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CONVERGENCE OF HYBRID SLICE SAMPLING VIA SPECTRAL GAP
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Abstract

It is known that the simple slice sampler has robust convergence properties; however, the
class of problems where it can be implemented is limited. In contrast, we consider hybrid
slice samplers which are easily implementable and where another Markov chain approxi-
mately samples the uniform distribution on each slice. Under appropriate assumptions on
the Markov chain on the slice, we give a lower bound and an upper bound of the spectral
gap of the hybrid slice sampler in terms of the spectral gap of the simple slice sampler.
An immediate consequence of this is that the spectral gap and geometric ergodicity of the
hybrid slice sampler can be concluded from the spectral gap and geometric ergodicity of
the simple version, which is very well understood. These results indicate that robustness
properties of the simple slice sampler are inherited by (appropriately designed) easily
implementable hybrid versions. We apply the developed theory and analyze a number of
specific algorithms, such as the stepping-out shrinkage slice sampling, hit-and-run slice
sampling on a class of multivariate targets, and an easily implementable combination of
both procedures on multidimensional bimodal densities.
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1. Introduction

Slice sampling algorithms are designed for Markov chain Monte Carlo (MCMC) sampling
from a distribution given by a possibly unnormalized density. They belong to the class of
auxiliary-variable algorithms that define a suitable Markov chain on an extended state space.
Following [6] and [41], a number of different versions have been discussed and proposed
in [4, 9, 20–22, 25, 29, 30, 37]. We refer to these papers for details of algorithmic design
and applications in Bayesian inference and statistical physics. Here let us first focus on the
appealing simple slice sampler setting, in which no further algorithmic tuning or design by the
user is necessary: assume that K ⊆R

d and let the unnormalized density be � : K → (0, ∞).
The goal is to sample approximately with respect to the distribution π determined by �, i.e.
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2 K. ŁATUSZYŃSKI AND D. RUDOLF

π (A) =
∫

A �(x) dx∫
K �(x) dx

, A ∈B(K),

where B(K) denotes the Borel σ -algebra. Given the current state Xn = x ∈ K, the simple slice
sampling algorithm generates the next Markov chain instance Xn+1 by the following two steps:

1. Choose t uniformly at random from (0, �(x)), i.e. t ∼ U (0, �(x)).

2. Choose Xt+1 uniformly at random from

K(t) := {x ∈ K | �(x) > t},
the level set of � determined by t.

The above-defined simple slice sampler transition mechanism is known to be reversible
with respect to π and possesses very robust convergence properties that have been observed
empirically and established formally. For example Mira and Tierney [21] proved that if � is
bounded and the support of � has finite Lebesgue measure, then the simple slice sampler is
uniformly ergodic. Roberts and Rosenthal in [29] provide criteria for geometric ergodicity.
Moreover, in [29, 30] the authors prove explicit estimates for the total variation distance of the
distribution of Xn to π . In the recent work [24], depending on the volume of the level sets, an
explicit lower bound of the spectral gap of simple slice sampling is derived.

Unfortunately, the applicability of the simple slice sampler is limited. In high dimensions
it is in general infeasible to sample uniformly from the level set of �, and thus the second
step of the algorithm above cannot be performed. Consequently, the second step is replaced by
sampling a Markov chain on the level set, which has the uniform distribution as the invariant
one. Following the terminology of [28] we call such algorithms hybrid slice samplers. We refer
to [26], where various procedures and designs for the Markov chain on the slice are suggested
and insightful expert advice is given.

Despite being easy to implement, hybrid slice sampling in general has not been analyzed
theoretically, and little is known about its convergence properties. (A notable exception is
elliptical slice sampling [22], which has recently been investigated in [23], where a geometric
ergodicity statement is provided.) The present paper is aimed at closing this gap by providing
statements about the inheritance of convergence from the simple to the hybrid setting.

To this end we study the absolute spectral gap of hybrid slice samplers. The absolute spectral
gap of a Markov operator P or a corresponding Markov chain (Xn)n∈N is given by

gap(P) = 1 − ‖P‖L0
2,π→L0

2,π
,

where L0
2,π is the space of functions f : K →R with zero mean and finite variance (i.e.∫

K f (x)dπ (x) = 0; ‖f ‖2
2 = ∫

K |f (x)|2 dπ (x) < ∞) and ‖P‖L0
2,π→L0

2,π
denotes the operator norm.

We refer to [32] for the functional-analytic background. From the computational point of view,
the existence of the spectral gap (i.e. gap(P) > 0) implies a number of desirable and well
studied robustness properties, in particular the following:

• The spectral gap implies geometric ergodicity [15, 28] and the variance bounding
property [31].

• For reversible Markov chains, the spectral gap implies that a CLT holds for all functions
f ∈ L2,π (cf. [8, 14]).
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Convergence of hybrid slice sampling 3

• Furthermore, consistent estimation of the CLT asymptotic variance is well established
for geometrically ergodic chains (cf. [2, 7, 10, 11]).

Additionally, quantitative information on the spectral gap allows the formulation of precise
non-asymptotic statements. In particular, it is well known (see e.g. [27, Lemma 2]) that if ν is
the initial distribution of the reversible Markov chain in question, i.e. ν = PX1 , then

∥∥νPn − π
∥∥ tv ≤ (1 − gap(P))n

∥∥∥∥ dν

dπ
− 1

∥∥∥∥
2
,

where νPn = PXn+1 . See [1, Section 6] for a related L2,π convergence result. Moreover, when
considering the sample average, one obtains

E

∣∣∣∣∣∣1n
n∑

j=1

f (Xj) −
∫

K
f (x)dπ (x)

∣∣∣∣∣∣
2

≤ 2

n · gap(P)
+

cp

∥∥∥ dν
dπ

− 1
∥∥∥∞

n2 · gap(P)
,

for any p > 2 and any function f : K →R with ‖f ‖p
p = ∫

K |f (x)|p π (dx) ≤ 1, where cp is an
explicit constant which depends only on p. One can also take a burn-in into account; for further
details see [33, Theorem 3.41]. This indicates that the spectral gap of a Markov chain is central
to robustness and a crucial quantity in both asymptotic and non-asymptotic analysis of MCMC
estimators.

The route we undertake is to conclude the spectral gap of the hybrid slice sampler from the
more tractable spectral gap of the simple slice sampler. So what is known about the spectral
gap of the simple slice sampler? To say more on this, we require the following notation. Define
v� : [0, ∞) → [0, ∞] by v�(t) := vold(K(t)), which for level t returns the volume of the level
set. We say for m ∈N that v� ∈ �m if

• v� is continuously differentiable and v′
�(t) < 0 for any t ≥ 0, and

• the mapping t �→ tv′
�(t)/v�(t)1−1/m is decreasing on the support of v�.

Recently, in [24, Theorem 3.10], it has been shown that if v� ∈ �m, then gap(U) ≥ 1/

(m + 1). This provides a criterion for the existence of a spectral gap as well as a quantitative
lower bound, essentially depending on whether t �→ tv′

�(t)/v�(t)1−1/m is decreasing or not.
Now we are in a position to explain our contributions. Let H be the Markov kernel of the

hybrid slice sampler determined by a family of transition kernels Ht, where each Ht is a Markov
kernel with uniform limit distribution, say Ut, on the level determined by t. Consider

βk := sup
x∈K

(∫ �(x)

0

∥∥∥Hk
t − Ut

∥∥∥2

L2,t→L2,t

dt

�(x)

)1/2

,

and note that the quantity
∥∥Hk

t − Ut
∥∥2

L2,t→L2,t
measures how quickly Ht gets close to Ut. Thus

βk is the supremum over expectations of a function which measures the speed of convergence
of Hk

t to Ut. The main result, stated in Theorem 1, is as follows. Assume that βk → 0 for
increasing k and assume Ht induces a positive semidefinite Markov operator for every level t.
Then

gap(U) − βk

k
≤ gap(H) ≤ gap(U), k ∈N. (1)
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4 K. ŁATUSZYŃSKI AND D. RUDOLF

The first inequality implies that whenever there exists a spectral gap of the simple slice sampler
and βk → 0, then there is a spectral gap of the hybrid slice sampler. The second inequality of
(1) verifies a very intuitive result, namely that the simple slice sampler is always better than
the hybrid one.

