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ABSTRACT. A linear two-level atmospheric model is employed to study the influence of ice-sheet
topography on atmospheric stationary waves. In particular, the stationary-wave-induced temperature
anomaly is considered locally over a single ice-sheet topography, which is computed using the plastic
approximation. It is found that stationary waves induce a local cooling which increases linearly with the
ice volume for ice sheets of horizontal extents smaller than �1400 km. Beyond this horizontal scale, the
dependence of stationary-wave-induced cooling on the ice volume becomes gradually weaker. For a
certain ice-sheet size, and for small changes of the surface zonal wind, it is further shown that the
strength of the local stationary-wave-induced cooling is proportional to the basic state meridional
temperature gradient multiplied by the vertical stratification in the atmosphere. These results are of
importance for the nature of the feedback between ice sheets and stationary waves, and may also serve
as a basis for parameterizing this feedback in ice-sheet model simulations (e.g. through the Pleistocene
glacial/interglacial cycles).

INTRODUCTION
At the Last Glacial Maximum (LGM; �18–20 ka BP) the
Northern Hemisphere was occupied by two major ice
sheets, both absent today: the Laurentide ice sheet over
North America and the Eurasian ice sheet. The LGM extents
of these ice sheets are well constrained by observational
data (Clark and Mix, 2002; Dyke, 2004), whereas their
evolution to their maximum extents remains unconstrained
(Dyke and others, 2002; Kleman and others, 2002). In
addition to the orbital variations of the Earth (Milankovitch,
1930; Berger, 1978), feedbacks between the ice sheets and
their environment must be taken into account when
considering the evolution of the ice sheets through the last
glacial/interglacial cycle. A number of early studies have
shown that the high albedo and the elevation of the ice
sheets are important feedbacks that further support ice
growth (e.g. Weertman, 1976; Källén and others, 1979;
Oerlemans, 1980). Furthermore, the ice sheets constitute
topographic barriers, which influence the mid-latitude
atmospheric circulation (Kutzbach and Guetter, 1986; Cook
and Held, 1988; Kageyama and Valdes, 2000; Justino and
others, 2005; Abe-Ouchi and others, 2007). In turn, the
changes in the circulation patterns may alter the temperature
and precipitation fields over the ice sheets themselves
(Oerlemans, 1979; Lindeman and Oerlemans, 1987; Hall
and others, 1996; Roe and Lindzen, 2001a,b). Some studies
even suggest that variations in the orbital parameters
influence the atmospheric circulation, which may be an
important mechanism supporting the onset of the Northern
Hemisphere glaciations (Kageyama and others, 2004;
Cubasch and others, 2006; Otieno and Bromwich, 2009).
The presence of ice sheets may also shift the precipitation
pattern to an increased dominance of upslope precipitation
(Sanberg and Oerlemans, 1983; Roe, 2005; Van den Berg
and others, 2008).

Several studies have successfully simulated the last
glacial/interglacial cycle in reasonable accord with obser-
vational data (e.g. Pollard, 1982; Tarasov and Peltier, 1997,
2004; Paillard, 1998; Bonelli and others, 2009). However,

uncertainties associated with, for example, ice dynamics,
basal sliding and the atmospheric state still remain.
Simulations of the last glacial/interglacial cycle using
dynamical ice-sheet models forced by climatology, com-
puted by Atmospheric General Circulation models
(AGCMs), show the sensitivity to the atmospheric state
(Abe-Ouchi and others, 2007; Charbit and others, 2007).
Charbit and others (2007) found that the simulated ice
volumes and spatial extents of the ice sheets were highly
dependent on the AGCM used to force the ice-sheet model.
Depending on the AGCM, the maximum difference in
simulated ice volume in the Northern Hemisphere at the
LGM was 30� 1015 m3, which is more than half the
estimated ice-equivalent sea-level reduction at the LGM.

While the influence of albedo and ice-elevation feed-
backs on the surface mass balance (SMB) of an ice sheet
are relatively straightforward, the feedbacks from atmos-
pheric circulation may be more complex. Variations of the
zonal mean wind have an impact on the amplitude and
phase of the temperature anomalies induced by the
topographically forced stationary waves due to the pres-
ence of an ice sheet (Hoskins and Karoly, 1981; Held,
1983). This may also have an impact on the SMB of ice
sheets. An illuminating study (Roe and Lindzen, 2001a)
examined how a single ice sheet on an idealized continent
evolved from a regional-scale initial size to a continental-
scale equilibrium size using a coupled stationary-wave ice-
sheet model. This study suggests that features of the ice
sheet at equilibrium are strongly shaped by temperature
anomalies created by topographically forced stationary
waves, which serve to increase its equilibrium extent. Roe
and Lindzen primarily focused on how the interactions
between the stationary waves and the ice sheet affected its
equilibrium features. Given the complex dependence of the
stationary-wave-induced temperature anomalies over the
ice sheet on its spatial structure, however, the nature of the
feedback between the stationary waves and ice-sheet
topography may vary qualitatively throughout the evolution
of the ice sheet.
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In this study, we examine the stationary-wave response to
changes in ice-sheet topography in a linear, steady, quasi-
geostrophic two-level model. We have deliberately chosen a
highly idealized atmospheric model and a plastic ice-sheet
topography to allow for qualitative analyses and analytical
solutions of the stationary-wave response over a broad range
of parameters. The emphasis of this study is on the influence
of ice-sheet topography on local stationary-wave-induced
temperature anomalies, rather than on fully coupled inter-
actions between stationary waves and ice sheets that was
addressed by Roe and Lindzen (2001a). The present study,
which does not encompass any surface mass-balance
calculations for the ice sheets, aims to derive relations for
the stationary-wave-induced temperature anomalies over ice
sheets that can serve as a basis to parameterize the stationary-
wave feedback in ice-sheet models. One central result is that
the mean stationary-wave-induced cooling over the ice sheet
increases linearly with ice volume for small to intermediate-
sized ice sheets. In the context of a one-dimensional (1-D)
ice-sheet model, Roe and Lindzen (2001b) proposed that the
stationary-wave-induced temperature anomaly should be
proportional to the maximum height of the ice sheet. Our
results suggest that a near-linear dependence of the tempera-
ture anomaly on the ice volume is appropriate for a two-
dimensional (2-D) ice sheet; for a 1-D ice sheet we obtain a
near-linear dependence on the ice volume per unit width.

