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Abstract. Let H be a Hopf algebra with a bijective antipode, A an H-simple
H-module algebra finitely generated as an algebra over the ground field and module-
finite over its centre. The main result states that A has finite injective dimension and
is, moreover, Artin–Schelter Gorenstein under the additional assumption that each H-
orbit in the space of maximal ideals of A is dense with respect to the Zariski topology.
Further conclusions are derived in the cases when the maximal spectrum of A is a
single H-orbit or contains an open dense H-orbit.
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1. Introduction. For some time researchers have been trying to understand the
homological behaviour of infinite dimensional Hopf algebras. In [7], Brown and
Goodearl verified that Hopf algebras in several important classes have finite injective
dimension and asked whether finiteness of injective dimension is a property of all
Noetherian Hopf algebras (over a field). Although this question in its full generality
appears to be intractable even now, the special case of Hopf algebras which are
finitely generated as algebras over the ground field and satisfy a polynomial identity
has been solved by Wu and Zhang [35]. Moreover, such algebras are Artin–Schelter
Gorenstein (AS-Gorenstein for short). The AS-Gorenstein rings are distinguished by
an additional condition on the Ext groups which makes these rings very similar to
commutative Gorenstein rings. Later Brown [6] posed a refined question as to whether
every Noetherian Hopf algebra is AS-Gorenstein.

It is natural to consider the same problem not only for Hopf algebras themselves,
but also for associative algebras on which a Hopf algebra H acts compatibly with the
multiplication in the algebras. Such algebras are called H-module algebras (see [20,
4.1.1] for the precise definition). An H-module algebra A is said to be H-simple if
A has no non-zero proper H-stable two-sided ideals. Rather vaguely, this condition
corresponds to transitivity of a group action. It is quite reasonable to expect that the
H-simplicity of A should imply strong ring-theoretic consequences. For example, all
H-simple Artinian algebras are quasi-Frobenius rings, i.e., Artinian rings of injective
dimension 0, as is shown in [28]. The question of Brown and Goodearl can be modified
like this: is the injective dimension of every H-simple Noetherian H-module algebra finite?

Probably it would be too optimistic to hope that the answer is positive without
some further restrictions. This paper makes an essential use of H-orbits of maximal
ideals defined in terms of a certain equivalence relation for an H-module algebra A
which is a finitely generated module over its centre [27]. In the case when H is a group
algebra this notion reduces to the usual group orbits. Consider the set Max A of all

https://doi.org/10.1017/S0017089516000185 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089516000185


300 SERGE SKRYABIN

maximal ideals of A as a topological space with respect to the Zariski topology. The
main result proved in the paper is

THEOREM 1.1. Let H be a Hopf algebra with a bijective antipode, A an H-simple
H-module algebra finitely generated as an algebra over the ground field and module-finite
over its centre Z. Suppose that the H-orbits of maximal ideals of A are dense in Max A.
Then A is AS-Gorenstein.

When all maximal ideals of A lie in a single H-orbit, we will determine in
Section 5 the multiplicities of indecomposable direct summands in the minimal
injective resolution of A as a right A-module. It will be also shown, even under
weaker assumptions about A, that the classical quotient ring Q(A) of A is a Frobenius
ring. These additions to the main result are based on the fact that, under the stated
hypotheses, the localizations of A at the maximal ideals of a polynomial subring of Z
are Frobenius algebras over the respective regular local rings.

If A is a Hopf algebra, then A is an A◦-module algebra where A◦ is the dual Hopf
algebra (see [20, Ch. 9]), and A is A◦-simple when A is residually finite dimensional.
However, this case in Theorem 4.5 is covered by the already mentioned result of Wu
and Zhang obtained under the weaker PI assumption. What is more interesting, our
results apply also to coideal subalgebras. In fact, given a right coideal subalgebra A
of a Hopf algebra H such that both A and H are finitely generated as algebras and
module-finite over their centres, it was proved in [29] that Max A contains a dense open
H◦-orbit which coincides with the whole space Max A precisely when A is H◦-simple or,
equivalently, A has no non-zero proper two-sided ideals stable under the right coaction
of H.

The first two sections of the paper deal with auxiliary ring-theoretic facts. The
ultimate goal is to prove that Exti

A(V, A) = 0 for each simple A-module V and each
integer i except for exactly one value. For this, we need to know that for each fixed i
the vector space dimension of Exti

A(V, A) can be bounded by a number not depending
on V . It is more convenient to work with generalized Bass numbers μi(P, A) by which
we mean scaled dimensions of the above Ext spaces with P ∈ Max A taken to be the
annihilator of V in A. In Section 2, the Bass numbers μi(P, M) are defined for each
finitely generated A-module M, and their global boundedness is proved under suitable
hypotheses. This result leads eventually to the invariance of the Bass numbers along
the H-orbits in Max A (see Proposition 4.4).

In Section 3, it is shown that the existence of a quasi-Frobenius classical quotient
ring Q(A) implies that a suitable central localization of A is AS-Gorenstein. This
entails the vanishing of the Bass numbers on a dense open subset of Max A; by
translating along the H-orbits the desired property is extended then to all maximal
ideals. Required facts concerning Q(A) have been established already in [27]. Heavy
reliance on [27] makes our approach totally different from that by Wu and Zhang.
In [35], the existence of a quasi-Frobenius quotient ring is not a prerequisite, but is
derived as a consequence of the main result.

It is not clear whether the hypotheses in the main results can be weakened. For one
thing, there arise difficulties in extending the results of [27] to the general PI case. All
work in Sections 2 and 3 is also done with rings module-finite over a central subring.
The assumption that A is a finitely generated algebra enables invocation of Noether’s
normalization lemma in the proof of Corollary 3.5. More importantly, simple modules
have to be finite dimensional in the proof of Proposition 4.4. Certainly, it suffices
to assume that A is finitely generated only as an algebra over its subfield of central
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H-invariant elements since the ground field can be extended. The density condition on
H-orbits may really hinder some applications of the results, but again it is an essential
part of the technique used in the paper.

Density of H-orbits and H-simplicity of A are related concepts, although none of
the two is a consequence of the other. For P ∈ Max A denote by �P the H-orbit of P,
and by JP the intersection of all maximal ideals lying in �P. Density of �P in Max A
means that JP is contained in all maximal ideals of A, and therefore JP coincides with
the intersection of all maximal ideals of A, i.e., with the Jacobson radical Jrad A (since
A is assumed to be module-finite over its centre, the primitive ideals of A are precisely
its maximal ideals). Suppose that I is an H-stable ideal of A contained in P. Then I is
contained in the ideal PC = {a ∈ A | Ca ⊂ P} for each finite dimensional subcoalgebra
C of H. In this case, I is contained in all ideals lying in �P, so that I ⊂ JP as well. The
condition that all H-orbits in Max A are dense implies therefore that Jrad A contains
all proper H-stable ideals of A. Furthermore, by [10] A is a Jacobson (Hilbert) ring,
so that each prime ideal is an intersection of primitive ideals. In particular, Jrad A
coincides with the prime radical of A. If A is semi-prime, then Jrad A = 0, in which
case the H-simplicity of A follows from the density of H-orbits in Max A.

In the opposite direction, if JP is stable under the action of H, then the density of
the orbit �P in Max A follows automatically from the H-simplicity of A. This happens,
for example, when H is a group algebra, but not in general. The following example has
been pointed out by the referee. Take A = k[x] where k is a field of characteristic 0, and
let H be the universal enveloping algebra of a one-dimensional Lie algebra ky. Make
A into an H-module algebra so that y acts as the derivation d/dx. It is easy to see that
A has no non-trivial ideals invariant under d/dx, which means that A is H-simple.
However, �P is just the single-element set {P}. This follows from the fact that the filter
of ideals PC , C ∈ F , consists of the powers of P, but P is the only maximal ideal of
A which contains a power of P. In this example the H-orbits are not dense, and so
Theorem 4.5 does not apply, although the conclusion is nevertheless true. It seems
reasonable to ask whether the density assumption can be removed from the hypotheses
altogether.

2. Global boundedness of generalized Bass numbers. Let A be a ring, M a right
A-module, and P a maximal ideal of A such that the factor ring A/P is simple Artinian.
Up to isomorphism there is exactly one simple right A-module V annihilated by P. This
module is a finite dimensional left vector space over the division ring D = EndA V .
For each integer i, the abelian group Exti

A(V, M) is a right vector space over D. If it
has finite dimension, we define the normalized ith Bass number of M at P as

μi(P, M) = dimD Exti
A(V, M)

dimD V
.

