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Derivatives of symplectic eigenvalues and
a Lidskii type theorem
Tanvi Jain and Hemant Kumar Mishra
Abstract. Associated with every 2n × 2n real positive definite matrix A, there exist n positive
numbers called the symplectic eigenvalues of A, and a basis of R2n called the symplectic eigenbasis
of A corresponding to these numbers. In this paper, we discuss differentiability and analyticity of
the symplectic eigenvalues and corresponding symplectic eigenbasis and compute their derivatives.
We then derive an analogue of Lidskii’s theorem for symplectic eigenvalues as an application .

1 Introduction

Let J be the 2n × 2n matrix

J = [ O In
−In O] ,(1.1)

where In is the n × n identity matrix. A 2n × 2n real matrix M is called a symplectic
matrix if

MT JM = J .

The set of all symplectic matrices forms a group under multiplication and is denoted
by Sp(2n). A result on symplectic matrices, generally known as Williamson’s theorem,
says that for every 2n × 2n real positive definite matrix A there exists a symplectic
matrix M such that

MT AM = [D O
O D] ,(1.2)

where D is an n × n positive diagonal matrix with diagonal entries d1(A) ≤ ⋯ ≤
dn(A), [9, 10]. The positive numbers d1(A), . . . , dn(A) are uniquely determined. We
call these numbers the symplectic eigenvalues of A. These are the complete invariants of
A under the action of the symplectic group Sp(2n). Symplectic eigenvalues occur in
different areas of mathematics and physics such as symplectic geometry, symplectic
topology, and both classical and quantum mechanics. See [9, 11, 19, 26]. Recently,
there has been a heightened interest in the study of symplectic eigenvalues by both
physicists and mathematicians. A particular reason for this being their growing
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importance and applications in quantum information. See, for instance, [10, 23]. A
positive number d is a symplectic eigenvalue of A if and only if ±d is an eigenvalue of
the Hermitian matrix ıA1/2 JA1/2 [9, 23]. In principle, it could be possible to derive the
properties of symplectic eigenvalues from the well-known properties of eigenvalues
of Hermitian matrices. But due to the complicated form of the Hermitian matrix
ıA1/2 JA1/2 , it is often not feasible to obtain results for symplectic eigenvalues from the
well-developed theory for eigenvalues of Hermitian matrices. So, it is necessary as well
as helpful to develop independent techniques and theory for symplectic eigenvalues.
Some fundamental inequalities and variational principles on these are given in [7].
In this paper, we study some questions on symplectic eigenvalues analogous to some
fundamental questions on eigenvalues of Hermitian matrices that have been studied
for long.

Eigenvalue problems for Hermitian matrices have a long and rich history. We
can classify these problems to be qualitative and quantitative in nature. An example
of qualitative problems is the study of continuity, differentiability, and analyticity of
eigenvalues and eigenvectors as functions of Hermitian matrices when the matrices
depend smoothly on a parameter. These problems have been extensively studied,
(see e.g., [15–17, 21, 24, 25, 28]) and are of much importance in perturbation theory,
differential equations, numerical analysis, and physics. See [18, 27, 28]. The quanti-
tative problems include variational principles, eigenvalues of functions of matrices,
majorization inequalities, and computation of eigenvalues and eigenvectors. There has
been much interest in the study of relationships between the eigenvalues of Hermitian
matrices A and B and those of their sum A+ B. Suppose λ↑(A) = (λ↑1(A), . . . , λ↑n(A))
denote the tuple of eigenvalues of an n × n Hermitian matrix A arranged in increasing
order. In 1912, H. Weyl discovered several relationships between the eigenvalues of
sums of Hermitian matrices. These include the inequalities:

λ↑j(A+ B) ≥ λ↑j(A) + λ↑1(B) 1 ≤ j ≤ n.(1.3)

The maximum principle given by Ky Fan in 1949 implies that for all 1 ≤ k ≤ n,
k
∑
j=1

λ↑j(A+ B) ≥
k
∑
j=1

λ↑j(A) +
k
∑
j=1

λ↑j(B).(1.4)

In 1950, V. B. Lidskii proved the inequalities
k
∑
j=1

λ↑i j
(A+ B) ≥

k
∑
j=1

λ↑i j
(A) +

k
∑
j=1

λ↑j(B)(1.5)

for all k = 1, . . . , n and 1 ≤ i1 < i2 < ⋯ < ik ≤ n. Inequalities (1.3) and (1.4) are spe-
cial cases of (1.5). Lidskii’s inequalities played a fundamental role in the study of
eigenvalues of sums of matrices and proved to be an important stimulant for the
much celebrated Horn’s conjecture. See, for instance, [4, 12]. These inequalities have
attracted much attention, and a number of different proofs for these are now available
in literature. See [3, 5, 20]. But all the proofs are generally more difficult than those for
the earlier two families of inequalities (1.3) and (1.4).

In this paper, we address both the qualitative as well as quantitative problems
on symplectic eigenvalues. We study differentiability of symplectic eigenvalues and
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also derive a relationship analogous to Lidskii’s theorem for these numbers. Let P(n)
denote the set of all n × n real positive definite matrices. For a matrix P in P(2n),
we shall always denote by d1(P) ≤ ⋯ ≤ dn(P), its symplectic eigenvalues arranged in
increasing order. We know that each map P ↦ d j(P) is continuous. See [7, 14]. But this
map need not be differentiable, as is shown by the following example.

Example 1 Let I4 denote the 4 × 4 identity matrix. Clearly d1(I4) = d2(I4) = 1. We
show that the maps P ↦ d1(P) and P ↦ d2(P) are not even Gateaux differentiable at
I4 . Let B be the 4 × 4 matrix

B = I2 ⊗ [0 0
0 1] .(1.6)

For any real number t with ∣t∣ < 1, I4 + tB is the matrix

I4 + tB = I2 ⊗ [1 0
0 1 + t] .

The symplectic eigenvalues of I4 + tB, are

d1(I4 + tB) =
⎧⎪⎪⎨⎪⎪⎩

1 + t −1 < t < 0
1 0 ≤ t < 1,

and

d2(I4 + tB) =
⎧⎪⎪⎨⎪⎪⎩

1 −1 < t < 0
1 + t 0 ≤ t < 1.

It is easy to see that

lim
t→0+

d1(I4 + tB) − d1(I4)
t

= 0

and

lim
t→0−

d1(I4 + tB) − d1(I4)
t

= 1.

This shows that the map d1 is not differentiable. Similarly, we can see that the map d2
is not differentiable at I4 .

A symplectic eigenvalue d of A has multiplicity m if the set {i ∶ d i(A) = d} has
exactly m elements, and is simple if m = 1. We see in Example 1, the symplectic
eigenvalue d1 of I4 has multiplicity 2 and is not differentiable at I4 . We show in
Theorem 3.3 that if d j(A) is a simple symplectic eigenvalue of A, then the map
P ↦ d j(P) and the corresponding symplectic eigenvector pair maps are infinitely
differentiable at A. We calculate the first derivatives of these maps in Theorem 3.4.

We also study the differentiability and analyticity of symplectic eigenvalues of
positive definite matrices that are dependent on a real parameter. Let A(t) be the
analytic curve of 4 × 4 real positive definite matrices given by A(t) = I4 + tB, t ∈
(−1, 1), where B is the matrix given by (1.6). Let d1(t), d2(t) be the symplectic
eigenvalues of A(t) arranged in increasing order. From Example 1, we can see that the
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maps d1 and d2 are not differentiable at t = 0. However, if we rearrange the symplectic
eigenvalues as d̃1(t) = 1 and d̃2(t) = 1 + t, −1 < t < 1, we obtain analytic maps d̃1 and
d̃2 of symplectic eigenvalues. In Theorem 4.6, we see that for any real analytic curve in
P(2n), the symplectic eigenvalues can be suitably ordered so that the corresponding
symplectic eigenvalue maps and the symplectic eigenbasis map are analytic. We
also show in Theorem 4.7 that the maps t ↦ d j(A(t)) of symplectic eigenvalues
arranged in increasing order are piecewise real analytic. These regularity properties
of symplectic eigenvalues can be obtained by using the corresponding properties
of eigenvalues of Hermitian matrices and the properties of the matrix square root
map A ↦ A1/2 . But the computation of derivatives requires an independent theory
on symplectic eigenvalues.

We now describe the quantitative problems that we study in this paper. Recently,
there has been much interest in finding relationships between the symplectic eigenval-
ues of sums of positive definite matrices and those of individual matrices. T. Hiroshima
in [13] proved the following relationship for symplectic eigenvalues that is analogous
to (1.4).

k
∑
j=1

d j(A+ B) ≥
k
∑
j=1

d j(A) +
k
∑
j=1

d j(B) 1 ≤ k ≤ n.

In [6], R. Bhatia addressed the inequality analogous to (1.3). He showed that

d j(A+ B) ≥ d j(A) + d1(B)

for all j = 1, . . . , n when A and B are of the form

A = [D O
O D] , B = [X O

O X−1] ,

where D is the diagonal matrix diag(d1(A), . . . , dn(A)) and X is any n × n positive
definite matrix. As an application of our results on analyticity of symplectic eigenval-
ues, we derive relationships analogous to Lidskii’s inequalities (Theorem 5.5). More
precisely, we show that for all k = 1, . . . , n and all 1 ≤ i1 < ⋯ < ik ≤ n,

k
∑
j=1

d i j(A+ B) ≥
k
∑
j=1

d i j(A) +
k
∑
j=1

d j(B).

As for the case of eigenvalues of Hermitian matrices, these greatly generalize the
inequalities given in [6] and [13]. In this process, we introduce a notion similar to
the notion of projections, that we call “symplectic projections,” and give an equivalent
statement for Williamson’s theorem in terms of symplectic projections.