MODEL FORMULATION AND BOUNDARY
CONDITIONS
Ice-sheet topography
The ice-sheet profile is calculated under the assumption of
perfect plasticity (Van der Veen, 1999). As a result of the
plastic approximation, the ice sheet deforms instantly when
the applied stress exceeds a critical value given by the yield
stress, �0. This implies that the stress within the ice sheet
never exceeds the yield stress and that the ice thickness can
be related to its horizontal extent, here measured as the half-
length of the ice sheet, L, in both horizontal directions. The
assumption of perfect plasticity, which is a first-order
approximation of ice-sheet topography, has been success-
fully used in previous studies to obtain analytical expres-
sions of ice-sheet/climate interactions (e.g. Weertman, 1976;
Källén and others, 1979). Accounting for local isostatic
depression, the maximum height of the ice-sheet surface, �0,
and the maximum ice thickness, H0, are related to the
horizontal extent as

�0 ¼ �

1þ �
L

� �1=2

, ð1Þ

H0 ¼ ð1þ �Þ�0: ð2Þ
Here � � 2�0=ð�igÞ relates the height of the ice sheet to its
length scale, and � � �i=ð�m � �iÞ yields the bedrock
depression, where �i is the ice density, �m the mantle
density and g gravitational acceleration. For each gridpoint,
the height of the ice-sheet surface is given by

�ðx, yÞ ¼ �0AðxdÞAðydÞ, ð3Þ
where xd and yd represent the distance from the centre of the
ice sheet to x and y, respectively, and

AðpdÞ ¼ 1� jpd=Ljð Þ1=2, if jpd=Lj � 1,

AðpdÞ ¼ 0, if jpd=Lj > 1,
ð4Þ

where pd is centre distance. Finally, the total ice volume, V ,
is given by

V ¼ 4L2Hm ¼ 4L2ð1þ �Þ�m ¼ 16
9
ð1þ �Þ1=2�1=2L5=2, ð5Þ

where Hm and �m represent the mean ice thickness and
height of the ice surface, respectively. Integrating Equa-
tion (3) from 0 to L in both the x and y directions, it can be
shown that ðHm, �mÞ ¼ 4=9ðH0, �0Þ.
Stationary-wave model
The atmospheric response to ice-sheet topography is exam-
ined in a linear two-level quasi-geostrophic model on a �-
plane channel. The model is schematically outlined in
Figure 1. Note that, although the two-level model is highly
idealized, it has been widely used in the past as it enables
analytical solutions. The rationale for choosing a linear
model with topographic forcing is partly based on the results
obtained by Cook and Held (1988), who suggested that the
winter stationary-wave pattern over North America at the
LGM was primarily a linear response to topographic forcing.
Unfortunately, the linear model cannot resolve interactions
between ice sheets and transient waves acting on synoptic
timescales (3–7 days). Topographically forced changes of
these waves can influence both the precipitation and the
temperature variability, two features that could have a
significant impact on the ice-sheet mass balance. In
Cartesian coordinates, using the rigid-lid approximation,
the barotropic and baroclinic stream function anomalies,  M

and  T, of the linear quasi-geostrophic two-level model take
the form

@

@t
þUM

@

@x

� �
r2 M þ �0

@ M

@x
þUT

@

@x
r2 T

¼ � f0
H

UM �UTð Þ�,
ð6Þ

@

@t
þUM

@

@x

� �
r2 T � 2Ld�2 T
� �þ �0

@ T

@x

þUT
@

@x
r2 M þ 2 MLd�2� � ¼ f0

H
UM �UTð Þ�,

ð7Þ

where �ðx, yÞ is the height to the ice-sheet surface and x and
y are the Cartesian coordinates in the zonal and meridional
directions, respectively. Equations (6) and (7) are identical to
Holton’s (2004) equations (8.15) and (8.16), except for the
surface-topography terms on the right-hand sides of our
equations. These terms enter the equations through the

Fig. 1. The two-level model configuration. The stream function
anomalies,  1 and  2, correspond to the 250 and 750 hPa levels,
respectively. The barotropic and baroclinic stream function
anomalies,  M and  T, are given by  M ¼ ð 1 þ  2Þ=2 and
 T ¼ ð 1 �  2Þ=2. The temperature anomaly at 500 hPa, T 0, is
proportional to  T, and the topographic forcing is represented by
the height of the ice-sheet surface, �.
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lower boundary condition of the vertical velocity, w, which
is nonzero in our case, due the non-flat surface. The
remaining notations of Equations (6) and (7) are the Laplace
operator, r2, the geometric model depth, H, the Coriolis
parameter, f0, and �0, which is the meridional gradient of f0.
Both f0 and �0 are calculated at 508N. The exact choice of
this latitude does not change the conclusions of this study.
The Rossby radius of deformation, Ld, is given by

Ld ¼ NH
2f0

, ð8Þ

where N ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðg=�Þð@�=@zÞp
is the Brunt–Väisälä frequency

(� is the potential temperature). Hence the value of Ld
increases with the vertical stability of the atmosphere. The
subscripts M and T denote barotropic and baroclinic
quantities, respectively, and are related to each model level
as

aM ¼ a1 þ a2
2

barotropic ð9Þ

aT ¼ a1 � a2
2

baroclinic, ð10Þ

where a is an arbitrary variable, and subscripts 1 and 2
denote the upper and lower model levels, respectively.
Using this notation, UM is the vertically averaged zonal
mean wind, and UT is the thermal wind (i.e. the vertical
wind shear scaled by 2). Both UM and UT are spatially
uniform and related to the corresponding stream function
through the geostrophic approximation.

As the timescale of ice-sheet expansion is much longer
than that of the atmosphere, we neglect the local time
derivatives in Equations (6) and (7). The resulting steady-state
barotropic and baroclinic equations are then given by

UM
@

@x
r2 M þ �0

@ M

@x
þUT

@

@x
r2 T

¼ � f0
H
ðUM �UTÞ� � 1

2�F
r2ð M �  TÞ,

ð11Þ

UM
@

@x
r2 T� 2Ld�2 T
� �þ �0

@ T

@x
þUT

@

@x
r2 Mþ 2Ld�2 M
� �

¼ f0
H
ðUM�UTÞ� þ 1

2�F
r2ð M�  TÞ� 2

�T
Ld�2 T:

ð12Þ
A typical feature of the linear quasi-geostrophic steady-state
equations ((9) and (10)) is the occurrence of a resonance
singularity at the critical stationary zonal wavenumber,
which depends mainly on the zonal mean wind (Held,
1983). The singularity, which gives rise to an infinite stream
function response, is removed by adding linear damping on
vorticity with the damping timescale, �F, to the lower model
equation. We have also included radiative damping in the
baroclinic equation (10), which relaxes the topographically
forced temperature anomalies towards a zonal mean state,
with timescale �T.

