MATHEMATICAL NOTES

Manuscripts for this Department should be sent to R. D. Bercov and A. Meir, Editors-inChief, Canadian Mathematical Bulletin, Department of Mathematics, University of Alberta, Edmonton 7, Alberta.

ON THE GENERATING FUNCTION FOR PERMUTATIONS WITH REPETITIONS AND INVERSIONS

BY
MORTON ABRAMSON

Let $\left(a_{1}, a_{2}, \ldots, a_{m}\right), a_{i} \in\{1,2, \ldots, n\}$, be an m-permutation of n (repetitions allowed) with exactly k_{j} of the a 's equal to $j, j=1,2, \ldots, n, m=k_{1}+\cdots+k_{n}$, k_{1}, \ldots, k_{n} fixed nonnegative integers. An inversion is a pair i, j such that $i<j$, $a_{i}>a_{j}$. Denote by $N\left(r ; k_{1}, \ldots, k_{n}\right)$ the number of such permutations with exactly r inversions. In the case $k_{1}=k_{2}=\cdots=k_{n}=1, m=n$, then $N(r ; 1,1, \ldots, 1)$, denoted by $N(r, n)$, is the number of permutations (without repetition) of $1,2, \ldots, n$ with exactly r inversions. D. Z. Djokovic [2], using a brief argument, has shown that

$$
\begin{align*}
\sum_{r=0}^{(\exists(n)(n-1)} N(r, n) x^{r} & =(1+x)\left(1+x+x^{2}\right) \cdots\left(1+x+x^{2}+\cdots+x^{n-1}\right) \tag{1}\\
& =\frac{(1-x)\left(1-x^{2}\right) \cdots\left(1-x^{n}\right)}{(1-x)^{n}}
\end{align*}
$$

Recently L. Carlitz [1] has established the more general result

$$
\begin{equation*}
\sum_{r=0}^{M} N\left(r ; k_{1}, \ldots, k_{n}\right) x^{r}=\frac{\left[k_{1}+\cdots+k_{n}\right]!}{\left[k_{1}\right]!\left[k_{2}\right]!\ldots\left[k_{n}\right]!}, \tag{2}
\end{equation*}
$$

where

$$
M=\sum_{1 \leq s<t \leq n} k_{s} k_{t}, \quad[k]!=(1-x)\left(1-x^{2}\right) \cdots\left(1-x^{k}\right), \quad[0]!=1
$$

The purpose of this note is to give an alternate derivation of (2) by showing that (2) follows from (1) directly by using a simple combinatorial argument.

It is easy to see that

$$
\begin{equation*}
\sum_{r_{1}+\cdots+r_{n}+r=u} N\left(r_{1}, k_{1}\right) \cdots N\left(r_{n}, k_{n}\right) N\left(r ; k_{1}, \ldots, k_{n}\right)=N\left(u, k_{1}+\cdots+k_{n}\right) . \tag{3}
\end{equation*}
$$

For suppose $S=\left(s_{1}, s_{2}, \ldots, s_{k_{1}+\cdots+k_{n}}\right)$ is a particular sequence counted in $N\left(r ; k_{1}, \ldots, k_{n}\right)$. Replace the k_{1} l's in S (from left to right) by $a_{1}, \ldots, a_{k_{1}}, a_{i}<a_{j}$,
$i \neq j$. Replace the 2's in S by $b_{1}, \ldots, b_{k_{2}}$ with $a_{k_{1}}<b_{1}, b_{i}<b_{j}, i \neq j$. Continue until the n 's are replaced. Permute the a 's among themselves in $N\left(r_{1}, k_{1}\right)$ ways, the b 's in $N\left(r_{2}, k_{2}\right)$ ways, etc. Clearly each sequence counted in $N\left(r_{1}, k_{1}\right) \cdots N\left(r_{n}, k_{n}\right)$ $\times N\left(r, k_{1}, \ldots, k_{n}\right)$ is a sequence of $k_{1}+\cdots+k_{n}$ distinct ordered objects with exactly $r_{1}+r_{2}+\cdots+r_{n}+r$ inversions. Therefore the left side of (3) is \leq the right side. Using the converse of the above argument the right side of (3) is \leq the left side. Hence

$$
\begin{aligned}
\sum_{u=0} N\left(u, k_{1}+\right. & \left.\cdots+k_{n}\right) x^{u} \\
& =\sum_{u=0}\left(\sum_{r_{1}+\cdots+r_{n}+r=u} N\left(r_{1}, k_{1}\right) \cdots N\left(r_{n}, k_{n}\right) N\left(r ; k_{1}, \ldots, k_{n}\right)\right) x^{u} \\
& =\left(\sum_{r_{1}=0} N\left(r_{1}, k_{1}\right) x^{r_{1}}\right) \cdots\left(\sum_{r_{n}=0} N\left(r_{n}, k_{n}\right) x^{r_{n}}\right)\left(\sum_{r=0} N\left(r ; k_{1}, \ldots, k_{n}\right) x^{r}\right),
\end{aligned}
$$

and using (1), (2) follows. Also it is clear that

$$
\sum_{m=0}\left(\sum_{k_{1}+\cdots+k_{n}=m} \frac{\left[k_{1}+\cdots+k_{n}\right]!}{\left[k_{1}\right]!\ldots\left[k_{n}\right]!}\right) \frac{z^{m}}{[m]!}=\left(\sum_{k=0} \frac{z^{k}}{[k]!}\right)^{n},
$$

and hence from (2),

$$
\sum_{m=0} \sum_{r=0} \sum_{k_{1}+\ldots+k_{n}=m} N\left(r ; k_{1}, \ldots, k_{n}\right) x^{r} \frac{z^{m}}{[m]!}=\left(\sum_{k=0} \frac{z^{k}}{[k]!}\right)^{n},
$$

where $\sum_{k_{1}+\cdots+k_{n}=m} N\left(r ; k_{1}, \ldots, k_{n}\right)$ is the total number of m-permutations of $1,2, \ldots, n$, repetitions allowed, with exactly r inversions, in agreement with the last expression in [1].

References

1. L. Carlitz, Sequences and inversions, Duke Math. J. 37 (1970), 193-198.
2. D. Z. Djokovic, Solution to Aufgabe 558, Elemente der Mathematik, 23 (1968), p. 114; Proposer, Heinz Lüneburg, Elemente der Mathematik 22 (1967).

York University,
Toronto, Ontario