The paper is organized as follows. Some definitions and preliminary results on
symplectic eigenvalues are summarized in Section 2. In Section 3, we study the
differentiability of symplectic eigenvalues and symplectic eigenvectors maps when
the symplectic eigenvalues are simple, and compute their first-order derivatives. In
Section 4, we discuss differentiability and analyticity of these maps for curves of
positive definite matrices when the symplectic eigenvalues are not necessarily simple.
As applications of our results, we derive a symplectic analogue of Lidskii’s theorem
and give a perturbation bound in Section 5.
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2 Preliminaries

Let Rn denote the space of all n tuples over the real numbers, and let M(n) denote the
space of all n × n real matrices. The bilinear form (⋅, ⋅) on R

2n given by

(x , y) =
n
∑
i=1
(x i yn+i − xn+i y i)(2.1)

is called the symplectic inner product on R
2n . This can also be written as

(x , y) = ⟨x , Jy⟩.

Here, J is the 2n × 2n matrix given by (1.1), and ⟨⋅, ⋅⟩ denotes the Euclidean inner
product on R

2n . It is easy to see that a matrix M ∈ Sp(2n) if and only if it preserves
the symplectic inner product on R

2n , that is,

(Mx , My) = ⟨Mx , JMy⟩ = ⟨x , Jy⟩ = (x , y).

A pair of vectors (u, v) is called normalized if ⟨u, Jv⟩ = 1. Two pairs of vectors (u1 , v1)
and (u2 , v2) are called symplectically orthogonal if

⟨u i , Jv j⟩ = ⟨u i , Ju j⟩ = ⟨v i , Jv j⟩ = 0

for all i ≠ j, i , j = 1, 2. A subset {u1 , . . . , um , v1 , . . . , vm} of R2n is called a symplecti-
cally orthogonal (orthonormal) set if the pairs of vectors (u i , v i) are mutually symplec-
tically orthogonal (and normalized). If m = n, then the symplectically orthonormal set
is called a symplectic basis of R2n .

The following proposition is an easy consequence of Williamson’s Theorem.

Proposition 2.1 Let A be a 2n × 2n real positive definite matrix with symplectic
eigenvalues d1 , . . . , dn . There exists a symplectic basis {u1 , . . . , un , v1 , . . . , vn} of R2n

such that for each i = 1, . . . , n,

Au i = d i Jv i , Av i = −d i Ju i .(2.2)

A pair of vectors (u i , v i) that satisfies (2.2) is called a symplectic eigenvector pair of
A corresponding to the symplectic eigenvalue d i . If the pair, in addition, is normalized,
it is called a normalized symplectic eigenvector pair of A.

The proofs of the next two results are straightforward and left to the reader.

Lemma 2.2 Let A ∈ P(2n), and let d be a positive number. The following statements
are equivalent.

(i) d is a symplectic eigenvalue of A and (u, v) is a corresponding symplectic eigenvec-
tor pair.

(ii) ±d is an eigenvalue of ı JA and u ∓ ıv is a corresponding eigenvector.
(iii) ±d is an eigenvalue of ıA1/2 JA1/2 and A1/2u ∓ ıA1/2v is a corresponding

eigenvector.

Since d1 , . . . , dn denote the symplectic eigenvalues arranged in increasing order,
we usually denote any collection of symplectic eigenvalues by d̃1 , . . . , d̃n .
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Proposition 2.3 For A in P(2n), the set {(ũ j , ṽ j) ∶ j = 1, . . . , m} is a symplectically
orthogonal set of symplectic eigenvector pairs of A corresponding to the symplectic
eigenvalues d̃1 , . . . , d̃m , respectively, if and only if {A1/2ũ j − ıA1/2ṽ j ∶ j = 1, . . . , m} is an
orthogonal set of eigenvectors of ıA1/2 JA1/2 corresponding to the eigenvalues d̃1 , . . . , d̃m
respectively. Furthermore, for each j = 1, . . . , m

∥A1/2ũ j − ıA1/2ṽ j∥2 = 2d̃ j⟨ũ j , Jṽ j⟩.(2.3)

Corollary 2.4 Any two symplectic eigenvector pairs corresponding to two distinct
symplectic eigenvalues of a real positive definite matrix are symplectically orthogonal.

Proposition 2.5 Let A be a 2n × 2n real positive definite matrix, and let
d be a symplectic eigenvalue of A with multiplicity m. Let r0 = min{∣d − d̃∣ ∶
d̃ is a symplectic eigenvalue of A, d̃ ≠ d}. Then, for any positive number r < r0 , there
exists an open neighborhood U of A in P(2n) such that every P in U has exactly m
symplectic eigenvalues (counted with multiplicities) contained in (d − r, d + r).

Proof Let d1(A) ≤ ⋯ ≤ d i(A) < d i+1(A) = ⋯ = d i+m(A) < d i+m+1(A) ≤ ⋯ ≤
dn(A) be the n symplectic eigenvalues of A with d i+1(A) = ⋯ = d i+m(A) = d . By our
choice of r we see that

d i(A) < d − r < d + r < d i+m+1(A).

Since each d j is continuous, we can find an open neighborhood U of A such that for
every P ∈ U ,

d i+1(P), . . . , d i+m(P) ∈ (d − r, d + r),

d i(P) < d − r and d i+m+1(P) > d + r.

Thus, for every P ∈ U , there are exactly m symplectic eigenvalues d i+1(P),
. . . , d i+m(P) of P that are contained in (d − r, d + r). The cases d = d1 and d = dn
can be proved in a similar way. ∎

A subspace W of R2n is called a symplectic subspace of R2n if for every x ∈ W there
exists a y ∈ W such that ⟨x , Jy⟩ ≠ 0. (See [9], Section 1.2.1.) If W is a symplectic sub-
space of R2n , then its dimension is an even number and there exists a symplectically
orthonormal set that spans it. Let d be a symplectic eigenvalue of A, and let S be the
set of all symplectic eigenvector pairs of A corresponding to d . Suppose W is the span
of the set {u, v ∶ (u, v) ∈ S}. It is easy to see that W is a symplectic subspace of R2n . If
d has multiplicity k, then the dimension of W is 2k.

We end this section with an observation on the extension of Williamson’s theorem
and the notion of symplectic eigenvalues to positive semidefinite matrices.

Remark 2.6 Let A be a 2n × 2n real positive semidefinite matrix. Then, there exists a
symplectic matrix M such that (1.2) holds for some n × n nonnegative diagonal matrix
D if and only if the kernel of A is a symplectic subspace of R2n . If dim Ker A = 2m,
then exactly m diagonal entries of A are zero. In this case, we call the nonnegative

https://doi.org/10.4153/S0008414X2000084X Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X2000084X


Derivatives of symplectic eigenvalues and a Lidskii type theorem 463

diagonal entries of D to be the symplectic eigenvalues of the positive semidefinite
matrix A.

Let Ps(2n) be the set of all 2n × 2n real positive semidefinite matrices A such that
Ker A is a symplectic subspace of R2n . We can see from the proof of Theorem 7 of [7]
that the maps d j taking A to d j(A) are continuous on Ps(2n) for all j = 1, . . . , n.

3 Simple symplectic eigenvalues

The following theorem is the key result that will be used to prove the main theorem of
this section.

Theorem 3.1 Let A be a 2n × 2n real positive definite matrix. Suppose d0 is a simple
symplectic eigenvalue of A with corresponding normalized symplectic eigenvector pair
(u0 , v0). Then, there exists an open subset U of P(2n) containing A, and C∞ maps
d ∶ U → R and u, v ∶ U → R

2n that satisfy the following conditions.
(i) For every P ∈ U , d(P) is a simple symplectic eigenvalue of P with the corresponding

normalized symplectic eigenvector pair (u(P), v(P)).
(ii) d(A) = d0 , u(A) = u0 and v(A) = v0 .

(iii)

⟨u0 , Ju(P)⟩ + ⟨v0 , Jv(P)⟩ = 0.(3.1)

Proof Since d0 is a simple symplectic eigenvalue of A with symplectic eigenvector
pair (u0 , v0), by Lemma 2.2, it is a simple eigenvalue of ı JA with eigenvector x0 =
u0 − ıv0 . Also ⟨x0 , Jx0⟩ = −2ı⟨u0 , Jv0⟩ = −2ı . Define the map φ ∶ P(2n) ×C

2n ×C→
C

2n ×C as

φ(P, x , d) = ((ı JP − d)x , ⟨x0 , Jx⟩ + 2ı).

Clearly, φ is a C∞ map and φ(A, x0 , d0) = 0. Let D2φ denote the partial derivative of
φ with respect to (x , d). Then

D2φ(A, x0 , d0) = [ı JA− d0 −x0
x∗0 J 0 ] .

Thus, det D2φ(A, x0 , d0) = −⟨x0 , J(ı JA− d0)adjx0⟩. For any m × m matrix X, Xadj

denotes the adjoint of X . This is the m × m matrix with the i jth entry (−1)i+ j X( j, i),
where X( j, i) is the ( j, i) minor of X . Since d0 is a simple eigenvalue of ı JA, 0 is
a simple eigenvalue of ı JA− d0 . So, we have (ı JA− d0)adjx0 = cx0 , where c is the
product of all nonzero eigenvalues of ı JA− d0 . This gives

⟨x0 , J(ı JA− d0)adjx0⟩ = c⟨x0 , Jx0⟩ = −2ıc ≠ 0.