Through the hydrostatic equation, the temperature
anomaly at the 500hPa level, T 0, is given by:

T 0 ¼ 2f0 T

R
, ð13Þ

where R is the gas constant for dry air. The background
meridional temperature gradient, Ty , is given by the thermal

wind relation as

Ty ¼ � 2f0UT

R
: ð14Þ

We assume that UM and UT are related to each other as
UT ¼ 0:4UM, which is in rough agreement with the annual
mean present-day climate at mid-latitudes in the Northern
Hemisphere (Peixoto and Oort, 1992). The equations above
are solved using standard fast Fourier transforms on a
domain which is periodic in the x direction (here interpreted
as longitude). In the meridional direction, the boundary
conditions  M ¼ 0 and  T ¼ 0 are applied at 908N and 08.
We use 512 gridpoints in both horizontal directions.

Experimental design
The boundary condition of the two-level model is repre-
sented by a single ice sheet. Due to the periodic nature of
the atmospheric model in the zonal direction, the east–west
location of the ice sheet is irrelevant. The northern margin of
the ice sheet is chosen to be fixed at yN=758N, implying that
the position of the southern margin is determined by the ice-
sheet half-length, L.

To calculate atmospheric temperature anomalies of
reasonable amplitude in the two-level model, we need to
assign a proper atmospheric basic state, which is determined
by the zonal mean wind, UM, the vertical wind shear, UT,
and the deformation radius, Ld. Because the basic state in a
glacial climate is not precisely known, we need to find
combinations of UM, UT and Ld that seem physically
reasonable. To proceed, we consider the following two
atmospheric basic states:

Present-day: UM ¼ 9m s–1; UT ¼ 3:6m s–1; Ld ¼ 700 km.

Glacial: UM ¼ 12m s–1; UT ¼ 4:8ms–1; Ld ¼ 810 km.

Roughly, the present-day state represents annual mean
present-day conditions in mid- to high latitudes in the
Northern Hemisphere. The annual variations of the basic
state parameters at these latitudes are quite small; the jet
stream is weaker in the summer but compensated by a
northward shift (Peixoto and Oort, 1992). Because most
ablation occurs in the summer months, the stationary-wave
influence on the local ice-sheet climate should be inter-
preted as the summer response. The glacial state is
calculated using a stronger background meridional tempera-
ture gradient. This is a rough estimate of the atmospheric
conditions during periods with extensive ice sheets in the
Northern Hemisphere, such as at the LGM (e.g. Cook and
Held, 1988). The value of Ld for both states is calculated
under the assumption that the atmospheric state, on longer
timescales, is near the critical shear of baroclinic instability,
which is given by 2UT ¼ �0Ld�2 (Stone, 1978). The
maximum amplitude of the stationary-wave-induced tem-
perature over a continental-scale ice sheet of similar extent
to the Laurentide ice sheet at the LGM is –4.78C for the
present-day basic state and –5.78C for the glacial basic state,
which is the same order of magnitude as simulated by Roe
and Lindzen (2001a).

Due to the sparse vertical resolution of the two-level
model, the temperature anomalies computed at the 500hPa
level (�6 km height) should be interpreted as temperature
anomalies at the ice-sheet surface, which reaches a
maximum elevation of 3.7 km in this study. Due to the
uncertainties associated with the meridional distribution of
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the local temperature anomaly in channel models, we use
the ice-sheet area-averaged temperature anomaly, T

0
, to

monitor the net stationary-wave influence on the tempera-
ture over the ice sheet. The numerical values of the
parameters used in this study are given in Table 1.

THE SCALE-DEPENDENT INTERACTION BETWEEN
ICE SHEETS AND STATIONARY WAVES
Here, we analyse qualitatively how temperature and snow-
fall anomalies forced by the ice sheet can affect its mass
balance and evolution. In particular, we examine the scale
dependence of effects that act either to change the ice
volume or to reorganize the ice-sheet structure. Concep-
tually, the rate of change of the surface height of an ice sheet
can be expressed as

@�

@t
¼ f ðTs,w, �,r�, :::Þ, ð15Þ

where Ts is the surface temperature. Here the mass-balance
function, f , contains all processes that locally affect the
height of the ice sheet, including accumulation, ablation
and ice dynamics. Note that for a perfectly plastic ice sheet,
the shape and the volume are independent of the local mass
balance. However, in this conceptual analysis we allow for
departures from the perfect plastic behaviour that enforces a
parabolic ice-sheet profile. To qualitatively analyse the inter-
action between the stationary waves and the ice sheet, we
assume the stationary-wave-induced temperature anomaly,
T 0, and the topographically forced vertical velocity, w, give
rise to small perturbations on the surface mass balance of an
ice sheet that is essentially in equilibrium, i.e. f � 0. Hence,
we crudely approximate Equation (15) as

@�

@t
¼ �pT 0 þ qw, ð16Þ

where p � �@f =@Ts and q � @f =@w are positive constants
converting the temperature anomaly and the vertical vel-
ocity to actual mass balance. The rationale for Equation (15)
is that we assume the temperature anomalies primarily
influence the surface mass balance via ablation (Roe and
Lindzen, 2001a,b) and that the accumulation increases with
vertical velocity, resulting in enhanced upslope precipitation
(Sanberg and Oerlemans, 1983; Roe and Lindzen, 2001a).
In reality, accumulation can also be influenced by the
stationary-wave-induced temperature anomalies, an effect
that is omitted here for the sake of simplicity. Note that the
simplistic temperature dependence of the ablation in Equa-
tion (15) assumes some pre-existing ablation, which a small
temperature perturbation may either enhance or reduce.
Essentially, T 0 > 0 implies ice-elevation decrease due to
enhanced melting, whereas T 0 < 0 implies ice-elevation
increase due to reduced melting.

