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1. Introduction

According to Mukai (1992, 1995) every prime Fano three-fold of genus 12 has
geometric realizations in three different ways:

(a) Let V be a seven-dimensional vector space and let 7: A2V — N be a net of
alternating forms on V, i.e. N is three-dimensional. Denote by

G@3, V,n) = {E € GB, V)IA2E C ker(p: A*V — N)}

the Grassmannian of isotropic 3-spaces of V.

(b) Letf € S4(U)be the equation of a plane quartic F C P(U) = P A polar hexagon
I of F is the union of six lines T = {/; ... -l = O} such that f = I} + ... + 2. We
can also identify I with a sextuple of points in P? = P(U*), i.e. a point of
Hilbé(Pz). Then the variety of sums of powers presenting f is

VSP(F,6) = (T € Hilbg(P*)|T is polar to F},

the closure of the set of polar hexagon of F.

(c) Let W be a four-dimensional vector space, and let ¢: U*<— S,W* be a
net of quadrics in P? = P(W*). Consider the Hilbert scheme
Hilbs,,(P?) = H; U H, and the component H; containing the twisted cubic
curves C C P(W) = P3. Let H ¢ G(3, S, W) be the image of H, under the map

Hilbs, 1 (P?) = G(@3, H'(P?, 0Q2))) = G(3, S, W),
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which sends Ci— H(P?, I¢(2)). Denote by
H(g) = HN G(@3, ker(S$; W — U)) € G@3, S; W)

the variety of twisted cubics, whose quadratic equations are annihilated by
U*Cc S W™,

THEOREM 1.1 (Mukai, 1992; Mukai, 1995). Let X be a prime Fano 3-fold of genus
12 over an algebraically closed field of characteristic 0. Then there exist (a) a
net of alternating forms n: N>V — N, (b) a plane quartic F, (¢) a net of quadrics
q: U* — S,(W)*such that

X = G(@3,V,n) =2 VSP(F, 6) = H(g).

Conversely a general net of alternating forms, a general quartic or a general net of
quadrics gives a smooth prime Fano 3-fold of genus 12.

COROLLARY 1.2. The moduli spaces Mgu, of prime Fano 3-folds of genus 12, Mj
of curves of genus 3, M, of nets of quadrics, and M g of curves of genus 3 together
with a non-vanishing theta characteristic are birational to each other.

M3 g occurs, since a net of quadrics in IP3 is determined by its discriminant, a
plane quartic, together with the associated non-vanishing theta characteristic.
The connection between (a) and (b) is sketched in Mukai (1992). The surprising fact
that M3 and M; g4+ are birational, is actually an old result due to Scorza (1899)
recently reconsider by Dolgachev and Kanev (1993). The purpose of this paper
is to give a detailed description, how the three realizations are related to each other.
In particular it is proved that Mukai’s and Scorza’s constructions give the same
birational transformation. For non-algebraically closed ground fields our investi-
gation gives that the models of type (a) and (b) exists over the field of definition
of the V7,,, while the space curve model (c) is in general only defined after a field
extension.

2. A Polarity and Sums of Powers

Let & be a field of characteristic zero. Consider S = k[xp,...,x,] and
T =Kk[dy,...,9,]. T acts on S by differentiation:

(P = Exﬁ_“
o

if f > « and 0 otherwise. Here o and f are multi-indices, (g) = [ B;/e: and so on. In
particular we have a perfect pairing, apolarity, between forms of degree n and homo-
geneous differential operators of order n.
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Note that the polar of a form f € .S in a point a € P is given by P,(f) for
a=1(ap,...,a;)and P, => a0, € T.
One can interchange the role of S and T by defining

B = ﬁ!(;) P,
With this notation we have for forms of degree n
Po(f) = f(Py) = nlf (a).
Moreover
S =0 f(a)=0 (2.1)

if m=>=n.
A polarity allows us to define Artinian Gorenstein graded quotient rings of 7" via
forms: For f a homogeneous form of degree n define

[T ={DeTID() =0}
and
A =T/

The socle of 4/ is in degree n. Indeed P (D(f)) =0VYP, e T; <= D(f) =0 or
D € T,. In particular the socle of 4’ is 1-dimensional, and 4’ is indeed Gorenstein.

Conversely, for a graded Gorenstein ring 4 = T/I with the socle in degree n
multiplication in 4 induces a linear form f: S,(7,) — k which can be identified with
a homogeneous polynomial /" € S of degree n. This proves:

THEOREM 2.1 (Macaulay, 1916). The map Fi— AF gives a bijection between
hypersurfaces F = {f = 0} C P" of degree n and Artinian graded Gorenstein quotient
rings A = T/I of T with socle in degree n.

Note, that
(f+: D)= D(f)* 2.2)
for any homogeneous D € T.

DEFINITION 2.2 (Iarrobino, 1984; Sylvester, 1886). For forms f of even degree 2n
the matrix Cat(f) = (D:D;(f)), <ij<(") with Dy, ..., Dy € T, a basis, is called
catalectican matrix of f. f is called non-degenerate, if Cat#(f) has maximal rank.

The Hilbert function and syzygies of A” depends on subtle properties of F (cf.

Iarrobino, 1984; Iarrobino and Kanev, 1996). For example for plane quartics,
we have (Clebsch, 1861):
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THEOREM 2.3. Let F ={f =0} be a plane quartic. The following integers are
equal:

(1) dimy A,

(2) rank Cat(f),

(3) the minimal s such that over the algebraic closure k of k f lies in the closure of forms
I+ +1

Proof. dimy Aé = rank Cat(f) holds because multiplication in 47 gives perfect
pairings Ay x AL — Af = k.