We demonstrate how to apply our main theorem in different settings. First, we consider a
stepping-out shrinkage slice sampler, suggested in [26], in a simple bimodal 1-dimensional
setting. Next we turn to the d-dimensional case and on each slice perform a single step of
the hit-and-run algorithm, studied in [3, 16, 38]. Using our main theorem we prove equiva-
lence of the spectral gap (and hence geometric ergodicity) of this hybrid hit-and-run on the
slice and the simple slice sampler. Let us also mention here that in [36] the hit-and-run algo-
rithm, hybrid hit-and-run on the slice, and the simple slice sampler are compared, according
to covariance ordering [19], to a random-walk Metropolis algorithm. Finally, we combine the
stepping-out shrinkage and hit-and-run slice sampler. The resulting algorithm is practical and
easily implementable in multidimensional settings. For this version we again show equivalence
of the spectral gap and geometric ergodicity with the simple slice sampler for multidimensional
bimodal targets.

Further note that we consider single-auxiliary-variable methods to keep the arguments sim-
ple. We believe that a similar analysis can also be done if one considers multi-auxiliary-variable
methods.

The structure of the paper is as follows. In Section 2 the notation and preliminary results are
provided. These include a necessary and sufficient condition for reversibility of hybrid slice
sampling in Lemma 1, followed by a useful representation of slice samplers in Section 2.1,
which is crucial in the proof of the main result. In Section 3 we state and prove the main result.
For example, Corollary 1 provides a lower bound on the spectral gap of a hybrid slice sampler,
which performs several steps with respect to Ht on the chosen level. In Section 4 we apply our
result to analyze a number of specific hybrid slice sampling algorithms in different settings that
include multidimensional bimodal distributions.

2. Notation and basics

Recall that � : K → (0, ∞) is an unnormalized density on K ⊆R
d, and denote the level set

of � by

K(t) = {x ∈ K | �(x) > t}.
Hence the sequence (K(t))t≥0 of subsets of Rd satisfies the following:

1. K(0) = K.

2. K(s) ⊆ K(t) for t < s.

3. K(t) = ∅ for t ≥ ‖�‖∞.

Let vold be the d-dimensional Lebesgue measure, and let (Ut)t∈(0,‖�‖∞) be a sequence of
distributions, where Ut is the uniform distribution on K(t), i.e.

Ut(A) = vold(A ∩ K(t))

vold(K(t))
, A ∈B(K).

Furthermore, let (Ht)t∈(0,‖�‖∞) be a sequence of transition kernels, where Ht is a transition
kernel on K(t) ⊆R

d. For convenience we extend the definition of the transition kernel Ht(·, ·)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/apr.2024.16
Downloaded from https://www.cambridge.org/core. IP address: 18.222.21.16, on 19 Sep 2024 at 02:22:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/apr.2024.16
https://www.cambridge.org/core


Convergence of hybrid slice sampling 5

on the measurable space (K,B(K)). We set

H̄t(x, A) =
⎧⎨⎩0, x �∈ K(t),

Ht(x, A ∩ K(t)), x ∈ K(t).
(2)

In the following we write Ht for H̄t and consider Ht as extension on (K,B(K)). The transition
kernel of the hybrid slice sampler is given by

H(x, A) = 1

�(x)

∫ �(x)

0
Ht(x, A) dt, x ∈ K, A ∈B(K).

If Ht = Ut we have the simple slice sampler studied in [21, 24, 29, 30]. The transition kernel
of this important special case is given by

U(x, A) = 1

�(x)

∫ �(x)

0
Ut(A) dt, x ∈ K, A ∈B(K).

We provide a criterion for reversibility of H with respect to π . Therefore let us define the
density

�(s) = vold(K(s))∫ ‖�‖∞
0 vold(K(r)) dr

, s ∈ (0, ‖�‖∞),

of the distribution of the level sets on ((0, ‖�‖∞),B((0, ‖�‖∞))).

Lemma 1. The transition kernel H is reversible with respect to π if and only if∫ ‖�‖∞

0

∫
B

Ht(x, A) Ut(dx) �(t)dt =
∫ ‖�‖∞

0

∫
A

Ht(x, B) Ut(dx) �(t)dt, A, B ∈B(K). (3)

In particular, if Ht is reversible with respect to Ut for almost all t (concerning �), then H is
reversible with respect to π .

Equation (3) is the detailed balance condition of Ht with respect to Ut in the average
sense, i.e.

E�[H·(x, dy)U·(dx)] =E�[H·(y, dx)U·(dy)], x, y ∈ K.

Now we prove Lemma 1.

Proof. First, note that∫
K

�(x) dx =
∫ ‖�‖∞

0

∫
K

1(0,�(x))(s) dx ds

=
∫ ‖�‖∞

0

∫
K

1K(s)(x) dx ds =
∫ ‖�‖∞

0
vold(K(s)) ds.

From this we obtain for any A, B ∈B(K) that∫
B

H(x, A) π (dx) =
∫

B

∫ �(x)

0
Ht(x, A)

dt∫ ‖�‖∞
0 vold(K(s))ds

dx

=
∫

B

∫ ‖�‖∞

0
1K(t)(x)Ht(x, A)

�(t)

vold(K(t))
dtdx =

∫ ‖�‖∞

0

∫
B

Ht(x, A) Ut(dx) �(t)dt.
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6 K. ŁATUSZYŃSKI AND D. RUDOLF

As an immediate consequence of the previous equation, we have the claimed equivalence of
reversibility and (3). By the definition of the reversibility of Ht according to Ut, we have∫

B
Ht(x, A) Ut(dx) =

∫
A

Ht(x, B) Ut(dx).

This, combined with (3), leads to the reversibility of H. �
We always want to have that H is reversible with respect to π . Therefore we formulate the

following assumption.

Assumption 1. Let Ht be reversible with respect to Ut for any t ∈ (0, ‖�‖∞).

Now we define Hilbert spaces of square-integrable functions and Markov operators. Let
L2,π = L2(K, π ) be the space of functions f : K →R which satisfy ‖f ‖2

2,π := 〈f , f 〉π < ∞,
where

〈f , g〉π :=
∫

K
f (x) g(x) π (dx)

denotes the corresponding inner product of f , g ∈ L2,π . For f ∈ L2,π and t ∈ (0, ‖�‖∞) define

Htf (x) =
∫

K(t)
f (y) Ht(x, dy), x ∈ K. (4)

Note that if x �∈ K(t), then we have Htf (x) = 0 by the convention on Ht; see (2). The Markov
operator H : L2,π → L2,π is defined by

Hf (x) = 1

�(x)

∫ �(x)

0
Htf (x) dt,

and similarly U : L2,π → L2,π is defined by

Uf (x) = 1

�(x)

∫ �(x)

0
Ut(f ) dt,

where Ut(f ) = ∫
K(t) f (x) Ut(dx) is a special case of (4). Furthermore, for t ∈ (0, ‖�‖∞) let L2,t =

L2(K(t), Ut) be the space of functions f : K(t) →R with ‖f ‖2
2,t := 〈f , f 〉t < ∞, where

〈f , g〉t :=
∫

K(t)
f (x) g(x) Ut(dx)

denotes the corresponding inner product of f , g ∈ L2,t. Then Ht : L2,t → L2,t can also be
considered as a Markov operator. Define the functional

S(f ) =
∫

K
f (x) π (dx), f ∈ L2,π ,

as the operator S : L2,π → L2,π which maps functions to the constant functions given by their
mean value. We say f ∈ L0

2,π if and only if f ∈ L2,π and S(f ) = 0. Now the absolute spectral gap
of a Markov kernel or Markov operator P : L2,π → L2,π is given by

gap(P) = 1 − ‖P − S‖L2,π→L2,π
= 1 − ‖P‖L0

2,π→L0
2,π

.
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Convergence of hybrid slice sampling 7

For details of the last equality we refer to [33, Lemma 3.16]. Moreover, for the equivalence of
gap(P) > 0 and (almost sure) geometric ergodicity we refer to [15, Proposition 1.2]. For any
t > 0 the norm ‖f ‖2,t can also be considered for f : K →R. With this in mind we have the
following relation between ‖f ‖2,π and ‖f ‖2,t.