The isolated effect of our crude representation of topo-
graphically induced snowfall is to move the ice sheet up-
wind. Using the fact that w ¼ U2ð@�=@xÞ in Equation (15),
we obtain the advection equation @�=@t � qU2ð@�=@xÞ ¼ 0,
describing a shape-preserving upwind translation of the ice
sheet. Note that this simple linear accumulation formula has
no net effect on the ice-sheet mass balance. In reality, the
topographically induced snowfall is a nonlinear function of
the vertical velocity and tends generally to enhance the
accumulation over an ice sheet (e.g. Sanberg and Oerle-
mans, 1983; Roe and Lindzen, 2001a). We can crudely

estimate the implied upwind translation speed, qU2, re-
sulting from the accumulation formula of Roe and Lindzen
(2001a, fig. 4). By linearizing this formula around w ¼ 0 and
taking the surface temperature to be at freezing point, we
obtain q � 1:5� 10�6. For a surface wind speed of 5m s–1,
the upwind translation speed is found to be �250ma–1.
Thus, this crude consideration suggests that topographically
induced snowfall can induce a tendency for the ice sheets to
move upwind with a speed of a few hundredma–1.

To examine the effect on the ice sheet of the simple
ablation representation of Equation (16), we set q ¼ 0, and
consider a single Fourier component of the ice sheet and the
forced response

ð M, T, T 0, �Þ ¼ ~ MðtÞ, ~ TðtÞ, eT ðtÞ, ~�ðtÞ� �
eikxsin ly, ð17Þ

where k and l are the zonal and meridional wavenumbers,
respectively. The time, t, is associated with the growth and
decay of the ice sheet, which is much longer than the
timescale of the atmosphere. Inserting Equation (17) into
Equations (11) and (12), multiplying by i=k and using
Equation (13), we obtain after some algebra (see Appendix):eT ¼ �	
~�, ð18Þ
where 	 � 4f0

2ðUM �UTÞ=RH. The function 
ðk, lÞ relates
the Fourier component of the ice sheet to the corresponding
temperature anomaly. The analytical expression for this
function is given in the Appendix. Substituting Equation (18)
into Equation (16) yields

@~�

@t
¼ p	
~�, ð19Þ

which has solutions of the form

~� ¼ expðp	
tÞ: ð20Þ
As p and 	 are positive constants, Fourier components for
which Reð
Þ > 0 experience a positive feedback from the
ablation anomalies; in the absence of stabilizing feedbacks
they would grow exponentially. Wavenumbers for which
Reð
Þ < 0, conversely, tend to decay. For a hypothetical
infinite ice sheet characterized by a single Fourier com-
ponent, Reð
Þ > 0 would correspond to a situation with
cold/warm temperature anomalies at the ice-sheet crests/
troughs. The associated pattern of decreased and increased
ablation will act to increase the amplitude of the sinusoidal
ice-sheet wave.

The quantity p	 Imð
Þ can be interpreted as the frequency
of the ice-sheet Fourier components, implying that the

Table 1. Numerical values of the parameters used

Parameter Symbol Value

Coriolis parameter f0 1.1 �10�4 s�1

Meridional gradient of f0 �0 1.5 �10�11 ms�1

Geometric model depth H 12 km
Radiative damping timescale �T 10 days
Ekman damping timescale �F 5 days
Ice-sheet northern margin yN 758N
Plastic ice-sheet parameter � 10m
Bedrock depression parameter � 0.4
Gas constant for dry air R 287 J K–1 kg–1

Liakka and Nilsson: Stationary waves and local ice-sheet climate 537

https://doi.org/10.3189/002214310792447824 Published online by Cambridge University Press

https://doi.org/10.3189/002214310792447824


associated phase velocity in the zonal direction is given by

cp ¼ �p	
Imð
Þ
k

ð21Þ

and the zonal group velocity is given by

cg ¼ �p	@
Imð
Þ
@k

: ð22Þ

For a hypothetical sinusoidal ice sheet, Imð
Þ < 0 implies
negative temperature anomalies and hence reduced ablation
on the eastern (leeward) side of the crests; on the western
(windward) side of the crests the opposite is true. This
ablation pattern will act to advance the ice sheet eastward,
i.e. inducing an eastward phase velocity. Hence, the phase
shift between the ice sheet and the temperature anomalies,
determined by Imð
Þ, affects the spatial evolution of the ice
sheet but not its volume.

The scale-dependent interactions between the ice sheet
and the stationary-wave-induced temperature anomalies are
illustrated in Figure 2, which shows the real and the
imaginary part of 
ðk, lÞ. As a response to the ablation
anomalies, low, as well as high, ice-sheet wavenumbers
tend be amplified, whereas intermediate wavenumbers tend
to be attenuated (Fig. 2a). The positive interval of the low
wavenumbers terminates at the wavenumber of the station-
ary equivalent barotropic Rossby wave (say Ks; grey lines in
Fig. 2a), beyond which an interval with negative wave-
numbers is encountered. The stationary Rossby waves tend to
dominate the atmospheric response (Charney and Eliassen,
1949; Held, 1983). When UT ¼ 0, the wavenumber of the
stationary Rossby wave is Ks � ðks2 þ ls

2Þ1=2 ¼ ð�0UM
�1Þ1=2;

for typical atmospheric values of UT and Ld, Ks is slightly
smaller. Note that it is for length scales comparable to the
stationary wave that the ice sheet experiences the strongest
growth due to the stationary-wave-induced ablation. The
shift from negative temperature anomalies to positive
anomalies at ks is essentially a barotropic phenomenon; an
analogous transition from negative to positive stream-
function response occurs in a barotropic model. The shift
back to negative temperature anomalies (i.e. Reð
Þ > 0) at

higher wavenumbers occurs when zonal advection of rela-
tive vorticity begins to dominate.

The phase shift of the stationary-wave-induced tempera-
ture anomalies, determined by Imð
Þ, results in an
eastward downstream advancement of the phase for all
wavenumbers (Equation (21); Fig. 2). This results from
enhanced melting due to positive anomalies on the
upstream side and reduced melting due to negative
anomalies on the downstream side of the ice-sheet crests,
which is the typical barotropic stationary-wave response
over a topographic barrier (Held, 1983). Further, Figure 2
reveals that the group velocity can be downstream as well
as upstream depending on the wavenumber. The strongest
growing wavenumbers, encountered near the wavenumber
of the stationary Rossby wave, have a downstream group
velocity. This tendency of downwind advancement due to
ablation will compete with the effect due to topograph-
ically induced snowfall, which acts to advance the ice
sheet upwind.