Suppose f =1} +---+ 1} The corresponding lines Ly, ..., L, € Pz’ viewed as
points in the dual space, impose at most s conditions on quadrics {D = 0} C P2,
Hence dimy f5- > 6 —s and dimy 4% < 5. Since the Hilbert function of A4 varies
semi-continuously with F, dimy 45 < s holds for all forms in the closure of the
set of forms of the sums of s powers.

Conversely, suppose dimy 45 =s. 4 = T/I is Gorenstein of codimension 3.
Hence the structure theorem of Buchsbaum and Eisenbud (1977) applies: A" has

syzygies

0«— A «—T«—F <¢— F, «—T(=7)«—0,

with F; = @f’;{l T(—a)), F; = Fi(7), ¢ skew-symmetric, and I generated by the
2r x 2r pfaffians of ¢. Conversely, any sufficiently general skew-symmetric
homomorphism ¢ € Homy7(F;, F;) defines via its pfaffians a graded Artinian
Gorenstein ring 4 = T/I with the same Hilbert function as 4’. Therefore it suffices
to establish the sum presentation /' =/} +---+/# for an f corresponding to an
A = A" with sufficiently general syzygy matrix ¢ for each possible numerical type
of syzygies.

There are only a few number of numerical cases: We argue in each of the cases
separately but similarly: Let n be the number of cubic generators of I = f* and
m = |n/2]. Consider the n x n submatrix (ES of ¢ corresponding to the linear
coefficients of the quartic syzygies.

Suppose there is a m x m (skew) symmetric submatrix of zeroes in &5 The cor-
responding quartic syzygies and all the syzygies which involve only equations of

degree < 2 give r = m + p syzygies of degrees (b1, - .., ba+1) as indicated above
between equations of degrees (ay, ..., a,+1). Here p is the number of syzygies which
involve only equations of degree < 2, and m+ p =r. Thus we obtain a block
decomposition
0 .- %
S . "
d=1 —« 0
o 0 0
v 0 0
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Table 1. Numerical types of syzygies

Hilbert function (ar, ..., aory1) m P Brats s byri1)
(1,3,6,3,1) (3,3,3,333,3) 3 0 4, 4, 4)
1,3,531) (2,333, 3) 2 0 4, 4)

(1,3,4,3 1) 2,2,3) 0 1 )

1,3,4,3,1) 2,2,3 3,4 1 1 3,4
(1,3,33,1) 2,2,2,4,4 0 2 @3, 3)

1,2,3 2,1 (1, 3, 3) 1 0 “)
(1,2,2,2,1 1,2,4 0 1 3)

1,1, 1, 1, 1) (1, 1,95) 0 1 2)

with a (r + 1) x r matrix . The r x r minors of ¥ are among the pfaffians of ¢; they
are precisely the generators involved in our r syzygies. By Hilbert and Burch
(Eisenbud, 1995, Thm 20.15) these minors generate the homogeneous ideal Jr of
a set I ¢ P? of distinct points with syzygies

r+l g
0<«—Jr «— @ T(—a;) «<— @ T(—b;) <0,

i=1 j=r+1

if y is sufficiently general. Jr is 2-regular, since b; < 4 forj > r + 1. Hence the Hilbert
function of R = Rr = T'/Jr takes the values

hr(t) = dimy(Rr), = deg T

for ¢t > 2. On the other hand dimy(Rr), = dimy A’; =s as (Jr) <, =1<> by con-
struction. Thus, for sufficiently general i, the scheme I' consists of s points
Li={=0},...,L;={l;=0}). To prove that there exists a sum presentation
f= /llli‘ + .+ ixlf we consider T — R — A and the induced inclusions

Hom(A4, k) C Hom(Ry, k) C Hom(Ty, k).

The linear forms {Di— D(l;‘)} are contained in Hom(Ry, k). Moreover, since I’
imposes s independent conditions on quartics, these linear forms span the image.
In particular {D+— D(f)} € Hom(A44,k) 1is contained in this space, 1i.e.
D(f) = D(Jql} +---+ il¥) for all De T, for suitable Zi,...,A €k. Hence
f= /hlf + -+ idf as desired. Taking roots of the 4,’s we can put them into the
equations /;.

It remains to prove the existence of a m x m block of zeroes in q?), possibly after row
and column operations. Let V; := TorzT (4", k),. Then (Z) corresponds to a net of alter-
nating forms A2 Vy — Ti and we are looking for a subspace E € G(m, n) = G(m, Vy)
such that A’E C ker(A? Vy — T1). If m = 1 there is nothing to prove. If m > 2 then E
exists, because for j = ("2“) and ¢; = cj(/\zé’*) the jth Chern class, where £ denotes the
universal subbundle on G(m, n), we have c]3 #0. O
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Notice that we expect a three-dimensional family in the case s=6, a
one-dimensional family of sum presentations for f with s=15, or s =4 and
r=23, or s =3 and /i4(1) = 2, and a unique presentation otherwise.

Remarks 2.4. (1) The fact that, despite the dimension count, a general plane
quartic is not the sum of 5 powers, goes back to Clebsch (1861).

(2) It is not true, that every f with dimy A-’; = s is a sum of s powers. For s with an
unique presentation examples are rather obvious. But even in case s = 5 this occurs:

e.g.
1\ 4, 3 4 1 4, .3 2\.4
f= l_t_2 X7+ x Xo =X +[—2(x1+IX2) + x5(x0 — 4tx1) + (1 — 7)x5

is not the sum of five powers. The reason is that the quadricin I = £ is a double line.
Hence, distinct points in a I would give a linear form in /7, a contradiction. For fthe
one-dimensional family of sum decompositions degenerates to the family
parametrized by ¢ of decompositions into five summands as above.

DEFINITION 2.5. For F = {f = 0} C P" a hypersurface we call a scheme X C P
apolar to F if Iy C F*. The family of zero-dimensional apolar subschemes of degree
s of F is denoted by VPS(F, s).

