categories, in the sense of Tilson [13]. While there is a stark contrast
between B and BR – the former is definable by a single unary identity while the latter
is nonfinitely based as a biunary variety [7] – we show here that the respective lattices
of subvarieties are almost isomorphic, as demonstrated by a comparison of Figure 1
with the corresponding diagram in [10]. There B2, B0 and D denote the varieties
respectively generated by the five-element Brandt semigroup B2 and its subsemigroups
B0 and D; while M denotes the variety of monoids, S denotes the variety of semilattices
and T the variety of trivial semigroups.
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32 P. R. Jones [2]

Figure 1. The lattice L(B).

In addition, again in parallel to [9], we consider the pseudovariety generated
by finite Brandt semigroups and finite monoids, and show that its lattice of
subpseudovarieties may also be represented by Figure 1, with suitable modification
of notation.

This paper follows a well-trodden path in studying algebras by the identities that
they satisfy. The study of varieties of both left- and two-sided restriction semigroups
was initiated by the author in [6]. As noted above, the matter was pursued in [7, 9] for
the two-sided case, and in [10] for the one-sided case.

direct continuation of [10], we shall keep the preliminaries on left restriction
semigroups to a minimum and refer the reader there for more depth. As noted in [10],
left restriction semigroups are of particular interest in that they abstractly characterize
the semigroups of partial mappings of a set, under the unary operation α 7→ α+ that
associates with such a map the identity map on its domain. Regarded as unary
semigroups, they form the variety LR, a standard set of defining identities being

x+x = x, (x+y)+ = x+y+, x+y+ = y+x+, xy+ = (xy)+x.

Recall that the Brandt semigroups are the completely 0-simple inverse semigroups.
Given that every inverse semigroup may be regarded as a restriction semigroup and,
further, as a left restriction semigroup, they respectively generate the varieties BR and
B defined above. It is shown in the cited papers that, as for inverse semigroups, these
varieties are in a sense the ‘lowest’ in the respective lattices of varieties that do not
consist of semilattices of monoids.

As always, the Brandt semigroup of primary interest is B2 = {a,b, e = ab, f = ba,0}.
It may also be regarded both as a restriction semigroup and as a left restriction
semigroup. Its subsemigroup B0 = {e, a, b, 0} is naturally a restriction semigroup and
therefore also a left restriction semigroup. The further subsemigroup D = {e, a, 0} is a
left restriction semigroup only.
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[3] The lattice of varieties of strict left restriction semigroups 33

The lattice of varieties of inverse semigroups generated by Brandt semigroups has
long been known to be simply described [12]. First, the only proper subvarieties of
the variety generated by B2 are the semilattices and the trivial inverse semigroups;
then the larger lattice is the product of this three-element lattice with the lattice of
varieties of groups. (Regarded as ‘plain’ semigroups, Lee [11] has determined the
entire, countably infinite, lattice of subvarieties of the variety generated by B2.)

The focus in [7, 10] was on describing membership in BR and B, respectively,
in key subvarieties such as those generated by B0 and B2, and in the joins of these
with the variety of monoids (which plays the role here analogous to that for groups in
the case of inverse semigroups). This was achieved in terms of identities, structural
characterizations and subdirect decompositions into primitive members. The one-
sided case is summarized in Section 4. The necessary material in the two-sided case
may be found in Section 6. While there were strong structural parallels between
the two-sided and one-sided cases, there was a contrast in varietal terms, illustrated
by the fact that every finite restriction semigroup in which the left and right unary
operations are distinct is inherently nonfinitely based [7] while, in the case of left
restriction semigroups, all the relevant varieties are finitely based (modulo identities
for the monoids they contain).

Here we focus on the lattice L(B) of subvarieties of B. As witnessed in Figure 1,
in [10] it was shown that this sublattice is the disjoint union of the ideal L(D ∨M)
with the filter [B0,B] and that the first of these is isomorphic to the product of the
lattice L(D) = {T, S,D} with L(M) and so known, modulo varieties of monoids. The
second is the disjoint union of the intervals [B0,B0 ∨M] and [B2,B2 ∨M = B].

The main result of this paper is Theorem 7.1, asserting that the interval [B0,B]
is isomorphic to the corresponding interval [(B0)R,BR] in the lattice of varieties of
restriction semigroups. (The subscript is used to distinguish the two-sided varieties
from the one-sided ones.) In fact, the subintervals [B0, B0 ∨M] and [B2, B] are
individually isomorphic to the corresponding subintervals in [(B0)R,BR]. It was shown
in [9] that [(B0)R, (B0)R ∨M] is isomorphic to the lattice of varieties of monoids,
with an adjoined zero, and that [(B2)R,BR] is isomorphic to the lattice of varieties
of categories, in the sense of [13].

One of the key tools in [10] was an embedding of certain special primitive left
restriction semigroups S into restriction semigroups. It is proved here that, in all but
two of the cases of interest, the left restriction reduct of the extension belongs to the
variety generated by S . This relates varieties of left restriction semigroups to varieties
of restriction semigroups; the relation in the opposite direction proceeds by a different
mechanism. In each case, the proof is greatly facilitated by Tilson’s bonded component
theorem [13] (using the connection espoused in [9]).

The only difference between the lattice in Figure 1 and the corresponding one for
restriction semigroups is the insertion of the interval sublattice [D,D ∨M], signified
by the interval containing underlined varieties. In [9] the join V ∨M was condensed
to VM, but we shall not do so here, except in the case of semilattices of monoids.
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In Section 4, we show that the basic results on varieties of left restriction semigroups
from [6] and [10] carry over to pseudovarieties. In Section 8 we then show that the
same is true for the lattice of subpseudovarieties.

A final remark is warranted in this introduction. In [9] a very natural correspondence
was established between categories and primitive restriction semigroups, leading
to an isomorphism between the lattice of varieties of categories and the interval
[(B2)R,BR] in the lattice of varieties of restriction semigroups. It was also shown
there that an analogous isomorphism exists for pseudovarieties. The results of this
paper demonstrate that the lattice of varieties of categories is also isomorphic to the
corresponding interval [B2,B] in the lattice of varieties of left restriction semigroups,
and analogously for pseudovarieties, a connection that seems rather less natural to the
author’s mind.

2. Preliminaries

We briefly review the background on left restriction semigroups. For a general
background on semigroups, see [5]. Useful introductions to both left and two-sided
restriction semigroups, including different ways in which they have arisen as topics of
interest, are [4] and [3]. We shall need only elementary universal algebra, which may
be found in [2], and elementary general properties of pseudovarieties, as found in [1],
for instance.

From the first two defining identities for left restriction semigroups stated above
it follows that if S is such a semigroup, then for all x ∈ S , x+ is idempotent and, in
conjunction with the second identity, (x+)+ = x+. These idempotents (there may be
others) are the projections of S . The set PS of projections forms a semilattice, ordered
in the usual fashion, by virtue of the third identity. The last identity (or a variation of
it) is often termed the ‘left ample’ identity.

A restriction semigroup is a biunary semigroup (S , · ,+ ,∗) that is a left restriction
semigroup with respect to +, satisfies the ‘dual’ identities obtained by replacing +

by ∗ and reversing the order of each expression, and further satisfies (x+)∗ = x+ and
(x∗)+ = x∗. Thus PS = {x+ : x ∈ S} = {x∗ : x ∈ S}. Every restriction semigroup may be
regarded as a left restriction semigroup, by ‘forgetting’ the second unary operation.

For the purposes of this paper, the relevant generalized Green relations may be
defined as follows. In a left restriction semigroup, R = {(a, b) : a+ = b+}. In a
restriction semigroup, the relation L = {(a, b) : a∗ = b∗} is defined dually; and there
H = R ∩ L and D = R ∨ L (not in general equal to R ◦ L). We have reverted to the
notation of [6, 7] after having misguidedly changed notation in [9]. The natural partial
order on a left restriction semigroup S is defined by a ≤ b if a = eb for some e ∈ PS

and, by application of the left ample identity, is easily seen to be compatible with
the operations. On a restriction semigroup, this partial order is self-dual (and so
compatible with both unary operations).