Earlier, we estimated that topographically induced snow-
fall can advance an ice sheet upwind at a speed of a few
hundred ma–1 and further noted that this speed is inde-
pendent of the wavenumber. We now attempt a rough
estimate of the downwind phase speed of the ice sheet
caused by the ablation anomalies due to the stationary
waves. For this purpose we use the ablation formula
presented by Roe and Lindzen (2001b), which yields
p ¼ 1:2ma–1 8C–1. Substituting this value into Equation (20)
indicates phase speeds of the ice-sheet wavenumbers
between 5000 and 15 000ma–1 for the largest scales
(k < 6), and approaching zero for smaller scales. This crude
analysis suggests that the ablation-induced phase speeds of
long waves, which are directed downwind, can be an order
of magnitude greater than the upwind phase speed that is
induced by upslope snowfall. This very crude estimate of the
ablation-induced phase speeds is probably on the high side,
because it assumes some background ablation everywhere
over the ice sheet all year round. Thus, if, for instance,
ablation occurs during a quarter of the year, the phase
speeds would be reduced by 75%.

Fig. 2. (a) Real and (b) imaginary parts of the transfer function, 
 (Equation (17)), for the following atmospheric basic states: ‘present day’
(solid curve; UM ¼ 9m s–1, UT ¼ 3:6m s–1 and Ld ¼ 700 km) and ‘glacial’ (dashed curve; UM ¼ 12m s–1, UT ¼ 4:8m s–1 and Ld ¼ 810 km)
as a function of zonal wavenumber, k (meridional wavenumber is set to l ¼ 1). The stationary Rossby wavenumbers, ks, for the present-day
and glacial basic states are indicated by the grey vertical solid and dashed lines, respectively. The values of 
 are set nondimensional by the
scale factor UMLd�2. Reð
Þ < 0 corresponds to a positive stationary wave-induced temperature anomaly over the ice sheet, and Imð
Þ < 0
implies a positive phase speed, i.e. eastward ice-sheet propagation.
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THE INFLUENCE OF ICE VOLUME ON THE LOCAL
STATIONARY-WAVE-INDUCED TEMPERATURE
ANOMALY
In the previous section, we found that different scales of the
stationary waves, described by the function 
, act to either
enhance or reduce ice-sheet ablation. In this section, we
consider how the shape and volume of the ice sheet
influence the local stationary-wave-induced temperature
response. The plastic nature of the ice sheets is exploited in
the analysis.

Figure 3 shows the stationary-wave-induced temperature
anomaly, averaged over the ice sheet as a function of the
ice volume. The temperature in Figure 3 is nondimensio-
nalized by the multiplication of ðTyLdÞ�1. In addition to the
present-day and glacial basic states, we include two
simulations with different values of Ld (the grey curves in
the figure). Because the deformation radius, Ld, is associ-
ated with the vertical stratification in the atmosphere
(Equation (8)), these additional simulations serve to illustrate
the sensitivity to changes of the lapse rate in the glacial
atmosphere, an issue that is still uncertain for the LGM
(Abe-Ouchi and others, 2007). The larger value of Ld
corresponds to a strongly stratified atmosphere, implying a
smaller lapse rate. Equivalently, the smaller value of Ld
correponds to a larger lapse rate. The scaled stationary-
wave-induced temperature exhibits nearly the same re-
sponse for all basic states in Figure 3. This means that the
scaled temperature anomaly is proportional to TyLd,
provided the surface zonal wind, which is proportional
to the temperature anomaly (Equation (18)), remains
roughly constant.

To further examine the temperature anomaly changes
with ice volume in Figure 3, we consider the ice-sheet
Fourier components (Equation (18)). To begin, it is
illustrative to consider a general ice-sheet formulation,
defined as

� ¼ �0��ðx=L, y=LÞ: ð23Þ
Here, �0 is the maximum height of the ice-sheet surface. The
extent of the ice sheet is constrained by its half-length, L, and
its shape is given by ��. In the zonal direction, the Fourier

coefficients of Equation (23) are given by

~� ðknÞ ¼ �0
4
Re

Z L

0
cosðknxÞ��ðx=LÞ dx, ð24Þ

where Re is the circumference of the Earth at a certain
latitude and kn ¼ 2�n=Re. Substituting x=L by r and
rearranging

~� ðknÞ ¼ �0
2L
Re

FðaÞ, ð25Þ

where a � knL and

FðaÞ � 2
Z 1

0
cosðarÞ��ðrÞ dr : ð26Þ

Equation (25) states that the Fourier coefficients of the 1-D
ice-sheet topography (and hence the Fourier coefficients of
the temperature anomalies) are proportional to the hori-
zontal extent in addition to the maximum height. The 2-D
Fourier representation of the ice sheet takes the form

~� ðkn, lnÞ ¼ �0
A
Re

2 FðaÞGðbÞ, ð27Þ

where ln is the meridional wavenumber, b � lnL, and GðbÞ
is proportional to FðbÞ. Relating the mean height of the ice
sheet to its maximum height as �m ¼ ��0, where 0 < � < 1,
Equation (27) can be rewritten as

~� ðkn, lnÞ ¼ V
�Re

2 FðaÞGðbÞ: ð28Þ

Thus, for any ice-sheet representation, the Fourier coeffi-
cients of the ice-sheet topography are proportional to the ice
volume multiplied by the functions FðaÞ and GðbÞ, which
are determined by the shape of the ice sheet. Using the first-
order plastic approximation of ice-sheet topography, the
general formulation of the ice-sheet Fourier coefficients can
be substituted by � ¼ 4ð1þ �Þ=9 and �� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x=L

p
,

implying that:

~� ðkn, lnÞ ¼ 9
4

V
Re

2ð1þ �Þ FðaÞGðbÞ: ð29Þ

Using Equation (18), we can relate the Fourier components
of the plastic ice sheet to the corresponding temperature