Hence, by the implicit function theorem, there exists an open subset U of P(2n)
containing A, and C∞ maps d ∶ U → C and x ∶ U → C

2n that satisfy ı JPx(P) =
d(P)x(P), ⟨x0 , Jx(P)⟩ = −2ı, x(A) = x0 and d(A) = d0 . Clearly x(P) ≠ 0, and hence
d(P) is an eigenvalue of ı JP. All eigenvalues of ı JP are real. Hence d(P) is real.
Since d0 > 0, we can assume that d(P) > 0 for all P ∈ U . By Lemma 2.2, we see that
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d(P) is a symplectic eigenvalue of P for every P ∈ U . Also, since D2φ(P, x(P), d(P))
is invertible, (ı JP − d(P))adj ≠ 0 and this implies that d(P) has multiplicity 1. Let
x(P) = ũ(P) − ıṽ(P) be the Cartesian decomposition of x(P). By Lemma 2.2, we
see that (ũ(P), ṽ(P)) is a symplectic eigenvector pair of P corresponding to d(P).
Also, the maps P ↦ ũ(P) and P ↦ ṽ(P) are C∞ on U , and ũ(A) = u0 and ṽ(A) = v0 .
We know that ⟨u0 , Jv0⟩ = 1. Hence, we can assume that ⟨ũ(P), Jṽ(P)⟩ > 0 for all
P ∈ U . This implies that the map P ↦ ⟨ũ(P), Jṽ(P)⟩−1/2 is C∞ on U . Define the maps
u, v ∶ U → R

2n as

u(P) = ⟨ũ(P), Jṽ(P)⟩−1/2ũ(P)
and

v(P) = ⟨ũ(P), Jṽ(P)⟩−1/2ṽ(P).

The maps u and v are C∞ and (u(P), v(P)) forms a normalized symplectic eigen-
vector pair of P corresponding to d(P). This shows the existence of infinitely differ-
entiable maps d , u, v on U that satisfy (i) and (ii). Moreover, since the real part of
⟨x0 , Jx(P)⟩ is zero,

⟨u0 , Ju(P)⟩ + ⟨v0 , Jv(P)⟩ = 0.

This proves (iii). ∎
Remark 3.2 Since d0 is a simple symplectic eigenvalue of A if and only if it is a
simple eigenvalue of ıA1/2 JA1/2 , (see Proposition 2.3) and the square root map is
infinitely differentiable on real positive definite matrices, we can obtain (i) and (ii)
of Theorem 3.1 from the corresponding result on eigenvalues in [24]. But, we give
an independent proof as (3.1) is required in the computation of the derivatives of
symplectic eigenvector pairs in Theorem 3.4.

The main theorem of this section is as follows:

Theorem 3.3 Let A ∈ P(2n), and suppose that d j(A) is a simple symplectic eigenvalue
of A. Then, there exists a neighborhood U of A in P(2n) such that for every P ∈
U , d j(P) is a simple symplectic eigenvalue of P and the map P ↦ d j(P) is infinitely
differentiable on U . Furthermore, if (u0 , v0) is a normalized symplectic eigenvector pair
of A corresponding to d j(A), then there exist infinitely differentiable maps u j , v j ∶ U →
R

2n such that for every P in U (u j(P), v j(P)) is a normalized symplectic eigenvector
pair of P corresponding to d j(P), u j(A) = u0 and v j(A) = v0 , and u j(P), v j(P) satisfy
(3.1).

Proof If d j(A) is a simple symplectic eigenvalue of A, then by Theorem 3.1, we can
find an open neighbourhood V of A inP(2n), and C∞maps d ∶ V → R and u, v ∶ V →
R

2n that satisfy (i)–(iii) of Theorem 3.1; that is, d(P) is a simple symplectic eigenvalue
of P and (u(P), v(P)) is a corresponding normalized symplectic eigenvector pair
such that d(A) = d j(A), u(A) = u0 , v(A) = v0 , and u(P), v(P) satisfy (3.1). Let r be a
positive number with r < min{d j+1(A) − d j(A), d j(A) − d j−1(A)}. By the continuity
of the map P ↦ d(P) and Proposition 2.5, we can assume that for every P in V,
d(P) is the only symplectic eigenvalue of P contained in (d j(A) − r, d j(A) + r).
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By [7, Theorem 7], we know that the map P ↦ d j(P) is continuous. Hence, there exists
an open neighborhood W of A such that d j(P) ∈ (d j(A) − r, d j(A) + r) for every
P in W . But this implies that d(P) = d j(P) for every P ∈ V ∩ W . Take U = V ∩ W .
Hence, the map d j is infinitely differentiable on U with the corresponding normalized
symplectic eigenvector maps u, v that satisfy the required conditions. ∎

Next, we compute the derivatives of the symplectic eigenvalue map d j and its
corresponding symplectic eigenvector pair map at A when d j(A) has multiplicity
1. We note here that if (u, v) is a normalized symplectic eigenvector pair of A
corresponding to a simple symplectic eigenvalue d , then any normalized symplectic
eigenvector pair (x , y) corresponding to d is of the form

x = au − bv and y = bu + av

where a, b are real numbers satisfying a2 + b2 = 1.

Theorem 3.4 Let A ∈ P(2n) be such that d j(A) is simple, and let (u j , v j) be a
normalized symplectic eigenvector pair map through (u j(A), v j(A)) obtained from
Theorem 3.3. Suppose M is any symplectic matrix given by (1.2). Then the derivatives
Dd j(A), Du j(A), and Dv j(A) at a 2n × 2n symmetric matrix B are given by

Dd j(A)(B) =
⟨u j(A), Bu j(A)⟩ + ⟨v j(A), Bv j(A)⟩

2
,(3.2)

Du j(A)(B) = MD̂MT Bu j(A) + MDJMT Bv j(A),(3.3)

and

Dv j(A)(B) = MD̂MT Bv j(A) − MDJMT Bu j(A),(3.4)

where D̂ and D are the 2n × 2n diagonal matrices with respective diagonal entries given
by

(D̂)kk =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dk(A)
d2

j (A)−d2
k(A)

k ≠ j, 1 ≤ k ≤ n

− 1
4d j(A) k = j, 1 ≤ k ≤ n

(D̂)i i k = n + i , 1 ≤ i ≤ n,

(3.5)

and

(D)kk =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d j(A)
d2

j (A)−d2
k(A)

k ≠ j, 1 ≤ k ≤ n
1

4d j(A) k = j, 1 ≤ k ≤ n
(D)i i k = n + i , 1 ≤ i ≤ n.

(3.6)

Proof Since d j(A) is simple, by Theorem 3.3, we know that the map d j is infinitely
differentiable at A. Since (u j , v j) is a normalized symplectic eigenvector pair map
obtained from Theorem 3.3, we have

Pu j(P) = d j(P)Jv j(P),(3.7)

https://doi.org/10.4153/S0008414X2000084X Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X2000084X


466 T. Jain and H. K. Mishra

Pv j(P) = −d j(P)Ju j(P),(3.8)

⟨u j(P), Jv j(P)⟩ = 1,(3.9)

⟨u j(A), Ju j(P)⟩ + ⟨v j(A), Jv j(P)⟩ = 0.(3.10)

Differentiating (3.7) and (3.8) at A, we see that for every 2n × 2n real symmetric
matrix B

Bu j(A) + ADu j(A)(B) = Dd j(A)(B)Jv j(A) + d j(A)JDv j(A)(B),(3.11)

and

Bv j(A) + ADv j(A)(B) = −Dd j(A)(B)Ju j(A) − d j(A)JDu j(A)(B).(3.12)

Taking the inner product of (3.11) with u j(A) and using the fact that ⟨u j(A), Jv j(A)⟩ =
1, we get

⟨u j(A), Bu j(A)⟩ + ⟨u j(A), ADu j(A)(B)⟩
= Dd j(A)(B) + ⟨u j(A), d j(A)JDv j(A)(B)⟩.(3.13)

Since

⟨u j(A), ADu j(A)(B)⟩ = ⟨Au j(A), Du j(A)(B)⟩
= d j(A)⟨Du j(A)(B), Jv j(A)⟩,

we can write (3.13) as

Dd j(A)(B) = ⟨u j(A), Bu j(A)⟩ + d j(A)⟨Du j(A)(B), Jv j(A)⟩
− d j(A)⟨u j(A), JDv j(A)(B)⟩.(3.14)

Similarly, taking the inner product of (3.12) with v j(A), we get

Dd j(A)(B) = ⟨v j(A), Bv j(A)⟩ − d j(A)⟨Du j(A)(B), Jv j(A)⟩
+ d j(A)⟨u j(A), JDv j(A)(B)⟩.(3.15)

Adding (3.14) and (3.15) finally gives (3.2).
We next compute the derivatives Du j(A) and Dv j(A).
Let the columns of M be ũ1 , . . . , ũn , ṽ1 , . . . , ṽn . Clearly, these vectors form a

symplectic eigenbasis of R2n corresponding to A. We can express Du j(A)(B) and
Dv j(A)(B) uniquely as

Du j(A)(B) =
n
∑
k=1

αk ũk +
n
∑
k=1

βk ṽk

and

Dv j(A)(B) =
n
∑
k=1

γk ũ j +
n
∑
k=1

δk ṽk ,

where αk = ⟨Du j(A)(B), Jṽk⟩, βk = −⟨Du j(A)(B), Jũk⟩, γk = ⟨Dv j(A)(B), Jṽk⟩
and δk = −⟨Dv j(A)(B), Jũk⟩ for all k = 1, . . . , n. Since d j(A) is simple, we can assume
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that ũ j = au j(A) − bv j(A) and ṽ j = bu j(A) + av j(A) for some a, b ∈ Rwith a2 + b2 =
1. Thus

⟨ũk , Jv j(A)⟩ = ⟨u j(A), Jṽk⟩ = δk j a(3.16)

and

⟨ũk , Ju j(A)⟩ = ⟨ṽk , Jv j(A)⟩ = δk jb(3.17)

for all k = 1, . . . , n. Here, δ jk = 0 if j ≠ k and δ jk = 1 otherwise. Taking inner product
of (3.11) with ũk we get

⟨ũk , Bu j(A)⟩ + ⟨ũk , ADu j(A)(B)⟩
= Dd j(A)(B)⟨ũk , Jv j(A)⟩ + d j(A)⟨ũk , JDv j(A)(B)⟩.