Lemma 2. For any f : K →R, with the notation defined above, we obtain

S(f ) =
∫ ‖�‖∞

0
Ut(f ) �(t) dt. (5)

In particular,

‖f ‖2
2,π =

∫ ‖�‖∞

0
‖f ‖2

2,t �(t) dt. (6)

Proof. The assertion of (6) is a special case of (5), since S( |f |2 ) = ‖f ‖2
2,π . By

∫
K �(x) dx =∫ ‖�‖∞

0 vold(K(s)) ds (see the proof of Lemma 1), one obtains

S(f ) =
∫

K f (x) �(x) dx∫ ‖�‖∞
0 vold(K(s)) ds

=
∫

K

∫ �(x)

0
f (x)

dt dx∫ ‖�‖∞
0 vold(K(s)) ds

=
∫ ‖�‖∞

0

∫
K(t)

f (x)
dx

vold(K(t))
�(t)dt =

∫ ‖�‖∞

0
Ut(f ) �(t) dt,

which proves (5). �

2.1. A useful representation

As in [35, Section 3.3], we derive a suitable representation of H and U. We define a
(d + 1)-dimensional auxiliary state space. Let

K� = {(x, t) ∈R
d+1 | x ∈ K, t ∈ (0, �(x))}

and let μ be the uniform distribution on (K�,B(K�)), i.e.

μ(d(x, t)) = dt dx

vold+1(K�)
.

Note that vold+1(K�) = ∫
K �(x) dx. By L2,μ = L2(K�, μ) we denote the space of functions

f : K� →R that satisfy ‖f ‖2
2,μ := 〈f , f 〉μ < ∞, where

〈f , g〉μ :=
∫

K�

f (x, s) g(x, s) μ(d(x, s))

denotes the corresponding inner product for f , g ∈ L2,μ. Here, similarly to (6), we have

‖f ‖2
2,μ =

∫ ‖�‖∞

0
‖f (·, s)‖2

2,s �(s)ds.

Let T : L2,μ → L2,π and T∗ : L2,π → L2,μ be given by

Tf (x) = 1

�(x)

∫ �(x)

0
f (x, s) ds, and T∗f (x, s) = f (x).
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8 K. ŁATUSZYŃSKI AND D. RUDOLF

Then T∗ is the adjoint operator of T , i.e. for all f ∈ L2,π and g ∈ L2,μ we have

〈f , Tg〉π = 〈T∗f , g〉μ.

Then, for f ∈ L2,μ, define

H̃f (x, s) =
∫

K(s)
f (y, s) Hs(x, dy).

By the stationarity of Us according to Hs it is easily seen that

∥∥H̃f
∥∥2

2,μ
=
∫

K

∫ �(x)

0

∣∣H̃f (x, s)
∣∣2 ds dx∫

K �(y)dy
=
∫ ‖�‖∞

0

∫
K(s)

∣∣H̃f (x, s)
∣∣2 Us(dx) �(s)ds

≤
∫ ‖�‖∞

0

∫
K(s)

∫
K(s)

|f (y, s)|2 Hs(x, dy) Us(dx) �(s)ds

=
∫ ‖�‖∞

0

∫
K(s)

|f (x, s)|2 Us(dx) �(s)ds = ‖f ‖2
2,μ .

Furthermore, define

Ũf (x, s) =
∫

K(s)
f (y, s) Us(dy).

Then H̃ : L2,μ → L2,μ, Ũ : L2,μ → L2,μ, and∥∥H̃
∥∥

L2,μ→L2,μ
= 1,

∥∥Ũ
∥∥

L2,μ→L2,μ
= 1.

By construction we have the following.

Lemma 3. Let H, U, T, T∗, H̃, and Ũ be as above. Then

H = TH̃T∗ and U = TŨT∗.

Here TT∗ : L2,π → L2,π satisfies TT∗f (x) = f (x), i.e. TT∗ is the identity operator, and
T∗T : L2,μ → L2,μ satisfies

T∗Tf (x, s) = Tf (x),

i.e. it returns the average of the function f (x, ·) over the second variable.

3. On the spectral gap of hybrid slice samplers

We start with a relation between the convergence on the slices and the convergence of
TH̃kT∗ to TŨT∗ for increasing k.

Lemma 4. Let k ∈N. Then

∥∥∥T(H̃k − Ũ)T∗
∥∥∥

L2,π→L2,π

≤ sup
x∈K

(∫ �(x)

0

∥∥∥Hk
t − Ut

∥∥∥2

L2,t→L2,t

dt

�(x)

)1/2

.
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Convergence of hybrid slice sampling 9

Proof. First note that ‖f ‖2,π < ∞ implies ‖f ‖2,t < ∞ for �-almost every t. For any k ∈N

and f ∈ L2,π we have

(H̃kT∗f )(x, t) = (Hk
t f )(x) and (ŨT∗f )(x, t) = Ut(f ),

so that

T(H̃k − Ũ)T∗f (x) =
∫ ‖�‖∞

0
(Hk

t − Ut)f (x)
1K(t)(x)

�(x)
dt.

It follows that

∥∥∥T(H̃k − Ũ)T∗f
∥∥∥2

2,π
=
∫

K

∣∣∣∣∫ ‖�‖∞

0
(Hk

t − Ut)f (x)
1K(t)(x)

�(x)
dt

∣∣∣∣2 π (dx)

≤
∫

K

∫ ‖�‖∞

0

∣∣∣(Hk
t − Ut)f (x)

∣∣∣2 1K(t)(x)

�(x)
dt

�(x)∫
K �(y) dy

dx

=
∫ ‖�‖∞

0

∫
K(t)

∣∣∣(Hk
t − Ut)f (x)

∣∣∣2 dx

vold(K(t))

vold(K(t))∫ ‖�‖∞
0 vold(K(s)) ds

dt

=
∫ ‖�‖∞

0

∥∥∥(Hk
t − Ut)f

∥∥∥2

2,t
�(t) dt

≤
∫ ‖�‖∞

0

∥∥∥Hk
t − Ut

∥∥∥2

L2,t→L2,t

‖f ‖2
2,t �(t) dt

=
∫ ‖�‖∞

0

∫
K(t)

∥∥∥Hk
t − Ut

∥∥∥2

L2,t→L2,t

|f (x)|2 dx

vold(K(t))

vold(K(t))∫ ‖�‖∞
0 vold(K(s)) ds

dt

=
∫

K

∫ �(x)

0

∥∥∥Hk
t − Ut

∥∥∥2

L2,t→L2,t

dt

�(x)
|f (x)|2 �(x)∫

K �(y) dy
dx

≤ ‖f ‖2
2,π sup

x∈K

∫ �(x)

0

∥∥∥Hk
t − Ut

∥∥∥2

L2,t→L2,t

dt

�(x)
.

�
Remark 1. If there exists a number β ∈ [0, 1] such that ‖Ht − Ut‖L2,t→L2,t

≤ β for any t ∈
(0, ‖�‖∞), then one obtains (as a consequence of the former lemma) that∥∥∥TH̃kT∗ − S

∥∥∥
L2,π→L2,π

≤ ∥∥TŨT∗ − S
∥∥

L2,π→L2,π
+ βk.

Here we have employed the triangle inequality and the fact that

‖Hk
t − Ut‖L2,t→L2,t ≤ ‖Ht − Ut‖k

L2,t→L2,t
≤ βk;

see for example [33, Lemma 3.16].

Now a corollary follows which provides a lower bound for gap(TH̃kT∗).
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10 K. ŁATUSZYŃSKI AND D. RUDOLF

Corollary 1. Let us assume that gap(U) > 0, i.e. ‖U − S‖L2,π→L2,π
< 1, and let

βk = sup
x∈K

(∫ �(x)

0

∥∥∥Hk
t − Ut

∥∥∥2

L2,t→L2,t

dt

�(x)

)1/2

.

Then
gap(TH̃kT∗) ≥ gap(U) − βk. (7)

Proof. It is enough to prove∥∥∥TH̃kT∗ − S
∥∥∥

L2,π→L2,π

≤ ‖U − S‖L2,π→L2,π
+ βk.

By H̃k = Ũ + H̃k − Ũ and Lemma 4 we have∥∥∥TH̃kT∗ − S
∥∥∥

L2,π→L2,π

=
∥∥∥TŨT∗ − S + T(H̃k − Ũ)T∗

∥∥∥
L2,π→L2,π

≤ ‖U − S‖L2,π→L2,π
+ βk.

�
Remark 2. If one can sample with respect to Ut for every t ≥ 0, then Ht = Ut, and in the
estimate of Corollary 1 we obtain βk = 0 and equality in (7).

Now let us state the main theorem.

Theorem 1. Let us assume that for almost all t (with respect to �) Ht is positive semidefinite
on L2,t, and let

βk = sup
x∈K

(∫ �(x)

0

∥∥∥Hk
t − Ut

∥∥∥2

L2,t→L2,t

dt

�(x)

)1/2

.