Fig. 3. The scaled area-mean stationary-wave-induced temperature anomaly, T
0ðTyLdÞ�1, as a function of ice volume, V , for two

atmospheric basic states: ‘present-day’ (solid curve; UM ¼ 9m s–1, UT ¼ 3:6m s–1 and Ld ¼ 700 km) and ‘glacial’ (dashed curve;
UM ¼ 12m s–1, UT ¼ 4:8m s–1 and Ld ¼ 810 km). The grey curves represent the same basic state as ‘glacial’, with the exception that
Ld ¼ 600 km (solid grey curve) and Ld ¼ 1000 km (dashed grey curve). These states are included to illustrate the sensitivity of the stationary
temperature anomaly to changes in the atmospheric lapse rate.
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anomalies:

eT ¼ � 9	

4

V
Re

2ð1þ �Þ FðaÞGðbÞ, ð30Þ

where FðaÞ is now given by

FðaÞ � 2
Z 1

0
cosðarÞ

ffiffiffiffiffiffiffiffiffiffiffi
1� r

p
dr: ð31Þ

This function can be written using the Fresnel integrals, C
and S, as

FðaÞ ¼
ffiffiffiffiffiffi
2�

p

a3=2
sinðaÞC

ffiffiffiffiffiffi
2a
�

r !
� cosðaÞS

ffiffiffiffiffiffi
2a
�

r !" #
, ð32Þ

where Fð0Þ ¼ 4=3. Function F is shown in Figure 4. For
small arguments, the functions F and G decrease only
slowly, implying a regime where the lowest Fourier co-
efficient of the ice sheet is roughly proportional to V .
Specifically, F decreases by only 3% in the interval
0 < a < 0:5. Thus for a < 0:5, a linear relationship between
the first few Fourier coefficients of the ice sheet and ice
volume is a good approximation. At 508 latitude this
condition applies when L < 2000=n km or equivalently
when

V <
16ð1þ �Þ1=2�1=2

9
0:5Re

2�n

� �5=2

: ð33Þ

For the parameters given in Table 1 (� ¼ 10 m, � ¼ 0:4),
there is a linear relationship between ~� and V when
V <40�106=n5=2 km3. This is illustrated in Figure 5: for
wavenumber n ¼ 2, ~� increases linearly with V until
V ¼ 7:1� 106 km3, which is equivalent to L ¼ 1000 km.
For increasing zonal wavenumbers, the necessary condition
for linearity (Equation (32)) is strongly constrained by
the n�5=2 dependence. As a consequence, for n ¼ 3 and
n ¼ 4, the linear relationship breaks down at about
V ¼ 2:6� 106 km3 (L ¼ 700 km) and V ¼ 1:2� 106 km3

(L ¼ 500 km), respectively.
The properties of the spectral plastic ice-sheet represen-

tation show that if the response is dominated by a few low
wavenumbers, as suggested in Figure 2, then the tempera-
ture anomaly should initially increase linearly with ice
volume. However, as the ice sheet grows, the increase
declines and eventually stops, owing to higher values of a

and b. This pattern is analytically described for each
Fourier component in Equation (29) and, because the full
solution in a linear model is given by the superposition of
the individual Fourier components, it is also evident for
all basic states in Figure 3. Notably, the present-day basic
state temperature anomaly decreases at a slower rate than
the other basic states. This occurs because the strongest
response is encountered at higher wavenumbers in the
present-day case due to a lower value of the zonal
mean wind.

THE STATIONARY-WAVE INFLUENCE ON THE
TEMPERATURE OVER AN EQUATORWARD-
EXPANDING ICE SHEET
In the previous section we showed that if the ice sheet
grows, the stationary-wave-induced cooling becomes
stronger. In addition, the surface temperature over the ice
sheet depends on the latitude as well as the height of the
ice sheet. Simple 1-D models have demonstrated that the
general temperature decrease with altitude and latitude
may give rise to two equilibrium solutions: a small unstable
ice sheet and a larger stable one (Weertman, 1976). Here
we follow Roe and Lindzen (2001b) and consider also the
effect of stationary-wave-induced temperature anomalies
on the mean temperature over the ice sheet. For an
anchored northern margin, we write T s, as

T s ¼ TN � TysLþ ��m þ T
0
: ð34Þ

Our representation of the mean surface temperature over
the ice sheet contains the temperature at the northern
margin, TN, the surface background meridional temperature
gradient, Tys, the lapse rate, �, and the area-mean

stationary-wave-induced temperature, T
0
. Both Tys and �

are negative, implying that for a southward-expanding ice
sheet there is a warming due to the meridional temperature
gradient and a cooling due to the atmospheric lapse rate.
To examine the different processes contributing to the mean
surface-temperature change, we differentiate Equation (33)

Fig. 4. Solution of the Fresnel integral defined in Equation (31).
Parameter a is given by a ¼ kL, where k is the zonal wavenumber
and L is the ice-sheet half-length. When a < 0:5, the value of FðaÞ
changes �3%, implying a near-linear relationship between the
Fourier amplitudes of ice-sheet topography and ice volume.

Fig. 5. The amplitude of the Fourier coefficients of ice-sheet
topography, ~�, as a function of ice-sheet volume, V , for zonal
wavenumber k ¼ 1 (solid curve), k ¼ 2 (dashed curve), k ¼ 3
(dashed-dotted curve) and k ¼ 4 (dotted curve). All solutions have
been calculated using meridional wavenumber l ¼ 1.
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with respect to V . Using Equation (4) for a plastic ice sheet,
we obtain

@T s

@V
¼ �ATysV�3=5 þ B�V�4=5 þ @T

0

@V
, ð35Þ

where

A � ð2=5Þ 9= 16ð1þ �Þ1=2�1=2
h in o2=5

and

B � ð4=45Þ 9�2= 16ð1þ �Þ3
h in o1=5

are positive constants containing the ice-sheet height-to-
length parameter, �, and the bedrock sinking parameter, �.
For an equatorward-expanding ice sheet, the background
meridional temperature gradient, Tys (defined negative),
leads to warming over the ice sheet. This warming is
countered by the lapse rate and the stationary waves, both
inducing a cooling over the ice sheet. The relative
importance of the processes acting to change the mean
temperature depends on the ice volume. The effect of the
elevation (hereafter referred to as the ice-elevation effect)
on the mean temperature is strongest for small ice sheets
and decays rapidly with increasing ice volume. The near-
linear dependence of the stationary-wave temperature
on ice volume implies a slower decay as the ice
volume increases.

Figure 6 shows the derivative of the mean temperature
with respect to V , with and without the effect of the
stationary waves. In the absence of stationary waves, the
temperature initially decreases despite the fact that the ice
sheet expands equatorward. The cooling for small ice
sheets is related to the ice-elevation effect. The associated
reduction of the ablation can destabilize a small ice sheet,
prompting it to expand, as pointed out by Weertman
(1976). Eventually, at V � 0:3� 106 km3, the effect of the
background meridional temperature gradient begins to
dominate, inducing a net temperature increase over the
expanding ice sheet.