In general, the terms ‘homomorphism’, ‘congruence’ and ‘divides’ will be used
appropriate to context; that is, they should respect the unary operation for left
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restriction semigroups and both unary operations for restriction semigroups. In the
case of subsemigroups, we shall generally use the modifier ‘left restriction’ (or
‘unary’) or ‘restriction’ to clarify. If S is a left restriction semigroup and T is a
restriction semigroup, when we say that T is a left restriction subsemigroup of S ,
the second operation on T is forgotten. Note that in this situation the R-relations
coincide and PT is a subsemilattice of PS (because the projections are determined by
either unary operation). One congruence of note on left restriction semigroups is the
greatest projection-separating congruence, denoted µ. Equivalently, µ is the greatest
congruence contained in R. Elements a and b are µ-related if and only if (ae)+ = (be)+

for all e ∈ PS .
In the standard terminology, restriction semigroups S (either one- or two-sided)

with |PS | = 1 are termed reduced. Since, in essence, they are just monoids, regarded
as restriction semigroups by setting a+(= a∗) = 1 for all a, we will generally omit the
qualifier ‘reduced’, except in cases of possible ambiguity.

The second congruence of note is the least monoid congruence, denoted σ. A left
restriction semigroup is proper if σ ∩ R is the identical relation. Since µ ⊆ R, it is
clear from the definition that on any such semigroup, σ ∩ µ is the identical relation.
A proper cover for a left restriction semigroup S is a proper left restriction semigroup
T for which there is a projection-separating homomorphism upon S . An elementary
proof of the following was given by the author.

Result 2.1 [8, Theorem 9.1]. Every [finite] left restriction semigroup has a [finite]
proper cover.

A (unary) subsemigroup T of a left restriction semigroup S is a submonoid if it
contains a unique projection e. By [6, Lemma 4.6], the maximal submonoids of S
have the form Me = {a ∈ Re : a = ae}. By [10, Lemma 2.2], the term is independent of
the one-sided or two-sided context.

A +-ideal I of a left restriction semigroup S is an ideal of S that is also a left
restriction subsemigroup. It is easily seen that the Rees quotient semigroup S/I is
again a left restriction semigroup. As usual, for technical reasons it is convenient to
allow the empty set to be an ideal and, in that case, to put S/I = S .

3. Primitive and strict left restriction semigroups

The term primitive refers to any (left or two-sided) restriction semigroup with zero
in which each nonzero projection is 0-minimal.

A left restriction semigroup is strict if it is a subdirect product of primitive
left restriction semigroups and monoids. Strict restriction semigroups are defined
analogously. These definitions are the natural extensions of strictness for inverse
semigroups [12, II.4]. In each case, by [10, 7, 12], strictness characterizes membership
in the respective variety generated by Brandt semigroups, together with monoids or
groups, as appropriate. Thus in the varietal context, primitivity is the essential concept.
We now review the background in the left restriction case (for the two-sided case, see
Section 5).

https://doi.org/10.1017/S1446788718000046 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788718000046


36 P. R. Jones [6]

Let S be any left restriction semigroup. Let S RI = {s ∈ S : se = s for some e ∈ PS }.
By a right identity for an element of S we will always mean a projection with that
property. Clearly S RI is a +-subsemigroup and left ideal of S . For each e ∈ PS ,
put RF(e) = {s ∈ S : as+ = a for some a ∈ Re}, the union of the R-classes of those
projections of S that are right identities for some element of Re. By [10, Lemma 2.4],
RF(e) = {s ∈ S : as ∈ Re for some a ∈ Re}. Observe that for any a ∈ Re and f ∈ PS , f is
a right identity for a if and only if a f ∈ Re, since a f = (a f )+a, the left ‘ample’ identity.
Note that the submonoid Me consists of those members of Re having e as right identity.

If x, y ∈ S and xy ∈ RF(e) then x, y ∈ RF(e). Thus Ie = S \RF(e) is a +-ideal of S
unless S = RF(e). As usual, we may identify the Rees quotient S/Ie with the union of
RF(e) and 0 when convenient. If S = RF(e), then e must be the least projection of S
and Re = Me. By convention, S/Ie = S in that case.

Returning now to the specific topic of this section, let S be a primitive left restriction
semigroup (with zero) and suppose x has a right identity (that is, x ∈ S RI). Then x has
a unique right identity, since the set of right identities for x is a subsemilattice of PS .
Denote this right identity by x∗ (shown in [10] to be consistent with its use in two-sided
restriction semigroups). Clearly e∗ = e for every projection e of S . We collect some
basic tools in the following.

Result 3.1 [10, Lemma 5.1, Proposition 5.2]. Let S be a primitive left restriction
semigroup and let x, y ∈ S , x, y , 0. Then xy , 0 if and only if (x∗ exists and) x∗ = y+,
in which case xy R x, and if xy has a right identity, then so does y, and (xy)∗ = y∗.

It follows that in any primitive left restriction semigroup S , the left restriction
subsemigroup S RI is a primitive restriction semigroup, under the additional operation
∗ defined above. Equivalently, if every element of a primitive left restriction semigroup
S has a right identity, then S is also a primitive restriction semigroup in this way.

Call a primitive left restriction semigroup S primitive with base e if e is a nonzero
projection of S with the property that S \{0} = RF(e), in other words if every nonzero
projection of S is a right identity for some (not necessarily unique) element of Re. If g
is a right identity for a ∈ Re, then g = a∗. Note that Me = {a ∈ Re : a∗ = e}.

Relating primitive left restriction semigroups to their two-sided counterparts played
a major role in proving the main results in [10] and is the crux of the current paper.
One connection is established through the following embedding.

Let S be a primitive left restriction semigroup with base e. If S = S RI , put S ∗ = S .
Otherwise, let S ∗ = S ∪ {h}, where h is an element distinct from S . Extend the binary
operation on S to S ∗ by putting h2 = h, hs = 0 for all s ∈ S \{h}; sh = s for all s < S RI;
and sh = 0 for all s ∈ S RI . Put h+ = h. The following result will be greatly enhanced
in Theorem 7.6.

Result 3.2 [10, Proposition 5.4]. Let S be a primitive left restriction semigroup with
base e. Then S ∗ is a primitive restriction semigroup in which S is +-embedded. Each
submonoid of S ∗ is either a submonoid of S or is trivial. If S is finite, so is S ∗.
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4. Varieties and pseudovarieties of left restriction semigroups

The elementary material on varieties that follows is extracted from [6] and the
material on strict varieties is from [10]. With modest modifications, we adapt it all
to pseudovarieties, along the lines followed in [9, Section 6] for the two-sided case.

A pseudovariety of left restriction semigroups is a collection of finite such
semigroups that is closed under finite products and division. The finite members of
any variety V of universal algebras form a pseudovariety, which we shall denote FV.
Given a collection of finite members of V, the pseudovariety that they generate will not
in general comprise the finite members of the variety they generate. However, in the
case of a single finite algebra (or finitely many such), the pseudovariety so generated
does indeed consist of the finite members of the variety so generated (e.g. see [1,
page 60]).

Recall the notation and terminology for specific semigroups and varieties from
Section 1. Also recall that monoids in this context are left restriction semigroups
with one projection and so may be defined by the identity x+ = y+. Subvarieties of M
are essentially varieties of monoids, and we shall treat them as such. It is clear that a
variety V of left restriction semigroups consists of monoids if and only if V ∩ S = T.
Analogous statements hold for pseudovarieties.

For any variety V of left restriction semigroups, denote by L(V) its lattice of
subvarieties. If U,V ∈ L(V) and U ⊆ V, [U,V] denotes the interval sublattice {W :
U ⊆W ⊆ V}. The notation V � U, V covers U, means that the interval consists only of
the two given varieties. If X is a set of left restriction semigroups, 〈X〉LR will denote the
variety of left restriction semigroups it generates. Again, analogous notation applies
to pseudovarieties.

Proposition 4.1. If V ∈ L(LR), then V ∨M = {S ∈ LR : S/µ ∈ V}. Hence on the
lattice L(LR) the map V −→ V ∨M is a complete lattice homomorphism. The map
V −→ V ∩M is a lattice homomorphism.

From the first statement, it follows that F(V ∨M) = FV ∨ FM.
The analogues of the statements in the first paragraph hold for pseudovarieties.

Proof. The first paragraph is [6, Theorems 4.1, 4.2]. We need to outline the proof of
the first statement to see how finiteness is respected. Then we immediately obtain its
finitary analogue, from which the analogue of the second statement will follow, along
with the statement in the second paragraph.

The original statement, that if S ∈ V ∨M then S/µ ∈ V, clearly respects finiteness.
To prove the converse, we apply Result 2.1: any left restriction semigroup S has a
proper cover T , which can be chosen to be finite if S is finite. As noted in the paragraph
prior to that result σ ∩ µ is the identical relation on T , so it embeds in T/σ × T/µ,
where, because the covering map separates projections, T/µ � S/µ. Thus if S/µ ∈ V,
then T , and so also S , belongs to V ∨M. If S , and so T , is finite, the same is true of
the quotients of the latter, and so S ∈ FV ∨ FM. If V is a pseudovariety to begin with,
S ∈ V ∨ FM.
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The proof in [6] of the last statement in the first paragraph made use of properties of
the free left restriction semigroup and thus a new proof is needed for pseudovarieties,
as follows.