Further assume that limk→∞ βk = 0. Then

gap(U) − βk

k
≤ gap(H) ≤ gap(U), k ∈N. (8)

Several conclusions can be drawn from the theorem. First, under the assumption that
limk→∞ βk = 0, the left-hand side of (8) implies that in the setting of the theorem, when-
ever the simple slice sampler has a spectral gap, so does the hybrid version. See Section 4 for
examples. Second, it also provides a quantitative bound on gap(H) given appropriate estimates
on gap(U) and βk. Third, the right-hand side of (8) verifies the intuitive result that the simple
slice sampler is better than the hybrid one (in terms of the spectral gap).

To prove the theorem we need some further results.

Lemma 5.

1. For any t ∈ (0, ‖�‖∞) assume that Ht is reversible with respect to Ut. Then H̃ is self-
adjoint on L2,μ.

2. Assume that for almost all t (with respect to �) Ht is positive semidefinite on L2,t, i.e. for
all f ∈ L2,t, it holds that 〈Htf , f 〉t ≥ 0. Then H̃ is positive semidefinite on L2,μ.
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Convergence of hybrid slice sampling 11

Proof. Note that ‖f ‖2,μ < ∞ implies ‖f (·, t)‖2,t < ∞ for almost all t (with respect to �).

Part 1: Let f , g ∈ L2,μ; then we have to show that

〈H̃f , g〉μ = 〈f , H̃g〉μ.

Note that for f , g ∈ L2,μ we have for almost all t, by the reversibility of Ht, that

〈Htf (·, t), g(·, t)〉t = 〈f (·, t), Htg(·, t)〉t.

Since

〈H̃f , g〉μ =
∫

K�

H̃f (x, t)g(x, t) μ(d(x, t))

=
∫

K

∫ �(x)

0

∫
K(t)

f (y, t) Ht(x, dy)g(x, t)
dt dx

vold+1(K�)

=
∫ ‖�‖∞

0

∫
K(t)

∫
K(t)

f (y, t) Ht(x, dy)g(x, t) Ut(dy) �(t) dt

=
∫ ‖�‖∞

0
〈Htf (·, t), g(·, t)〉t �(t) dt,

the assertion of Part 1 holds.

Part 2. We have to prove for all f ∈ L2,μ that

〈H̃f , f 〉μ =
∫

K�

H̃f (x, t)f (x, t) μ(d(x, t)) ≥ 0.

Note that for f ∈ L2,μ we have for almost all t that

〈Htf (·, t), f (·, t)〉t ≥ 0.

By the same computation as in Part 1 we obtain that the positive semidefiniteness of Ht carries
over to H̃. �

The statements and proofs of the following lemmas closely follow the lines of argument
in [39, 40] and make essential use of [40, Lemma 12 and Lemma 13]. We provide alternative
proofs of the aforementioned lemmas in Appendix A.

Lemma 6. Let H̃ be positive semidefinite on L2,μ. Then∥∥∥TH̃k+1T∗ − S
∥∥∥

L2,π→L2,π

≤
∥∥∥TH̃kT∗ − S

∥∥∥
L2,π→L2,π

, k ∈N. (9)

Furthermore, if

βk = sup
x∈K

(∫ �(x)

0

∥∥∥Hk
t − Ut

∥∥∥2

L2,t→L2,t

dt

�(x)

)1/2
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12 K. ŁATUSZYŃSKI AND D. RUDOLF

and limk→∞ βk = 0, then

‖U − S‖L2,π→L2,π
≤ ‖H − S‖L2,π→L2,π

.

Proof. Let S1 : L2,μ → L2,π and the adjoint S∗
1 : L2,π → L2,μ be given by

S1(f ) =
∫

K�

f (x, s) μ(d(x, s)) and S∗
1(g) =

∫
K

g(x) π (dx).

Thus, 〈S1f , g〉π = 〈f , S∗
1g〉μ. Furthermore, observe that S1S∗

1 = S. Let R = T − S1 and note that
RR∗ = I − S, with identity I, and RR∗ = (RR∗)2. Since RR∗ �= 0, and by the projection property
RR∗ = (RR∗)2, one gets ‖RR∗‖L2,π→L2,π

= 1. We have

RH̃kR∗ = (T − S1)H̃k(T∗ − S∗
1)

= TH̃kT∗ − TH̃kS∗
1 − S1H̃kT∗ + S1H̃kS∗

1 = TH̃kT∗ − S.

Furthermore,
∥∥S1H̃S∗

1

∥∥
L2,μ→L2,μ

≤ 1. By Lemma 12 it follows that∥∥∥RH̃k+1R∗
∥∥∥

L2,π→L2,π

≤
∥∥∥RH̃kR∗

∥∥∥
L2,π→L2,π

,

and the proof of (9) is completed.
By Lemma 4 we obtain

∥∥T(H̃k − Ũ)T∗∥∥
L2,π→L2,π

≤ βk, and by (9) as well as Lemma 3 we
obtain ∥∥∥TH̃kT∗ − S

∥∥∥
L2,π→L2,π

≤ ‖H − S‖L2,π→L2,π
, k ∈N.

This implies by the triangle inequality that

lim
k→∞

∥∥∥TH̃kT∗ − S
∥∥∥

L2,π→L2,π

= ‖U − S‖L2,π→L2,π
,

and the assertion is proven. �
Lemma 7. Let H̃ be positive semidefinite on L2,μ. Then

‖H − S‖k
L2,π→L2,π

≤
∥∥∥TH̃kT∗ − S

∥∥∥
L2,π→L2,π

, (10)

for any k ∈N.

Proof. As in the proof of Lemma 6 we use RH̃kR∗ = TH̃kT∗ − S to reformulate the
assertion. It remains to prove that∥∥RH̃R∗∥∥k

L2,π→L2,π
≤
∥∥∥RH̃kR∗

∥∥∥
L2,π→L2,π

.

Recall that RR∗ is a projection and satisfies ‖RR∗‖L2,π→L2,π
= 1. By Lemma 13 the assertion

is proven.

Now we turn to the proof of Theorem 1.
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Convergence of hybrid slice sampling 13

Proof of Theorem 1. By Lemma 5 we know that H̃ : L2,μ → L2,μ is self-adjoint and positive
semidefinite. By Lemma 6 we have

‖U − S‖L2,π→L2,π
≤ ‖H − S‖L2,π→L2,π

.

By Theorem 1 we have for any k ∈N that∥∥∥TH̃kT∗ − S
∥∥∥

L2,π→L2,π

≤ ‖U − S‖L2,π→L2,π
+ βk. (11)

Then

‖U − S‖L2,π→L2,π
≥
11

∥∥∥TH̃kT∗ − S
∥∥∥

L2,π→L2,π

− βk

≥
10

‖H − S‖k
L2,π→L2,π

− βk

≥ 1 − k (1 − ‖H − S‖L2,π→L2,π
) − βk

= 1 − k gap(H) − βk,

where we applied a version of Bernoulli’s inequality, i.e. 1 − xn ≤ n(1 − x) for x ≥ 0 and n ∈N.
Thus

gap(U) − βk

k
≤ gap(H),

and the proof is completed. �

4. Applications

In this section we apply Theorem 1 under different assumptions with different Markov
chains on the slices. We provide a criterion for geometric ergodicity of these hybrid slice
samplers by showing that there is a spectral gap whenever the simple slice sampler has a
spectral gap.

First we consider a class of bimodal densities in a 1-dimensional setting. We study a
stepping-out shrinkage slice sampler, suggested in [26], which is explained in Algorithm 1.

Then we consider a hybrid slice sampler which performs a hit-and-run step on the slices in a
d-dimensional setting. Here we impose very weak assumptions on the unnormalized densities.
The drawback is that an implementation of this algorithm may be difficult.

Motivated by this difficulty, we study a combination of the previous sampling procedures
on the slices. The resulting hit-and-run stepping-out shrinkage slice sampler is presented in
Algorithm 2. Here we consider a class of bimodal densities in a d-dimensional setting.

4.1. Stepping-out and shrinkage procedure

Let w > 0 be a parameter and � : R→ (0, ∞) be an unnormalized density. We say � ∈Rw

if there exist t1, t2 ∈ (0, ‖�‖∞ ) with t1 ≤ t2 such that the following hold:

1. For all t ∈ (0, t1) ∪ [t2, ‖�‖∞ ), the level set K(t) is an interval.

2. For all t ∈ [t1, t2), there are disjoint intervals K1(t), K2(t) with strictly positive Lebesgue
measure such that

K(t) = K1(t) ∪ K2(t),
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14 K. ŁATUSZYŃSKI AND D. RUDOLF

and for all ε > 0 it holds that Ki(t + ε) ⊆ Ki(t) for i = 1, 2. For convenience we set
Ki(t) = ∅ for t �∈ [t1, t2).