The stationary waves induce a mean cooling over the
expanding ice sheet (the glacial basic state: solid curve in
Fig. 3). This is especially true for a range of intermediate-
sized ice sheets, for which the stationary-wave effect is
relatively strong compared with the other processes. There is
a regime between V � 1� 106 km3 and V ¼ 10� 106 km3

(equivalent to L ¼ 470 and 1200 km, respectively), where
the cooling due to stationary waves along with the ice-
elevation almost completely cancel out the effect of the
meridional temperature gradient on the mean temperature.

For comparison, Figure 6 also illustrates the stationary-
wave parameterization suggested by Roe and Lindzen
(2001b) (dashed curve). They assumed that the local
stationary-wave-induced temperature anomaly is propor-
tional to the maximum height of the ice sheet, i.e. it
depends on the ice volume in the same way as the ice-
elevation effect. The strength of the stationary-wave-
induced cooling in their parameterization is given by
–58C/2 km (equivalent to their CTT case). Compared with
the case without any stationary waves, the inclusion of the
stationary-wave representation due to Roe and Lindzen
enhances the cooling over the equatorward-expanding ice
sheet by up to an order of magnitude for larger ice sheets.
However, this representation of the stationary-wave-in-
duced temperature anomaly decays faster with ice volume
than our results obtained from the two-level model (solid
curve in Fig. 6). This implies that the representation of
Roe and Lindzen shifts into the warming regime for smaller
ice sheets.

Figure 6 suggests that stationary waves can strongly
modify the mean temperature over an equatorward-
expanding ice sheet. Potentially, this can result in a strong
stationary-wave/ablation feedback, especially for small to
intermediate sizes of ice sheets. The strength of this
feedback, however, is not entirely determined by the
area-mean temperature anomaly. Because ablation occurs
at the ice-sheet margin, the stationary-wave feedback
depends also on the distribution of the temperature
anomaly over the ice sheet. To further examine this issue,
one should use a spherical geometry instead of the channel
geometry used here.

Fig. 6. The derivative of the mean surface temperature over the ice sheet with respect to ice volume (i.e. the solution of Equation (34)) in the
absence of stationary waves (grey curve) and with stationary waves (black curves). The black solid curve represents the case for the stationary-
wave-induced temperature anomaly computed in the two-level model with the ‘glacial’ basic state (UM ¼ 12m s–1, UT ¼ 4:8m s–1 and
Ld ¼ 810 km). The black dashed curve is calculated using the stationary-wave-induced temperature representation of Roe and Lindzen
(2001b). The surface meridional temperature gradient is set to –78C (1000 km)–1 and the atmospheric lapse rate, �, to –6.58Ckm–1.
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SUMMARY AND CONCLUSION
In this study, interactions between the steady atmospheric
stationary-wave-induced temperature anomalies and ice-
sheet topography have been considered in a linear quasi-
geostrophic two-level model on a �-plane channel. We
emphasize that the idealized two-level model neglects
several atmospheric processes of importance for the inter-
action between stationary waves and ice sheets. For
example, we have not considered interactions between
the topography and the mean flow, a feature that could also
influence the local atmospheric wave response (Charney
and DeVore, 1979). To obtain the qualitative behaviour of
the stationary-wave-induced temperature response, we
chose to monitor the stationary-wave feedback using the
mean temperature anomaly, averaged over the whole ice-
sheet area rather than the ice-sheet margin. However, the
local temperature response in a two-level model is quite
symmetric around the centre of the ice sheet. Therefore, the
qualitative analysis also applies at other parts of the ice
sheet (e.g. the southern margin). To study the spatial
distribution of the temperature anomaly over an ice sheet in
more detail, it is appropriate to use spherical geometry
rather than the channel geometry used here. Furthermore,
to allow for physical interpretations and analytical solu-
tions, we have used an idealized representation of the ice-
sheet topography, based on the plastic approximation (Van
der Veen, 1999).

The Fourier analysis presented shows that ablation due
to the stationary-wave-induced temperature anomalies acts
to propagate the ice sheet downstream. This feature was
noted by Lindeman and Oerlemans (1987), who investi-
gated mass-balance perturbations on the LGM ice sheets
using a two-level atmospheric model in combination with a
statistically based mass-balance model. Further, the positive
feedback on the ice sheet due to the ablation anomalies is
most pronounced for length scales comparable to that of
the stationary Rossby wave; a feature that can be inferred
from the equilibrium ice-sheet shapes computed by Roe
and Lindzen (2001a), with and without the effect of
stationary-wave-induced temperature anomalies. On an
infinite ice sheet with constant height, the ablation/station-
ary-wave feedback will act to generate sinusoidal perturba-
tions of a wavelength close to that of the stationary wave,
and these perturbations will propagate eastward (Fig. 2).
This hypothetical scenario has similarities with the spatial
evolution of sea-surface temperature anomalies that arise
from interaction with stationary atmospheric waves (Nils-
son, 2001). In the coupled atmosphere/ice-sheet model of
Roe and Lindzen (2001a), the scale-selective stationary-
wave feedbacks affect how a small initial ice sheet evolves
to its equilibrium extent (see their fig. 13): initially, the ice
sheet expands westward due to topographically forced
accumulation, whereas stationary waves influence the later
stages of the evolution, characterized by an eastward
expansion of the ice sheet. Ice dynamics also play an
important role in ice-sheet evolution in the simulations of
Roe and Lindzen (2001a).

A central result of our study is that the area-mean
stationary-wave-induced cooling over small to intermediate-
sized ice sheets is directly proportional to their ice volume.
The underlying reason is that a few low-wavenumber
stationary waves dominate the response. As long as their
wavelengths are large compared to the ice-sheet extent, the

stationary-wave-induced temperature anomaly is propor-
tional to the ice volume. However, the response also
depends on the Fourier component of the ice sheet
corresponding to the wavenumber of the stationary wave.
The amplitude of this Fourier component increases with
increasing ice volume. Using the first-order plastic approx-
imation of ice-sheet topography, the stationary-wave-in-
duced cooling increases linearly with ice volume as long as
the dominant wavelength of the atmospheric response
satisfies the condition 
 > 4�L, where L is the half-length
of the ice sheet. For an atmospheric response which is
dominated by zonal wavenumber 3, we found that 
 > 4�L
applies for ice sheets with L < 700 km, or, equivalently
V < 2:6� 106 km3 using the standard parameters in this
study. For larger ice sheets, the dependence of the local
stationary-wave-induced cooling on the ice volume be-
comes gradually weaker, implying that the linear relation-
ship breaks down.