Using (3.16) and the values of αk and δk , this reduces to

dk(A)αk − d j(A)δk = aDd j(A)(B)δk j − ⟨ũk , Bu j(A)⟩.(3.18)

Similarly, taking inner products of (3.11) with ṽk , and of (3.12) with ũk and ṽk , and
using (3.16) and (3.17), we obtain the expressions

dk(A)βk + d j(A)γk = bDd j(A)(B)δk j − ⟨ṽk , Bu j(A)⟩,(3.19)

d j(A)βk + dk(A)γk = −bDd j(A)(B)δk j − ⟨ũk , Bv j(A)⟩,(3.20)

−d j(A)αk + dk(A)δk = aDd j(A)(B)δk j − ⟨ṽk , Bv j(A)⟩.(3.21)

Thus, for each k = 1, . . . , n, we have a system of four linear equations in four unknowns
αk , βk , γk , and δk . When k ≠ j, this system is

⎡⎢⎢⎢⎢⎢⎢⎢⎣

dk(A) 0 0 −d j(A)
0 dk(A) d j(A) 0
0 d j(A) dk(A) 0

−d j(A) 0 0 dk(A)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

αk
βk
γk
δk

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= −

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⟨ũk , Bu j(A)⟩
⟨ṽk , Bu j(A)⟩
⟨ũk , Bv j(A)⟩
⟨ṽk , Bv j(A)⟩

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Here, d j(A) ≠ dk(A), therefore, the coefficient matrix above is invertible and left
multiplying by the inverse we get
⎡⎢⎢⎢⎢⎢⎢⎢⎣

αk
βk
γk
δk

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= (d2
j (A) − d2

k(A))−1

⎡⎢⎢⎢⎢⎢⎢⎢⎣

dk(A) 0 0 d j(A)
0 dk(A) −d j(A) 0
0 −d j(A) dk(A) 0

d j(A) 0 0 dk(A)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⟨ũk , Bu j(A)⟩
⟨ṽk , Bu j(A)⟩
⟨ũk , Bv j(A)⟩
⟨ṽk , Bv j(A)⟩

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

The solution is thus given by the following equations

αk = 1
d2

j (A) − d2
k(A)(dk(A)⟨ũk , Bu j(A)⟩ + d j(A)⟨ṽk , Bv j(A)⟩),(3.22)

βk = 1
d2

j (A) − d2
k(A)(dk(A)⟨ṽk , Bu j(A)⟩ − d j(A)⟨ũk , Bv j(A)⟩),(3.23)
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γk = 1
d2

j (A) − d2
k(A)(dk(A)⟨ũk , Bv j(A)⟩ − d j(A)⟨ṽk , Bu j(A)⟩),(3.24)

δk = 1
d2

j (A) − d2
k(A)(dk(A)⟨ṽk , Bv j(A)⟩ + d j(A)⟨ũk , Bu j(A)⟩).(3.25)

Now, for k = j we have the following system
⎡⎢⎢⎢⎢⎢⎢⎢⎣

d j(A) 0 0 −d j(A)
0 d j(A) d j(A) 0
0 d j(A) d j(A) 0

−d j(A) 0 0 d j(A)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

α j
β j
γ j
δ j

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= −

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⟨ũ j , Bu j(A)⟩ − aDd j(A)(B)
⟨ṽ j , Bu j(A)⟩ − bDd j(A)(B)
⟨ũ j , Bv j(A) + bDd j(A)(B)⟩
⟨ṽ j , Bv j(A)⟩ − aDd j(A)(B)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Using the expression for Dd j(A)(B), the fact that B is symmetric and the relationship
between (ũ j , ṽ j) and (u j(A), v j(A)) one can see that the solution to the above system
exists and is given by

α j − δ j =
1

2d j(A)(⟨ṽ j(A), Bv j(A)⟩ − ⟨ũ j(A), Bu j(A)⟩),(3.26)

β j + γ j =
−1

2d j(A)(⟨ṽ j(A), Bu j(A)⟩) + −1
2d j(A)(⟨ũ j(A), Bv j(A)⟩).(3.27)

Differentiating (3.9) and (3.10), respectively, gives

⟨Du j(A)(B), Jv j(A)⟩ + ⟨u j(A), JDv j(A)(B)⟩ = 0

and

⟨u j(A), JDu j(A)(B)⟩ + ⟨v j(A), JDv j(A)(B)⟩ = 0.

These in turn imply α j + δ j = 0 and β j − γ j = 0. Thus,

α j = −δ j =
1

4d j(A)(⟨ṽ j(A), Bv j(A)⟩ − ⟨ũ j(A), Bu j(A)⟩)(3.28)

and

β j = γ j =
−1

4d j(A)(⟨ṽ j(A), Bu j(A)⟩) + −1
4d j(A)(⟨ũ j(A), Bv j(A)⟩).(3.29)

Simplifying the above expressions we get for k ≠ j,

αk = 1
d2

j (A) − d2
k(A)(d2

k(A)⟨Jṽk , A−1Bu j(A)⟩ + d j(A)⟨Jṽk , JBv j(A)⟩),

βk = − 1
d2

j (A) − d2
k(A)(d2

k(A)⟨Jũk , A−1Bu j(A)⟩ + d j(A)⟨Jũk , JBv j(A)⟩),

α j = − 1
4
⟨Jṽ j , A−1Bu j(A)⟩ + 1

4d j(A)⟨Jṽ j , JBv j(A)⟩,

β j =
1
4
⟨Jũ j , A−1Bu j(A)⟩ − 1

4d j(A)⟨Jũ j , JBv j(A)⟩.
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Let x be the 2n real vector with components α1 , . . . , αn , β1 , . . . , βn . Then we see
that x can be written as

x = D̂D̃M−1A−1Bu j(A) + DM−1 JBv j(A),

where D̃ is the 2n × 2n diagonal matrix with diagonal entries the symplectic eigenval-
ues of A, d1(A), . . . , dn(A), d1(A), . . . , dn(A), and D̂ and D are the diagonal matrices
given by (3.5) and (3.6), respectively. Therefore,

Du j(A)(B) = MD̂D̃M−1A−1Bu j(A) + MDM−1 JBv j(A)
= MD̂MT Bu j(A) + MDJMT Bv j(A).

The last equality follows from the fact that MT AM = D̃ and MT JM = J . This proves
(3.3). Similar computations give (3.4). ∎
Remark 3.5 Let A ∈ P(2n), and let d , u, v be maps on a neighborhood U of A such
that d(P) is a symplectic eigenvalue of P and (u(P), v(P)) is a normalized symplectic
eigenvector pair for all P ∈ U . If d , u, v are differentiable at A, then by following the
same steps as those used to prove (3.2), we can compute the derivative of d at A, even
if d(A) is not simple, as

Dd(A)(B) = 1
2
(⟨u(A), Bu(A)⟩ + ⟨v(A), Bv(A)⟩).(3.30)

Given a map t ↦ A(t) from an open interval I to P(2n), we denote the symplectic
eigenvalue d j(A(t)) by d j(t), 1 ≤ j ≤ n.

Corollary 3.6 Let t ↦ A(t) be a map from an open interval I to P(2n) that is
infinitely differentiable at t0 ∈ I. Suppose that d j(t0) is simple. Then there exists an
open interval I0 containing t0 such that the map d j is infinitely differentiable on I0 .
If (u0 , v0) is a corresponding normalized symplectic eigenvector pair of A(t0), then we
can find an infinitely differentiable normalized symplectic eigenvector pair map (u j , v j)
on I0 corresponding to d j(t) such that (u j(t0), v j(t0)) = (u0 , v0), and ((u j(t), v j(t))
satisfies

⟨u0 , Ju j(t)⟩ + ⟨v0 , Jv j(t)⟩ = 0

for all t ∈ I0 . Furthermore, for any symplectic matrix M given by the Williamson theorem
for A(t0),

d′j(t) =
⟨u j(t), A′(t)u j(t)⟩ + ⟨u j(t), A′(t)u j(t)⟩

2
for all t ∈ J ,(3.31)

u′j(t0) = MD̂MT A′(t0)u0 + MDJMT A′(t0)v0 ,(3.32)

and

v′j(t0) = MD̂MT A′(t0)v0 − MDJMT A′(t0)u0 ,(3.33)

where D̂ and D are the diagonal matrices associated with A(t0) given by (3.5) and (3.6),
respectively.
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Theorem 3.7 Following the notations of Corollary 3.6, the second derivative of d j at t0
is given by

d′′j (t0) =
1
2
(⟨u0 , A′′(t0)u0⟩ + ⟨v0 , A′′(t0)v0⟩)

+ 2⟨A′(t0)u0 , MDJMT A′(t0)v0⟩
+ ⟨A′(t0)u0 , MD̂MT A′(t0)u0⟩ + ⟨A′(t0)v0 , MD̂MT A′(t0)v0⟩,(3.34)

where D̂ and D are the diagonal matrices associated with A(t0) given by (3.5) and (3.6),
respectively.

Proof By (3.31), we have

d′j(t) =
⟨u j(t), A′(t)u j(t)⟩ + ⟨v j(t), A′(t)v j(t)⟩

2
(3.35)

for every t in I0 . Differentiating (3.35) at t = t0 and using the fact that A′(t0) is real
symmetric, we get

d′′j (t0) =
1
2
(⟨u0 , A′′(t0)u0⟩ + ⟨v0 , A′′(t0)u0⟩)

+ ⟨u′j(t0), A′(t0)u0⟩ + ⟨v′j(t0), A′(t0)v0⟩.(3.36)

Using the expression (3.32) for the derivative u′j(t0), we get

⟨u′j(t0), A′(t0)u0⟩ =⟨MD̂MT A′(t0)u0 , A′(t0)u0⟩
+ ⟨MDJMT A′(t0)v0 , A′(t0)u0⟩.(3.37)

Similarly using (3.33), we have

⟨v′j(t0), A′(t0)v0⟩ =⟨MD̂MT A′(t0)v0 , A′(t0)v0⟩
− ⟨MDJMT A′(t0)u0 , A′(t0)v0⟩.