Suppose that K is a field contained in the centre of D such that dimK D < ∞. Then
dimK W = (dimD W )(dimK D) for each finite dimensional vector space W over D,
whence

μi(P, M) = dimK Exti
A(V, M)

dimK V
.

We will be concerned with the case where A is a module-finite algebra over a
commutative Noetherian ring R. Under this assumption m = P ∩ R is a maximal ideal
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of R for any maximal ideal P of A, and A/P is a finite dimensional simple algebra
over the field K = R/m. Since A is Noetherian, V has a resolution by finitely generated
free A-modules. Hence, Exti

A(V, M) is a finitely generated R-module annihilated by m

whenever M is a finitely generated A-module. Thus dimK Exti
A(V, M) < ∞, so that all

Bass numbers are defined. When A = R, we have V ∼= K , and therefore μi(m, M) =
dimK Exti

R(K, M) is the ordinary Bass number of a finitely generated module over a
commutative Noetherian ring.

Denote by Max A the set of all maximal ideals of A. We say that A satisfies the
global boundedness of the Bass numbers, GBBN for short, in degree i if the set of
non-negative rational numbers

{μi(P, M) | P ∈ Max A}

is bounded for each finitely generated right A-module M.
Since A is Noetherian, GBBN always holds in degree 0. Indeed, given any finitely

generated A-module M, its socle is also finitely generated, and so the socle of M
is a direct sum of finitely many simple modules. Now μ0(P, M) 	= 0 if and only if
HomA(V, M) 	= 0 where V is the simple A-module annihilated by P, if and only if V
embeds in the socle of M. It follows that μ0(P, M) 	= 0 for at most a finite number
of ideals P ∈ Max A, and the set {μ0(P, M) | P ∈ Max A} is obviously bounded. In
accordance with the usual conventions of homological algebra, we also have Exti = 0,
and so μi(P, M) = 0, for all i < 0.

In this paper, the Bass numbers will be used mainly for maximal ideals P. However,
it is possible to define μi(P, M) for any prime ideal P of A by passing to the localization
Ap = A ⊗R Rp where Rp is the local ring of the prime ideal p = P ∩ R of the ring R.
The extension PAp of P is a maximal ideal of the ring Ap. Put

μi(P, M) = μi(PAp, M ⊗A Ap).

This formula is consistent with the previous definition of the Bass numbers at the
maximal ideals of A since on the category of finitely generated right modules over a
Noetherian ring the Ext functors commute with the localization at any multiplicatively
closed subset of central elements (cf. [33, Proposition 3.3.10]). In particular, given two
right A-modules N and M where N is finitely generated, we have

Exti
Ap

(N ⊗A Ap, M ⊗A Ap) ∼= Exti
A(N, M) ⊗R Rp.

LEMMA 2.1. Let A be a module-finite algebra over a commutative Noetherian ring
R. Let P ∈ Max A and m = P ∩ R. Then for any finitely generated right A-module M
there are inequalities

μn(m, M) ≤
n∑

q=0

μn−q
(
P, Extq

R(A, M)
)
,

μn(P, M) ≤ μn(m, M) + μn−1(P, M̃/M) +
n∑

r=2

μn−r
(
P, Extr−1

R (A, M)
)

where M̃ = HomR(A, M) and the right A-module structure on each Exti
R(A, M) is

obtained by functoriality from the left multiplications of A on itself. The ring A satisfies
GBBN in all degrees provided so does R.
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Proof. Let V be the simple right A-module annihilated by P. Put D = EndA V and
K = R/m as before. There is a convergent first quarter spectral sequence

{Epq
r } =⇒

p
Extp+q

R (V, M) with Epq
2 = Extp

A

(
V, Extq

R(A, M)
)

(see [33, Exercise 5.6.3]). Since this spectral sequence is functorial in its arguments,
all terms Epq

r are vector spaces over D, and all differentials dr : Epq
r → Ep+r, q−r+1

r are
D-linear maps. The vector space Extn

R(V, M) has an exhaustive separating filtration
with factors isomorphic to Epq

∞ for various pairs of integers p, q such that p + q = n.
Hence

dimK Extn
R(V, M) =

∑
p+q=n

dimK Epq
∞ ≤

∑
p+q=n

dimK Epq
2 .

Here dimK Epq
2 = d · μn−q

(
P, Extq

R(A, M)
)

where d = dimK V . Since Extn
R(V, M) is

a direct sum of d copies of Extn
R(K, M), we have dimK Extn

R(V, M) = d · μn(m, M),
whence the first inequality.

Since En0
r+1 is isomorphic to the cokernel of dr : En−r,r−1

r → En0
r , we have

dimK En0
r+1 ≥ dimK En0

r − dimK En−r,r−1
r ≥ dimK En0

r − dimK En−r,r−1
2

for each r ≥ 2. As En0
∞ ∼= En0

n+1 embeds in Extn
R(V, M), it follows that

dimK Extn
R(V, M) ≥ dimK En0

∞ ≥ dimK En0
2 −

n∑
r=2

dimK En−r,r−1
2

(note that for n = 0, 1 the sum over r simply disappears, but the inequalities remain
true). This can be rewritten as

dimK Extn
A(V, M̃) ≤ dimK Extn

R(V, M) +
n∑

r=2

dimK Extn−r
A

(
V, Extr−1

R (A, M)
)
,

or, dividing by dimK V ,

μn(P, M̃) ≤ μn(m, M) +
n∑

r=2

μn−r
(
P, Extr−1

R (A, M)
)
.

The A-module M̃ has the property that HomA(N, M̃) ∼= HomR(N, M) for every right
A-module N. In particular, the identity map M → M gives rise to a monomorphism
of A-modules M ↪→ M̃. The ensuing exact sequence

. . . → Extn−1
A (V, M̃/M) → Extn

A(V, M) → Extn
A(V, M̃) → . . .

entails dimK Extn
A(V, M) ≤ dimK Extn−1

A (V, M̃/M) + dimK Extn
A(V, M̃) , i.e.,

μn(P, M) ≤ μn−1(P, M̃/M) + μn(P, M̃).

Together with the previous bound for μn(P, M̃) this leads to the second inequality in the
statement of the lemma. Note that each Exti

R(A, M) is a finitely generated A-module.
It follows from the second inequality that A satisfies GBBN in degree n whenever R
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satisfies GBBN in degree n and A satisfies GBBN in all degrees less than n. Induction
on n proves the final assertion of the lemma. �

A commutative Noetherian ring R is Gorenstein if all local rings Rm, m ∈ Max R,
have finite injective dimension. There are several equivalent characterizations of this
property (see Bass [2]). If R is Gorenstein, then its rings of fractions with respect to
multiplicatively closed subsets of R are also Gorenstein and

μi(q, R) =
{

1 if i = height q,

0 otherwise

for each q ∈ Spec R and each integer i [2, p. 11]. The Gorenstein locus Gor R is the set
of all prime ideals q ∈ Spec R whose local rings Rq are Gorenstein.

PROPOSITION 2.2. Let A be a module-finite algebra over a commutative Noetherian
ring R. If

(∗) Gor R/p contains a non-empty open subset of Spec R/p for each p ∈ Spec R,

then A satisfies GBBN in all degrees. In particular, this conclusion holds when R is a
homomorphic image of a Gorenstein ring.

Proof. In view of Lemma 2.1 it suffices only to show that the ring R satisfies GBBN
in all degrees. So, we have to check that the set

Xn(R, M) = {μn(m, M) | m ∈ Max R}

is bounded for each integer n and each finitely generated R-module M. All factor rings
of R inherit property (∗). Proceeding by induction on n, we may assume that the set
Xi(R′, M′) is bounded for each factor ring R′ of R, each finitely generated R′-module
M′ and each integer i < n. If N is a submodule of M, then

μn(m, M) ≤ μn(m, N) + μn(m, M/N),

and it follows that the set Xn(R, M) is bounded whenever so are both Xn(R, N) and
Xn(R, M/N). This observation reduces the verification to the case where M is cyclic,
i.e., M ∼= R/I for an ideal I of R. The Noetherian induction allows us also to assume
that the set Xn(R, R/J) is bounded for each strictly larger ideal J of R. If I is not prime,
then M contains a non-zero submodule N ∼= R/J for some ideal J properly containing
I . Since M/N ∼= R/J ′ for another ideal J ′ larger than I , the boundedness of Xn(R, M)
is immediate. So, we may assume that M = R/p where p ∈ Spec R.