3. For all t ∈ (0, ‖�‖∞ ) we assume δt < w, where

δt :=
⎧⎨⎩infr∈K1(t), s∈K2(t) |r − s| , t ∈ [t1, t2),

0 otherwise.

The next result shows that certain bimodal densities belong to Rw.

Lemma 8. Let �1 : R→ (0, ∞) and �2 : R→ (0, ∞) be unnormalized density functions. Let
us assume that �1, �2 are lower semicontinuous and quasi-concave, i.e. the level sets are open
intervals, and

inf
r∈arg max �1, s∈arg max �2

|r − s| < w.

Then �max := max{�1, �2} ∈Rw.

Proof. For t ∈ (0, ‖�max‖∞ ) let K�max(t), K�1 (t), and K�2 (t) be the level sets of �max, �1,
and �2 of level t. Note that

K�max (t) = K�1 (t) ∪ K�2 (t).

With the choice

t1 = inf{t ∈ (0, ‖�max‖∞ ) : K�1 (t) ∩ K�2 (t) = ∅},
t2 = min{‖�1‖∞ , ‖�2‖∞},

we have the properties 1 and 2. Observe that arg max �i ⊆ K�i (t) for i = 1, 2, which yields

inf
r∈K�1 (t), s∈K�2 (t)

|r − s| ≤ inf
r∈arg max �1, s∈arg max �2

|r − s| < w.

�
In [26] a stepping-out and shrinkage procedure is suggested for the transitions on the level

sets. The procedures are explained in Algorithm 1, where a single transition from the resulting
hybrid slice sampler from x to y is presented.

Algorithm 1. A hybrid slice sampling transition of the stepping-out and shrinkage procedure
from x to y, i.e. with input x and output y. The stepping-out procedure has input x (current
state), t (chosen level), w > 0 (step size parameter from Rw) and outputs an interval [L, R].
The shrinkage procedure has input [L, R] and output y:

1. Choose a level t ∼ U (0, �(x));

2. Stepping-out with input x, t, w outputs an interval [L, R]:

(a) Choose u ∼ U [0, 1]. Set L = x − uw and R = L + w;

(b) Repeat until t ≥ �(L), i.e. L �∈ K(t): Set L = L − w;

(c) Repeat until t ≥ �(R), i.e. R �∈ K(t): Set R = R + w;
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Convergence of hybrid slice sampling 15

3. Shrinkage procedure with input [L, R] outputs y:

(a) Set L̄ = L and R̄ = R;

(b) Repeat:

i. Choose v ∼ U [0, 1] and set y = L̄ + v(R̄ − L̄);

ii. If y ∈ K(t) then return y and exit the loop;

iii. If y < x then set L̄ = y, else R̄ = y.

For short we write |K(t)| = vol1(K(t)), and for t ∈ (0, ‖�‖∞) we set

γt := (w − δt)

w

|K(t)|
( |K(t)| + δt)

.

Now we provide useful results for applying Theorem 1.

Lemma 9. Let � ∈Rw with t2 > 0 satisfying the properties 1 and 2 of the definition of Rw.
Moreover, let t ∈ (0, ‖�‖∞).

1. The transition kernel Ht of the stepping-out and shrinkage slice sampler from Algorithm
1 takes the form

Ht(x, A) = γt Ut(A) + (1 − γt)
[
1K1(t)(x)Ut,1(A) + 1K2(t)(x)Ut,2(A)

]
,

with x ∈R, A ∈B(R), and

Ut,i(A) =
⎧⎨⎩

|Ki(t)∩A|
|Ki(t)| , t ∈ [t1, t2),

0, t ∈ (0, t1) ∪ [t2, ‖�‖∞),

for i = 1, 2; i.e. in the case t ∈ [t1, t2) we have that Ut,i denotes the uniform distribution
in Ki(t). (For t ∈ (0, t1) ∪ [t2, ‖�‖∞ ) we have Ht = Ut since δt = 0 yields γt = 1.)

2. The transition kernel Ht is reversible and induces a positive semidefinite operator, i.e.
for any f ∈ L2,t, it holds that 〈Htf , f 〉t ≥ 0.

3. We have ‖Ht − Ut‖Lt,2→Lt,2
= 1 − γt and

βk ≤
(

1

t2

∫ t2

0
(1 − γt)

2k dt

)1/2

, k ∈N. (12)

Proof. Part 1. For t ∈ (0, t1) ∪ [t2, ‖�‖∞) the stepping-out procedure returns an interval
that contains K(t) entirely. Then, since K(t) is also an interval, the shrinkage scheme returns a
sample with respect to Ut in K(t).

For t ∈ [t1, t2), i ∈ {1, 2}, and x ∈ Ki(t), within the stepping-out procedure, with probabil-
ity (w − δt)/w an interval that contains K(t) = K1(t) ∪ K2(t) is returned, and with probability
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16 K. ŁATUSZYŃSKI AND D. RUDOLF

1 − (w − δt)/w an interval that contains Ki(t) but not K(t) \ Ki(t) is returned. We distinguish
these cases:

Case 1: K(t) contained in the stepping-out output:

Then with probability |K(t)|/(|K(t)| + δt) the shrinkage scheme returns a sample with
respect to Ut, and with probability 1 − |K(t)|/(|K(t)| + δt) it returns a sample with respect
to Ut,i.

Case 2: Ki(t), but not K(t) \ Ki(t), contained in the stepping-out output:

Then with probability 1 the shrinkage scheme returns a sample with respect to Ut,i. In total,
for x ∈ Ki(t) we obtain

Ht(x, A) = (w − δt)

w

[ |K(t)|
|K(t)| + δt

Ut(A) + (
1 − |K(t)|

|K(t)| + δt

)
Ut,i(A)

]
+ (

1 − (w − δt)

w

)
Ut,i(A)

= γtUt(A) + (1 − γt)Ut,i(A),

where we emphasize that for t ∈ (0, t1) ∪ [t2, ‖�‖∞) it follows that γt = 1 (since δt = 0), so that
Ht(x, A) coincides with Ut(A).

Part 2. For A, B ∈B(R) we have∫
A

Ht(x, A) Ut(dx) = γt Ut(B)Ut(A)

+ (1 − γt)
∫

A

[
1K1(t)(x)Ut,1(B) + 1K2(t)(x)Ut,2(B)

]
Ut(dx)

= γt Ut(B)Ut(A) + (1 − γt)
[ |K1(t)|

|K(t)| Ut,1(A)Ut,1(B) + |K2(t)|
|K(t)| Ut,2(A)Ut,2(B)

]
,

which is symmetric in A, B and therefore implies the claimed reversibility with respect to Ut.
Similarly, we have

〈Htf , f 〉t = γt Ut(f )2 + (1 − γt)

[ |K1(t)|
|K(t)| Ut,1(f )2 + |K2(t)|

|K(t)| Ut,2(f )2
]

≥ 0, (13)

where Ut,i(f ) denotes the integral of f with respect to Ut,i for i = 1, 2, which proves the positive
semidefiniteness.

Part 3. By virtue of [33, Lemma 3.16], the reversibility (or equivalently self-adjointness) of
Ht, and [42, Theorem V.5.7], we have

‖Ht − Ut‖L2,t→L2,t = sup
‖f ‖2,t≤1, Ut(f )=0

|〈Htf , f 〉| = sup
‖f ‖2,t≤1, Ut(f )=0

〈Htf , f 〉, (14)

where the last equality follows by the positive semidefiniteness. Observe that for any f ∈ L2,s

with s ∈ [t1, t2) we have by Us,i(f )2 ≤ Us,i(f 2) for i = 1, 2 that

|K1(s)|
|K(s)| Us,1(f )2 + |K2(s)|

|K(s)| Us,2(f )2 ≤ |K1(s)|
|K(s)| Us,1(f 2) + |K2(s)|

|K(s)| Us,2(f 2) = ‖f ‖2
2,s.
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Convergence of hybrid slice sampling 17

Therefore, the equality in (13) yields

‖Ht − Ut‖L2,t→L2,t ≤ sup
‖f ‖2,t≤1, Ut(f )=0

(1 − γt)‖f ‖2
2,t = 1 − γt. (15)

For t ∈ (0, t1) ∪ [t2, ‖�‖∞), by Ht = Ut and 1 − γt = 0 we have an equality. For t ∈ [t1, t2)
with

h(x) = |K(t)|
|K1(t)| 1K1(t)(x) − |K(t)|

|K2(t)| 1K2(t)(x)

the upper bound of (15) is attained for f = h/‖h‖2,t in the supremum expression of (14).
We turn to the verification of (12). For t ∈ (t2, ‖�‖∞ ] we have 1 − γt = 0, and for t ∈ (0, t2)

the function 1 − γt is increasing, which also yields that t �→ (1 − γt)2k is increasing on (0, t2)
for any k ∈N. By [33, Lemma 3.16] we obtain

‖Hk
t − Ut‖L2,t→L2,t ≤ (1 − γt)

k.