Let V and W be pseudovarieties of left restriction semigroups and let M ∈ V ∨W.
Thus there exist S ∈ V, T ∈W, a unary subsemigroup U of S × T and a unary
homomorphism of U upon M. By finiteness, there exists a least e ∈ PU that is mapped
to the identity of M, whence eUe is mapped onto M itself. By minimality, e is
the only projection in eUe, that is, eUe = He. Routinely, if e = (e1, e2) ∈ PS × PT ,
then He embeds into He1 × He2 ∈ (V ∩M) ∨ (W ∩M). Therefore (V ∨W) ∩M =

(V ∩M) ∨ (W ∩M). �

The usual argument shows that S is the only atom of L(LR) that does not consist of
monoids, and likewise for pseudovarieties. Denote by SM the variety of semilattices of
monoids. The proof of the varietal portion of the following result is straightforwardly
modified to the case of pseudovarieties, using the result just proved.

Result 4.2 [6, Theorems 4.4, 4.5]. The following are equivalent for a left restriction
semigroup S : (a) S ∈ SM; (b) S satisfies (xy)+ = x+y+; (c) S becomes a restriction
semigroup under the assignment a∗ = a+; (d) S is a (strong) semilattice of monoids.

The sublattice L(SM) of L(LR) is isomorphic to the direct product of the lattice
L(S) = {T, S} and the lattice L(M), under the map V 7→ (V ∩ S) ∨ (V ∩M). If V is
not simply a variety of monoids, then it consists of all (strong) semilattices of monoids
from V ∩M.

The analogues hold for pseudovarieties.

Next we review further coverings and show that the analogues hold for
pseudovarieties. According to [6, Theorem 4.20], there are precisely two subvarieties
of LR that are minimal with respect to not being contained in SM. One is D,
introduced in Section 1. The other is L1

2, which is generated by the left restriction
semigroup L1

2 that is obtained from the two-element left zero semigroup L2 = {g, h} by
adjoining an identity 1, and setting g+ = g and h+ = 1+ = 1. Note that, when regarded
as a ‘plain’ semigroup, L1

2 is a monoid, but it is not when regarded as a left restriction
semigroup. It is the union of the submonoids M1 = {1, h} and Mg.

The pseudovarietal analogue of [6, Theorem 4.20] (as in Corollary 4.4 below) can
be deduced from the varietal result. However both follow immediately from the
next, significantly sharper, lemma, which is potentially useful in its own right. A
left restriction semigroup that is a union of its submonoids is a union of monoids.
According to [6, Theorem 4.8], the unions of monoids form a variety, defined by
xx+ = x.
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Lemma 4.3.

(1) The semigroup D divides any left restriction semigroup that is not a union of
monoids.

(2) The semigroup L1
2 divides any left restriction semigroup that is a union of

monoids but not a semilattice of monoids.

Proof. To prove the first statement, observe from the theorem just cited that if S is
not a union of monoids, then it contains an element a such that aa+ , a. The proof of
[6, Theorem 4.17] shows that the unary subsemigroup T generated by a contains as
a +-ideal the subset K2 = {(an)+ak : n ≥ 2, 0 ≤ k ≤ n} (where a0 is a nominal identity),
and that T\K2 = {a+, a} and T/K2 � D.

To prove the second statement, suppose S is a union of monoids that is not a
semilattice of monoids. Then, by Result 4.2, S contains an element a and a projection
e such that a = se , es, say. The proof of [6, Proposition 4.16] shows that the
unary subsemigroup U generated by {a, se} is a projection-separating quotient of the
(infinite) left restriction semigroup B+

01. The precise nature of the latter semigroup –
a subsemigroup of the bicyclic semigroup – is not needed, merely that B+

01/µ � L1
2 [6,

Proposition 4.14]. It follows that L1
2 is a quotient of U. �

Corollary 4.4 (See [6, Theorem 4.20]). The varieties D and L1
2 are the subvarieties

of LR that are minimal with respect to not being contained in SM. The analogue holds
for pseudovarieties.

We now move to the results of [10] on the variety B of left restriction semigroups
generated by the Brandt semigroups and the monoids, together with certain of its
subvarieties, and also consider the analogues for pseudovarieties. First recall from the
cited paper that if V is any variety of left restriction semigroups, loc(V) denotes the
variety consisting of the left restriction semigroups S that are ‘locally’ in V, meaning
that eS e ∈ V for all e ∈ PS . In a related vein, for any variety N of monoids, let mon(N)
consist of the left restriction semigroups all of whose submonoids belong to N. Note
that loc(SN) ⊆ mon(N). In general the latter is not a variety.

Result 4.5 [10, Proposition 4.3]. The inclusion B ⊂ loc(SM) holds. For any variety N
of monoids, B ∩mon(N) = B ∩ loc(SN) and so forms a subvariety.

In particular, the members of B having trivial submonoids form the subvariety
B ∩mon(T) = B ∩ loc(S).

It follows from the first statement of Result 4.5 that L1
2 < B, since L1

2 = 1L1
21 < SM.

Thus varieties consisting of unions of monoids play no role in this paper and in our
context D is the unique relevant cover of S (there being other covers in the interval
[S,SM]).

The analogues of all the above statements regarding B then carry over the
pseudovariety FB.
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Recall that B2, B0 and D are the subvarieties generated respectively by B2, B0 and
D. By the general argument noted earlier in this section, the pseudovarieties generated
by these last three finite left restriction semigroups are respectively FB2, FB0 and FD.

It will be seen in Result 4.11 below that B = B2 ∨M. By the second paragraph
of Proposition 4.1, FB = FB2 ∨ FM and therefore this pseudovariety is indeed that
generated by the finite Brandt semigroups and finite monoids, to which the ‘analogous
results’ will refer.

Result 4.6 characterizes membership in B in several further ways. For our purposes,
rather than the identity stated in (i), it is the paraphrase (ii) in terms of right
identities and the R-relation that is more useful in practice, along with the subdirect
decomposition (iii) that plays a central role in all applications.

Result 4.6 [10, Theorem 6.6]. For a left restriction semigroup S , the following are
all equivalent to membership in B, the variety generated by Brandt semigroups and
monoids:

(i) S satisfies the identity (xz)+(yz+w)+ = (yz)+(xz+w)+;
(ii) if two R-related elements of S share any right identity, they share all right

identities;
(iii) S is a subdirect product of monoids and primitive left restriction semigroups with

a specified base;
(iv) S is a subdirect product of monoids and primitive left restriction semigroups,

that is, S is strict.

In view of the observations before the last result and the obvious fact that the factors
in the subdirect products given by (iii) and (iv) preserve finiteness, the following is
clear.

Corollary 4.7. The analogue of Result 4.6 holds for the pseudovariety FB.

Next we consider B2 and its subvarieties B0 and D in the context of Result 4.6. As
well as the characterizations stated here, in each case identities were also provided
in [10]; naturally, there is an additional characterization in terms of subdirect products
whose factors satisfy the respective identities.

Result 4.8 [10, Theorem 8.11, Corollaries 8.12, 7.7]. Let S be a left restriction
semigroup. Then

(1) S ∈ B2 if and only if for any projection e, distinct elements of Re do not share a
common right identity;

(2) S ∈ B0 if and only if S ∈ B2 and every regular element of S is a projection;
(3) S ∈ D if and only if the only elements with right identities are the projections.

Again, in view of the remarks preceding Result 4.6, the following is clear.

Corollary 4.9. The analogue of Result 4.8 holds for finite left restriction semigroups,
with respect to the pseudovarieties FB2, FB0 and FD.
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The sublattice L(B2) was shown to be as follows, from which we deduce the
pseudovarietal analogue.

Proposition 4.10 [10, Theorem 8.16]. The lattice of subvarieties of B2 consists of the
chain of coverings T ≺ S ≺ D ≺ B0 ≺ B2.

The analogue holds for the lattice of subpseudovarieties of FB2.