By (∗) there exists s ∈ R such that s /∈ p and the Gorenstein locus of the factor
ring R/p contains all prime ideals q ∈ Spec R/p with s + p /∈ q. Let m ∈ Max R and
K = R/m. If p 	⊂ m, then p + m = R, and therefore Extn

R(K, M) = 0 since this R-
module is annihilated by both m and p. In this case, μn(m, M) = 0. Suppose that
p ⊂ m. If s ∈ m, then s annihilates Extn

R(K, M). But s is a non-zerodivisor on M. The
exact sequence 0 → M → M → M/sM → 0 gives rise therefore to a surjection

Extn−1
R (K, M/sM) → Extn

R(K, M)

which shows that μn(m, M) ≤ μn−1(m, M/sM). Finally, suppose that p ⊂ m, but s /∈ m.
Then m/p ∈ Gor R/p, i.e., the local ring Rm/pRm is Gorenstein. Since Ext commutes
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with the localization, we have

Extn
R/p(K, M) ∼= Extn

Rm/pRm
(K, Rm/pRm),

and so

μn(m/p, M) = dimK Extn
R/p(K, M) =

{
1 if n = height m/p,

0 otherwise.

Now Lemma 2.1 applied with A = R/p and P = m/p yields

μn(m, M) ≤
n∑

i=0

μn−i(m/p, Mi) ≤ 1 +
n∑

i=1

μn−i(m/p, Mi),

where we put Mi = Exti
R(A, M), so that, in particular, M0 = HomR(A, M) ∼= M.

By the induction hypothesis Xn−1(R, M/sM) and all sets Xn−i(R/p, Mi) with i =
1, . . . , n are bounded. Hence there exists an integer a > 0 such that

μn−1(m, M/sM) ≤ a for all m ∈ Max R,

μn−i(m/p, Mi) ≤ a for all m ∈ Max R with p ⊂ m and all i = 1, . . . , n.

It follows now from the previous estimates that μn(m, M) ≤ max(a, 1 + na) for all
maximal ideals m, and the boundedness of Xn(R, M) is proved.

Finally, any homomorphic image of a commutative Gorenstein ring satisfies
condition (∗) by [15, Corollary 1.6]. �

REMARK 1. Greco and Marinari [15, Proposition 1.7] proved that condition (∗)
implies that Gor B is open in Spec B for each finitely generated commutative R-algebra
B; when B is a domain, Gor B is obviously non-empty since the total quotient ring of
B is a field. In particular, (∗) is equivalent to the condition that Gor R/p is open in
Spec R/p for each p ∈ Spec R. Sharp [26] introduced a class of commutative Noetherian
rings called acceptable with one of the defining conditions being the openness
of the Gorenstein loci for all finitely generated algebras. Thus, the conclusion of
Proposition 2.2 holds whenever R is acceptable. It was also proved in [15] that any
excellent commutative ring is acceptable.

A restriction on R in Proposition 2.2 is necessary. We will give below an example of
a commutative Noetherian ring which does not satisfy GBBN in degree 1. This example
employs Hochster’s construction of Noetherian rings [16] which in turn generalizes the
construction in Nagata’s example of Noetherian rings of infinite Krull dimension.

Let K be an algebraically closed field, and for each integer i ≥ 1 let Ri be a finitely
generated commutative K-algebra which is a domain and which has a prime ideal
pi such that μ1(pi, Ri) ≥ i. For instance, we can take Ri to be the subalgebra of the
polynomial algebra K [X ] in one indeterminate spanned over K by 1 and by all powers
Xj with j > i. Then Ri = K + pi where pi = Xi+1K [X ] is a maximal ideal of Ri. The
field of rational functions Q = K(X) is the quotient field of Ri. Since Q is an injective
Ri-module, the short exact sequence 0 → Ri → Q → Q/Ri → 0 gives rise to an exact
sequence

0 = HomRi (Ri/pi, Q) → HomRi (Ri/pi, Q/Ri) → Ext1
Ri

(Ri/pi, Ri) → 0.
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It follows that Ext1
Ri

(Ri/pi, Ri) ∼= V/Ri where V = {a ∈ Q | pia ⊂ Ri} = K [X ]. Hence
μ1(pi, Ri) = dimK V/Ri = i, and the requested conditions on Ri are fulfilled.

Now put R′ = ⊗∞
i=1 Ri and S = R′

�
⋃∞

i=1 piR′. By [16, Proposition 1] the ring of
fractions R = S−1R′ is a Noetherian domain whose maximal ideals are precisely the
ideals mi = piR. Since R is flat over Ri and R/mi ∼= Ri/pi ⊗Ri R, we have

Ext1
R(R/mi, R) ∼= Ext1

Ri
(Ri/pi, Ri) ⊗Ri R ∼= Ext1

Ri
(Ri/pi, Ri) ⊗Ri/pi R/mi

by [5, Section 6, Proposition 10]. Hence μ1(mi, R) = μ1(pi, Ri) ≥ i for each i. This
shows that the set {μ1(m, R) | m ∈ Max R} is not bounded.

3. Gorensteinness satisfied generically. In this section, we review several notions
related to Gorensteinness. For an algebra A over a commutative ring R, let us put
A∗

R = HomR(A, R) and regard A∗
R as an A-bimodule in a natural way. One says that A

is a quasi-Frobenius algebra over R if the underlying R-module of A is finitely generated
projective and the following two equivalent conditions are satisfied:

(a) regarded as an A-module with respect to the left-hand structure, a direct sum
of several copies of A∗

R contains A as a submodule direct summand,
(b) as an A-module with respect to the right-hand structure, A∗

R is projective.
This means that A is a left quasi-Frobenius extension of R as defined by Müller

[21]. The class of quasi-Frobenius algebras over a commutative ring was mentioned
briefly by Nakayama [23, p. 186] in connection with the cohomology of algebras.
According to the testimony contained in [21], such algebras were studied by Chase and
Rosenberg in an unpublished work, and Müller’s paper developed the more general
theory of quasi-Frobenius extensions for arbitrary rings. By [22, Theorem 35] the
notion of quasi-Frobenius extensions is left–right symmetric when applied to algebras.

One says that A is a Frobenius algebra over R if the underlying R-module of A
is finitely generated projective and A∗

R
∼= A as either right or left A-modules. This

provides a generalization, due to Eilenberg and Nakayama [11], of the notion of
Frobenius algebras over a field.

If A is a quasi-Frobenius algebra over R, then A ⊗R R′ is a quasi-Frobenius algebra
over R′ for any homomorphism of commutative rings R → R′. This is clear from the
definition since HomR′(A ⊗R R′, R′) ∼= A∗

R ⊗R R′ by finiteness and projectivity of A
over R. Similarly, A ⊗R R′ is a Frobenius algebra over R′ whenever A is a Frobenius
algebra over R.

Any quasi-Frobenius algebra over a field is a quasi-Frobenius ring. Recall that a ring
is said to be quasi-Frobenius if it is left and right Artinian, left and right self-injective.
A Frobenius ring is any quasi-Frobenius ring whose top and socle are isomorphic as
either left or right modules [18, Corollary 13.4.3].

From now on, we assume that A is a ring module-finite over a Noetherian central
subring R. Then A is Noetherian too. The upper grade of a maximal ideal P of A is
defined as

upper grade P = sup{i | Exti
A(V, A) 	= 0}

where V is any non-zero right A/P-module. The ring A is said to be (right) injectively
homogeneous over R if the upper grade is finite for each P ∈ Max A and if each pair
of maximal ideals P, P′ ∈ Max A with P ∩ R = P′ ∩ R have equal upper grades. This
notion was studied by Brown and Hajarnavis more generally for Noetherian rings
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integral over central subrings [8]. The special case where R is local was considered
earlier by Vasconcelos [32]. One difference with the definition given in [8] is that we do
not require A to have finite (right) injective dimension. By [8, Lemma 3.1]

injdim A = sup{upper grade P | P ∈ Max A}.

Applying this formula to the localization Am = A ⊗R Rm where m ∈ Max R, we get

injdim Am = sup{upper grade P | P ∈ Max A, P ∩ R = m}.