Note that with this definition VSP(F,s) C VPS(F,s) is an open subscheme and
equality holds if VPS(F, s) is irreducible and VSP(F, s) non-empty.

THEOREM 2.6. Let F = {f =0} C P(U) be a non-degenerate plane quartic. Then
VPS(F,6) = G(@3, Vy,ny), where Vy=(f");, Ny=U* and n:A*Vy — Ny the
skew-symmetric syzygy matrix of A’. Conversely, for a net 5:A*V — N of
skew-forms on a seven-dimensional vector space, whose pfaffians define a ideal 1
of codimension 3 in S(N), the dual socle quartic F=F(V,n) C P(N*) is a
non-degenerate quartic, and VPS(F(V,n), 6) =2 G(3, V,n).

Proof. By 2.1, the structure theorem of Buchsbaum and Eisenbud (1977), and 2.3
Fi— (A’Vy — ;) and (y: A*V — N)— F(V,n) give bijections between

{F| det(Cat(f)) # 0}« {: A’V — N|codim I = 3}.
Moreover points p € G(3, V, ) correspond to block decompositions

0 ¢12 d)lS ¢16 ¢17

_¢12 0 s ¢25 ¢26 ¢27
o=| b or
-5 —¢ys ... O 0 0
-5 —P --- O 0 0
—¢1; =y, ... 0 0 0
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of the syzygy matrix ¢. We claim that for the 4 x 3 submatrix
bis P P17

bas Pas P
of every such block decomposition the ideal of minors /(1) has codimension 2, hence
defines of a subscheme of length 6 in P2,

Assume that, /(}y) has not depth 2. Then by Hilbert-Burch, the corresponding
minors have a common factor. Since the minors are minimal generators of I,
the factor has to be a linear form 7 € T;. So y is a matrix of syzygies among 4
quadrics without a common factor. The quadrics generate an ideal J of codimension
> 2. Let B= T/J. B has Hilbert function (1, 3,2, 1, ...). If dim B = 0 then 3 general
quadrics in J form a regular sequence, whose quotient has Hilbert function
(1,3,3,1,0) and the fourth quadric cuts down to a ring with Hilbert function
(1,3,2,0). This is not the case. So dimB=1 and B has Hilbert function
(1,3,2,1,1,...). Such quotlents B exist: B is defined by four quadrics in the homo-
geneous ideal of a point p € P2, However such a Y does not occur as part of a
skew-symmetric matrix ¢, whose pfaffians have codimension 3. The syzygies of
B start

0«—B<«—T<«—4T(-2)«—3T(-3) T(-4) @ --- «—
Since tJ C I, the syzygy 4T(—2) < T(—4) gives a relation among the pfaffians. But
this relation is not in the space generated by the columns of ¢, since the sequence
3T(=3) <L 4T(—4) «— T(=6) «<—0

is exact. This contradicts the exactness of the pfaffian complex.

Thus we have a well-defined morphism a: G(3, V, ) — H11b6(P ). To prove that o
is an isomorphism onto its image, consider the open part H11b6(P2) of the Hilbert
scheme of length 6 subschemes, which impose independent conditions on quadrics,
and the embedding Hi1b6(}15’2)" <> (4, T5). The diagram

Hilbg(PY)° < G@, T3)
] I
GGB,V,n) = G@, 7

commutes, where V* = (f+); C Ts.

Finally, note that the image of « contains all polar hexagons of F. Indeed, if
f= lf +...+ lg for distinct lines I' = {L;, ..., Lg¢} C }15’2, then I' imposes indepen-
dent conditions on quadrics by Thm 2.3. Hence syzygies of I" are of type:

0 <«— Rp «— T «—4T(=3) <— 3T(—4) <—0. (2.3)
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By (2.1) the ideal Jr C f*. Hence we have a sequence
0<— A4 «— Rp «— Iy <—0. (2.4)

Since 4/ and R = Rr have Hilbert functions (1,3,6,3,1) and (1,3,6,6,6,...)
respectively, I4,r has 3 cubic generators with 4 linear relations:

The minors of the presentation matrix are contained in the annihilator, which is Jr.
Hence, this matrix is ' again, and 74/ = wg(—4). A mapping cone between the
complex (2.3) and its dual over the sequence (2.4), gives syzygies of 4/ with the
desired block structure.

We do not claim at this point, that every non-degenerate f has a non-degenerate
polar hexagon. However, if there is one, then the points in the image of o corre-
sponding to them, form an open subset. OJ

COROLLARY 2.7. For a general plane quartic F the variety of polar hexagons
VSP(F,6) is a smooth Fano 3-fold of genus 12.

Proof. Since for the tautological subbundle £ on G(3, V) the sheaf A2£* is globally
generated by A’V*, a general net N of skew-forms defines a smooth
subscheme G(3,V,n) of codimension 9. Since g3 ) = Oga,y)(—7) and
A’(BA*E") = O 1 (—6) one has

0cE, vy = Oca,vp(—1).

By degree reasoning G(3, V, ) is irreducible and hence it is a Fano 3-fold. [

3. The Scorza Map

In this section we recall some results of Scorza from Dolgachev and Kanev (1993).

A plane cubic C is called anharmonic, if C lies in the PGL(3)-orbit closure of
{xj +x} +x3 =0}. The reason is that the cross-ratio of the Fermat cubic is
anharmonic. Let A C P(H(P?, O(3))*) = P’ denote the variety of anharmonic
cubics. The PGL-orbit closure of a general cubics is a hypersurface of degree
12. Due to the additional automorphism of the Fermat cubic, A is hypersurface
of degree 4. In terms of coordinates (a,...,j) of P,

axy 4 bxi + ex3 4 3dxix; 4 3extxa + 3fxixg 4 3gxixy 4+ 3hx3x0 +

+ 3ix§x1 + 6jx0x1x2,
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A is defined by the Aronhold invariant

14 = abcj — (bede + cafg + abhi) — j(agi 4+ bhe + cdf) +
+ (afi* 4+ ahg® + bdh* + bie* + cgd® + cef?) —
—*+ 2/%(fh + id + eg) — 3j(dgh + efi) —
— (1 + Pd® + &%) + (ideg + egfh + fhid).