Proof. To prove the second statement, let S ∈ FB2. Then the variety V generated by
S is one of those listed in the first statement and so the pseudovariety FV generated by
S is one of the corresponding pseudovarieties. Since any pseudovariety is the join of
its finitely generated subvarieties, every subpseudovariety of FB2 has one of the stated
forms. �

Finally, we consider the joins of each of these varieties with M. It was noted prior
to Result 4.6 that B = B2 ∨M. The proof of this fact in [10, Section 8] used the
corresponding fact for restriction semigroups (see the comments following Result 6.4).
We include a direct proof here, since the corollary that follows will play a key role in
the last two sections.

Result 4.11. B = B2 ∨M and FB = FB2 ∨ FM.

Proof. By Proposition 4.1, it suffices to show that if S ∈ B, then S/µ ∈ B2. We apply
Results 4.6 and 4.8. Let a, b ∈ S and suppose both that (aµ)+ = (bµ)+ and that aµ and
bµ share a common right identity fµ, where f ∈ PS . Since µ separates projections,
(a f )+ = a+ = b+ = (b f )+, so a f = a and b f = b (see Section 3). Now given any e ∈ PS ,
ae = (ae)+a R (ea)+b, and these two elements share the right identity f . By Result 4.6,
from (ae)e = ae it follows that (ea)+b = (ea)+be. Thus (ea)+ ≤ (be)+ and, by symmetry,
equality holds. Thus aµ = bµ and so S/µ ∈ B2.

The statement on pseudovarieties is immediate from Proposition 4.1. �

Corollary 4.12. Any finitely generated strict left restriction semigroup has only
finitely many projections.

Proof. By Result 4.11 and Proposition 4.1, for any such semigroup there is a
projection-separating homomorphism onto a member of the locally finite variety
generated by B2. �

Result 4.13 [10, Corollary 8.13, Theorem 7.5]. Let S be a left restriction semigroup.
Then

(1) S ∈ B0 ∨M if and only if S ∈ B and (a) for all x, y ∈ S , xyx belongs to a
submonoid of S or, equivalently, (b) if x, y ∈ S , yx+ = y and xy+ = x, then
x+ = y+;

(2) S ∈ D ∨M if and only if any element a with a right identity belongs to the monoid
Ma+ .

By Proposition 4.1, FB0 ∨ FM = F(B0 ∨M) and FD ∨ FM = F(D ∨M). Thus the
analogous statements hold for these pseudovarieties.
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Note that since the element a ∈ B2 satisfies a = aba but is not in a submonoid,
B2 < B0 ∨M; regarded as an element of B0, a has a right identity (namely f ) and so,
similarly, B0 < D ∨M (and likewise in the pseudovarietal case).

In conjunction with Proposition 4.10, it then follows that L(B) is the disjoint union
of L(D ∨M) and the interval [B0,B], which in turn is the union of the intervals
[B0,B0 ∨M] and [B2,B2 ∨M = B]. The analogue is true for pseudovarieties.

It was shown in [10, Theorem 7.8] that the varieties in the interval [D,D ∨M] are
those of the form D ∨ N, for some variety of monoids. The proof there (in particular,
the use of Proposition 7.3) respects finiteness. In combination with Result 4.2,
this yields the following straightforward description of the ideal L(D ∨M) (refer to
Figure 1).

Result 4.14 [10, Corollary 7.9]. The sublattice L(D ∨M) is isomorphic to the direct
product of the lattice L(D) = {T ≺ S ≺ D} and the lattice L(M), under the map
V 7→ (V ∩ D) ∨ (V ∩M). The analogue holds for the lattice of subpseudovarieties
of F(D ∨M).

5. Primitive and strict restriction semigroups

The material in this section is from [7, 9]. As noted in Section 3, a restriction
semigroup is strict if it is a subdirect product of primitive restriction semigroups;
equivalently, if it is a subdirect product of monoids and completely 0-r-simple
restriction semigroups. Here we shall instead term the latter semigroups connected,
based on the connection with categories that will soon be elucidated.

A restriction ideal (r-ideal in [7, 9]) of a restriction semigroup S is an ideal that
is closed under both unary operations. In the terminology of [7, 9], a restriction
semigroup S with zero is 0-r-simple if {0} and S are its only restriction ideals and
completely 0-r-simple (here, connected) if, in addition, it is primitive. It is connected
if and only if it is primitive and its nonzero elements form a single D-class. Again
motivated by the connection with categories, if it is, further, the case that for any
nonzero projections e, f of S , (e, f ) ∈ R ◦ L (and so likewise for any two nonzero
elements a, b of S ), we shall call S strongly connected.

The basic computational tool is as follows. Note that if such a semigroup has only
one nonzero projection, then it is a monoid with adjoined zero, and so a semilattice of
monoids.

Result 5.1 [9, Lemma 2.1]. (See Result 3.1.) If a and b are nonzero elements of a
connected restriction semigroup S , then ab , 0 if and only if a∗ = b+, in which case
(ab)+ = a+ and (ab)∗ = b∗.

Various characterizations of strict restriction semigroups were given in [7, Theorem
8.1], including the varietal one stated in Result 6.2 below and another by identities.
Here we shall need the following structural one (see the characterization of strict
inverse semigroups [12] in terms ofD).
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Result 5.2. A restriction semigroup is strict if and only if it satisfies D-majorization:
whenever f , g, h are projections, f > g, h and g D h, then g = h.

We also need to refer to a decomposition of strict restriction semigroups, for
which a little further background from [7, Section 5] is needed. If S is a restriction
semigroup and a ∈ S , the principal restriction ideal generated by a is denoted rI(a).
Let J = {(a, b) : rI(a) = rI(b)}. The set rQ(a) = rI(a)\Ja is a restriction ideal of rI(a)
and the Rees factor semigroup rI(a)/rQ(a) is the r-principal factor associated with
a. As usual, the r-principal factor may be regarded as Ja ∪ {0} (or just Ja if rQ(a) is
empty). Each such factor is 0-r-simple (or r-simple if rQ(a) is empty).

Result 5.3 [7, Propositions 6.3, 6.1]. A strict restriction semigroup is a subdirect
product of its r-principal factors. On such a semigroup D = J and each r-principal
factor is either a connected restriction semigroup or a monoid.

As in the one-sided case, in our context the primitive restriction semigroups are
therefore the essential concept. In [9] a correspondence was established between
primitive restriction semigroups (including monoids, in that treatment) and (small)
categories. The application to varieties will be elucidated in the next section.

A category is a (directed) graph C, consisting of a set Obj C of objects (or vertices)
and a set Arr C of arrows, where for each e, f ∈ Obj C, Arr (e, f ), or sometimes C(e, f ),
denotes the homset of arrows from e to f . The product of consecutive arrows is defined,
associative in the natural way, along with (partial) identity arrows 1e, e ∈ Obj C. From
this point of view, a monoid may also be regarded as a one-object category. The sets
C(e) = C(e, e) are called the local monoids of C.

A category is connected if its underlying undirected graph is connected, and
strongly connected (bonded in [13]) if its underlying directed graph is connected. In
the terminology of [13], a category is trivial if each homset has at most one member. A
category is locally trivial if its local monoids are trivial. In [9], we termed a category
C anticyclic if for any distinct e, f ∈ Obj C, either C(e, f ) or C( f , e) is empty. Clearly,
if such a category is strongly connected, it must be a monoid.

With each primitive restriction semigroup S (with zero) is associated the category
C(S ), defined as follows:

• Obj C(S ) = PS \{0};
• Arr C(S ) = S \{0}, where Arr (e, f ) is the H-class Re ∩ L f , if nonempty, and

otherwise empty, so that a : a+ → a∗, for any nonzero a ∈ S ;
• if a ∈ Arr (e, f ) and b ∈ Arr ( f , g), then the product ab is that in S .

If S is a restriction semigroup that is a monoid, define C(S ) = S , now treating S as
a category.
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Given a (small) category C, R(C) is its consolidation, as termed by Tilson [13] (but
there denoted Ccd and expressed in somewhat different terms):

• if C is simply a monoid, R(C) = C, regarded as a restriction semigroup;
• otherwise, R(C) = Arr C ∪ {0}, using the previously defined products and setting

all previously undefined products to zero.

For instance, if C is the category with two objects, two arrows from the first to the
second and two identity arrows, then R(C) is the restriction semigroup A2, which will
appear in the next section. Here we may write A2 = {e, a, c, f , 0}, where e, f , 0 are the
projections and a H c.

It is immediate from the definitions that R(C(S )) = S for all primitive restriction
semigroups S and monoids, and C(R(C)) = C for all categories C.