Since A has finitely many maximal ideals lying above m, it follows that, whenever A
is right injectively homogeneous over R, the ring Am has finite injective dimension,
and Am is right injectively homogeneous over Rm. The prefix “right” may henceforth
be omitted since this notion is left–right symmetric [8, Corollary 4.4]. Furthermore,
under the same assumption that A is injectively homogeneous over R,

upper grade P = height m for any P ∈ Max A with P ∩ R = m

by [8, Corollary 3.5] since this equality can be checked locally (note that the height
of a prime ideal was called the rank in [8]). Therefore, injdim A < ∞ if and only if
Kdim R < ∞ where Kdim stands for the (classical) Krull dimension. Since the ring
extension R ⊂ A satisfies Going-Up and Incomparability by [3], we have

Kdim A = Kdim R = injdim A.

A sequence of elements x1, . . . , xn ∈ R is said to be A-regular if
∑n

j=1 Axj 	= A and

xi is a non-zerodivisor on A/
∑i−1

j=1 Axj for each i. For a prime ideal P of A the length
of any A-regular sequence contained in the prime ideal P ∩ R of R does not exceed the
height of P. The ring A is called centrally Macaulay over R or just R-Macaulay if P ∩ R
contains an A-regular sequence of length equal to the height of P for each P ∈ Max A.
This implies, in particular, that P and P ∩ R have equal heights. Brown, Hajarnavis and
MacEacharn [9] extended many classical facts of the commutative theory to centrally
Macaulay rings. In [8, Theorem 3.4], it is proved that A is R-Macaulay whenever A is
injectively homogeneous over R (by resorting to the localizations Am this result extends
immediately to cover the case when the injective dimension of A is infinite). Since we
consider only the case where A is a finitely generated R-module, the ring A is centrally
Macaulay over R if and only if A is Cohen–Macaulay as an R-module.

Concerning results of [8], we note that Theorems 5.3 and 5.5 in that paper are not
completely correct. The multiplicities of indecomposable summands in the minimal
injective resolution of A as a right A-module are not given in general by the uniform
dimensions of the prime factor rings of A as can be seen already in the case of injective
dimension 0. Indeed, the property that A is isomorphic to the direct sum of the injective
hulls of the right A-modules A/P, P ∈ Max A, distinguishes Frobenius rings in the
class of all quasi-Frobenius rings. We will return to this question later in Section 5.

LEMMA 3.1. Suppose that R is a commutative Gorenstein ring contained in the centre
of A. If A is a quasi-Frobenius algebra over R, then A is injectively homogeneous over R.
Furthermore, injdim Am = injdim Rm for each m ∈ Max R.

Proof. To prove that A is injectively homogeneous over R it suffices to look at
the localizations at the maximal ideals of R. So we may assume R to be local with a
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maximal ideal m. Let x1, . . . , xn ∈ m be a sequence of maximal length which is regular
on R. Put I = ∑n

i=1 Rxi. Since R is Gorenstein, R is a Cohen–Macaulay ring and its
ideal I is irreducible [2, Theorem 4.1], so that R/I is an artinian commutative ring with
a simple socle. In particular, the ring R/I is self-injective [12, Proposition 21.5], i.e.,
quasi-Frobenius (moreover, it is a Frobenius ring). The R/I-algebra A/IA is obtained
from A by base change R → R/I . Hence A/IA is a quasi-Frobenius extension of R/I ,
and therefore A/IA is a quasi-Frobenius ring by [21, Satz 3]. Since any quasi-Frobenius
ring contains all simple modules in its socle [18, Theorem 13.4.2], A/IA is injectively
homogeneous of injective dimension 0. Since R is local, any projective R-module is
free. In particular, so is A. This makes it clear that the sequence x1, . . . , xn remains
regular on A. Now it follows from [8, Theorem 4.3] that A is injectively homogeneous
over R with injdim A = n. Similarly, injdim R = n. �

Given s ∈ R, we will denote by R[s−1] the ring of fractions of R with respect to the
multiplicatively closed set of powers of s. Put A[s−1] = A ⊗R R[s−1].

LEMMA 3.2. Suppose that R is a Noetherian domain with the quotient field Q(R).
Put Q(A) = A ⊗R Q(R). If M is a finitely generated (right) A-module such that the
Q(A)-module M ⊗R Q(R) is projective, then there exists an element 0 	= s ∈ R such that
M ⊗R R[s−1] is a projective A[s−1]-module.

Proof. Take any epimorphism of A-modules ϕ : F → M where F is a free A-module
of finite rank. Then ϕ′ = ϕ ⊗ Id : F ⊗R Q(R) → M ⊗R Q(R) is a split epimorphism
of Q(A)-modules by the projectivity hypothesis. There exists a Q(A)-linear map ψ ′ :
M ⊗R Q(R) → F ⊗R Q(R) such that ϕ′ψ ′ = Id. Since A is a Noetherian ring, the
finitely generated A-module M is finitely presented. Hence

HomQ(A)
(
M ⊗R Q(R), N ⊗R Q(R)

) ∼= HomA(M, N) ⊗R Q(R)

for each (right) A-module N by [33, Lemma 3.3.8]. In particular, ψ ′ = ψ ⊗ u−1 for
some ψ ∈ HomA(M, F) and 0 	= u ∈ R. Then ϕψ ⊗ 1 = Id ⊗u in (EndA M) ⊗R Q(R),
and it follows that there exists 0 	= v ∈ R such that vϕψ = vu Id. Taking s = vu, we see
that

ϕ ⊗ Id : F ⊗R R[s−1] → M ⊗R R[s−1]

is a split epimorphism of A[s−1]-modules. Hence, M ⊗R R[s−1] is a direct summand of
a free A[s−1]-module. �

PROPOSITION 3.3. Let A be a module-finite algebra over a commutative Noetherian
domain R whose Gorenstein locus contains a non-empty open subset of Spec R. If Q(A) =
A ⊗R Q(R) is a quasi-Frobenius algebra over the quotient field Q(R) of R, then there exists
0 	= s ∈ R such that A[s−1] is injectively homogeneous over R[s−1].

Proof. By the hypothesis there exists 0 	= t ∈ R such that R[t−1] is a Gorenstein
ring. Moreover, we can find such an element t with the property that A[t−1] is a free
R[t−1]-module. Since R[t−1] has the same quotient field as R and the pair R[t−1], A[t−1]
satisfies the same assumptions as R and A, we may assume from the very beginning
that R is Gorenstein and A is free as an R-module. Now

A∗
R ⊗R Q(R) ∼= HomQ(R)

(
Q(A), Q(R)

)
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is right Q(A)-projective since Q(A) is a quasi-Frobenius algebra. Lemma 3.2 applied
to M = A∗

R shows that there exists 0 	= s ∈ R such that

A∗
R ⊗R R[s−1] ∼= HomR[s−1]

(
A[s−1], R[s−1]

)
is right A[s−1]-projective. This means that A[s−1] is a quasi-Frobenius algebra over the
commutative Gorenstein ring R[s−1]. By Lemma 3.1 A[s−1] is injectively homogeneous
over R[s−1]. �

Following Wu and Zhang [34], we say that A is (right) AS-Gorenstein if A has
finite right injective dimension, say d, and for each simple right A-module V the
left A-module Extd

A(V, A) is also simple, while Exti
A(V, A) = 0 whenever i 	= d (cf. [7,

1.14]). In this case, A is injectively homogeneous over R with injdim Am = d for all
m ∈ Max R. Since A satisfies a polynomial identity by module-finiteness over R, it
follows from [35, Proposition 3.2] that A is also left AS-Gorenstein. Therefore, the
prefix may be omitted.

LEMMA 3.4. If height m = n for all m ∈ Max R and A is injectively homogeneous
over R, then A is AS-Gorenstein of injective dimension n.

Proof. The hypothesis entails injdim A = Kdim R = n. Since A is centrally
Macaulay over R [8, Theorem 3.4], each maximal ideal of R contains an A-regular
sequence of length n. Suppose that I = Ax1 + · · · + Axn where x1, . . . , xn ∈ R is an
A-regular sequence. Each prime ideal P of A containing I has to be a maximal ideal
since

height P ≥ n = Kdim A.