LEMMA 3.1. Let g € k[xo, x1, X2] be a plane cubic. The following are equivalent:

(1) 4% = T/(Dy, Dy, D3) is a complete intersection of three quadrics,
(2) g is not an anharmonic cubic.

Proof. If g is not a cone, then 4% has Hilbert function (1, 3, 3, 1), and there are
precisely three quadrics in I = g*. By Buchsbaum and Eisenbud (1977), either
A2 is a complete intersection of three quadrics, or 4/ has syzygies

5
0 At T — P T(~a)) < @) T(~b) «— T(~6) <0,
=1 =1

with (a1, ...,as) =(2,2,2,3,3)and b; = 6 — a;. In the second case the three quadrics
of I = f* intersect in 3 points {L, Ly, L3} € P2 (possibly infinitesimal near), and as
in Section 2 we obtain g = 21113 + )uzlg + /13133. Conversely, if g is a smooth
anharmonic cubic all three quadrics of 7 vanish in {L, L, L3} € IEVDZ, and Af is
not a complete intersection.

Since all cones are anharmonic cubics, this proves the lemma. O

Let F = {f = 0} C P? be a non-degenerate plane quartic. Consider

Sp = {a € P?|P,(F) € A}.

Then either Sy = P? or Sr is a plane quartic. The first case does not occur for
non-degenerate quartics (Dolgachev and Kanev, 1993, 6.6.3). We call Sy the
covariant quartic of F. Consider

Ty = {(a, b) € P* x P*|rank P, ,(F) < 1}.

LEMMA 3.2. (Dolgachev and Kanev, 1993, 6.8.1). Let F C P? be a general quartic.
Then Sg is a smooth quartic and Ty is a smooth symmetric correspondence of type
(3, 3) on Sg x Sg without united points.

Proof. For a complete proof see Dolgachev and Kanev (1993). The reason, why
Tr is such a correspondence on Sg x Sg is the following:

https://doi.org/10.1023/A:1017529016445 Published online by Cambridge University Press


https://doi.org/10.1023/A:1017529016445

306 FRANK-OLAF SCHREYER

Suppose (a, b) € Tr, say P, () = h>. Set tg = P, € Ty and (1, t) = (h*), C T.
Then #yt1, totr € (P(f )l)z and (P,(f)") is not a complete intersection of quadrics.
By Lemma 3.1 P,(F) is an anharmonic cubic. So a € Sg.

For general F and general a € Sp, P,(F) is a smooth Fermat cubic, and then the
points b € P? such that rank P, p(F) <1 are the 3 vertices of the Hessian triangle
of P,(F). So Ty is symmetric of type (3,3). Since

9 9?
2 f

= P
Bx,-axj (a) 8x,-8xj a,a(f)

by (2.1), Tr has no united points, if

rank o/ (@)) =22 forallae S
8x,-8xj - £

This is the case for general F, because then the Hessian

*f
e = fae(22) <o)

is smooth. O

Let S be a smooth plane quartic and 3 an even theta characteristic on S. Consider
the 3-correspondence

Ty ={(a.b) € S x S| h’(S. %(a—b)) = 1}.
9 is not effective. deg 3(a) = 3, and
1S, 9(a — b)) = h'(S, Ha — b)) = h°(S, 9(b — a)).

So Ty is a symmetric correspondence of type (3, 3) without united points.

THEOREM 3.3 (Dolgachev and Kanev, 1993, 7.6). Let k be a algebraically closed
field. If F is a quartic such that Sg is a smooth quartic, then there exists a unique
theta characteristic 3 = 3 on Sg such that Tp = Ty.

Proof. For a general F and a general (a,b) € Tr consider the polar Hessian
triangles Tr(a) = b + by + by and Tr(b) = a + a; + a», i.e. the vertices of the Hessian
of P,(F) and P,(F) respectively. All 6 points are different. If P, ,(f) = h* then both
by, by and ay, a; span the line {A = 0}. So Sg N {h =0} = {ay, az, by, b} and

Tr(a)—a+Tr(b) —b=bi+by+ a1 +a 3.D
is a canonical divisor on Sr. Moreover

Tr(a) —a = Tp(b) — b (3.2)

https://doi.org/10.1023/A:1017529016445 Published online by Cambridge University Press


https://doi.org/10.1023/A:1017529016445

ALGEBRA OF PRIME FANO 3-FOLDS OF GENUS 12 307

for any 2 points a, b € Sr. To establish this consider the map
Sr — PicX(Sp), ai— O(Tr(a) — a).

Since even for degenerate polar Hessians the three (possibly infinitesimally near)
points Tr(a) = by + by + b3 are not collinear, h°(Sr, O(Tr(a))) =1 for all a € Sr.
So h(Sg, O(Tr(a) — a)) = 0, as Tr has no united points. It follows, that the image
of Sy does not intersect the ®-divisor of Pic*(Sp). Since © is ample, Sy maps
to a point. By (3.1), (3.2) 3=0O(Tr(a) —a)) is an non-vanishing theta
characteristic. O

Remark 3.4. Although the [3] € Pic Cis a point defined over the ground field k, the
line bundle 3 may not be defined over the ground field. For an example see 6.7 below.

THEOREM 3.5 (Scorza, (Dolgachev and Kanev, 1993, 7.8, 7.11)). Let k be
algebraically closed. The rational map induced by s: F1— (Sp, 3F) from the moduli
spaces of curves of genus 3 s: M3 — M3 gev to the moduli of curves of genus 3 together
with a even theta characteristic is birational.