Result 5.4 [9, Proposition 4.1]. The mappings R: C 7→ R(C) and C: S 7→ C(S ) are
mutually inverse bijections between the class of (small) categories and the union
of the classes of primitive restriction semigroups and of monoids. Under this
correspondence:

(1) monoids correspond to monoids;
(2) connected categories that are not monoids correspond to connected restriction

semigroups;
(3) strongly connected categories that are not monoids correspond to strongly

connected restriction semigroups;
(4) locally trivial categories that are not trivial correspond to primitive restriction

semigroups with trivial submonoids;
(5) anticyclic categories correspond to square-free primitive restriction semigroups

(see Result 6.2).

In fact, the third item in this result was not actually stated in [9], but it follows
immediately from the definitions.

6. Varieties of restriction semigroups

After reviewing material parallelling that in Section 4, we outline the application to
varieties of the categorical connection made in Section 5.

Let R denote the variety of all restriction semigroups. As a general rule we
shall use the same letters to denote ‘familiar’ varieties as we do varieties of left
restriction semigroups. So B denotes the variety of restriction semigroups generated
by Brandt semigroups, and B2 and B0 denote the subvarieties generated by B2 and B0,
respectively. Recall that monoids may be regarded as both left restriction semigroups
and restriction semigroups. In fact, the same is true for the variety SM of semilattices
of monoids, and its subvarieties, since these are precisely the restriction semigroups
on which a∗ = a+ [6].

On the occasions where confusion would otherwise arise, in particular in Section 7,
we shall distinguish two-sided varieties by using the subscript R. So, for example,
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BR and (B0)R then denote the obvious varieties of restriction semigroups. We shall
not make that distinction in the case of subvarieties of SM. Similarly, if X is a
set of restriction semigroups 〈X〉R will denote the variety of restriction semigroups
it generates. In addition, we may use terms such as LR-homomorphism (or +-
homomorphism), LR-variety, R-variety, and so on, as necessary.

To conclude this section, we make some elementary observations regarding
relationships between varieties of left restriction semigroups and varieties of restriction
semigroups, based on the association of every restriction semigroup S = (S , · ,+ ,∗ )
with its left restriction reduct (S , · ,+ ).

If X is a set of restriction semigroups, the notation 〈X〉LR, introduced in Section 4,
will perforce denote the variety of left restriction semigroups generated by the reducts
of the members of X. Let V be a variety of left restriction semigroups. Then VR will
denote the collection of two-sided restriction semigroups whose reducts belong to V.

Result 6.1 [10, Proposition 4.8]. Let V be a variety of left restriction semigroups and
let X be a set of restriction semigroups. Then

(1) VR is a variety of restriction semigroups and 〈VR〉LR ⊆ V;
(2) 〈X〉R ⊆ (〈X〉LR)R;
(3) 〈X〉LR = 〈〈X〉R〉LR;
(4) as a result, BR ⊂ BR and B = 〈BR〉LR.

Returning now to varieties of restriction semigroups, first note that direct analogues
of Proposition 4.1 and Result 4.2 hold in the two-sided case [6, Theorems 3.1, 3.3].
The analogue of Result 4.5 also holds in the two-sided case [7, Proposition 8.3].

For simplicity’s sake, we do not use the subscript notation in the remainder of the
section, since only varieties of restriction semigroups are considered.

Result 6.2 [7, Theorems 8.1, 10.6, 9.3 and 10.3]. A restriction semigroup S belongs to
the variety B if and only if it is a subdirect product of monoids and primitive restriction
semigroups, that is, it is strict. In that event:

(1) S ∈ B2 if and only if H is the identical relation;
(2) S ∈ B0 if and only if S ∈ B2 and, further, the only regular elements of S are the

projections;
(3) S ∈ B0 ∨M if and only if for distinct projections e and f of S , both Re ∩ L f and

Le ∩ R f cannot be nonempty (S is ‘square-free’).

Corollary 6.3. Any subvariety of B is generated by its connected members, together
with its monoids.

Result 6.4 [7, Corollaries 10.2, 9.4] (See Result 4.10). In the lattice L(R), the
sublattice L(B2) comprises the chain T ≺ S ≺ B0 ≺ B2.

Therefore L(B) is the disjoint union of the interval sublattices [T,M], [S, S ∨M],
[B0,B0 ∨M] and [B2,B2 ∨M], where S ∨M = SM and B2 ∨M = B.
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The proof that B = B2 ∨M is analogous to that for the one-sided case in Result 4.11.
Before proving the next corollary, we need a general well-known result.

Lemma 6.5. Let S be a restriction semigroup and X a set that generates S as such.
Then S = PS T 1, where T is the plain subsemigroup generated by X, and S is therefore
generated as a semigroup by PS ∪ X.

Proof. Since the subset PS T 1 contains each x = x+x in X, it suffices to show that it
is a restriction subsemigroup of S . Since it contains PS , it is closed under the unary
operations. Let e, f ∈ PS and u, v ∈ T 1. If u = 1, there is nothing to prove, so assume
otherwise. Applying the left ample identity, (eu)( f v) = e(u f )v = e(u f )+uv ∈ PS T 1. �

Corollary 6.6. Any finitely generated strict restriction semigroup has only finitely
many projections and, as a result, is finitely generated as a left restriction semigroup.

Proof. The proof of the first statement proceeds analogously to that of Corollary 4.12.
As a result, by the previous lemma the semigroup is then finitely generated as a (plain)
semigroup. �

In the rest of this section, we review from [9] the application of Result 5.4 to
varieties of strict restriction semigroups and use it to prove some results needed in
the next section. The precise nature of the universal algebraic treatment of varieties is
not needed, so we refer the reader to [9] (or to [13]). The variety of all categories is
denoted by Cat and its lattice of subvarieties by L(Cat); the trivial categories form a
variety I that is the minimum member of this lattice.

For any variety W of categories, let R(W) be the variety of strict restriction
semigroups generated by {R(C) : C ∈W}. In view of Results 6.2 and 5.4, R(Cat) = B.
Further, R(I) = B2, since the latter variety consists precisely of the strict restriction
semigroups on which H is the identical relation, according to [7, Theorem 9.3], and is
generated by B2 itself.

Conversely, for any variety V of strict restriction semigroups that contains B2, let
C(V) = {C(S ) : S is a primitive member of V}. Using Result 5.4, C(V) = {C : R(C) ∈
V} and so, by [9, Proposition 5.1], it is a variety of categories.

Result 6.7 [9, Theorem 5.2]. The mappings R and C are mutually inverse
isomorphisms between the lattice L(Cat) and the interval [B2,B].

This correspondence was first used to prove the following useful result regarding
the lattice of varieties of strict restriction semigroups. The restriction semigroup A2
was defined prior to Result 5.4. By definition, it belongs to B, in fact to B0 ∨M, by an
application of Result 6.2(3), however, since H is nontrivial, it does not belong to B2.

Result 6.8 [9, Theorems 5.4, 5.6]. In the lattice L(B), the unique cover of B2 is
B ∩mon(T), generated by A2 and B2. Likewise, in the interval [B0,B0 ∨M], the
unique cover of B0 is (B0 ∨M) ∩mon(T), generated by A2.

A powerful theorem of Tilson is the ‘bonded component theorem’.
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Result 6.9 [13, Theorem 11.3]. Let C be a category that is not locally trivial. Then C
divides a product of its strongly connected components (and divides a finite product if
it is itself finite). Thus any such variety is generated by its strongly connected members.

Proposition 6.10. Let S be a connected restriction semigroup having more than one
nonzero projection and at least one nontrivial submonoid. Let the strongly connected
components of the category C(S ) be Ci, i ∈ I. For each i ∈ I, R(Ci) is (isomorphic
to) either a strongly connected restriction subsemigroup, or a submonoid, of S itself.
Then S divides the product of

∏
i∈I R(Ci) with a semigroup in B2. If S ∈ B0 ∨M, then

the latter semigroup belongs to B0.

Proof. The vertex set of the component Ci is a subset Pi of the nonzero projections
of S . The semigroup R(Ci) may be regarded as a subsemigroup of S , consisting
of the union of the H-classes Re ∩ L f , e, f ∈ Pi, together with the zero of S . By
assumption, eachH-class is nonempty. The fact that R(Ci) is then a strongly connected
restriction subsemigroup of S is immediate from the properties of the operations given
by Result 5.1.