Hence Kdim A/I = 0, and so A/I is a module-finite algebra over a commutative
Noetherian ring R′ of Krull dimension 0. It follows that R′ and A/I are Artinian.
Next, repeated application of the Rees Theorem [25, Theorem 9.37] yields

Exti
A(V, A) ∼= Exti−n

A/I (V, A/I)

for each right A/I-module V in all degrees i. It follows that Exti
A(V, A) = 0 for all i < n

since Extj
A/I = 0 for j < 0 and Extj

A/I (V, A/I) = 0 for all j > 0 since Exti
A(?, A) = 0 for

i > n. The latter means that A/I is a right self-injective ring. It is therefore quasi-
Frobenius. By a basic property of quasi-Frobenius rings the functor HomA/I (?, A/I)
gives a duality between the categories of right and left modules over A/I [1, Theorem
30.7]. Hence

Extn
A(V, A) ∼= HomA/I (V, A/I)

is a simple left A/I-module whenever V is a simple right one. Now any simple right
A-module is annihilated by some maximal ideal of R and therefore by an A-regular
sequence of length n. Hence, all the above conclusions hold with V taken to be such a
module. �

REMARK 2. The fact that Extn
A(?, A) takes simple A-modules to simple ones can

be deduced from the Ischebeck spectral sequence [17] which shows that

V ∼= Extn
A

(
Extn

A(V, A), A
)
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when it is known already that Exti
A(V, A) = 0 for all i 	= n. However, the arguments

essentially taken from [8] allow us to avoid the use of this spectral sequence.
A Noetherian PI ring B of finite injective dimension d is called right injectively

smooth if Extd
B(V, B) 	= 0 for all simple right B-modules V [31]. Lemma 3.4 can be

reformulated by saying that A is AS-Gorenstein provided that A is injectively smooth
(cf. [31, Theorem 3.8]).

We will call a commutative Noetherian ring R equidimensional if Kdim R/p =
Kdim R for each minimal prime ideal p of R. Recall that an embedded prime of R is any
associated prime ideal of R which is not a minimal prime ideal. If R has no embedded
primes, then the set of zerodivisors of R is the union of its minimal primes. In this case,
the total quotient ring Q(R) of R is a Noetherian ring of Krull dimension 0, i.e., an
Artinian ring.

COROLLARY 3.5. Let R be an equidimensional finitely generated commutative algebra
over a field k with the total quotient ring Q(R). Suppose that R has no embedded primes.
If A is a module-finite algebra over R such that Q(A) = A ⊗R Q(R) is a quasi-Frobenius
ring, then there exists a non-zerodivisor s of R such that the ring A[s−1] is AS-Gorenstein.

Proof. By Noether’s Normalization Lemma R is integral, therefore module-finite,
over a subalgebra R′ isomorphic to a polynomial algebra, say in n indeterminates,
over k. Let p1, . . . , pr be all the minimal primes of R, and let p′

i = pi ∩ R′ for each
i. Then

⋂
p′

i is a nilpotent ideal of R′ since
⋂

pi is the nil radical of R. Since R′ is
a domain, we must have p′

i = 0 for at least one i. On the other hand, Kdim R′/p′
i

does not depend on i since R is equidimensional and Kdim R′/p′
i = Kdim R/pi by

Going-Up and Incomparability. It follows that there are no inclusions between the
ideals p′

1, . . . , p
′
r. Therefore p′

i = 0 for all i. Then each non-zero element of R′ is a
non-zerodivisor of R since it is contained in none of the associated primes of R.

Let Q(R′) be the quotient field of R′. Now R ⊗R′ Q(R′) is a partial quotient ring
of R. Since this ring is a finite dimensional algebra over Q(R′), all its non-zerodivisors
are invertible elements. It follows that Q(R) ∼= R ⊗R′ Q(R′), and therefore Q(A) ∼=
A ⊗R′ Q(R′) is a finite dimensional algebra over the field Q(R′). This means that the
quasi-Frobenius ring Q(A) is a quasi-Frobenius algebra over Q(R′).

The ring R′ is a Noetherian domain of finite global dimension n. In particular,
injdim R′ < ∞ as well, which means that R′ is Gorenstein. So the hypotheses of
Proposition 3.3 are satisfied for the R′-algebra A. There exists 0 	= s ∈ R′ such that
A[s−1] is injectively homogeneous over R′[s−1]. Since R′[s−1] is a finitely generated
domain over the field k with the quotient field isomorphic to Q(R′), we have

height m = Kdim R′[s−1] = transcendence degree Q(R′)/k = n

for each m ∈ Max R′[s−1] (see, e.g., [12, 8.2.1, Theorem A]). By Lemma 3.4 A[s−1] is
AS-Gorenstein. �

4. The main result. Let H be a Hopf algebra over a field k with the
comultiplication � : H → H ⊗ H, the co-unit ε : H → k, and the antipode S : H →
H. Let A be a left H-module algebra. One of the tools we need is twistings of A-modules
introduced in [30]. For a right A-module V and a right H-comodule U consider the
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vector spaces

U ⊗ V = U ⊗k V and [U, V ] = Homk(U, V )

as right A-modules with respect to the actions

(u ⊗ v)a =
∑
(u)

u(0) ⊗ v
(
(Su(1))a

)
, (f a)(u) =

∑
(u)

f (u(0))(u(1)a)

where a ∈ A, u ∈ U , v ∈ V and f ∈ Homk(U, V ). Here the comodule structure map
U → U ⊗ H is written symbolically as u �→ ∑

(u) u(0) ⊗ u(1).

LEMMA 4.1. Given two right A-modules V and W, there are k-linear bijections

Exti
A(U ⊗ V, W ) ∼= Exti

A

(
V, [U, W ]

)
.

Proof. For i = 0, the isomorphism HomA(U ⊗ V, W ) ∼= HomA
(
V, [U, W ]

)
natural in V and W was verified in [30, Lemma 1.1]. It shows that the functors
U⊗ ? and [U, ? ] defined on the category of right A-modules form an adjoint pair. Both
functors are exact, so it follows that U⊗ ? preserves projectivity of A-modules. If F• is a
projective resolution of V then U ⊗ F• is a projective resolution of U ⊗ V . It remains
to exploit the isomorphism of complexes HomA(U ⊗ F•, W ) ∼= HomA

(
F•, [U, W ]

)
. �

LEMMA 4.2. Suppose that the antipode S is bijective. If U is a right H-comodule
with dimk U = d < ∞ and M is a free right A-module of rank 1, then [U, M] is a free
right A-module of rank d.

Proof. There is a left H-module structure on M which makes M into an equivariant
right A-module in the sense that the following compatibility condition is satisfied:

h(va) =
∑
(h)

(h(1)v)(h(2)a) for all h ∈ H, v ∈ M, a ∈ A.

Indeed, since M ∼= A as right A-modules, we can transfer the given H-module structure
on A to M. By [30, Lemma 1.2] there is an isomorphism of right A-modules

[U, M] ∼= [Utriv, M]

where Utriv is the vector space U equipped with the trivial right H-comodule structure
u �→ u ⊗ 1 for u ∈ U . Since the action of A on [Utriv, M] is given by the rule

(f a)(u) = f (u)a, f ∈ Homk(U, V ), a ∈ A, u ∈ U,

taking values of linear maps U → M at basis elements of U gives an isomorphism of
A-modules [Utriv, M] ∼= Md . Thus [U, M] ∼= Md , and the conclusion is clear. �

Another important tool is a certain equivalence relation ∼H on the subset Specf A
of the prime spectrum Spec A consisting of those prime ideals P of A for which there
exists no infinite strictly ascending chain P0 ⊂ P1 ⊂ · · · in Spec A starting at P0 = P.
The existence of this relation was proved in [27, Theorem 1.1] under the assumption
that A is module-finite over its centre Z. From now on, we will assume that A satisfies
this condition.
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Denote by F the family of all finite dimensional subcoalgebras of H, and for each
C ∈ F and P ∈ Spec A define an ideal

PC = {a ∈ A | Ca ⊂ P}.

Given two prime ideals P, P′ ∈ Specf A, one has P ∼H P′ if and only if P′ is a prime
minimal over PC for some C ∈ F . The ∼H-equivalence classes are called the H-orbits.

In view of [27, Proposition 5.10] the H-orbit of any maximal ideal of A consists of
maximal ideals. Thus, the set Max A of all maximal ideals is a union of H-orbits. For
P, P′ ∈ Max A one has P ∼H P′ if and only if PC ⊂ P′ for some C ∈ F .