Since DJ = JD, we have

⟨v′j(t0), A′(t0)v0⟩ =⟨MD̂MT A′(t0)v0 , A′(t0)v0⟩
+ ⟨MDJMT A′(t0)v0 , A′(t0)u0⟩.(3.38)

Using (3.37) and (3.38) in (3.36), we obtain (3.34). ∎

4 Symplectic eigenvalues of curves of positive definite matrices

In this section, we study the differentiability and analyticity of symplectic eigenvalues
of positive definite matrices dependent on a real parameter irrespective of their multi-
plicities. The matrix square root is an infinitely differentiable map, and the symplectic
eigenvalues of A are the positive eigenvalues of the Hermitian matrix ıA1/2 JA1/2 . So,
we obtain the results on the differentiability of symplectic eigenvalues by using the
corresponding results on eigenvalues of Hermitian matrices. We similarly derive the
results on analyticity of symplectic eigenvalues. For details on the differentiability

https://doi.org/10.4153/S0008414X2000084X Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X2000084X


Derivatives of symplectic eigenvalues and a Lidskii type theorem 471

and analyticity of eigenvalues and eigenvectors of curves of Hermitian matrices,
see [16, 24].

Let t ↦ H(t) be a map from an open interval I to the space H(k) of all k × k
Hermitian matrices that is differentiable at t0 ∈ I. Then, all the eigenvalues of H(t)
can be chosen to be differentiable at t0 . It means that there exist k functions λ1 , . . . , λk
in a neighborhood of t0 that are differentiable at t0 and λ1(t), . . . , λk(t) are the k
eigenvalues of H(t) counted with multiplicity. Further if the map t ↦ H(t) is C1 on
I, then we can choose the eigenvalues to be C1 on the whole of I. See [16, pp. 113–115].
Now, since the square root map A ↦ A1/2 is C∞ on P(2n), we can directly obtain
the following symplectic analogue. We recall that d̃1 , . . . , d̃n denote any collection
of symplectic eigenvalues that are not necessarily ordered in either increasing or
decreasing order.

Theorem 4.1 Let t ↦ A(t) be a map from an open interval I to P(2n) that is
differentiable at t0 ∈ I. Then all the symplectic eigenvalues of A(t) can be chosen to be
differentiable at t0 , that is, we can find n functions d̃1 , . . . , d̃n in a neighborhood of t0
that are differentiable at t0 such that d̃1(t), . . . , d̃n(t) are the symplectic eigenvalues of
A(t). If, in addition, the map t ↦ A(t) is C1 on I, then d̃1 , . . . , d̃n can be chosen to be
C1 on I.

The continuity of symplectic eigenvector pairs cannot be guaranteed even if the
map t ↦ A(t) is C∞ on I. This we show by the following example.

Example 2 For each t ∈ (−1, 1) define the 4 × 4 positive definite matrix A(t) as

A(t) = I2 ⊗ P(t)

where

P(t) = [1−e−1/t2
cos(2/t) −e−1/t2

sin(2/t)

−e−1/t2
sin(2/t) 1+e−1/t2

cos(2/t))
]

for t ≠ 0 and P(0) = I2 . Clearly t ↦ A(t) is a smooth map. For t ≠ 0,
d1(t) = 1 − e−1/t2

and d2(t) = 1 + e−1/t2
, and d1(0) = d2(0) = 1. Let u1(t) =

e1 ⊗ [cos(1/t) sin(1/t)]T , v1(t) = e2 ⊗ [cos(1/t) sin(1/t)]T and u2(t) = e1 ⊗
[sin(1/t) − cos(1/t)]T , v2(t) = e2 ⊗ [sin(1/t) − cos(1/t)]T , where e1 , e2 are the standard
unit vectors in R

2 .
One can see that (u1(t), v1(t))(resp. (u2(t), v2(t))) is a normalized symplectic

eigenvector pair corresponding to d1(t)(resp. d2(t)). Suppose that there exist func-
tions ũ, ṽ ∶ (−1, 1) → R

4 , continuous at 0 such that (ũ(t), ṽ(t)) forms a normalized
symplectic eigenvector pair of A(t). For each t ≠ 0 the pair (ũ(t), ṽ(t)) either
corresponds to d1(t), or to d2(t). Therefore, we can get a sequence (t j) j∈N of nonzero
terms in (−1, 1) converging to 0 such that for all j ∈ N (ũ(t j), ṽ(t j)) corresponds
either to d1(t j) or to d2(t j). Consider the case when (ũ(t j), ṽ(t j)) corresponds
to d1(t j) for all j. For each j, d1(t j) is a simple symplectic eigenvalue of A(t j).
This implies that the normalized symplectic eigenvector pair (ũ(t j), ṽ(t j)) is of the
form ũ(t j) = a ju1(t j) − b jv1(t j), ṽ(t j) = b ju1(t j) + a jv1(t j) where a j , b j ∈ R and
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a2
j + b2

j = 1. The continuity of ũ and ṽ at t = 0 implies that the limits lim
j→∞

a j sin(1/t j)

and lim
j→∞

b j sin(1/t j) exist, which in turn imply that lim
j→∞

sin2(1/t j) exists. This is

a contradiction. We get a similar contradiction in the other case. Therefore, we
conclude that there does not exist any continuous selection of normalized symplectic
eigenvector pairs.

However, the symplectic eigenvalues and the symplectic eigenvector pairs can be
chosen smoothly under an additional condition as shown in the following theorem.
The proof follows from the smoothness of the map A ↦ A1/2 on P(2n), and [1,
Theorem 7.6]. We say that two functions f and g continuous at t0 meet with infinite
order if for every p ∈ N there exists a function hp continuous at t0 such that f (t) −
g(t) = t p hp(t). See (3.5) in [1].

Theorem 4.2 Let t ↦ A(t) be a smooth map from an open interval I toP(2n) such that
for all 1 ≤ i ≠ j ≤ n either d i(t) = d j(t) for all t ∈ I or d i(t) and d j(t) do not meet with
infinite order at any point in I. Then all the symplectic eigenvalues and corresponding
symplectic eigenbasis can be chosen smoothly in t on I.

We now turn to the case when A(t) is a real analytic curve.

Theorem 4.3 Let t ↦ A(t) be a map from an open interval I to P(2n) that is real
analytic at t0 ∈ I.
(i) If d is a symplectic eigenvalue of A(t0) with multiplicity m, then for some ε > 0,

there exist m symplectic eigenvalue maps d̃1 , . . . , d̃m ∶ (t0 − ε, t0 + ε) → R, and
m corresponding symplectically orthonormal symplectic eigenvector pair maps
(ũ1 , ṽ1), . . . , (ũm , ṽm) ∶ (t0 − ε, t0 + ε) → R

2n ×R
2n that are real analytic at t0

with each d̃ j(t0) = d .
(ii) There exists an ε > 0 such that all the n symplectic eigenvalues of A(t) and a

corresponding symplectic eigenbasis can be chosen on (t0 − ε, t0 + ε) to be real
analytic at t0 .

Similar to the case of differentiability, we use the results on analyticity of eigenval-
ues of Hermitian matrices. For this, we need the following proposition. Since we could
not find an explicit proof of this in the literature we include its proof in the appendix
for the convenience of the reader.

Proposition 4.4 Let t ↦ A(t) be a map from an open interval I to P(m) that is real
analytic at t0 ∈ I. Then the composite map t ↦ (A(t))1/2 is also real analytic at t0 .

We use the following result for eigenvalues and eigenvectors for Hermitian matrices
to prove Theorem 4.3. See Kato ([16], Ch. II, Sec. 6) and Rellich ([24], Ch. I, Sec. 1,
Theorem 1).

Proposition 4.5 Let t ↦ H(t) be a map from an open interval I to H(k) that is real
analytic at t0 . If λ is an eigenvalue of H(t0) with multiplicity m, then there exists an
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ε > 0 so that we can find m eigenvalue functions λ1 , . . . , λm ∶ (t0 − ε, t0 + ε) → R and
m corresponding orthonormal eigenvector functions x1 , . . . , xm ∶ (t0 − ε, t0 + ε) → C

k

that are real analytic at t0 . Also, λ i(t0) = λ for all i = 1, . . . , m.

Proof of Theorem 4.3 Let H(t) be the Hermitian matrix ıA1/2(t)JA1/2(t). Since
t ↦ A(t) is real analytic at t0 , by Proposition 4.4, the map t ↦ H(t) is also real analytic
at t0 . By Proposition 2.3, the multiplicity of the eigenvalue d of H(t0) is m. Hence by
Proposition 4.5, there exists an ε > 0, and m functions d̃1 , . . . , d̃m ∶ (t0 − ε, t0 + ε) → R

and m functions x1 , . . . , xm ∶ (t0 − ε, t0 + ε) → C
2n that are real analytic at t0 such

that d̃1(t), . . . , d̃m(t) are m eigenvalues of H(t) and {x1(t), x2(t), . . . , xm(t)} is a
corresponding orthonormal set of eigenvectors. Also d̃ j(t0) = d for all j = 1, . . . , m.
Since H(t) is invertible for every t and d > 0, each d̃ j(t) > 0. Hence d̃ j(t) is a
symplectic eigenvalue of A(t) for every t ∈ (t0 − ε, t0 + ε) and j = 1, . . . , m. Let x j(t) =
u j(t) − ıv j(t) be the Cartesian decomposition of x j(t). For every t ∈ (t0 − ε, t0 + ε)
let ũ j(t) =

√
2d̃ j(t)A−1/2(t)u j(t) and ṽ j(t) =

√
2d̃ j(t)A−1/2(t)v j(t). Since d̃ j(t)

and A−1/2(t) are real analytic at t0 , ũ j(t) and ṽ j(t) are real analytic at t0 . Finally
by Proposition 2.3, {(ũ j(t), ṽ j(t)) ∶ j = 1, . . . , m} is a symplectically orthonormal
set of symplectic eigenvector pairs of A(t) corresponding to d̃1(t), . . . , d̃m(t). This
proves (i).