The assumption on S is equivalent to C(S ) not being locally trivial, by Result 5.4(4).
Thus, by Result 6.9, C(S ) divides

∏
i∈I Ci. According to [9, Lemma 4.5], S = R(C(S ))

divides the product of R(
∏

i∈I Ci) with a restriction semigroup that belongs to B2 and,
further, belongs to B0 if C(S ) is anticyclic, that is, S ∈ B0 ∨M (by the combination
of Results 5.4 and 6.2). But according to [9, Lemma 4.8], R(

∏
i∈I Ci) divides∏

i∈I R(Ci). �

We now interpret this result in varietal terms. Observe that the first of these results
only has a real consequence for those varieties that strictly contain B ∩mon(T).

Corollary 6.11. Any variety of restriction semigroups in the interval [B2,B], other
than B2 itself, is generated by its strongly connected members and its monoids,
together with the members of B ∩mon(T).

Proof. Let V be such a variety. By Corollary 6.3 it is generated by its connected
restriction semigroups and monoids. If V = B ∩mon(T), then the result holds trivially.
Otherwise, V contains this variety, by Result 6.8. If a connected member has a single
nonzero projection, it is a semilattice of monoids and so, by the two-sided version of
Result 4.2, it belongs to S ∨ (V ∩M), where S ⊂ B2 ⊂ B ∩mon(T). For any connected
member of V that does not belong to V = B ∩mon(T) and has more than one nonzero
projection, Proposition 6.10 applies, so this term belongs to the variety generated by
the strongly connected members of V. �

Corollary 6.12 [9, Theorem 5.5]. Any variety of restriction semigroups in the interval
[B0,B0 ∨M], other than B0 itself, is generated by its monoids, together with the
members of (B0 ∨M) ∩mon(T).

Thus every such variety V in the interval [B0,B0 ∨M], other than (B0 ∨M) ∩
mon(T), has the form B0 ∨ (V ∩M). As a result, for any nontrivial variety N of
monoids, (B0 ∨M) ∩mon(N) = B0 ∨ N.
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Proof. The proof of the first statement follows that of the previous corollary, with
the critical distinction that, by Result 6.2, subvarieties of B0 ∨M contain no strongly
connected members other than monoids.

Turning to the first statement in the second paragraph, let V ∈ [B0,B0 ∨M]. Clearly
B0 ∨ (V∩M) ⊆ V always holds and the opposite inclusion certainly holds for B0, since
B0 ∩M = T. Otherwise, by the first part of this corollary, V = ((B0 ∨M) ∩mon(T)) ∨
(V ∩M). But if V , (B0 ∨M) ∩ mon(T), then V ∩M , T and, by Result 6.8,
(B0 ∨M) ∩mon(T) ⊂ B0 ∨ (V ∩M), yielding the opposite inclusion in the desired
equality.

The final statement now follows immediately, since ((B0 ∨M) ∩ mon(N)) ∩
M = N. �

The corresponding result does not hold in [B2, B = B2 ∨M]. In fact, by [9,
Theorem 5.3], if N is a nontrivial variety of monoids, the equation B ∩mon(N) =

B2 ∨ N holds if and only if N is local in the sense of Tilson [13].

7. Comparing the two lattices

In this section, we use the notation established in Section 6 to distinguish between
the left- and two-sided cases. Thus when citing results from that section, named
varieties must be subscripted with the letter R. Result 6.1 and the notation that precedes
it will be used without further comment.

Before stating our main theorem, we should note that the (reducts of) restriction
semigroups in B need not be members of BR, that is, the inclusion BR ⊂ BR in the cited
result is strict. For instance, for k ≥ 2 the restriction semigroups Λk of [7] are not strict,
when regarded as such (the key to showing there that BR is nonfinitely based), but are
strict when regarded as left restriction semigroups [10, Proposition 8.15]. In fact that
example demonstrates that (B0)R , (B0)R.

Theorem 7.1. The maps V→ VR ∩ BR and W→ 〈W〉LR are mutually inverse order
isomorphisms between the interval [B0,B] in the lattice of varieties of left restriction
semigroups and the corresponding interval [(B0)R,BR] in the lattice of varieties of
restriction semigroups.

Under the first isomorphism, for each monoid variety N the interval [B0 ∨ N,B ∩
mon(N)] in the lattice of LR-varieties maps to the corresponding interval in the lattice
of R-varieties.

Before considering the general case, we treat the extremities, and then the atoms,
of the two subintervals [B2,B] and [B0,B0 ∨M] that make up [B0,B].

Lemma 7.2. The following equalities hold:

(a) B2
R ∩ BR = (B2)R; B0

R ∩ BR = (B0)R; (B0 ∨M)R ∩ BR = (B0)R ∨M; and BR ∩

BR = BR;
(b) 〈(B2)R〉LR = B2; 〈(B0)R〉LR = B0; 〈BR〉LR = B; 〈(B0)R ∨M〉LR = B0 ∨M.
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Proof. In each case of (a), the right-hand side is clearly contained in the left. Now
suppose S ∈ B2

R ∩ BR. We apply Results 4.8(1) and 6.2(1). Suppose a H b. Then
a R b in both S and its reduct, and a and b have the common right identity a∗ = b∗, so
by the former cited result, a = b. Therefore, by the latter, S ∈ (B2)R. The second case
follows similarly, using the second parts of the cited results.

Next let S ∈ (B0 ∨M)R ∩ BR. We apply Results 4.13(1) and 6.2(3). Let e, f ∈ PS

and suppose both Re ∩ L f and R f ∩ Le are nonempty, containing respectively x and
y, say. Then xy+ = xx∗ = x and yx+ = yy∗ = y. Applying the former cited result in
the reduct, e = f . Therefore, by the latter, S ∈ (B0)R ∨M. The final case of (a) is
immediate.

The third equality in (b) was part of Result 6.1(4), which itself results from applying
the earlier parts of that result, with X consisting of B2 together with all monoids. The
other equalities in (b) follow likewise, with X consisting respectively of B2, B0, and B0
together with all monoids. �

The mappings in Theorem 7.1, being order-preserving, therefore respect the
subintervals [B2,B] and [B0,B0 ∨M].

The varieties with trivial submonoids need some special treatment, leading to
the analogue of Result 6.8, part of which is as follows. Recall that the restriction
semigroup A2 that appeared in that result belongs to (B0)R ∨M but not to (B2)R. Its
left restriction reduct belongs to B0 ∨M but not to B2 (by the very first equation in
Lemma 7.2).

Lemma 7.3. In the lattice L(B), the unique cover of B2 is 〈A2, B2〉LR. Likewise the
unique cover of B0 in the interval [B0,B0 ∨M] is 〈A2〉LR.

Proof. First let V be any LR-variety in the interval [B0,B] that is not contained in B2
itself. By Result 4.6, V contains a primitive left restriction semigroup S , with base
e, say, that does not belong to B2 and, applying Result 4.8(1), distinct members a, c
of Re, with a common right identity f , say. Then {e, a, c, f , 0} is a (left) restriction
subsemigroup isomorphic to A2. Thus A2 ∈ V and the second statement of the lemma
holds. If V contains B2, then the first also holds. �

The next preliminary lemma is a special case of Theorem 7.6. Recall that the
restriction semigroup S ∗ of Result 3.2 is obtained from S by the adjunction of a new
projection h, and that h = a∗ for all a < S RI . Since hS ∗ = {h, 0}, Rh = {h}. Since S ∗ is
primitive, it follows from Result 6.2 that it belongs to BR.

Lemma 7.4. Let S be a primitive left restriction semigroup, with base e, that belongs
to B0 ∨M. Then the restriction semigroup S ∗ of Result 3.2 belongs to (B0 ∨M)R.
Hence for any variety N of monoids, the corresponding statement holds for (B0 ∨M)
∩mon(N) and for B ∩mon(N).

Proof. If S ∗ = S , there is nothing to prove. Otherwise, S , S RI and the only new
element in S ∗ is the projection h. We apply the first characterization in Result 4.13(1):
xyx belongs to a submonoid for all x, y ∈ S , and we must prove the same holds in S ∗.
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Now, by construction, h is a left zero for all but itself, so the only new case of xyx that
need be considered is where x = y = h, in which case xyx is the projection h itself. So
S ∗ ∈ (B0 ∨M)R.

The final statements are immediate from the observation made in Result 3.2 that
no new nontrivial monoids appear in S ∗ (and that, as noted in [10, Lemma 2.2], the
submonoids of a restriction semigroup are the same as those in its reduct). �

Proposition 7.5 (See Result 6.8). The variety B ∩mon(T) = 〈A2, B2〉LR. It is therefore
the unique cover of B2 in the interval [B2,B]. Likewise (B0 ∨M) ∩mon(T) = 〈A2〉LR.
It is therefore the unique cover of B0 in the interval [B0,B0 ∨M].