Note that PC coincides with the kernel of the linear map τ : A → Homk(C, A/P)
defined by the rule τ (a)(c) = ca + P for a ∈ A and c ∈ C. Hence dimk A/PC < ∞ for
any C ∈ F whenever dimk A/P < ∞. In this case, dimk A/P′ < ∞ for each P′ in the
H-orbit of P.

The maximal ideals of A are in a bijective correspondence with the isomorphism
classes of simple right A-modules. It turns out that the H-orbit relation on Max A can
be described in terms of the twisting operations with modules. In the next lemma, we
will consider only maximal ideals of finite codimension in A since this is the only case
needed in the final result.

LEMMA 4.3. Assume S to be surjective. Let V, V ′ be two simple finite dimensional
right A-modules, and let P, P′ be their annihilators in A. In order that P and P′ lie in the
same H-orbit, it is necessary and sufficient that V ′ be isomorphic to a composition factor
of U ⊗ V for some finite dimensional right H-comodule U.

Proof. If ρ : U → U ⊗ H is a right H-comodule structure on a finite dimensional
vector space U , then ρ(U) ⊂ U ⊗ C for some C ∈ F . Now S(C) ∈ F as well, and from
the explicit formula for the twisted action of A it is clear that the ideal

PS(C) = {a ∈ A | S(C)a ⊂ P}

annihilates U ⊗ V . Hence PS(C) ⊂ P′, and therefore P ∼H P′, whenever V ′ occurs as
a composition factor of U ⊗ V .

Conversely, suppose that P ∼H P′. Then PD ⊂ P′ for some D ∈ F . Since S is
surjective, there exists C ∈ F such that D ⊂ S(C). Take U = C with the comodule
structure given by the comultiplication � : C → C ⊗ C. If a ∈ A annihilates C ⊗ V ,
then

v
(
S(c)a

) = (ε ⊗ Id)
(∑

(c)

c(1) ⊗ v
(
S(c(2))a

) = (ε ⊗ Id)
(
(c ⊗ v) · a

) = 0

for all c ∈ C and v ∈ V , i.e., S(C)a is contained in the annihilator P of V . This shows
that the annihilator of C ⊗ V in A coincides with the ideal PS(C). On the other hand,
since dimk(C ⊗ V ) < ∞, the right A-module C ⊗ V has finite length. If V1, . . . , Vn

are the simple factors in its composition series, then the product of their annihilators
P1, . . . , Pn taken in a suitable order annihilates C ⊗ V , whence∏

Pi ⊂ PS(C) ⊂ PD ⊂ P′.

It follows that Pi ⊂ P′ for at least one i by the primeness of P′. Hence P′ = Pi since
Pi ∈ Max A. This entails Vi ∼= V ′. �
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Now we are ready to prove the invariance of the Bass numbers along the H-orbit
of a maximal ideal of finite codimension in A. I do not know whether the next result
can be valid under less-restrictive assumptions about P.

PROPOSITION 4.4. Let H be a Hopf algebra with a bijective antipode, A an H-module
algebra module-finite over a Noetherian central subring R, and P a maximal ideal of
finite codimension in A. Put

� = {P′ ∈ Max A | P ∼H P′}.
Suppose that either � is finite or R has the property that the Gorenstein locus of R/p

contains a non-empty open subset of Spec R/p for each p ∈ Spec R. Then

μi(P′, A) = μi(P, A) for all P′ ∈ � and all i ≥ 0.

Proof. We may fix i. In both cases, the set X = {μi(P′, A) | P′ ∈ �} is finite.
This conclusion is obvious when � is finite. Under the other assumption about R
Proposition 2.2 ensures that A satisfies GBBN in degree i, whence X is bounded.
However, each rational number in the set X is written as an integer fraction whose
denominator is bounded by the number r of elements generating A as an R-module.
Indeed, if V ′ is the simple right A-module annihilated by P′ ∈ Max A, then

μi(P′, A) = dimR/m′ Exti
A(V ′, A)

dimR/m′ V ′

with dimR/m′ V ′ ≤ dimR/m′ A/P′ ≤ r where m′ = R ∩ P′. Hence there are finitely many
possibilities both for the denominator and the numerator, and the finiteness of X is
clear.

In particular, X has a largest element. Changing P if necessary, we may assume that
μi(P, A) is this largest element, so that μi(P′, A) ≤ μi(P, A) for all P′ ∈ �. Suppose that
W is any right A-module of finite length whose composition factors have annihilators
lying in �. Then

dimk Exti
A(W, A)

dimk W
≤ μi(P, A). (
)

If W is a simple right A-module annihilated by some P′ ∈ �, then the left-hand side
coincides with μi(P′, A), and the inequality above holds by the choice of P. In general
(
) is proved by induction on the length of W . Considering any short exact sequence
of right A-modules 0 → W ′ → W → W ′′ → 0 where W ′ and W ′′ have smaller length
than W , we get

dimk Exti
A(W, A) ≤ dimk Exti

A(W ′, A) + dimk Exti
A(W ′′A)

≤ (dimk W ′ + dimk W ′′) μi(P, A) = (dimk W ) μi(P, A).

A similar induction shows that, whenever equality is attained in (
), each composition
factor of W is annihilated by an ideal P′ ∈ � such that μi(P′, A) = μi(P, A).

Let V be the simple right A-module annihilated by P. If U is a right H-comodule
of finite dimension d, then

Exti
A(U ⊗ V, A) ∼= Exti

A

(
V, [U, A]

) ∼= Exti
A(V, Ad )
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by Lemmas 4.1 and 4.2. Hence

dimk Exti
A(U ⊗ V, A)

dimk(U ⊗ V )
= d · dimk Exti

A(V, A)
d · dimk V

= μi(P, A).

By Lemma 4.3 each composition factor of U ⊗ V is annihilated by a maximal ideal of
A lying in �. Hence the previous argument applies with W = U ⊗ V , and equality is
attained in (
) for this choice of W . It follows that μi(P′, A) = μi(P, A) for any P′ ∈ �

which annihilates some composition factor of U ⊗ V .
Finally, given any P′ ∈ �, by Lemma 4.3 there exists a finite dimensional right

H-comodule U such that the simple right A-module annihilated by P′ occurs as a
composition factor of U ⊗ V . This entails the required equality. �

Recall that A is assumed to be an H-module algebra module-finite over its centre
Z. The algebra A is called H-semiprime if A contains no non-zero nilpotent H-stable
ideals, and A is called H-prime if IJ 	= 0 for any two non-zero H-stable ideals I and J of
A. Denote by Q(Z) the total ring of fractions of Z. Assuming that A is Noetherian and
H-semiprime, it was proved in [27, Theorem 1.3] that A has a quasi-Frobenius classical
quotient ring Q(A) isomorphic with A ⊗Z Q(Z). This implies, in particular, that all
non-zerodivisors of Z remain non-zerodivisors in A and that Q(Z) is itself an Artinian
ring, so that Z cannot have embedded primes. If A is Noetherian and H-prime, then
Z is equidimensional by [27, Proposition 5.15].

THEOREM 4.5. Let H be a Hopf algebra with a bijective antipode, A an H-simple
H-module algebra finitely generated as an algebra over the ground field and module-finite
over its centre Z. Suppose that the H-orbits of maximal ideals of A are dense in Max A.
Then A is AS-Gorenstein.

Proof. By the Artin–Tate Lemma [19, 13.9.10], Z is a finitely generated algebra
over the ground field k. In particular, Z is Noetherian, and so too is A. By the Hilbert
Nullstellensatz all maximal ideals of A have finite codimension. Since A has no non-
trivial H-stable ideals, A is H-prime. By the previously mentioned results from [27] this
implies that Z is equidimensional, Z has no embedded primes, and A ⊗Z Q(Z) is a
quasi-Frobenius ring. By Corollary 3.5, there exists a non-zerodivisor s of Z such that
the ring A[s−1] is AS-Gorenstein. Consider the open subset

Ds = {P ∈ Max A | s /∈ P}

of the maximal spectrum. Since Z is a Jacobson ring, it has a maximal ideal m such
that s /∈ m, and any maximal ideal of A lying over m is contained in Ds. This shows
that Ds is non-empty.