Let d 1 < ⋯ < dk be distinct symplectic eigenvalues of A(t0) with multiplicities
m1 , . . . , mk , respectively. By statement (i) of the theorem, we can find an ε > 0 and
n symplectic eigenvalue functions d̃1,1(t), . . . , d̃1,m1(t), . . . , d̃k ,1(t), . . . , d̃k ,mk(t) of
A(t) on (t0 − ε, t0 + ε) that are real analytic at t0 . Also for each j = 1, . . . , k, we
can choose corresponding symplectically orthonormal symplectic eigenvector pairs
(ũ j, i(t), ṽ j, i(t)), 1 ≤ i ≤ m j , that are real analytic at t0 .Using Proposition 2.5, we
can assume that ε > 0 is small enough so that for all t ∈ (t0 − ε, t0 + ε) d̃r , i(t) ≠
d̃s , j(t) for all 1 ≤ i ≤ mr and 1 ≤ j ≤ ms , r ≠ s. Thus, by Corollary 2.4, the symplectic
eigenvector pairs (ũ j, i(t), ṽ j, i(t)), 1 ≤ i ≤ m j , 1 ≤ j ≤ k, form the required symplectic
eigenbasis. ∎

By arguing in a similar way as in the proof of Theorem 4.3(i) and using the
analogous result for eigenvalues and eigenvectors of Hermitian matrices (see [16],
Ch. II, Sec. 6), we can obtain the following theorem.

Theorem 4.6 Let t ↦ A(t) be a real analytic map from an open interval I to P(2n).
Then we can choose n symplectic eigenvalue functions and corresponding symplectic
eigenbasis map such that they are real analytic on I.

We have seen that the ordered tuple d1 ≤ d2 ≤ ⋯ ≤ dn of symplectic eigenvalues
need not be differentiable when the multiplicities are greater than one. But, they can
be proved to be piecewise real analytic if the map t ↦ A(t) is real analytic on I.

Theorem 4.7 Let t ↦ A(t) be a real analytic map from an open interval I to P(2n),
and let [a, b] be any compact interval contained in I. Then for each j = 1, . . . , n, the
map t ↦ d j(t) = d j(A(t)) is piecewise real analytic on [a, b]. Further for each t ∈
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[a, b], we can find a symplectic eigenbasis {u1(t), . . . , un(t), v1(t), . . . , vn(t)} of A(t)
corresponding to d1(t), . . . , dn(t) such that the maps u1 , . . . , un , v1 , . . . , vn are also
piecewise real analytic on [a, b].

Proof By Theorem 4.6, we can find n symplectic eigenvalues d̃1(t), . . . , d̃n(t) of
A(t) and a corresponding symplectic eigenbasis {ũ1(t), . . . , ũn(t), ṽ1(t), . . . , ṽn(t)}
such that each of the maps d̃ j , ũ j and ṽ j are real analytic on I.

Define I to be the set of all ordered pairs (i , j), 1 ≤ i ≠ j ≤ n, such that d̃ i(t) ≠
d̃ j(t) for at least one t in [a, b]. Let E be the set of all points t in [a, b] such that
d̃ i(t) = d̃ j(t) for some (i , j) ∈ I. By using the real analyticity of the maps d̃1 , . . . , d̃n
and the definition of the set I, we can see that E is finite. Then for every i = 1, . . . , n,
the multiplicity of d̃ i(t) is the same for all t in [a, b] /E . Hence, d̃1 , . . . , d̃n can
be reordered so that d̃ i(t) = d i(t) for all t ∈ [a, b] /E . The theorem thus follows
by suitably reordering the symplectic eigenvalues d̃1 , . . . , d̃n and correspondingly
reordering the symplectic eigenvalue pairs ũ1 , . . . , ũn , ṽ1 , . . . , ṽn . ∎

5 Symplectic analogue of Lidskii’s theorem and
other applications

The main object of this section is to derive a Lidskii type result, that is, a majorization
inequality between the symplectic eigenvalues of the sum of two positive definite
matrices and those of the two matrices. We start this section by introducing a notion
of symplectic projections that is of independent interest and is useful in the proof of
our main theorem of this section.

Let S = {x1 , . . . , xk , y1 , . . . , yk} be a symplectically orthonormal subset of R2n .
Define the map PS on R

2n as

PS(x) =
k
∑
i=1

(⟨x , Jy i⟩Jy i + ⟨x , Jx i⟩Jx i).(5.1)

Suppose M is the 2n × 2k matrix

M = [Jx1 , . . . , Jxk , Jy1 , . . . , Jyk] .(5.2)

It is easy to see that PS = MMT , and so, it is a positive semidefinite matrix. In fact, it can
be seen that the kernel of PS is the symplectic complement of S , and hence PS ∈ Ps(2n)
with symplectic eigenvalues 1 and 0 with multiplicities k and n − k, respectively. We
call PS to be the symplectic projection associated with the set S . If k = n, that is, S is
a symplectic basis of R2n , then PS is a positive definite symplectic matrix with all its
symplectic eigenvalues 1.

The symplectic projections associated with two symplectically orthonormal sets
that have the same span need not be equal. This can be seen by the following example.

Example 3 Let S = {(1, 0)T , (0, 1)T} and T = {(1, 0)T , (1, 1)T}. The sets S and T are
symplectically orthonormal and span R

2 . The symplectic projection PS is the 2 × 2

identity matrix, whereas the symplectic projection PT is the matrix [ 1 −1
−1 2 ] .
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In the following proposition, we give a necessary and sufficient condition for the
equality of two symplectic projections.

Proposition 5.1 Let S = {u1 , . . . , uk , v1 , . . . , vk} and T = {x1 , . . . , xm , y1 , . . . , ym} be
two symplectically orthonormal subsets of R2n , and let P and Q be the symplectic
projections associated with them. Let M and N be the 2n × 2k and 2n × 2m matrices
given by (5.2) corresponding to the sets S and T , respectively. Then P = Q if and only if
k = m and M = NU for some 2k × 2k orthosymplectic (symplectic as well as orthogonal)
matrix U .

Proof If k = m and M = NU , the equality P = Q easily follows from the orthogonal-
ity of U , and the fact that P = MMT and Q = NN T .

Conversely, let P = Q . Clearly the subspaces spanned by S and T are the same, and
hence k = m. By (5.1)

Px j =
k
∑
i=1

(α i j Ju i + β i j Jv i)

for all j = 1, . . . , k. Here, α i j = ⟨x j , Ju i⟩ and β i j = ⟨x j , Jv i⟩, 1 ≤ i , j ≤ k. Since P = Q,
Px i = Jy i . This gives

y j =
k
∑
i=1

(α i ju i + β i jv i).(5.3)

Also, since x j belongs to the span of the symplectically orthonormal vectors
u1 , . . . , uk , v1 , . . . , vk ,

x j =
k
∑
i=1

(⟨x j , Jv i⟩u i − ⟨x j , Ju i⟩v i)(5.4)

=
k
∑
i=1

(β i ju i − α i jv i).(5.5)

Let X and Y be the k × k matrices X = [α i j]and Y = [β i j] ,and U be the 2k × 2k matrix

U = [ Y X
−X Y] .

Using the fact that x1 , . . . , xk , y1 , . . . , yk are symplectically orthonormal, we can see
that the columns of U are orthonormal as well as symplectically orthonormal vectors
in R

2k . Finally, from (5.3) and (5.4), we obtain N = MU . ∎
We now give an equivalent statement for Williamson’s theorem in terms of sym-

plectic projections.

Proposition 5.2 For every B in P(2n) there exist distinct positive numbers μ1 , . . . , μm
and symplectic projections P1 , . . . , Pm that satisfy the following conditions.

(i) Pj JPk = 0 for all j ≠ k, j, k = 1, . . . , m.
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(ii)
m
∑
k=1

Pk JPk = J .

(iii) B =
m
∑
k=1

μk Pk .

The numbers μ1 , . . . , μm and the symplectic projections P1 , . . . , Pm are uniquely deter-
mined by the above conditions. Furthermore, for every 1 ≤ j ≤ m, μ j is a symplectic
eigenvalue of B and Pj is the symplectic projection associated with a symplectically
orthonormal set of symplectic eigenvector pairs of B corresponding to μ j .

Proof Let μ1 , . . . , μm be the distinct symplectic eigenvalues of B with multiplicities
k1 , . . . , km , respectively. For every j = 1, . . . , m let S j = {u j,1 , . . . , u j,k j , v j,1 , . . . , v j,k j}
be a symplectically orthonormal set of symplectic eigenvector pairs of B correspond-
ing to μ j . Let Pj be the symplectic projection associated with S j . By the definition
of symplectic projections and Williamson’s theorem, we can see that μ1 , . . . , μm and
P1 , . . . , Pm satisfy (i)–(iii).