The proportionality between the stationary-wave-in-
duced temperature and ice volume obtained here is in
contrast with Roe and Lindzen (2001b), who parameterized
the stationary-wave-induced temperature anomaly as being
proportional to the maximum height of the ice-sheet
surface. This representation of the stationary waves gives
rise to a relatively strong impact on the mean temperature
over small equatorward-expanding ice sheets, whereas the
representation due to ice volume entails a relatively
stronger influence on the mean temperature over larger
ice sheets. More specifically, there is a range of inter-
mediate-sized ice sheets (here between V ¼ 1� 106 and
V ¼ 10� 106 km3) where the stationary waves contribute
to a net temperature decrease over an equatorward-
expanding ice sheet.

The amplitude of the topographically forced stationary-
wave-induced temperature is a function of the size and
shape of the ice sheet, as well as the atmospheric basic
state. For small changes of the surface zonal wind, we find
that the stationary-wave-induced temperature anomaly is
proportional to TyLd, i.e. the background meridional
temperature gradient times the Rossby radius of deform-
ation. As Ld depends on the atmospheric lapse rate, this
result yields an estimate of the impact of the background
temperature state on the stationary-wave-induced tempera-
ture anomaly over the ice sheet. Unfortunately, changes of
the atmospheric basic state through a glacial/interglacial
cycle remain an unresolved issue (Abe-Ouchi and others,
2007; Charbit and others, 2007).

The present analysis only considered the stationary-wave
interactions with a single isolated ice sheet. The Pleistocene
glacials, however, are generally characterized by two
continental-scale mid-latitude ice sheets in the Northern
Hemisphere. Modelling studies suggest that at the LGM the
stationary-wave response to the Laurentide ice sheet
enhanced the baroclinic eddy activity downstream, which
may lead to an intensification of storm tracks and associ-
ated precipitation over the Fennoscandian ice sheet
(Kageyama and Valdes, 2000). Potentially, the Laurentide
ice sheet could also influence the stationary-wave-induced
ablation on Fennoscandia. However, the far-field station-
ary-wave response is not as strong as the local response
(Held, 1983), suggesting that teleconnection effects are
small compared to effects of stationary waves forced locally
by the Fennoscandian ice sheet.
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In agreement with Lindeman and Oerlemans (1987) and
Roe and Lindzen (2001a), we found that the atmospheric
flow response has a leading-order impact on the local
climate over ice sheets, manifested by negative temperature
anomalies of several degrees. The new important result is
that the stationary-wave-induced cooling locally over the
ice sheet is proportional to the ice volume and the product
of the meridional temperature gradient multiplied by the
Rossby radius of deformation. These intriguing new features
deserve further attention in a more realistic framework that
includes a more complete atmospheric model and a
dynamical representation of the ice sheet.

ACKNOWLEDGEMENTS
We thank F. Colleoni, N. Kirchner, E. Källén, A. Vallgren and
two anonymous reviewers for valuable comments on the
manuscript. The work reported here was supported by the
Swedish Research Council and the Climate Research School
at Stockholm University and is a contribution from the Bert
Bolin Centre for Climate Research.

REFERENCES
Abe-Ouchi, A., T. Segawa and F. Saito. 2007. Climatic conditions

for modelling the Northern Hemisphere ice sheets throughout
the ice age cycle. Climate Past, 3(3), 423–438.

Berger, A.L. 1978. Long-term variations of caloric insolation
resulting from the Earth’s orbital elements. Quat. Res., 9(2),
139–167.

Bonelli, S. and 6 others. 2009. Investigating the evolution of major
Northern Hemisphere ice sheets during the last glacial–inter-
glacial cycle. Climate Past, 5(3), 329–345.

Charbit, S., C. Ritz, G. Philippon, V. Peyaud and M. Kageyama.
2007. Numerical reconstructions of the Northern Hemisphere
ice sheets through the last glacial–interglacial cycle. Climate
Past, 3(1), 15–37.

Charney, J.G. and J.G. DeVore. 1979. Multiple flow equilibria
in the atmosphere and blocking. J. Atmos. Sci., 36(7),
1205–1216.

Charney, J.G. and A. Eliassen. 1949. A numerical method for
predicting the perturbations of the middle latitude westerlies.
Tellus, 1(2), 38–54.

Clark, P.U. and A.C. Mix. 2002. Ice sheets and sea level of the Last
Glacial Maximum. Quat. Sci. Rev., 21(1–3), 1–7.

Cook, K.H. and I.M. Held. 1988. Stationary waves of the ice age
climate. J. Climate, 1(8), 807–819.

Cubasch, U., E. Zorita, F. Kaspar, J.F. Gonzalez-Rouco,
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APPENDIX
To relate the stationary-wave-induced temperature anomaly
to ice-sheet topography, we insert Equation (17) into
Equations (11) and (12), and multiply by i=k:

�
 ~M ¼ � ~ MM R

T
�MT

þ Ti
�MT

ðA1Þ
2f~ ¼ � 0

 T UMH
ð �UTÞ
�~, ðA2Þ

where �

� � 
R




 2
� þ 2

R
� i , A3


 
 2
� þ 
 2

R

�
ð Þ

�

� � �TM þ MM R T

�
�MT

þ FR
TT ,

�MT
ðA4Þ

� �
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R � RT 1þ �TT
�MT

� �
� RF 1þ �MM

�MT

� �
, ðA5Þ

�MM � K2ðUM þUTÞ � �0 þ 2UMLd�2, ðA6Þ
�MT � K2ðUM þUTÞ � �0 � 2UTLd�2, ðA7Þ
�TM � K2ðUM �UTÞ � �0 þ 2UMLd�2, ðA8Þ
�TT � K2ðUM �UTÞ � �0 þ 2UTLd�2, ðA9Þ
RT � 2

�TLd2k
, ðA10Þ

RF � K 2

�Fk
: ðA11Þ

Using the hydrostatic equation (13), the spectral representa-
tion of stationary-wave-induced temperature anomaly yieldseT ¼ �	
~�: ðA12Þ

Liakka and Nilsson: Stationary waves and local ice-sheet climate544

https://doi.org/10.3189/002214310792447824 Published online by Cambridge University Press

https://doi.org/10.3189/002214310792447824