Put d = injdim A[s−1]. If V is a simple right A-module with annihilator P ∈ Ds,
then V and Exti

A(V, A) are A[s−1]-modules since s acts invertibly on V . Therefore

Exti
A(V, A) ∼= Exti

A(V, A) ⊗Z Z[s−1] ∼= Exti
A[s−1](V, A[s−1]) = 0

for all i 	= d. This means that μi(P, A) = 0 for all i 	= d.
If � is any H-orbit in Max A, then � ∩ Ds 	= ∅ since � is dense in Max A by the

hypothesis. Thus, given any P ∈ Max A, there exists P′ ∈ Ds lying in the H-orbit of P,
so that P ∼H P′. Proposition 4.4 entails μi(P, A) = μi(P′, A) = 0 for all i 	= d. In other
words, each maximal ideal of A has upper grade equal to d. Therefore A is injectively
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homogeneous with height m = injdim Am = d for each m ∈ Max Z. By Lemma 3.4 A
is AS-Gorenstein. �

REMARK 3. In Theorem 4.5 it suffices to assume that the antipode S of H is only
surjective rather than bijective, and even this condition can be dropped altogether if
the orbits with respect to the Hopf subalgebra S2(H) of H are used instead of the
H-orbits. The point is that without any conditions on S the conclusion of Lemma 4.2
still holds for the A-module [U∗, M] in place of [U, M], and in Lemma 4.3 the maximal
ideals P, P′ lie in the same S2(H)-orbit if and only if V ′ is isomorphic to a composition
factor of U∗ ⊗ V for some finite dimensional right H-comodule U . Proposition 4.4
will still be valid if � is taken to be an S2(H)-orbit.

REMARK 4. The crucial step in the approach of Wu and Zhang was to prove that a
Noetherian PI algebra A is AS-Gorenstein whenever all functors Exti

A(?, A) are exact
on the category of left A-modules of finite length and there exists a subset � ⊂ � such
that for each simple left A-module V one has Exti

A(V, A) 	= 0 if and only if i ∈ � [35,
Proposition 3.2]. If A is finitely generated, then all A-modules of finite length have
finite dimension, and if A is also a Hopf algebra, then the required condition follows at
once from the facts that for each finite dimensional left A-module V the left A-module
Homk(V, A) ∼= A ⊗ V∗ is free and

Exti
A(V, A) ∼= Exti

A(k ⊗ V, A) ∼= Exti
A

(
k, Homk(V, A)

)
.

If A is an H-module algebra, Lemma 4.1 alone does not yield such a conclusion. This
explains the necessity of some other methods.

5. The minimal injective resolution. Let A be a ring module-finite over a central
subring R. Assume that R and A are Noetherian. Then any injective A-module
is a direct sum of indecomposable submodules [18, Theorem 6.6.4]. Furthermore,
each indecomposable injective I has a single associated prime ideal of A called the
assassinator of I , and for each prime ideal P there exists a unique, up to isomorphism,
indecomposable injective right A-module whose assassinator is P [13, p. 423]. This
result was extended later to fully bounded Noetherian rings (see [14, Theorem 9.15]).

The multiplicities with which indecomposable injectives occur in minimal injective
resolutions can be expressed readily in terms of the Bass numbers:

LEMMA 5.1. For each P ∈ Spec A denote by IP the indecomposable injective right
A-module with assassinator P and denote by udim A/P the uniform dimension (Goldie
rank) of the prime factor ring A/P. Let 0 → M → E0 → E1 → . . . be the minimal
injective resolution of a right A-module M. Writing

Ei =
⊕

P∈Spec A

Iai(P,M)
P ,

we have ai(P, M) = μi(P, M) (udim A/P) for each i.

Proof. Suppose first that P ∈ Max A. Let V be the simple right A-module
annihilated by P, and let D = EndA V . Then IP is the injective hull of V . Hence
V is isomorphic with the socle of IP and V does not embed in any IP′ for P′ 	= P. This
means that HomA(V, IP) ∼= D and HomA(V, IP′) = 0 for all primes P′ 	= P. Since Ei is
the injective hull of the image of Ei−1, the socle of Ei is contained in that image, and
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therefore the map Ei → Ei+1 vanishes on the socle of Ei. It follows that the complex
HomA(V, E•) has zero differentials. Hence

Exti
A(V, M) ∼= HomA(V, Ei)

as vector spaces over D. Note that dimD HomA(V, Ei) = ai(P, M), while

dimD Exti
A(V, M) = μi(P, M)n where n = dimD V .

By the Wedderburn Theorem, the simple artinian ring A/P is isomorphic to the full
matrix ring Matn(D), so that udim A/P = n as well, for udim A/P is equal to the length
of A/P in this case. Comparison of dimensions yields the required equality.

The general case is proved by localization. Let p ∈ Spec R. By [8, Lemma 5.4] E• ⊗A

Ap is the minimal injective resolution of the right Ap-module M ⊗A Ap. Now IP ⊗A Ap

is an indecomposable injective right Ap-module with assassinator PAp when P ∩ R ⊂
p and IP ⊗A Ap = 0 otherwise. If P ∩ R = p, then PAp ∈ Max Ap. Since ai(P, M) =
ai(PAp, M ⊗A Ap) and the ring A/P has the same uniform dimension as its classical
quotient ring Q(A/P) ∼= Ap/PAp, the formula for ai(P, M) follows from the previously
considered case of maximal ideals. �

LEMMA 5.2. Suppose that R is a Gorenstein ring and Am is a Frobenius algebra over
Rm for each m ∈ Max R. Then A is injectively homogeneous over R. Moreover,

μi(P, A) =
{

1 if i = height P,

0 otherwise

for all P ∈ Spec A. Denote by E(A/P) the injective hull of A/P. The terms of the minimal
injective resolution of A as a right A-module are given by

Ei =
⊕

{P∈Spec A | height P=i}
E(A/P).

Proof. By Lemma 3.1 Am is injectively homogeneous over Rm for each m ∈ Max R.
This implies that A is injectively homogeneous over R. The Bass numbers can be
determined by passing to the localizations Ap for p ∈ Spec R. If m is any maximal ideal
of R such that p ⊂ m, then Ap

∼= Am ⊗Rm
Rp. It follows that Ap is a Frobenius algebra

over Rp for each p ∈ Spec R.
So we may assume R to be local with a maximal ideal m. As in the proof of

Lemma 3.1, there exists an A-regular sequence x1, . . . , xh ∈ m of length h equal to the
height of m. Put

R′ = R/I and A′ = A/IA where I = Rx1 + · · · + Rxh.

Then R′ is a local Artinian ring with a nilpotent maximal ideal m′ = m/I and with
a simple socle S. This means that R′ is a Frobenius ring. Next, A′ ∼= A ⊗R R′ is a
Frobenius algebra over R′. Since A′ is a free R′-module and S coincides with the
annihilator of m′ in R, the annihilator of m′ in A′ is equal to SA′. Note that SA′ ∼=
A′ ⊗R′ S ∼= A′/m′A′ as S ∼= R′/m′. Since the right socle of A′ is annihilated by m′, it
coincides with the socle of SA′ as a right A′-module, and therefore is isomorphic with
the right socle of A′/m′A′. But A′/m′A′ is a Frobenius algebra over the field R′/m′.
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Hence

soc A′ ∼= soc A′/m′A′ ∼= A′/J ′

where J ′ is the Jacobson radical of A′. In other words, A′ is itself a Frobenius ring. (This
is a special case of a general result [24, Satz 6] concerning transitivity of Frobenius ring
extensions.) If V is any right A′-module, then

Exti
A(V, A) ∼= Exti−h

A′ (V, A′)

by the Rees Theorem. Since A′ is self-injective, it follows that Exti
A(V, A) = 0 for all

i 	= h. Taking V to be the simple right A-module with annihilator P ∈ Max A, we get
μi(P, A) = 0 for i 	= h. On the other hand,

Exth
A(V, A) ∼= HomA(V, A′) ∼= HomA(V, soc A′) ∼= HomA(V, A′/J ′).

If n = dimD V where D = EndA V , then V occurs in A′/J ′ as a direct summand with
multiplicity n. Hence dimD Exth

A(V, A) = n, and so μh(P, A) = 1. Furthermore, h =
height P since P ∩ R = m and A is R-Macaulay.

The formula for μi(P, A) is thus proved. The final conclusion follows from
Lemma 5.1 applied to M = A. Indeed, E(A/P) ∼= In

P where n = udim A/P since the
ring A/P is an essential extension of a direct sum of n uniform right ideals, while IP is
isomorphic with the A-module injective hull of any uniform right ideal of A/P. �

LEMMA 5.3. Suppose that A is finitely generated projective as an R-module. Let m be
a maximal ideal of R. If A/mA is a Frobenius algebra over R/m, then Am is a Frobenius
algebra over Rm.