Proof. In view of Lemma 7.3, it remains to prove that, in each case, the variety on
the left-hand side is contained in that on the right. First consider (B0 ∨M) ∩mon(T).
It is enough to take a primitive left restriction semigroup S , with base e, say. Again
consider its embedding in the restriction semigroup S ∗, as above. Then S ∗ ∈ (B0 ∨M)R

∩ BR, by Lemma 7.4, and so S ∗ ∈ (B0)R ∨ M, by the second-to-last case of
Lemma 7.2(a). By the second part of Result 6.8, ((B0)R ∨M) ∩mon(T) = 〈A2〉R. By
Result 6.1(3), S ∈ 〈A2〉LR and so the second of the two stated equations holds.

A similar, but more straightforward, argument applies to the first equation. �

The next result is the first major key to proving Theorem 7.1. In [10, Section 8], it
was shown that if S ∈ B2 or S ∈ B0, the conclusion need not hold.

Theorem 7.6. Let S be a primitive left restriction semigroup, with base e, such that
B0 ∈ 〈S 〉LR but 〈S 〉LR is neither B0 nor B2. Then the restriction semigroup S ∗ belongs
to (〈S 〉LR)R.

Proof. The assumption on S implies that 〈S 〉LR belongs to the half-open interval
(B0,B0 ∨M] if S ∈ B0 ∨M, or to (B2,B] if not.

Once again we may assume S , S ∗. If the submonoids of S are trivial, then by
the assumption the variety 〈S 〉LR generated by S is either B ∩mon(T) or (B0 ∨M) ∩
mon(T), applying Proposition 7.5. The conclusion follows from Lemma 7.4.

Otherwise, S contains a nontrivial submonoid and so the same is true of S ∗, whether
regarded as a left- or a two-sided restriction semigroup. Referring to Proposition 6.10,
consider the strongly connected components Ci, i ∈ I, of S ∗. Regarded as a restriction
semigroup, but also therefore as a left restriction semigroup, S ∗ then divides the
product of the strongly connected restriction semigroups R(Ci), i ∈ I, together with
a semigroup T in (B2)R that, further, belongs to (B0)R if S ∈ B0 ∨M. Then by
Result 6.1(2), T ∈ B2

R or T ∈ B0
R, respectively. By hypothesis, T therefore belongs to

(〈S 〉LR)R in either case.
But the strongly connected component containing h is simply {h} itself and the

remaining components are contained in C(S RI). It follows that all of the terms in the
above product belong to (〈S 〉LR)R, so the same is true of S ∗. �

Since the two mappings in Theorem 7.1 are clearly order-preserving, the next
proposition completes half the proof of the first statement of the theorem.
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Corollary 7.7. Let V be a variety of left restriction semigroups in the interval [B0,B].
Then V = 〈VR ∩ BR〉LR.

Proof. The cases V = B0 and V = B2 were treated in Lemma 7.2.
In the general case, one inclusion is obvious. To prove the opposite inclusion, again

let S ∈ V be primitive, with a specified base. If S ∈ B0 or if S ∈ B2\B0, the previous
paragraph applies (noting that in the latter case, V then contains B2). Otherwise, if S <
D ∨M, then by the comments following Result 4.13, B0 ⊂ 〈S 〉LR and by Theorem 7.6,
S ∗ ∈ VR ∩ BR, so that S ∈ 〈VR ∩ BR〉LR. Finally, if S ∈ D ∨M, then by Theorem 4.14
and the comments that precede it, S ∈ D ∨ N, where N = V ∩M = (VR ∩ BR) ∩M.
Then N ⊂ 〈VR ∩ BR〉LR and since D ⊂ B0, the conclusion follows. �

The simple nature of the interval [(B0)R, (B0)R ∨M], as stated in Corollary 6.12,
allows the interval [B0,B0 ∨M] to be determined, from which the other half of the
proof of Theorem 7.1 will almost immediately follow for these subintervals.

Corollary 7.8. Every variety V in the interval [B0,B0 ∨M], other than (B0 ∨M) ∩
mon(T), has the form B0 ∨ (V ∩M). As a result, for any nontrivial variety N of
monoids, (B0 ∨M) ∩mon(N) = B0 ∨ N.

Proof. By the last corollary, any variety in [B0,B0 ∨M] has the form 〈W〉LR, for some
W ∈ [(B0)R, (B0)R ∨M]. According to Corollary 6.12, the proof breaks into three
parts.

If W = (B0)R, then 〈W〉LR = B0, by Lemma 7.2(b).
If W = ((B0)R ∨M) ∩ mon(T), then W = 〈A2〉R, by the second statement of

Result 6.8. Thus 〈W〉LR = 〈A2〉LR = (B0 ∨M) ∩mon(T), by Proposition 7.5, the one-
sided analogue of that result.

Finally, if W = ((B0)R ∨M) ∩mon(N) = (B0)R ∨ N for some nontrivial variety N
of monoids, then 〈W〉LR = 〈(B0)R ∨ N〉LR = B0 ∨ N. Note that B0 ∨ N is the unique
member of [B0,B0 ∨M] whose intersection with M is N (using Proposition 4.1). Thus
(B0 ∨M) ∩mon(N) = B0 ∨ N. �

As alluded to above, the other half of the proof of the first statement in Theorem 7.1
will be completed in two steps, corresponding to the two subintervals of [B0,B]. The
first step is now easily accomplished.

Proposition 7.9. Let W be any variety of restriction semigroups in the interval
[(B0)R, (B0)R ∨M]. Then W = (〈W〉LR)R ∩ BR.

Proof. The proof breaks into the same three parts as that of the previous corollary. For
each part we use the value of 〈W〉LR computed in that proof.

If W = (B0)R, then Lemma 7.2(a) gives the desired outcome. Before considering
the remaining cases, observe first that it is immediate from the third case of part (b) of
that same lemma that, for any variety N of monoids, ((B0 ∨M) ∩mon(N))R ∩ BR =

((B0)R ∨M) ∩ mon(N). This equation will be applied in each of the following
paragraphs.
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If W = ((B0)R ∨M) ∩ mon(T), then (〈W〉LR)R ∩ BR = ((B0 ∨M) ∩ mon(T))R ∩

BR = ((B0)R ∨M) ∩mon(T) = W.
Finally, if W = ((B0)R ∨M) ∩ mon(N) = (B0)R ∨ N for some nontrivial variety

N of monoids, then (〈W〉LR)R ∩ BR = ((B0 ∨M) ∩mon(N))R ∩ BR = ((B0)R ∨M) ∩
mon(N) = W. �

The key to understanding the interval [B2,B] is Proposition 6.10, based on the
general form of Tilson’s bonded component theorem (the argument above having at
its heart the special case of this theorem for anticyclic categories).

Lemma 7.10. Let S be a strongly connected restriction semigroup, finitely generated as
such. If S LR-divides a strict restriction semigroup U, then it belongs to the R-variety
generated by U.

Proof. Let S and U be such semigroups. If S is simply a two-element semilattice,
then there exists a two-element subsemilattice of PU that maps onto it, so assume
otherwise. By assumption, there exists a left restriction subsemigroup T of U and a
surjective LR-homomorphism φ of T upon S . Since U ∈ BR, T ∈ 〈BR〉LR = B. Since T
is a unary subsemigroup of U, the +-operations coincide and therefore the R-relation
on T is the restriction of that on U. Moreover, PT ⊆ PU .

By Corollary 6.6, there is a finite subset X of S that generates it as a left restriction
semigroup. For each x ∈ X, let x0 be a preimage under φ in T and X0 = {x0 : x ∈ X}.
Without loss of generality, it may now be assumed that T is LR-generated by X0 and
U is R-generated by X0. Again by Corollary 6.6 PU , and so PT , is finite.

For each nonzero projection e of S , let e′ be its least preimage in the semilattice
PT and put P′ = {e′ : e ∈ PS , e , 0}, consisting of incomparable projections that map
bijectively onto PS \{0} under φ. Let s ∈ S , s , 0, s+ = e, say, and suppose t is a
preimage of s in T under φ. Since φ is an LR-homomorphism, t+φ = e and, by
minimality, e′ ≤ t+, so that e′t R e′ (both in T and in U), where again (e′t)φ = s.

Let D = T ∩
⋃
{Re′ : e ∈ PS , e , 0}. Thus Dφ = S \{0}. By replacing each x0 by

(x+)′x0, we may assume that X0 ⊂ D. We shall show that D is an entire ‘strongly
connected’D-class of U.