Remarks 3.6. (1) The projection M3 g — M3 is a finite cover of degree 36:1,
since a curve of genus 3 has precisely 36 even theta characteristics.

(2) For a pair (S,9) of a plane quartic together with a non-vanishing theta
characteristic, the quartic F = s~!(S, 9) is called Scorza quartic of (S, ¥). Dolgachev
and Kanev give two description of s~'. In Section 5 we will give another one.

(3) More general, for a canonical curve S € P¢~! of genus g, and a non-vanishing
theta characteristic 9 with some plausible, but yet unproven hypothesis Scorza
constructs a quartic hypersurface F C P¢~!. See Scorza (1899b) and Dolgachev
and Kanev (1993).

4. Rank 2 Vector Bundles on P with ¢; =0 and ¢, = 3

Let W be a four-dimensional vector space, PP = P(W*)and ¢: U* — S, W* a net of
quadrics in P?, whose general element is smooth. Let W — U ® W* the associated
symmetric matrix with entries in U, and by;: W ® Op2(—2) - W* ® Op2(—1) the
associated map of sheaves on P> = P(U) twisted.

Let §=S,={det(b,) =0} C P? denote the discriminant of the net, and
3 = 9, = coker (b,). Since b, is symmetric,

9 = 5xt}9Pz (9, wp2) 2 Homoy(9, ws). 4.1)

If S is smooth, then 9 is an invertible Og-module, and hence 9 is a non-vanishing
theta characteristic on S.
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Conversely, given a plane quartic S and a torsion free rank 1 Og-module § which
satisfies (4.1), we denote by W* = H(S, 8(1)) and ¢ = ¢(S, 9): U* — S, W* the cor-
responding net of quadrics in P(W*) = P3.

If S is smooth, then ¢y S I is an embedding, and the image S = Py1)(S) 1s
the variety of vertices of the singular quadrics in the net. Equation of
ScP= P(W*) are given by the 3 x 3 minors of Eq: W ® Ops(=1) — U Q Ops.

If S'is not smooth, one can take these equations to define S. From another point of

view, b, is the jacobian matrix of q.

Now we consider the apolarity pairing between P* = P(W) and P? = P(W*). Let
R = SW and T = SW* denote the homogeneous coordinate rings respectively. Con-
sider

g ={DeRIDQ) =0 VQeqU)CSHW),

and A? = R/q*+. A9 is an Artinian ring with Hilbert function (1,4, 3,0, ...). More
precisely A7 = W, 43 = U and multiplication given by ¢: S; W — U.

LEMMA 4.1. Let q be a general net of quadrics. Then A has syzygies:

0« 49 — R « TR(=2) 2% 8R(=3) @ 3R(—4) < 8R(—5) < 3R(—6) « 0.

Proof. The number of syzygy dim TorX(49, k); in the above sequence take the
minimal possible values for an Artinian ring A with Hilbert function
(1,4,3,0,...). Thus by semi-continuity it suffices to establish the existence of
one example ¢ with such syzygies. The Kleinian net

Gxien = (323 — 2022, 323 — 2023, 323 — Z021)

where T = k[z, z1, 22, z3], has this property. O

Consider the map ¢, in the complex above, and its kernel sheafivied and twisted by
®OP3 (5)2

£ =€, = ker(101(3) < 80,:(2))

PROPOSITION 4.2. Let q be a general net of quadrics. Then &, is a stable rank 2
vector bundle with Chern classes ¢; =0, ¢y = 3 and syzygies

0<«—&; «<—80p3(=2) «—TO0p3(=3) «— Op3(=5) «—0. 4.2)
Its H*-cohomology module is

A9(5) = €D H*(P?, £,(n)).
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Proof. Since A7 Artinian the first syzygy module sheafivied is a rank 6 vector

bundle,

0 <«— Op3(5) «—T0p3(3) «— F «<—0. (4.3)
&, is the kernel of by ¢,

(0 «—)F «—80»(2) «—&; <—0. 4.4)

One expects that F «<—80;3(2) is surjective outside a set of codimension
8 — 64 1 = 3, hence that £, is a vector bundle of rank 2 outside a finite set of points.
The expected number of these points is 0 by Porteous formula. Thus either ¢, has
rank < 5 along at least a curve, or £, is a rank 2 vector bundle with Chern poly-
nomial

4

1 1+ 2¢)

(1430

For a general ¢ the second alternative takes place, as one can check by considering an
example, e.g. the Kleinian net.

Since &, has rank 2 and ¢; =0, wedge product &, ® &, — A*E, = Ops gives
5[’; =~ &,. Thus the dual of the sequences (4.3) and (4.4) give the exact sequence (4.2).
Since this complex is short enough to stay exact on global sections for arbitrary
twists, this is the minimal resolution. The last statement follows from the
cohomology sequence of (4.3) and (4.4). £ is stable, because H(P?, &) =0, cf.
Okonek et al., (1980), Lemma II 1.2.5. O

ct(gq) =

COROLLARY 4.3. If q is general, then there are natural isomorphism
U =~ Torf(4%, k)¢ = (TorX(4%, k),)*

and a skew-symmetric self-duality
TorX(A47, k)5 = (TorX(49, k)s)*.

The maps 3R(—4) < 8R(—5) and 8 R(—5) <— 3R(—06) in the resolution of 4.1 are dual
to each other under these isomorphisms.
Proof. The matrices yield minimal presentations

0« P H'(P?. () < 3R(1) < 8R

and
0 < Ext}h(47, R) < 3R(6) < 8R(5)
respectively. By Serre duality and 49(5) = @, H*(P?, &(n)),

Extp(49(5), R) = @ H'(P*, £*(n)).
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Since £ =2 £*, the modules are isomorphic, hence the desired isomorphisms follow by
comparison of the presentations. The self-duality on Torf(Aq, k)s is skew, since the
isomorphism £ = £* has this property. Finally, we note

U= Al =~ H*(P?, £(-3) = H'(P?, & (1))
~ HY(P?, &(~1))* = TorR(4%, k) = TorR(4, k).