Proof. We may assume the ring R to be local. Since A/mA is a Frobenius algebra
over the field R/m, there exists an R/m-linear map fm : A/mA → R/m whose kernel
contains no non-zero one-sided ideals of A/mA. This map can be lifted to an R-linear
map f : A → R. Define a right A-linear map ϕ : A → A∗

R by the formula ϕ(a) = f · a
for a ∈ A. By the choice of fm the reduction of ϕ modulo m is an isomorphism of vector
spaces A/mA ∼= (A/mA)∗ over R/m. Since both A and A∗

R are finitely generated free
R-modules, ϕ has to be bijective. Thus A ∼= A∗

R as right A-modules, which means that
A is a Frobenius algebra over R. �

LEMMA 5.4. Suppose that R is a regular ring and A is injectively homogeneous over
R. Suppose also that

μheight P(P, A) = 1 for all P ∈ Max A.

Then Am is a Frobenius algebra over Rm for each m ∈ Max R.

Proof. We may assume again that R is local with a maximal ideal m. Then m is
generated by a regular sequence x1, . . . , xh where h = height m = injdim A. Since A is
module-finite and centrally Macaulay over R, it is a Cohen–Macaulay R-module. But
a finitely generated module over a regular local commutative ring is free if and only if
it is Cohen–Macaulay of maximal Krull dimension [4, p. 53, Corollary 2]. It follows
that A is a free R-module. Then x1, . . . , xh is an A-regular sequence, and so for each
right A′-module V where A′ = A/mA we have

Exti
A(V, A) ∼= Exti−h

A′ (V, A′)
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by the Rees Theorem. In particular, Ext1
A′ (V, A′) = 0 for each V , which implies that the

Artinian ring A′ is right self-injective. Take V to be a simple module with annihilator
P ∈ Max A, and put n = dimD V where D = EndA V . Since μh(P, A) = 1, we have
dimD Exth

A(V, A) = n. The isomorphism Exth
A(V, A) ∼= HomA′(V, A′) now shows that

V occurs in the socle of A′ with multiplicity n. Since this holds for each simple V , we
get soc A′ ∼= A′/J ′ as right A′-modules where J ′ stands for the Jacobson radical of A′.
Thus A′ is a Frobenius ring. Since A′ is a finite dimensional algebra over the field R/m,
it is a Frobenius algebra [18, Theorem 13.5.7]. By Lemma 5.3 A is a Frobenius algebra
over R. �

LEMMA 5.5. Let m ∈ Max R and h = height m. If A is injectively homogeneous over
R, then

∏
P∈Maxm A μh(P, A) = 1 where Maxm A = {P ∈ Max A | P ∩ R = m}.

Proof. Passing to Rm and Am, we may assume R to be local. Then injdim A = h
and A is AS-Gorenstein by Lemma 3.4. Hence the assignment

V �→ Exth
A(V, A)

gives a bijection between the isomorphism classes of simple right A-modules and simple
left ones. Put K = R/m. The set Maxm A = Max A is finite since its elements are in
a bijective correspondence with the maximal ideals of the finite dimensional algebra
A/mA over the field K . Let Max A = {P1, . . . , Pn}, and for each i denote by Vi the
simple right A-module annihilated by Pi. The simple left A-module annihilated by Pi is
then V∗

i = HomK (Vi, K). Hence, there exists a permutation π of indices 1, . . . , n such
that Exth

A(Vi, A) ∼= V∗
π(i) for each i. Since dimK V∗

i = dimK Vi, we get

n∏
i=1

μh(Pi, A) =
n∏

i=1

dimK Exth
A(Vi, A)

dimK Vi
=

n∏
i=1

dimK V∗
i

dimK Vi
= 1.

�
THEOREM 5.6. Let H be a Hopf algebra with a bijective antipode, A an H-simple

H-module algebra finitely generated as an algebra over the ground field and module-finite
over its centre Z. Let 0 → A → E0 → E1 → . . . be the minimal injective resolution of
A as a right A-module. If the set Max A is a single H-orbit, then

Ei =
⊕

{P∈Spec A | height P=i}
E(A/P)

for each i where E(A/P) stands for the injective hull of A/P.

Proof. By Theorem 4.5 A is AS-Gorenstein. Let d = injdim A. Then all maximal
ideals of A have upper grade equal to d. In particular, A is injectively homogeneous over
a central subring R whenever A is module-finite over R. By Noether’s Normalization
Lemma, we may take R to be a polynomial algebra over the ground field. Then R is a
regular commutative ring. By Proposition 4.4 the function P �→ μd (P, A) is constant
on each H-orbit in Max A. Since Max A is a single H-orbit, this function is constant
on the whole set Max A. Let c be its value, so that μd (P, A) = c for all P ∈ Max A. By
Lemma 5.5 cn = 1 where n is the cardinality of Maxm A for some m ∈ Max R. Since c is a
positive rational number, we get c = 1. Thus μd (P, A) = 1 for all P ∈ Max A. Note that
height m = injdim Am = d for all m ∈ Max R, and also height P = height(P ∩ R) = d
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for all P ∈ Max A since A is R-Macaulay. An application of Lemmas 5.4 and 5.2
completes the proof. �

In the last result of this paper, the dense open H-orbit � does not necessarily
coincide with the whole set Max A, and then the algebra A may not be H-simple.
As mentioned in the introduction, such a situation occurs when dealing with coideal
subalgebras of Hopf algebras.

THEOREM 5.7. Let H be a Hopf algebra with a bijective antipode, A an H-prime
H-module algebra finitely generated as an algebra over the ground field and module-finite
over its centre Z. If Max A contains a dense open H-orbit �, then the classical quotient
ring Q(A) is a Frobenius ring.

Proof. As recalled in Section 4, the conditions imposed on A imply that Z is an
equidimensional finitely generated algebra over the ground field, Z has no embedded
primes, and A has a quasi-Frobenius classical quotient ring Q(A) ∼= A ⊗Z Q(Z). Let
R be a subalgebra of Z such that Z is module-finite over R and R is isomorphic to a
polynomial algebra, say in n indeterminates, over the ground field. As in the proof of
Corollary 3.5 we conclude that Q(A) ∼= A ⊗R Q(R) where Q(R) stands for the quotient
field of R and there exists 0 	= s ∈ R such that A[s−1] is AS-Gorenstein of injective
dimension n. Then μi(P, A) = 0 for all i 	= n and all P ∈ Ds where

Ds = {P ∈ Max A | s /∈ P}.

Since Ds is a non-empty open subset of Max A and � is dense in Max A, we get
� ∩ Ds 	= ∅. Proposition 4.4 now entails μi(P, A) = 0 for all i 	= n and all P ∈ �.

Denote by I the intersection of all ideals P ∈ Max A � �. Since � is open in
Max A, we have

� = {P ∈ Max A | I 	⊂ P}.

By [10, Theorem 4.3] A is a Jacobson ring, i.e., each prime ideal of A is an intersection of
maximal ideals. This implies that Max A is a dense subset of Spec A. Hence � is dense
in Spec A too, but then � intersects each irreducible component of the Noetherian
space Spec A. It follows that I is contained in none of the minimal prime ideals of
A. Then IQ(A) ∼= I ⊗R Q(R) is a two-sided ideal of Q(A) contained in none of the
maximal ideals. Hence 1 ∈ IQ(A), which shows that I ∩ R 	= 0.

Now pick any maximal ideal m of R such that I ∩ R 	⊂ m. We have Maxm A ⊂ �

since I 	⊂ P for each P ∈ Maxm A. It follows that μi(P, A) = 0 for all i 	= n and all
P ∈ Maxm A. Hence Am is injectively homogeneous over Rm with injdim Am = n. By
Proposition 4.4 the function P �→ μn(P, A) has a constant value, say c, on the H-orbit
� and therefore on its subset Maxm A. Applying Lemma 5.5, we deduce that c = 1.
Thus μn(P, A) = 1 for all P ∈ Maxm A. Since Rm is a regular ring, Lemma 5.4 applied
to the ring Am shows that Am is a Frobenius algebra over Rm. But the quotient field of
the domain Rm may be identified with Q(R). Hence

Q(A) ∼= Am ⊗Rm
Q(R)

is a Frobenius algebra over the field Q(R). Then Q(A) is Frobenius as a ring. �
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