Consequently, we have

βk ≤ sup
r∈(0,t2)

1

r

∫ r

0
(1 − γt)

2kdt. (16)

Furthermore, note that for a ∈ (0, ∞), any increasing function g : (0, a) →R, and p, q ∈ (0, a)
with p ≤ q, it holds that

1

p

∫ p

0
g(t) dt ≤ 1

q

∫ q

0
g(t) dt. (17)

The former inequality can be verified by showing that the function p �→ G(p) for p ≥ 0 with
G(p) = 1

p

∫ p
0 g(t) dt satisfies G′(p) ≥ 0. Applying (17) with g(t) = (1 − γt)2k in combination

with (16) yields (12). �
By Theorem 1 and the previous lemma we have the following result.

Corollary 2. For any � ∈Rw the stepping-out and shrinkage slice sampler has a spectral gap
if and only if the simple slice sampler has a spectral gap.

Remark 3. We want to discuss two extremal situations:

• Consider densities � : R→ (0, ∞) that are lower semicontinuous and quasi-concave,
i.e. the level sets are open intervals. Loosely speaking, we assume we have unimodal
densities. Then for any w > 0 we have � ∈Rw (just take t1 = t2 arbitrarily) and δt = 0
for all t ∈ (0, ‖�‖∞). Hence Ht = Ut for all t ∈ (0, ‖�‖∞), and Algorithm 1 provides an
effective implementation of simple slice sampling.

• Assume that � : R→ (0, ∞) satisfies the properties 1 and 2 from the definition of Rw

for some w > 0, but for any t ∈ (0, ‖�‖∞) we have δt ≥ w. In this setting our theory is
not applicable and it is clear that the corresponding Markov chain does not work well,
since it is not possible to get from one part of the support to the other part.

4.2. Hit-and-run slice sampler

The idea is to combine the hit-and-run algorithm with slice sampling. We ask whether a
spectral gap of simple slice sampling implies a spectral gap of this combination. The hit-and-
run algorithm was proposed by Smith [38]. It is well studied (see for example [3, 5, 12, 13,
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18 K. ŁATUSZYŃSKI AND D. RUDOLF

16, 17, 35]) and used for numerical integration (see [33, 34]). We define the setting and the
transition kernel of hit-and-run.

We consider a d-dimensional state space K ⊆R
d and suppose � : K → (0, ∞) is an

unnormalized density. We denote the diameter of a level set by

diam(K(t)) = sup
x,y∈K(t)

|x − y|

with the Euclidean norm |·|. We impose the following assumption.

Assumption 2. The limit κ := limt↓0
vold(K(t))

diam(K(t))d exists, and there are numbers c, ε ∈ (0, 1] such
that

inf
t∈(0,ε)

vold(K(t))

diam(K(t))d
= c > 0. (18)

Note that under Assumption 2 we always have κ ≥ c. If K is bounded, has positive Lebesgue
measure, and satisfies infx∈K �(x) > 0, then Assumption 2 is satisfied with κ = c. Moreover, for
instance, the density of a standard normal distribution satisfies Assumption 2 with unbounded
K, where again c = κ . However, the following example indicates that this is not always the
case.

Example 1. Let K = (0, 1)2 and �(x1, x2) = 2 − x1 − x2. Then for t ∈ (0, 1] we have

K(t) = {(x1, x2) ∈ (0, 1)2 : x2 ∈ (0, min{1, 2 − t − x1})},

so that vol2(K(t)) = 1 − t2/2. Moreover, the fact that {(α, 1 − α) : α ∈ (0, 1)} ⊆ K(t) yields
diam(K(t)) = √

2, so that for ε = 1 we have c = 1/4 and κ = 1/2.

In general, we consider Assumption 2 a weak regularity requirement, since there is no
condition on the level sets and also no condition on the modality.

Let Sd−1 be the Euclidean unit sphere and σd = vold−1(Sd−1). A transition from x to y by
hit-and-run on the level set K(t) works as follows:

1. Choose θ ∈ Sd−1 uniformly distributed.

2. Choose y according to the uniform distribution on the line x + rθ intersected with K(t).

This leads to

Ht(x, A) =
∫

Sd−1

∫
Lt(x,θ)

1A(x + sθ )
ds

vol1(Lt(x, θ ))

dθ

σd

with

Lt(x, θ ) = {r ∈R | x + rθ ∈ K(t)}.
The hit-and-run algorithm is reversible and induces a positive semidefinite operator on L2,t;
see [35]. The following property is well known; see for example [5].

Proposition 1. For t ∈ (0, ‖�‖∞ ), x ∈ K(t) and A ∈B(K) we have

Ht(x, A) = 2

σd

∫
A

dy

|x − y|d−1 vol1(L(x, x−y
|x−y| ))

(19)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/apr.2024.16
Downloaded from https://www.cambridge.org/core. IP address: 18.222.21.16, on 19 Sep 2024 at 02:22:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/apr.2024.16
https://www.cambridge.org/core


Convergence of hybrid slice sampling 19

and

‖Ht − Ut‖L2,t→L2,t
≤ 1 − 2

σd

vold(K(t))

diam(K(t))d
. (20)

Proof. The representation of Ht stated in (19) is well known; see for example [5]. From this
we have for any x ∈ K(t) that

Ht(x, A) ≥ 2

σd

vold(K(t))

diam(K(t))d
· vold(K(t) ∩ A)

vold(K(t))
,

which means that the whole state space K(t) is a small set. By [18] we have uniform ergodicity,
and by [33, Proposition 3.24] we obtain (20). �

Furthermore, we obtain the following helpful result.

Lemma 10. Under Assumption 2, with

βk = sup
x∈K

(∫ �(x)

0

∥∥∥Hk
t − Ut

∥∥∥2

L2,t→L2,t

dt

�(x)

)1/2

,

we have that limk→∞ βk = 0.

Proof. By (20) and [33, Lemma 3.16], in combination with reversibility (or equivalently
self-adjointness) of Ht, it holds that∥∥∥Hk

t − Ut

∥∥∥2

L2,t→L2,t
≤
(

1 − 2

σd

vold(K(t))

diam(K(t))d

)2k

. (21)

Let gk : [0, ‖�‖∞) → [0, 1] be given by

gk(t) =

⎧⎪⎨⎪⎩
(

1 − 2
σd

vold(K(t))
diam(K(t))d

)2k
, t ∈ (0, ‖�‖∞),(

1 − 2 κ
σd

)2k
, t = 0,

which is the continuous extension at zero of the upper bound of (21) with κ ≥ c ∈
(0, 1] from Assumption 2. Note that limk→∞ gk(t) = 0 for all t ∈ [0, ‖�‖∞) and βk ≤
supr∈(0,‖�‖∞]

(
1
r

∫ r
0 gk(t) dt

)1/2
. Considering the continuous function

hk(r) =
⎧⎨⎩

1
r

∫ r
0 gk(t)dt, r ∈ (0, ‖�‖∞],

gk(0), r = 0,

the supremum can be replaced by a maximum over r ∈ [0, ‖�‖∞ ] which is attained, say for
r(k) ∈ [0, ‖�‖∞ ], i.e. βk ≤ hk(r(k))1/2. Define

(r(k)
0 )k∈N := {r(k) | r(k) = 0, k ∈N} ⊆ (r(k))k∈N,

(r(k)
1 )k∈N := {r(k) | r(k) ∈ (0, ε), k ∈N} ⊆ (r(k))k∈N,

(r(k)
2 )k∈N := {r(k) | r(k) ≥ ε, k ∈N} ⊆ (r(k))k∈N.
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20 K. ŁATUSZYŃSKI AND D. RUDOLF

Without loss of generality we assume that (r(k)
0 )k∈N �= ∅, (r(k)

1 )k∈N �= ∅ and (r(k)
2 )k∈N �= ∅. Then

limk→∞ hk(r(k)
0 ) = 0, and using Assumption 2 we have

0 ≤ lim
k→∞ hk(r(k)

1 ) ≤ lim
k→∞ sup

s∈(0,ε)
gk(s) ≤ lim

k→∞

(
1 − 2c

σd

)2k

= 0.