O

COROLLARY 4.4. S = S’q c PP isthe variety of unstable planes of &,. S determines
&4 up to isomorphism. The moduli space M3(2; 0, 3) of rank 2 vector bundles on P3
with ¢y =0 and ¢; = 3 has a component birational to G(3, S, W*).

Proof. Aplane H = {h = 0} C P is unstable for &, if and only if H'(H, & |) # 0,
equivalently, if multiplication with /4 is not injective on

H'\(P?, E(=1)) -5 H'(P3, &).

H'(P?, &(—1)) = U* and H'(P?, ) = W*. A quadric | € U* C S, W* is annihilated
by he W, iff Q1 ={q; =0} C IP? is a cone with vertex H € P>, So the variety of
unstable planes coincides with the variety S C 3 of vertices of the cones. S deter-
mines ¢, which in turn determines 4¢ and &,. The vector bundles obtained from
points g € G(3, S, W*) form an open part of the moduli schemeM 3(2; 0, 3), since
by semi-continuity and minimality, the cohomology modules B, H 2(P?, £(n)) have
the same numerical type of syzygies for an open part of Mp3(2; 0, 3). OJ

5. Twisted Cubics Annihilated by a Net of Quadrics

Let g: U*— S, W™ be a net of quadrics as before. Let H(g) denote the variety of
twisted cubics C c P?, whose equations H(P?, Z¢(2)) C S, W are annihilated by
q. Let V, =(q"), C S;W. Since a twisted cubic is defined by its quadrics and
WO(P3, Z(2)) = 3, H(g) is a subset of G(3, V,) in a natural way. We are looking
for an net of alternating forms on V,, which defines H(q) C G(3, V).

For a description of Hilbs,,(P*) and the map

Hilbs. 1 (PY) — G(3, S; W)

see (Ellingsrud et al., 1987; Piene and Schlessinger, 1985).
Consider the syzygies of 47. By definition of 47 we have

Torf(A4%, k), = V.
Define

N, = Tor¥(4%, k),
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and consider
Nyt A? Vy— Ng

given by multiplication in the algebra TorR(49 k), cf. (Eisenbud, 1995,
Exercise A3.20).

nprAp2) =0
for p1, p2 € V,, iff the Koszul syzygy
P1®pr—pr®pr € ker(R < TR(—2))
lies in Im (7R(—2) < 8R(-3)).
THEOREM 5.1.

H(q) = G(3, Vg n,)

for a general net gq.
Proof. Let C C P? be a rational normal curve, whose ideal Ic = (p1, pa, p3) is gen-
erated by three quadrics pi, p2, p3 € V. C has syzygies

0<«—0Oc «—Ops <—30p3(=2) «—20p3(—3) «<—0. (5.1)
Hence all syzygies among py, p», p3 are generated by linear relations, and

E=(c), =(p1.p2,p3), € GG3, V,n).

Conversely, suppose that E = (p1, p2, p3) € G(3, V, n). We will prove that py, p,, p3
generate the homogeneous ideal of a curve C of degree 3 and arithmetic genus 0.
Choose py4,...,p7 € V, such that py, ..., p; form a basis. By definition of 5 there
is a matrix 8R(—3)<«-3R(—4), such that

0 —DP3 D2
D3 0 -p

0 0 0

gives the matrix of Koszul relations, where ¢, is the matrix of linear syzygies in
Lemma 4.1. With

D1
T = P2
D3

we have ¢; -y -7=0. But for ker(70p3:(-2) <¢—l 80p3(—=3)) = £(=5) we have
HO(P3, £(1)) = 0 by Prop. 4.2.So - T = 0, i.e. p1, pa, p3 are three quadrics with some
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linear relations
r-pr+ra-pa+ry-p3=0. (5.2)

The coefficients rq, r,, 73 € Ry are linearly independent for a general linear combi-
nation of rows of /. Because otherwise any two elements of £ would have a common
linear factor, which implies, that all three elements p;, p», p3 have a common factor,
and Torf(4, k), # 0. But this group is zero by Lemma 4.1. Thus

(P1, P2, p3) = Azfz

for a 2 x 3 matrix

ry r2 o r3
Ty =
rga rs Te

of linear forms r; € Ry, cf. [Schreyer (1991), Lemma 4.3]. Since the minors py, p2, p3
have no common factor, the Hilbert—-Burch complex of 7, is exact, and py, p2, p3
generate the ideal of a curve C C P? of degree 3 and arithmetic genus 0.
Ce Hilb3t+1(P3 ) lies in the component H, which contains the twisted cubics, (Piene
and Schlessinger, 1985; Ellingsrud et al., 1987).

Note, that boundary points corresponding to plane nodal cubics with an
embedded point at the node, do not occur, since all C are arithmetically
Cohen—Macaulay. O

PROPOSITION 5.2. Forageneralnet g. U* — S, W* of quadrics the pfaffians of the
net of alternating forms 11q:A2 Vy — Ny defines an Artinian Gorenstein ring with
Hilbert function (1,3, 6,3, 1) with a smooth dual socle quartic Fy = F(V, s Mg)-
Proof. Since the desired property is an open condition on nets ¢ of quadrics, it
suffices to exhibit an example. For the Kleinian net ¢gg;, we obtain as dual socle
quartic Fem = {xgx1 + X} X2 + x3x0 = 0}. Fkiein is smooth for char(k) # 7. For
char(k) = 7 one can take some other example. O

6. The Hilbert Schemes of Lines on X

Let F = {f = 0} ¢ P? = P(U) be a non-degenerate plane quartic. In this section we
prove that the circle of constructions

Fi— (Sp, 9p), Scorza,
(S, 9)— gs.9, net corresponding to 9,
qi— A1, apolarity,

A% = (n,: A? Vy— N,), Tor multiplication,
: A*V = N)i— A4 vy,  pfaffians,
A— Fy, dual socle quartic,

gives the identity transformation on an open set of quartics. Note that, since
N, = U* by Cor. 4.3, F, is again a quartic in P(U).
q y
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For X = G(3, V, n) we denote by Hy the Hilbert scheme of lines in X with respect
to the Pliicker embedding X ¢ G(3, V)< P(A*V*).