Now, let η1 , . . . , η l be l distinct positive numbers and Q1 , . . . , Q l be sym-
plectic projections that also satisfy (i)–(iii). For every j = 1, . . . , l , let Tj =
{x j,1 , . . . , x j,r j , y j,1 , . . . , y j,r j} be a symplectically orthonormal set corresponding to
Q j . By using (i) and (iii), we can see that each η j is a symplectic eigenvalue of B,
and (x j, i , y j, i), 1 ≤ i ≤ r j , are the symplectically orthonormal symplectic eigenvector
pairs corresponding to η j . Condition (ii) implies that {η1 , . . . , η l} forms the set of
all distinct symplectic eigenvalues of B. By the uniqueness of symplectic eigenvalues,
we have l = m and {μ1 , . . . , μm} = {η1 , . . . , η l}. We can assume that μ j = η j for all
j = 1, . . . , m. By (iii), we see that r j is equal to the multiplicity of μ j . Since symplectic
eigenvector pairs corresponding to different eigenvalues are symplectically orthogo-
nal, S j is symplectically orthogonal to Tk for all j ≠ k. Consequently, Pjx = 0 for all
x ∈ Tk and for all k ≠ j. Thus, for every (x j, i , y j, i) in Tj , we have

μ jQ jx j, i = μ j Jy j, i = Bx j, i = μ jPjx j, i .

and since μ j ≠ 0, Pjx j, i = Q jx j, i . Similarly Pj y j, i = Q j y j, i . Since ∪Tj forms a basis for
R

2n , we get Pj = Q j for all j = 1, . . . , m. ∎
By using Proposition 5.1 and the uniqueness of symplectic projections in Proposi-

tion 5.2, we get the following:

Corollary 5.3 Let A ∈ P(2n), and let d be its symplectic eigenvalue with multiplicity
m. Let S = {u1 , . . . , um , v1 , . . . , vm} be a symplectically orthonormal set of symplectic
eigenvector pairs of A corresponding to d . Then the set T = {x1 , . . . , xm , y1 , . . . , ym} is
also a symplectically orthonormal set of symplectic eigenvector pairs corresponding to d
if and only if there exists a 2m × 2m orthosymplectic matrix U such that

N = MU ,

where M and N are 2n × 2m matrices with columns u1 , . . . , um , v1 , . . . , vm and
x1 , . . . , xm , y1 , . . . , ym , respectively.
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We can also verify that if d1(B), . . . , dn(B) are the symplectic eigenvalues of B and
{u1 , . . . , un , v1 , . . . , vn} is a corresponding symplectic eigenbasis, then

B =
n
∑
j=1

d j(B)Pj ,

where Pj is the symplectic projection corresponding to {u j , v j}.
For a real vector x = (x1 , . . . , xn), we denote by x↑ the vector (x↑1 , . . . , x↑n) obtained

by rearranging the components of x in increasing order, i.e.,

x↑1 ≤ ⋯ ≤ x↑n .

We say x is supermajorized by y, in symbols x ≺w y, if for 1 ≤ k ≤ n
k
∑
j=1

x↑j ≥
k
∑
j=1

y↑j .(5.6)

We say that x is majorized by y (or y majorizes x) if the two sides in the above
inequalities are equal when k = n.

An n × n matrix B = [b i j] is called doubly superstochastic if there exists an n × n
doubly stochastic matrix A = [a i j] such that b i j ≥ a i j for all i , j = 1, . . . , n. See [2]. It
can be seen that the set of all doubly superstochastic matrices is a closed and convex
subset of M(n). In order to prove Theorem 5.5, we will use the following fundamental
result in the theory of majorization, (see [2], Corollary 3.4).

Lemma 5.4 The following two conditions are equivalent:
(i) An n × n matrix A is doubly superstochastic.

(ii) Ax ≺w x for every positive n-vector x .

For a positive definite matrix A, we denote by d↑(A) the n-tuple of symplectic
eigenvalues arranged in increasing order, that is,

d↑(A) = (d1(A), . . . , dn(A)).

Theorem 5.5 Let A, B be two 2n × 2n positive definite matrices. Then

d↑(A+ B) − d↑(A) ≺w d↑(B).(5.7)

Proof Define the map φ ∶ [0, 1] → P(2n) as

φ(t) = A+ tB.

Clearly, φ is real analytic with φ′(t) = B. Let 1 ≤ j ≤ n, and let d j(t) =
d j(φ(t)). By Theorem 4.7, d j is piecewise real analytic. Also by the same
theorem, we can find a piecewise real analytic symplectic eigenbasis β(t) =
{u1(t), . . . , un(t), v1(t), . . . , vn(t)} of φ(t) corresponding to d1(t), . . . , dn(t). For
any t in [0, 1] at which d j , u j , and v j are real analytic, we have

d′j(t) = 1
2
(⟨u j(t), Bu j(t)⟩ + ⟨v j(t), Bv j(t)⟩).(5.8)
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Let μ1 ≤ ⋯ ≤ μn be the symplectic eigenvalues of B and β = {x1 , . . . , xn , y1 , . . . , yn}
be a corresponding symplectic eigenbasis. Let Pj be the symplectic projection corre-

sponding to (x j , y j). Then B =
n
∑
j=1

μ jPj . Thus, by using this expression for B and using

(5.1) for Pk in (5.8), we get

d′j(t) =
n
∑
k=1

μk

2
(⟨u j(t), Pku j(t)⟩ + ⟨v j(t), Pkv j(t)⟩)

=
n
∑
k=1

μk

2
(⟨u j(t), Jyk⟩2 + ⟨u j(t), Jxk⟩2

+⟨v j(t), Jyk⟩2 + ⟨v j(t), Jxk⟩2) .(5.9)

Since β(t) and β are symplectic bases of P(2n), the matrix M(t) with rsth entry

mrs(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⟨u j(t), Jxk⟩ r = j, s = k, 1 ≤ j, k ≤ n
⟨u j(t), Jyk⟩ r = j, s = n + k, 1 ≤ j, k ≤ n
⟨v j(t), Jxk⟩ r = n + j, s = k, 1 ≤ j, k ≤ n
⟨v j(t), Jyk⟩ r = n + j, s = n + k, 1 ≤ j, k ≤ n

is a symplectic matrix. Let M̃(t) be the n × n matrix with jkth entry

m2
jk(t) + m2

j(n+k)(t) + m2
(n+ j)k(t) + m2

(n+ j)(n+k)(t)
2

.

Then by (5.9), we see that d′j(t) is the jth component of the vector M̃(t)d↑(B), that
is,

d′(t) = M̃(t)d↑(B).(5.10)

where d′(t) = (d′1(t), . . . , d′n(t))T . Since d j , u j , v j are piecewise real analytic on
[0, 1], the maps d j and M̃ are integrable on [0, 1]. Denote by M , the n × n matrix

M =
1

∫
0

M̃(t)dt.

By [7, Theorem 6], each M̃(t) is doubly superstochastic. Since the set of doubly
superstochastic matrices is closed and convex, M is also doubly superstochastic.
Integrating (5.10), we get

d↑(A+ B) − d↑(A) = Md↑(B).

We finally obtain (5.7) by Lemma 5.4. ∎

Corollary 5.6 Let A, B ∈ P(2n) and let k ∈ {1, . . . , n}. For all 1 ≤ i1 < ⋯ < ik ≤ n, we
have

k
∑
j=1

d i j(A+ B) ≥
k
∑
j=1

d i j(A) +
k
∑
j=1

d j(B).(5.11)
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In particular,

d j(A+ B) ≥ d j(A) + d1(B),(5.12)

and

d j(A+ I) ≥ d j(A) + 1.

Here, I denotes the 2n × 2n identity matrix.

When {i1 , . . . , ik} is the set {1, . . . , k} in (5.11), we obtain the inequalities first
proved by Hiroshima. See [7, 13]. The inequalities (5.12) were proved recently by R.
Bhatia in [6] in the case when A and B are of some specific form.

We also point out that the supermajorization in (5.7) cannot be replaced by

majorization. Let A = [2 1
1 2] and B = I2 , the 2 × 2 identity matrix. The only symplec-

tic eigenvalues of A, B and A+ B are

d1(A) =
√

3, d1(B) = 1 and d1(A+ B) = 2
√

2.

Clearly, d1(A+ B) > d1(A) + d1(B).
Following is a simple application of Theorem 5.5.

Corollary 5.7 For all k = 1, . . . , n and 1 ≤ i1 < ⋯ < ik ≤ n, the map A ↦
k
∑
j=1

d i j(A) on

P(2n) has neither a local minimizer nor a local maximizer in P(2n). In particular,
for every j = 1, . . . , n, the map A ↦ d j(A) has neither a local minimizer nor a local
maximizer in P(2n).

Proof Let I denote the 2n × 2n identity matrix. Let A ∈ P(2n) and ε > 0 be such that
A± εI ∈ P(2n). Then replacing B by εI in (5.11) we get

k
∑
j=1

d i j(A+ εI) ≥
k
∑
j=1

d i j(A) + kε.

Similarly, replacing A by A− εI and B by εI, we get
k
∑
j=1

d i j(A) ≥
k
∑
j=1

d i j(A− εI) + kε.

Consequently, we get
k
∑
j=1

d i j(A+ εI) >
k
∑
j=1

d i j(A) >
k
∑
j=1

d i j(A− εI). ∎

A 2n × 2n real positive definite matrix A is a covariance matrix corresponding to a
Gaussian state (or a Gaussian covariance matrix) if and only if it satisfies

A+ ı
2

J ≥ 0.
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This is equivalent to saying that all the symplectic eigenvalues d j(A) ≥ 1/2. The von
Neumann entropy of a Gaussian state with covariance matrix A is given by

S(A) =
n
∑
i=1

[(d i +
1
2
) log(d i +

1
2
) − (d i −

1
2
) log(d i −

1
2
)].(5.13)

Theorem 5.8 Let t ↦ A(t) be a real analytic map from an open interval I to the set of
Gaussian covariance matrices. Then the entropy map S(t) = S(A(t)) is monotonically
increasing (decreasing) on I if A′(t) is positive (negative) semidefinite for all t in I.

Proof Since t ↦ A(t) is real analytic on I, by Theorem 4.6, we can choose the
symplectic eigenvalues d̃1(t), . . . , d̃n(t), and a corresponding symplectic eigenbasis
{ũ1(t), . . . , ũn(t), ṽ1(t), . . . , ṽn(t)} of A(t) to be real analytic on I. By Remark 3.5,
we have

d̃′j(t) = 1
2
(⟨ũ j(t), A′(t)ũ j(t)⟩ + ⟨ṽ j(t), A′(t)ṽ j(t)⟩).

If A′(t) is positive semidefinite, then each d̃′j(t) ≥ 0. Since the maps d̃ j are continuous
and S is a continuous map of d̃ j , t → S(t) is continuous on I. The matrices A(t) are
Gaussian covariance matrices for all t. Hence, d̃ j(t) ≥ 1/2 for all 1 ≤ j ≤ n and for all
t ∈ I. Let F be the set {i ∶ d̃ i(t) = 1/2 for all t ∈ I}. If F = {1, . . . , n}, then S(t) = 0 for
all t ∈ I. So, let F ≠ {1, . . . , n}. Let I0 ⊆ I be any open bounded interval. Clearly, it
suffices to show that S(t) is monotonically increasing on I0 . Consider the set E = {t ∈
I0 ∶ d̃ j(t) = 1/2, 1 ≤ j ≤ n, j ∉ F}. By the analyticity of d̃ j , we know that E is finite. For
all t ∈ I0/E , we have

S′(t) = ∑
1≤ j≤n

j∉F

log(
2d̃ j(t) + 1
2d̃ j(t) − 1

)d̃′j(t).