Let a ∈ D, with (aφ)+ = e and (aφ)∗ = f . We have established already that a+ = e′

and now we show that a∗ = f ′ in U. A priori, a∗ need not belong to T . Note that
since (a f ′)φ = (aφ) f = aφ, (a f ′)+ = a+ and so a f ′ = a. In U, therefore, a∗ ≤ f ′. In the
case that e = f , e′ = f ′ and the equality ae′ = a ensures that a belongs to the maximal
submonoid with identity e′, considered either in T or in U (see the comments following
Result 2.1) which is He′ ; that is, a∗ = e′.

If e , f , then since S is strongly connected, there exists s ∈ S such that s+ = f
and s∗ = e. As above, there exists t ∈ T , with t+ = f ′ and te′ = t, such that tφ = s.
Thus (ta)+ = (ta+)+ = (te′)+ = t+ = f ′. In U, therefore, f ′ R ta L (ta)∗ ≤ a∗ ≤ f ′. By
Result 5.2, U has D-majorization, whereby f ′ = (ta)∗ and so f ′ = a∗.

Therefore for each a ∈ D, a∗ ∈ D and a∗φ = (aφ)∗. It follows that for any distinct
nonzero projections e, f ∈ S , (e′, f ′) ∈ R ◦ L. Suppose a projection g of U is D-related
in U to a projection in D. Then there is a sequence of elements of U from some e′ ∈ P′
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to g that begins either e′ R u L h or e′ L u R h, for some u ∈ U\PU , h ∈ PU . Now,
by Lemma 6.5, u = kt, where k ∈ PU and t = t1 . . . tn for some t1, . . . , tn ∈ X0. Here
u+ ≤ k, so u = u+t. In the case e′ R u, u = e′t ∈ D and so h = u∗ ∈ D. In the case e′ L u,
h = u+ ≤ t+1 ∈ P′. Since t+1 D e′ D h, by D-majorization we obtain h = t+1 ∈ P′.

By induction, it follows that the subset D of T is an entire D-class, that is, by
Result 5.3, a J-class, of U. Referring to Section 5, denote by F the r-principal factor
associated with D. Also by Result 5.3, U is an R-subdirect product of its r-principal
factors. Thus F belongs to the R-variety generated by U.

We may regard F as D ∪ {0}. Since U is strict, F is a (strongly) connected restriction
semigroup and so, by Result 5.1, if t1, t2 ∈ D, then t1t2 ∈ D if and only if t∗1 = t+2 ;
similarly, (t1φ)(t2φ) , 0 in S if and only if (t1φ)∗ = (t2φ)+, and so if and only if t∗1 = t+2 .
Therefore the extension of φ to F, mapping 0 to 0, is an R-homomorphism upon S ,
completing the proof. �

The next result, complemented by Proposition 7.9, completes the proof of the first
statement of Theorem 7.1.

Corollary 7.11. Let W be a variety of restriction semigroups in the interval
[(B2)R,BR]. Then W = (〈W〉LR)R ∩ BR.

Proof. One inclusion is obvious. The case W = (B2)R follows from Lemma 7.2, so
suppose otherwise. If W ⊂ mon(T), then by Result 6.8, W = BR ∩mon(T). Now
the proof of the corresponding result for [(B0)R, (B0)R ∨M] in Proposition 7.9 is
straightforwardly modified, using instead the first part of Proposition 7.5.

In the general case W and, therefore, (〈W〉LR)R ∩ BR, is not contained in mon(T).
By Proposition 6.10, (〈W〉LR)R ∩ BR is generated by its strongly connected members.
Let S be such a semigroup. Now S is the direct limit of its finitely generated restriction
subsemigroups. While not every such subsemigroup T will be strongly connected,
each has only a finite semilattice of projections, by Corollary 6.6, and so can be
extended to a finitely generated, strongly connected subsemigroup by adding a new
generator, chosen from S , for each pair (e, f ) of nonzero projections of T such that
Re ∩ L f is empty. Thus in fact (〈W〉LR)R ∩ BR is generated by its finitely generated,
strongly connected members. If S is such a member, it LR-divides a member of the
R-variety W and so, by Lemma 7.10, it belongs to W, as required. �

Once the first statement of the theorem has been proved, the second follows
immediately from the two equations (B ∩ mon(N))R ∩ BR = BR ∩ mon(N) and
(((B0)R ∨ N)LR)R = B0 ∨ N.

8. Pseudovarieties of strict left restriction semigroups

This section is the one-sided analogue of [9, Section 6]. It was shown there that
the pseudovarietal analogues of the material cited in Section 6 hold in their entirety,
since finiteness is preserved by all the relevant processes. Refer to Section 4 for an
introduction to the topic of this section and basic connections between pseudovarieties
and varieties in this context.
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Recall from the final paragraphs of Section 4 that the lattice L(FB) of
pseudovarieties of strict left restriction semigroups is the disjoint union of the lattice
L(F(D ∨M)) and the interval [FB0, FB]. Result 4.14 decomposes the former as
shown in (the pseudovarietal analogue of) Figure 1. The second is the disjoint union
of the intervals [FB0, FB0 ∨ FM] and [FB2, FB2 ∨ FM = FB].

It remains to show that the pseudovarietal analogue of Theorem 7.1 holds. While
this could be achieved by demonstrating that finiteness is preserved throughout the
proofs in Section 7, it can in fact be deduced from the varietal theorem by a
combination of general arguments and the finiteness arguments in Corollaries 4.12
and 6.6, as we now show.

The analogue of the second part of Theorem 7.1 follows similarly and so we do not
bother to state it here. Note that throughout this section the subscript LR refers to the
pseudovariety of left restriction semigroups so generated.

Theorem 8.1. The maps V→ VR ∩ FBR and W→ 〈W〉LR are mutually inverse order
isomorphisms between the interval [FB0, FB] in the lattice of pseudovarieties of left
restriction semigroups and the corresponding interval [F(B0)R, FBR] in the lattice of
pseudovarieties of restriction semigroups.

Proof. That the maps take their respective domains into each other follows from
the pseudovarietal analogue of Lemma 7.2, which is immediate from the results of
Section 4.

We next show the analogue of Corollary 7.7: that if V is a pseudovariety of
left restriction semigroups in the interval [FB0, FB], then V = 〈VR ∩ FBR〉LR. One
inclusion is clear.

Let S ∈ V and let U be the variety generated by S . It may be assumed that B0 ∈ U,
for if not we may replace S by S × B0 ∈ V. Since S is finite, U is locally finite and
FU is the pseudovariety generated by S . Applying Corollary 7.7, S belongs to the
variety of left restriction semigroups generated by UR ∩ BR and so there exists a strict
restriction semigroup U in UR, an LR-subsemigroup T and an LR-homomorphism
of T upon S . Now T may clearly be assumed finitely generated as a left restriction
semigroup; and we may take for U the restriction semigroup generated as such by the
generators of T .

By Corollary 6.6, U is also finitely generated as a left restriction semigroup, so by
local finiteness of U, T is finite. Thus S ∈ 〈FUR ∩ FBR〉LR = 〈VR ∩ FBR〉LR.

It remains to prove the combined analogues of Proposition 7.9 and Corollary 7.11:
if W is a pseudovariety of restriction semigroups in the interval [F(B0)R, FBR], then
W = 〈WR〉LR ∩ FBR.

Again, one direction is clear. Let S ∈ 〈WR〉LR ∩ FBR. Thus there exists a finite strict
restriction semigroup U ∈W, an LR-subsemigroup T and an LR-homomorphism of
T upon S . Let U be the variety of restriction semigroups generated by U. It may
be assumed that B0 ∈ U, for, similarly to the above, if not we may replace U by the
finite restriction semigroup U × B0 ∈W. Now S belongs to the LR-variety generated
by U and so, applying Proposition 7.9 and Corollary 7.11, S ∈ U. But U is locally
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finite and so S belongs to the pseudovariety generated by U, which is included in W,
as required. �

Therefore the diagram of the lattice of pseudovarieties of strict left restriction
semigroups is again that in Figure 1, subject to suitably modified notation. Finally
it may be noted that all the relevant category-theoretic theorems from [13] respect
finiteness, yielding from the following a description of the interval [FB2, FB] in the
lattice of pseudovarieties of finite left strict restriction semigroups.

Result 8.2 [9, Theorem 6.4]. The analogues of the isomorphisms R and C in
Theorem 6.7 are mutually inverse isomorphisms between the lattice of pseudovarieties
of finite categories and the interval [F(B2)R, FBR] in the lattice of pseudovarieties of
finite strict restriction semigroups.
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