THEOREM 6.1. Let g be a general net of quadrics in P3. Let &, be the corresponding
vector bundle on P, X = H(q) = G(3, V,, n,) and F = Fy the dual socle quartic of
Ay, The following curves are isomorphic:
(@) the discriminant S; of q,
(b) the variety S’q of unstable planes of &,,
(c) the Hilbert scheme Hy of lines on X,
(d) the covariant quartic Sr of F.

Proof. (a) < (b) : S, = S, holds by Section 4. (b) <> (¢) : Let H = {r = 0} P’ be
an unstable plane. Then

U* = H' (P, E,(-1)) > W* = H'(P?, £,)

is not injective, equivalently, p,: W 5 U not surjective. So ker(y,) is at least two
dimensional, i.e. there are two elements ri,r, € Ry such that p, =r-r,
pp=r-rneVl,

(ri,r) NV, C S W is at least 7—3 =4 dimensional. So there are further 2
quadrics

p3 =airy +axry, ps = biry + bory € (r, 1) N V.
Let Cp) C IP* be the curve (!) defined by

— 0
A ™ ! :
(p15p27 O(p3 + ﬁp4) (O(al + ‘Bbl odr + le2 —r

By Theorem 5.1

p1 APy A (o3 + fpa) € GG, Viyn,) C PNV, (22 f) € P, (6.1)

gives a point in Hy.
Conversely, every line in H(g) is of type (6.1) for some p1, p2, p3, p4 € V,. p1 and p,
have a common factor r, since

U Cipy C {p1 = p2 =0} C P,
(ozp)

and H = {r = 0} is a unstable plane.
(¢) > (d): F ={f =0} is non-degenerate by Corollary 5.2 and Theorem 2.3.
Moreover

G@3, Vyn,)) = G@3, Vy,ny) = VSP(F, 6).
From this point of view a line

P1 AP A (ps + Bpa) € G3, Vi, ny)
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corresponds to a syzygy matrix

0 0 0 0 als ale ayy
0 0 0 0 ars (2513 ar7
0 0 0 azy a5 @ a7
¢ = 0 0 —ay O ass  as  as |, (6.2)
—ais —axs —azs —ags 0 ass  asy

—aie —ax —ax —dss —ase 0 ag;
—ai; —ay; —ay —ay —as; —ag; 0

and the family of submatrices

0 ars aie ap
Yup=| 0 ass as a7
azs oazs + Pass  oaze + Pass  oaz + Pag

corresponds to one-parameter family of polar hexagons with three fixed lines € P?
defined by

(a15 ais an)
axs dye 27
and three moving lines through the common point (a34) € P?. Hence the polar
P, (F) €A, ie. (a3) € Sp C P

(¢) <= (d) : Conversely given (a) € Sp. Since F is non-degenerate g = P,(f)isnota
cone. By Lemma 3.1. 4% is not a complete intersection. Hence there are three
quadrics by, by, b3 € (g), with precisely two linear syzygies. Then
aby, aby, abs € (f*),, and the two linear syzygies give two of the columns of ¢ with
many zeroes. Thus this gives a decomposition of ¢ of shape (6.2). We only have
to check that none of the six possibly non-zero entries of the two columns can
lie on the diagonal. Suppose one or two entries lie on the diagonal. Then, since
b1, by, b; are the minors of the 3 x 2 matrix, either one quadrics is zero, or they have
a common factor and a further syzygy. Both cases are impossible. Thus every point
(a) € SF gives a uniquely determined decomposition of ¢ of shape (6.2). Hence a
well-defined point in Hy. Since (@) = {(as4) in this correspondence this is the inverse
of (¢) — (d).

Notice, that under the isomorphisms of Sections 5 and 4.3

NP3 Aps) = a=axy € N=U"=H'(PE-1).
Moreover (p1, p2, P3, p4) have the relations
—r a b] 0

T ri ar bz 0
¢1 - 0 0 —Pa4

—r

0 0 —r +ps3
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¢, -p =0 for

albz - b1a2
P4

Thus, if we choose a basis for 8R(—3) @ 3R(—4) in the complex of Corollary 4.1 with
these four relation corresponding basis elements, p gives one column of the matrix

8R(—3) ® 3R(—4) «— 8R(-5).
Since

0«— @ H'(P*, £(n)) <— (BR(—4) <— 8R(—5)) ® R(5)

is a presentation, we obtain, that n,(p3 A ps) = a € H'(P?, £(—1)) is annihilated by r.
Since h°(H, £|y) = 1 for H = {r = 0} any unstable plane, there is only one quadric
cone Q € U* with vertex H € P up to scalars. Thus under the isomorphisms of
Corollary 4.3, section 5 and (a) <> (d) the curves S,, Sr € P(U) are actually equal.[]

Let X = X, = G(3, V,, N,). Denote by

Ty ={(Li,L2) e Hx x Hx|LiN Ly # ¥, L1 # Ly}

the correspondence of intersecting lines in X.