Hence, S′(t) ≥ 0 if A′(t) ≥ 0 for all t ∈ I0/E . The above fact together with the conti-
nuity of S(t) proves the theorem. ∎

For a matrix A we denote by κ(A) the condition number of A, that is κ(A) =
∥A∥∥A−1∥. In our final result, we give a perturbation bound for symplectic eigenvalues.
Different perturbation bounds have been given in [7] and [14] using very different
techniques than ours.

Theorem 5.9 Let A, B ∈ P(2n). Then

max
1≤ j≤n

∣d j(A) − d j(B)∣ ≤ K(A, B)∥A− B∥,(5.14)

where K(A, B) =
1
∫
0
κ(A+ t(B − A))dt.

Proof Define φ ∶ [0, 1] → P(2n) as

φ(t) = A+ t(B − A).
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As in the proof of Theorem 5.5, we see that d j(t) = d j(φ(t)) is piecewise real analytic
on [0, 1], and we can choose a corresponding piecewise real analytic symplectic
eigenbasis β(t) = {u1(t), . . . , un(t), v1(t), . . . , vn(t)}. Then for t where d j , u j , v j are
real analytic, we have

d′j(t) = 1
2
(⟨u j(t), (B − A)u j(t)⟩ + ⟨v j(t), (B − A)v j(t)⟩).

Integrating the above equation, we get

∣d j(B) − d j(A)∣

= ∣
1

∫
0

d′j(t)dt∣

≤ 1
2

1

∫
0

∣⟨u j(t), (B − A)u j(t)⟩ + ⟨v j(t), (B − A)v j(t)⟩∣dt

≤ 1
2

1

∫
0

(∥u j(t)∥2 + ∥v j(t)∥2)dt ∥A− B∥.(5.15)

Since (u j(t), v j(t)) is a normalized symplectic eigenvector pair of φ(t) correspond-
ing to d j(t),

∥u j(t)∥2 + ∥v j(t)∥2 ≤ ∥φ(t)−1∥(∥φ(t)1/2u j(t)∥2 + ∥φ(t)1/2v j(t)∥2)
= ∥φ(t)−1∥2d j(t) ≤ 2κ(φ(t)).

Thus (5.15) gives (5.14). ∎

Appendix: Proof of Proposition 4.4

Lemma 5.10 Let X and Y be Banach spaces, and let T ∶ Xk → Y be a bounded k-
linear map. Suppose

∞

∑
n=0

a jn is an absolutely convergent series in X with sum a j for all

j = 1, . . . , k. For each n, let cn = ∑
j1+⋯+ jk=n

T(a1 j1 , . . . , ak jk). Then the series
∞

∑
n=0

cn is

absolutely convergent in Y and has sum T(a1 , . . . , ak).

Proof The absolute convergence of the series
∞

∑
n=0

cn follows from Merten’s theo-

rem for Cauchy products of series of real numbers. We shall prove that its sum is
T(a1 , . . . , ak) by induction on k. When k = 1, the statement directly follows from the
boundedness and linearity of T . Assume that the result holds for k. Let

∞

∑
n=0

a jn (1 ≤

j ≤ k) and
∞

∑
n=0

bn be absolutely convergent series in X such that a j =
∞

∑
n=0

a jn and

b =
∞

∑
n=0

bn .

https://doi.org/10.4153/S0008414X2000084X Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X2000084X


482 T. Jain and H. K. Mishra

For each m, define the map T̃m from X→ Y as

T̃m(x) = ∑
j1+⋯+ jk=m

T(a1 j1 , . . . , ak jk , x).

It is easy to see that T̃m is linear and bounded with ∥T̃m∥ ≤
∥T∥ ∑

j1+⋯+ jk=m
∥a1 j1∥⋯∥ak jk∥. Since each

∞

∑
n=0

∥a jn∥ is convergent, by Merten’s

theorem for Cauchy products of series of real numbers, we see that
∞

∑
m=0

∥T̃m∥

converges. Let K =
∞

∑
m=0

∥T̃m∥. For each j ≥ 0, let

x j = T̃j(b),

and

c j =
j

∑
l=0

T̃j−l(b l).

Clearly c j = ∑
j1+⋯+ jk+l= j

T(a1 j1 , . . . , ak jk , b l). We need to show that
∞

∑
j=0

c j is convergent

to T(a1 , . . . , ak , b). Let (Xn), (Cn), and (Bn) be the sequences of partial sums
of the series

∞

∑
j=0

x j ,
∞

∑
j=0

c j and
∞

∑
j=0

b j , respectively. By induction hypothesis,
∞

∑
j=0

x j is

absolutely convergent and its sum equals T(a1 , . . . , a j , b). Take dn = b − Bn and En =
n
∑
j=0

T̃j(dn− j). We have

Cn =
n
∑
j=0

j

∑
l=0

T̃l(b j−l)

=
n
∑
l=0

n
∑
j=l

T̃l(b j−l)

=
n
∑
l=0

T̃l(
n−l
∑
j=0

b j) =
n
∑
l=0

T̃l(Bn−l)

=
n
∑
l=0

T̃l(b) −
n
∑
l=0

T̃l(dn−l)

= Xn − En .

It suffices to show that En → 0 as n →∞. Since dn → 0, we can find a positive number
M such that ∥dn∥ ≤ M for all n ≥ 0. Given an ε > 0, choose N in N such that for all
n ≥ N

∥dn∥ <
ε

2(K + 1)

https://doi.org/10.4153/S0008414X2000084X Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X2000084X


Derivatives of symplectic eigenvalues and a Lidskii type theorem 483

and
∞

∑
j=n+1

∥T̃j∥ <
ε

2M
.

Then for all n > 2N , we can write

∥En∥ ≤
N
∑
j=0

∥T̃j∥∥dn− j∥ +
n
∑

j=N+1
∥T̃j∥∥dn− j∥

< ε
2(K + 1)

N
∑
j=0

∥T̃j∥ + M
n
∑

j=N+1
∥T̃j∥

< ε
2(K + 1)K + M ε

2M
≤ ε.

This proves lim
n→∞

Cn = lim
n→∞

Xn = T(a1 , . . . , ak , b). ∎

Proof of Proposition 4.4 Without loss of generality, we can assume that the interval
I = (−1, 1) and t0 = 0. Since t ↦ A(t) is real analytic at t = 0, there exists an r > 0 such
that A(t) can be expressed as A(t) = A(0) +

∞

∑
j=1

C j t j for all ∣t∣ < r.

Here,
∞

∑
j=1

C j t j is absolutely convergent for ∣t∣ < r. Let f (A) = A1/2 be the square root

map. Since each kth order derivative Dk f (A(0)) is k-linear and bounded, by Lemma
5.10 we have

Dk f (A(0))(A(t) − A(0), . . . ,A(t) − A(0))

=
∞

∑
n=0

∑
j1+⋯+ jk=n

tn Dk f (A(0))(C j1 , . . . , C jk).

Let Bk ,n denote the matrix ∑
j1+⋯+ jk=n

Dk f (A(0))(C j1 , . . . , C jk). For n < k, Bk ,n

be the zero matrix. We have the following Taylor expansion of f at A(0) in a
neighborhood U ⊆ P(m). See [22].

f (A) = f (A(0)) +
∞

∑
k=1

1
k!

Dk f (A(0))(A− A(0), . . . , A− A(0)).

Let λ0 be the minimum eigenvalue of A(0). Since λ0 > 0, the square root function f is
real analytic at λ0 , that is, there exists an r0 > 0 such that the series

∞

∑
k=1

1
k! f (k)(λ0)(t −

λ0)k is absolutely and locally uniformly convergent in (λ0 − r0 , λ0 + r0). Choose δ,
0 < δ < r such that

∞

∑
j=1

∥C j∥δ j < r0 and A(t) ∈ U for all t ∈ (−δ, δ). Thus, for all ∣t∣ < δ,

f (A(t)) = f (A(0)) +
∞

∑
k=1

1
k!

∞

∑
n=k

Bk ,n tn .(5.16)
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We show that the iterated sum
∞

∑
k=1

1
k!

∞

∑
n=k

∥Bk ,n∥∣t∣n < ∞. Let C be the sum
∞

∑
j=1

∥C j∥δ j .

For ∣t∣ < δ, we have
∞

∑
n=k

∥Bk ,n∥∣t∣n ≤
∞

∑
n=k

∥Bk ,n∥δn

≤
∞

∑
n=k

∑
j1+⋯+ jk=n

∥Dk f (A(0))(C j1 , . . . , C jk)∥δn

≤ ∥Dk f (A(0))∥
∞

∑
n=k

∑
j1+⋯+ jk=n

(∥C j1∥δ j1)⋯(∥C jk∥δ jk)

= ∥Dk f (A(0))∥Ck .

The last equality follows from the convergence of Cauchy product of the series
∞

∑
j=1

∥C j∥δ j . By [8]

∥Dk f (A(0))∥ = ∥ f (k)(A(0))∥ = ∣ f (k)(λ0)∣.

For ∣t∣ < δ, we have C < r0 and hence
∞

∑
k=1

1
k!

∞

∑
n=k

∥Bk ,n∥∣t∣n ≤
∞

∑
k=1

1
k!
∣ f (k)(λ0)∣Ck < ∞.

This implies that the iterated sum on the right hand side of (5.16) is equal to the sum
∞

∑
n=1

n
∑
k=1

1
k! Bk ,n tn . This shows that

√
A(t) can be expressed as the power series

√
A(t) =

√
A(0) +

∞

∑
n=1

(
n
∑
k=1

1
k!

Bk ,n)tn for all ∣t∣ < δ.

∎
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