Moreover, by the definition of (r(k)
2 )k∈N, note that 1/r(k)

2 · 1
(0,r(k)

2 )
(t) ≤ ε−1 for t ∈ (0, ∞), so

that

lim
k→∞ hk(r(k)

1 ) = lim
k→∞

∫ ‖�‖∞

0

1
(0,r(k)

1 )
(t)

r(k)
1

gk(t)dt =
∫ ‖�‖∞

0
lim

k→∞

1
(0,r(k)

1 )
(t)

r(k)
1

gk(t)dt = 0.

Consequently limk→∞ hk(r(k)) = 0, so that limk→∞ βk ≤ limk→∞ hk(r(k))1/2 = 0. �
By Theorem 1, this observation leads to the following result.

Corollary 3. Let � : K → (0, ∞) and let Assumption 2 be satisfied. Then the hit-and-run slice
sampler has an absolute spectral gap if and only if the simple slice sampler has an absolute
spectral gap.

We stress that we do not know whether the level sets of � are convex or star-shaped or have
any additional structure. In this sense the assumptions imposed on � can be considered weak.
This also means that it may be difficult to implement hit-and-run in this generality. In the next
section we consider a combination of hit-and-run, stepping-out, and the shrinkage procedure,
for which we provide a concrete implementable algorithm.

4.3. Hit-and-run, stepping-out, shrinkage slice sampler

We combine hit-and-run, stepping-out, and the shrinkage procedure. Let w > 0, let K ⊆R
d,

and assume that � : K → (0, ∞). We say � ∈Rd,w if the following conditions are satisfied:

1. There are not necessarily normalized lower semicontinuous and quasi-concave densities
�1, �2 : K → (0, ∞), i.e. the level sets are open and convex, with

inf
y∈arg max �1, z∈arg max �2

|z − y| ≤ w

2
,

such that �(x) = max{�1(x), �2(x)}.
2. The limit κ := limt↓0

vold(K(t))
diam(K(t))d exists, and there are numbers c, ε ∈ (0, 1] such that

inf
t∈(0,ε)

vold(K(t))

diam(K(t))d
= c.

For i = 1, 2, let the level set of �i be denoted by Ki(t) for t ∈ [0, ‖�i‖∞ ), and set Ki(t) = ∅ for
t ≥ ‖�i‖∞. Then, since � = max{�1, �2}, it follows that K(t) = K1(t) ∪ K2(t). If K is bounded
and has positive Lebesgue measure, then the condition 2 is always satisfied. For K =R

d one
has to check the condition 2. For example, � : Rd → (0, ∞) with

�(x) = max{exp(−α |x|2 ), exp(−β |x − x0|2 )},
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Convergence of hybrid slice sampling 21

and 2β > α satisfies the conditions 1 and 2 for w = 2 |x0|. The rough idea for a transition from
x to y of the combination of the different methods on the level set K(t) is as follows. Consider
a line/segment of the form

Lt(x, θ ) = {r ∈R | x + rθ ∈ K(t)}.
Then run the stepping-out and shrinkage procedure on Lt(x, θ ) and return y. We present in detail
a single transition from x to y of the hit-and-run, stepping-out, and shrinkage slice sampler in
Algorithm 2.

Algorithm 2. A hybrid slice sampling transition of the hit-and-run, stepping-out, and shrink-
age procedure from x to y, i.e. with input x and output y. The stepping-out procedure on Lt(x, θ )
(line of hit-and-run on level set) has inputs x, w > 0 (step size parameter from Rd,w) and
outputs an interval [L, R]. The shrinkage procedure has input [L, R] and output y = x + sθ :

1. Choose a level t ∼ U (0, �(x));

2. Choose a direction θ ∈ Sd−1 uniformly distributed;

3. Stepping-out on Lt(x, θ ) with w > 0 outputs an interval [L, R]:

(a) Choose u ∼ U [0, 1]. Set L = uw and R = L + w;

(b) Repeat until t ≥ �(x + Lθ ), i.e. L �∈ Lt(x, θ ): Set L = L − w;

(c) Repeat until t ≥ �(x + Rθ ), i.e. R �∈ Lt(x, θ ): Set R = R + w;

4. Shrinkage procedure with input [L, R] outputs y:

(a) Set L̄ = L and R̄ = R;

(b) Repeat:

i. Choose v ∼ U [0, 1] and set s = L̄ + v(R̄ − L̄);

ii. If s ∈ Lt(x, θ ) return y = x + sθ and exit the loop;

iii. If s < 0 then set L̄ = s, else R̄ = s.

Now we present the corresponding transition kernel on K(t). Since � ∈Rd,w, we can define
for i = 1, 2 the open intervals

Lt,i(x, θ ) = {s ∈R | x + sθ ∈ Ki(t)}
and have Lt(x, θ ) = Lt,1(x, θ ) ∪ Lt,2(x, θ ). Let

δt,θ,x = inf
r∈Lt,1(x,θ), s∈Lt,2(x,θ)

|r − s| ,

and note that if δt,θ,x > 0 then Lt,1(x, θ ) ∩ Lt,2(x, θ ) = ∅.
We also write for short |Lt(x, θ )| = vol1(Lt(x, θ )), and for A ∈B(K), x ∈ K, θ ∈ Sd−1, let

Ax,θ = {s ∈R | x + sθ ∈ A}. With this notation, for t > 0, the transition kernel Ht on K(t) is
given by
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22 K. ŁATUSZYŃSKI AND D. RUDOLF

Ht(x, A) =
∫

Sd−1

[
γt(x, θ )

∣∣Lt(x, θ ) ∩ Ax,θ
∣∣

|Lt(x, θ )|

+ (1 − γt(x, θ ))
2∑

i=1

1Ki(t)(x)

∣∣Lt,i(x, θ ) ∩ Ax,θ
∣∣∣∣Lt,i(x, θ )

∣∣
]

dθ

σd
,

with

γt(x, θ ) = (w − δt,x,θ )

w
· |Lt(x, θ )|
|Lt(x, θ )| + δt,x,θ

.

The following result is helpful.

Lemma 11. For � ∈Rd,w and for any t ∈ (0, ‖�‖∞ ), the following hold:

1. The transition kernel Ht is reversible and induces a positive semidefinite operator on
L2,t, i.e. for f ∈ L2,t, it holds that 〈Htf , f 〉t ≥ 0.

2. We have

‖Ht − Ut‖L2,t→L2,t
≤ 1 − vold(K(t))

σd diam(K(t))d
; (22)

in particular limk→∞ βk = 0 with βk defined in Theorem 1.

Proof. First, note that Lt(x + sθ, θ ) = Lt(x, θ ) − s, |Lt(x + sθ, θ )| = |Lt(x, θ )|, and γt(x +
sθ, θ ) = γt(x, θ ) for any x ∈R

d, θ ∈ Sd−1, and s ∈R.
Part 1. The reversibility of Ht with respect to Ut (in the setting of � ∈Rd,w) is inherited by
the reversibility of hit-and-run and the reversibility of the combination of the stepping-out and
shrinkage procedure; see Lemma 9.

We turn to the positive semidefiniteness. Let Ct = vold(K(t)). We have

〈f , Htf 〉t =
∫

Sd−1

∫
K(t)

γt(x, θ )f (x)
∫

Lt(x,θ)
f (x + rθ )

dr

|Lt(x, θ )|
dx

Ct

dθ

σd

+
2∑

i=1

∫
Sd−1

∫
Ki(t)

(1 − γt(x, θ ))f (x)
∫

Lt,i(x,θ)
f (x + rθ )

dr∣∣Lt,i(x, θ )
∣∣ dx

Ct

dθ

σd
.

We prove positivity of the first summand. The positivity of the other two summands follows
by the same arguments. For θ ∈ Sd−1 let us define the projected set

Pθ⊥ (K(t)) = {x̃ ∈R
d | x̃⊥θ, ∃s ∈R s.t. x̃ + θs ∈ K(t)}.