COROLLARY 6.2. Let q be a general net of quadrics. Then By = J; oy, L consists
of all singular twisted cubics in H(q), and Sp C P(U) is the set of the triple points
of polar hexagons to F = F,. The correspondences

(@) Ty, on S,
(b) T on Hy,
(C) Tr on Sp
are isomorphic.
Proof. From the proof of the theorem we see, that the curves C,.5 € H(q) on a
line

{p1 Ap2 A (o3 + Ppa)} o ppept € H (6.1

are all singular, and that they have the component {r; = r» = 0} ¢ P* in common.
Conversely, if a curve C € H(q) is singular, it is reducible and one of its components
is a line {ry=r, =0} in the intersection of two reducible quadrics
pr=ri-rpr=r-re HY(P Ic(2) C V,. r defines a unstable plane of £, and gives
a line (6.1).

Now take the point of view from polar hexagons. If a point I' = {L;, ..., L¢} lies
on a line in VSP(F, 6),then three lines of the hexagon pass through a common point
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as € P2 Conversely, if {L, Ly, L3} C T pass through a point < a >€ P2, then P,(F)
is anharmonic, i.e. (a) € Sp and f:‘f—(/14l§+/151§+),61g) is a quartic with
h,;(1) =2 and h;(2) = 3, since f is not a sum of five powers. So by Theorem 2.3
there is a pencil of 3-tuples of lines presenting f, and this gives the family I'(,p
defined by (6.1). For three values of (o : ) € P! one of the moving lines passes
through an intersection point b of a pair of the fixed lines. This corresponds to
an intersection of two different lines in H, i.e. a point in 7%, and also to the point
(a,b) € Tr.

Finally to prove Tr = Ty, note that we already know S = S,;. Thus 7F and T},
correspond both to one of the 36 even theta characteristics on Sg. Since M3
and M; g~ have the same dimension, this implies, that the circle of constructions
induces a covering transformation of Mj go — M3 over an open set corresponding
to general nets g. Since M, hence also Mj g is irreducible, it suffices to verify
Tr = Ty, in one example, where all steps are defined. For example one can check
this for the Kleinian net ggjeip.

Note, that ., = Sy, is the Klein curve. Thus, 9, is the unique theta charac-
teristic on the Klein curve invariant under the whole automorphism group Gigg, cf.
Burnside (1911), Section 232. ]

Klein

COROLLARY 6.3. Over an algebraically closed field the circle of constructions

Fi— (Sg, 9r), (S, 9)1—¢s.9, qi— A9, A= (n,: A? Vy— Ng),
(n:AZV—>N)|—>AV,,7, A— Fy

gives the identity transformation on an open set of quartics.

COROLLARY 6.4. Over an algebraically closed field the circle of constructions
define birational transformations of the moduli spaces Mguo of nets of alternating
forms (equivalently of prime Fano 3-folds of genus 12 by Mukai’s Theorem), Mj
of curves of genus 3, Mj g of curves of genus 3 together with a non-vanishing theta
characteristic, and M, of nets of quadrics.

COROLLARY 6.5. Let K be an arbitrary field of characteristic 0 and X a smooth
prime Fano 3-fold of genus 12. Then the Grassmannian model (3, V', ) and the plane
model VSP(F, 6) are defined over K.

Proof. By Mukai’s (1992; 1995) Theorems all three models are defined over the
algebraic closure of K. However the Hilbert scheme Hy of lines on X is defined
over K, and so is the correspondence T3 of intersecting lines. Identifying
Ty = Tr and Sy = H in its canonical embedding, we obtain a quadratic system
of equations for the coefficients of the defining equation F = {f = 0} with coefficients
in K. So the by Mukai’s result unique solution with a non-degenerate quartic is
defined over K. The equivalence of the Grassmannian model and space model is
defined over K. So also 7 is defined over K. O

https://doi.org/10.1023/A:1017529016445 Published online by Cambridge University Press


https://doi.org/10.1023/A:1017529016445

ALGEBRA OF PRIME FANO 3-FOLDS OF GENUS 12 317

The space model H(g) is in general not defined over the ground field, due to the
descent from Ty to 3. For the real numbers we note:

Remark 6.6. (1) Let X = VSP(F, 6) be a prime Fano 3-fold of genus 12 defined
over k with smooth covariant quartic Sr. If the covariant quartic Sg contains a
k-rational point, then the space model H(g) is defined over k. Indeed if a € SF is
defined over k, then the fiber Tr(a) and line bundle 3 = O(Tr(a) — a) are defined
over k

(2) The quadrics

2 2 2 2
qo = wgy + wj — w5 — w3, g1 = Wowz + wiws,

g2 = (W1 + w2 +w3)* + (wo + wi — w3)* — (wo + w1 +ws3)* — (wo + wy — wa)?

span a net ¢, whose discriminant S, contains no real point. Indeed the catalectican
Cat(S,) is positive definite. So the existence of a point is sufficient but not necessary
for the existence of the space model, even for the ground field R.

EXAMPLE 6.7. For the Mukai—-Umemura quartic, cf. Mukai and Umemura (1983)
there are two different plane models over R,

FMU = {(X2 +y2 +22)2 — 0} and F;MU — {(X2 +y2 _ Z2)2 — 0}

Their covariant quartics are equal to themselves.

For the space model H(q,,v) there is only one version. The net of quadrics gy is
the ideal of the twisted cubic, which, if defined over R, is isomorphic to P]IR. Its
discriminant is the indefinite ). Thus for VSP(Fyy, 6) there is no R-isomorphic
space model.

Since the image of {¢ = (¢o. ¢1, ¢2)/R} = {(1: AV — RY)/R} — {F c P*/R} is
closed (in a neighborhood of Fyy) and Fyp is not in the image, we obtain that
for any quartic F over R nearby Fjy, the Fano 3-fold VSP(F,6) has no
R-isomorphic space model.
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