Then
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∫
Sd−1

∫
K(t)

γt(x, θ )f (x)
∫

Lt(x,θ)
f (x + rθ )

dr

|Lt(x, θ )|
dx

Ct

dθ

σd

=
∫

Sd−1

∫
P

θ⊥ (K(t))

∫
Lt(x̃,θ)

γt(x̃ + sθ, θ )f (x̃ + sθ ) ×
∫

Lt(x̃+sθ,θ)
f (x̃ + (r + s)θ )

dr

|Lt(x̃ + sθ, θ )|
ds dx̃

Ct

dθ

σd

=
∫

Sd−1

∫
P

θ⊥ (K(t))

∫
Lt(x̃,θ)

γt(x̃, θ )f (x̃ + sθ ) ×
∫

Lt(x̃,θ)−s
f (x̃ + (r + s)θ )

dr

|Lt(x̃, θ ) − s|
ds dx̃

Ct

dθ

σd

=
∫

Sd−1

∫
P

θ⊥ (K(t))

γt(x̃, θ )

|Lt(x̃, θ )|
(∫

Lt(x̃,θ)
f (x̃ + uθ )du

)2 dx̃

Ct

dθ

σd
≥ 0.

This yields that Ht is positive semidefinite.

Part 2. For any x ∈ K(t) and measurable A ⊆ K(t) we have

Ht(x, A) ≥
∫

Sd−1

γt(x, θ )
∫

Lt(x,θ)
1A(x + sθ )

ds

|Lt(x, θ )|
dθ

σd

=
∫

Sd−1

∫ ∞

0
γt(x, θ )1A(x − sθ )

ds

|Lt(x, θ )|
dθ

σd

+
∫

Sd−1

∫ ∞

0
γt(x, θ )1A(x + sθ )

ds

|Lt(x, θ )|
dθ

σd

=
∫
Rd

γt(x,
y
|y| )

σd ·
∣∣∣Lt(x,

y
|y| )
∣∣∣ 1A(x − y)

|y|d−1
dy +

∫
Rd

γt(x,
y
|y| )

σd ·
∣∣∣Lt(x,

y
|y| )
∣∣∣ 1A(x + y)

|y|d−1
dy

= 2

σd

∫
A

γt(x,
x−y
|x−y| )

|x − y|d−1
∣∣∣Lt(x,

x−y
|x−y| )

∣∣∣ dy ≥ vold(K(t))

σd diam(K(t))d
· vold(A)

vold(K(t))
.

Here the last inequality follows from the fact that δt,x,θ ≤ w/2 and |Lt(x, θ )| + δt,x,θ ≤
diam(K(t)). Thus, by [18] we have uniform ergodicity and by [33, Proposition 3.24] we obtain
(22). Finally, limk→∞ βk = 0 follows by the same arguments as in Lemma 10. �

By Theorem 1, this observation leads to the following result.

Corollary 4. Let � ∈Rd,w. Then the hit-and-run, stepping-out, shrinkage slice sampler has an
absolute spectral gap if and only if the simple slice sampler has an absolute spectral gap.

5. Concluding remarks

We provide a general framework to prove convergence results for hybrid slice sampling via
spectral gap arguments. More precisely, we state sufficient conditions for the spectral gap of an
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24 K. ŁATUSZYŃSKI AND D. RUDOLF

appropriately designed hybrid slice sampler to be equivalent to the spectral gap of the simple
slice sampler. Since all Markov chains we are considering are reversible, this also provides a
criterion for geometric ergodicity; see [28].

To illustrate how our analysis can be applied to specific hybrid slice sampling implemen-
tations, we analyze the hit-and-run algorithm on the slice on multidimensional targets under
weak conditions, as well as the easily implementable stepping-out shrinkage hit-and-run on the
slice for bimodal d-dimensional distributions. The latter analysis can in principle be extended
to settings with more than two modes, at the price of further notational and computational
complexity.

These examples demonstrate that the robustness of the simple slice sampler is inherited
by appropriately designed hybrid versions of it in realistic computational settings, providing
theoretical underpinnings for their use in applications.

Appendix A. Technical lemmas

Lemma 12. Let H1 and H2 be two Hilbert spaces. Furthermore, let R : H2 → H1 be a bounded
linear operator with adjoint R∗ : H1 → H2, and let Q : H2 → H2 be a bounded linear operator
which is self-adjoint. Then∥∥∥RQk+1R∗

∥∥∥
H1→H1

≤ ‖Q‖H2→H2

∥∥∥R |Q|k R∗
∥∥∥

H1→H1
.

Let us additionally assume that Q is positive semidefinite. Then∥∥∥RQk+1R∗
∥∥∥

H1→H1
≤ ‖Q‖H2→H2

∥∥∥RQkR∗
∥∥∥

H1→H1
.

Proof. Let us denote the inner products of H1 and H2 by 〈·, ·〉1 and 〈·, ·〉2, respectively. By
the spectral theorem for the bounded and self-adjoint operator Q : H2 → H2 we obtain

〈QR∗f , R∗f 〉2

〈R∗f , R∗f 〉2
=
∫

spec(Q)
λ dνQ,R∗f (λ),

where spec(Q) denotes the spectrum of Q and νQ,R∗f denotes the normalized spectral measure.
Thus, ∥∥∥RQk+1R∗

∥∥∥
H1→H1

= sup
〈f ,f 〉1 �=0

∣∣〈Qk+1R∗f , R∗f 〉2
∣∣

〈f , f 〉1

= sup
〈f ,f 〉1 �=0

〈R∗f , R∗f 〉2

〈f , f 〉1

∣∣〈Qk+1R∗f , R∗f 〉2
∣∣

〈R∗f , R∗f 〉2

= sup
〈f ,f 〉1 �=0

〈R∗f , R∗f 〉2

〈f , f 〉1

∣∣∣∣∫
spec(Q)

λk+1 dνQ,R∗f (λ)

∣∣∣∣
≤ ‖Q‖H2→H2

sup
〈f ,f 〉1 �=0

〈R∗f , R∗f 〉2

〈f , f 〉1

∫
spec(Q)

|λ|k dνQ,R∗f (λ)

= ‖Q‖H2→H2
sup

〈f ,f 〉1 �=0

〈R∗f , R∗f 〉2

〈f , f 〉1

〈|Q|k R∗f , R∗f 〉2

〈R∗f , R∗f 〉2

= ‖Q‖H2→H2

∥∥∥R |Q|k R∗
∥∥∥

H1→H1
.
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Here we used that the operator norm of Q : H2 → H2 is the same as the operator norm of
|Q| : H2 → H2. If Q is positive semidefinite, then Q = |Q|. �
Lemma 13. Let us assume that the conditions of Lemme 12 are satisfied. Furthermore, let
‖R‖2

H2→H1
= ‖RR∗‖H1→H1

≤ 1. Then

∥∥RQR∗∥∥k
H1→H1

≤
∥∥∥R |Q|k R∗

∥∥∥
H1→H1

.

Let us additionally assume that Q is positive semidefinite. Then∥∥RQR∗∥∥k
H1→H1

≤
∥∥∥RQkR∗

∥∥∥
H1→H1

.

Proof. We use the same notation as in the proof of Lemma 12. Thus

∥∥RQR∗∥∥k
H1→H1

= sup
〈f ,f 〉1 �=0

( 〈R∗f , R∗f 〉2

〈f , f 〉1

|〈QR∗f , R∗f 〉2|
〈R∗f , R∗f 〉2

)k

= sup
〈f ,f 〉1 �=0

( 〈R∗f , R∗f 〉2

〈f , f 〉1

)k ∣∣∣∣∫
spec(Q)

λ dνQ,R∗f (λ)

∣∣∣∣k

≤ sup
〈f ,f 〉1 �=0

( 〈R∗f , R∗f 〉2

〈f , f 〉1

)k ∫
spec(Q)

|λ|k dνQ,R∗f (λ)

= sup
〈f ,f 〉1 �=0

( 〈R∗f , R∗f 〉2

〈f , f 〉1

)k 〈|Q|k R∗f , R∗f 〉2

〈R∗f , R∗f 〉2

= sup
〈f ,f 〉1 �=0

( 〈R∗f , R∗f 〉2

〈f , f 〉1

)k−1 〈|Q|k R∗f , R∗f 〉2

〈f , f 〉1

≤ ∥∥RR∗∥∥k−1
H1→H1

∥∥∥R |Q|k R∗
∥∥∥

H1→H1
≤
∥∥∥R |Q|k R∗

∥∥∥
H1→H1

.

Note that we applied Jensen’s inequality here. Furthermore, if Q is positive semidefinite, then
Q = |Q|, which finishes the proof. �
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26 K. ŁATUSZYŃSKI AND D. RUDOLF

References

[1] BAXENDALE, P. (2005). Renewal theory and computable convergence rates for geometrically ergodic Markov
chains. Ann. Appl. Prob. 15, 700–738.
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