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Proof of the Completeness of Darboux
Wronskian Formulae for Order Two

E. Shemyakova

Abstract. Darboux Wronskian formulas allow us to construct Darboux transformations, but Laplace
transformations, which are Darboux transformations of order one, cannot be represented this way. It
has been a long-standing problem to discover what other exceptions exist. In our previous work we
proved that among transformations of total order one there are no other exceptions. Here we prove
that for transformations of total order two there are no exceptions at all. We also obtain a simple
explicit invariant description of all possible Darboux transformations of total order two.

1 Introduction

Classical Darboux transformations and their generalizations are methods for obtain-
ing analytic solutions of linear Partial Differential Equations (PDEs). They also serve
as leverage for larger theories for solution of non-linear PDEs; see, for example, [7]
and references therein.

In this paper we are concerned with the intertwining relations No £ = £; o M
for operators of the form

(1.1) L = D\D, +aD, + bD, +c,

where the coefficients may be non constant. Since they were introduced in the clas-
sical work of [2], we shall call them Darboux transformations as well. PDEs corre-
sponding to such operators appear also as part of the problem of the search of flat
metrics; see [5].

Given the Linear Partial Differential Operator (LPDO) £ and some LPDO M,
the coefficients of the resulting operator £; and of the auxiliary operator N can be
found algebraically. There are two choices of M that always lead to a DT for a given
operator (1.1): M = Dy + b,and M = D, + a. These Darboux transformations have
a special name: Laplace transformations. The latter are not be confused with Laplace
integral transforms.

There is also a large class of Darboux transformations generated by operators M
that are constructed using so-called Darboux Wronskian formulas. These are based
on the assumption that we know some number of linearly independent particular
solutions of the initial PDE, £ = 0.
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This class is very large, and Darboux transformations of arbitrary orders can be
constructed provided we know enough particular solutions. Laplace transforma-
tions, which are Darboux transformations of order one do not belong to this class.

Laplace transformations (see [12]) are particularly good Darboux transforma-
tions, and they have been the only known examples of Darboux transformations that
cannot be described by Darboux Wronskian formulas. In [10] we proved that a Dar-
boux transformation of total order one is either described by Darboux Wronskians
or is a Laplace transformation. The problem reduces to solution of a non-linear PDE.
The PDE was not so large, and, noticing some interesting structure, we were able to
tackle the problem.

After that work it was still unclear whether there were some exceptional transfor-
mations, that is, that cannot be described by Darboux Wronskian formulas among
Darboux transformations of orders higher than one. This problem reduces to so-
lution of a system of two large non-linear PDEs, for which methods of the previ-
ous work [10] were hard to apply. However, we succeeded in proving that Darboux
Wronskian formulas complete for transformations of order two in a different and
rather elegant fashion, and that we present proof in this paper.

Recently several new ideas have been used to tackle Darboux transformations and
related problems. Thus, [11] and [1] have made very important progress in the de-
scription of factorizable operators corresponding to linear PDEs in terms of certain
abelian categories and algebraic groups, respectively. In this paper, we adopt an ap-
proach that is based on the ideas of differential geometry and is constructive.

Our main result is an elegant proof that all Darboux transformations of total order
two can be described by Wronskian formulae (Theorem 7.5). The second achieve-
ment is an easy to use invariant description of all these Darboux transformations
(Theorem 7.4).

The paper is organized as follows. Darboux transformations of total order two are
those that have M in one of the following forms:

M = 9Dy + migDy + moo,
M= mOsz}, + m()lDy + mygo,
M = myoDy + ﬂ’lo]Dy + o,

where the m;; € K are not necessarily constant. In Section 3 we show that to cover all
Darboux transformations of total order two it is enough to consider M of the form
D,+gD,+r, where p and g are some functions. After some preparation in the next two
sections, we introduce in Section 6 new transformations of the pair {£, M}, which
we call gauged evolution. We determine the generating invariants uniquely defining
the equivalence classes under these transformations and use them to invariantize the
nonlinear system of PDEs defining all possible Darboux transformations of total or-
der two. The invariantized system is easier and can be solved explicitly by classical
methods; however, even though we have a technical solution, it is in quadratures and
it is useful neither for invariant description of Darboux transformations, nor to judge
whether or not Wronskian formulae give all such Darboux transformations.
Therefore, we need a further invention, Theorem 7.3, through which we are able to
obtain an elegant general solution (Theorem 7.4) of the invariantized system of PDE.
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We still have to remember that even if the invariantized system of PDEs has solutions,
the existence of Darboux transformations depends also on the existence of a solution
of a nonlinear PDE system (6.3), where we return from gauged evolution invariants
to the coefficients of operators £ and M. In the proof of Theorem 7.5 we resolve
this problem and conclude that for every Darboux transformation of total order 2
there exist two linearly independent partial solutions of Lu = 0 such that it can be
constructed using Darboux Wronskian formulas.

2 Preliminaries

Let K be a differential field of characteristic zero with commuting derivations Jx, 9,.
Let K[D] = K[Dx, D,] be the corresponding ring of linear partial differential opera-
tors over K, where Dy, D, correspond to derivations d, J,.

Operators £ € K[D] have the general form £ = Zi jo G iDLD}, where a;; € K.
The formal polynomial Sym, = >, j—d a;;X'Y7 in some formal variables X,Y is
called the symbol of L.

One can assume field K to be differentially closed, in other words containing all
the solutions of, in general nonlinear, PDEs with coefficients in K, or simply assume

that K contains the solutions of those PDEs that we encounter on the way.

Definition 2.1 An operator £, € K[D] is called a Darboux transformation of an
operator £ € K[D] if Sym(£) = Sym(L,), and there exist operators N € K[D] and
M € K|[D] such that

(2.1) Nol =L,0M.

In this case we say that this Darboux transformation corresponds to pair {£, M},
and that operator £, is associated with, or Darboux-conjugated to, operator £ and
use the notation

Ly = (L, M,N).

Note that coefficients of the operators are not required to be constants.

Darboux transformation implies the transformations of kernels
Ker L — Ker £;: ¢ — M(2))
and requires Sym(M) = Sym(N).

Definition 2.2 The Darboux transformation of an operator (1.1), where a, b, ¢ are
not required to be constants, is called a Laplace transformation if the corresponding
operator M is either M = Dy + b,or M = D), + a.

Laplace transformations are the most well-studied case of Darboux transforma-
tion and have several important properties; see [2].

One of the most famous results in [2] concerns Darboux transformations for op-
erators of the form (1.1) and can be formulated as follows.
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Theorem 2.3 (Darboux) Let £ be an operator of the form (1.1) and i, ..., Yy €
Ker £ be linearly independent. Then

(2-2) M(¢) = Wmﬁn(qﬁa ¢17 ey mern)

defines some Darboux transformation for operator L.

Here W,, , is a Wronskian-like function

Wm,n('l/}a '1/117 LR ¢m+n) =

v D@ ... DM D ... D
1/)1 wal e D?wl Dy% ce D;'I}[)l
¢m+n Dx¢m+n s D;nmern Dywmﬂl s D;Q/Jern

that is, a Darboux transformation of order m + n can be built using m + n partic-
ular solutions of the initial equation £(¢)) = 0; see [2]. Darboux Wronskian-like
formulas (2.2) provide a large class of possible Darboux transformations.

3 Normalization of Darboux Transformations
3.1 Normalization of Darboux Transformations Using Expansion

Lemma 3.1 Let £ be of the form (1.1) and let M be an operator of arbitrary order
from K[D]. Let M define at least one Darboux transformation for operator L. Then for

any given operator A € K[D] there exists also a Darboux transformation for the same
LwithM =M+ Ao L.

Proof Equality (2.1) implies that
LioM+AoL)=M;oL+LioAocL=M;+Li0A)o L

is true for an arbitrary operator A € K[D]. Therefore, there exists a Darboux trans-
formation for £ with M = M+ A o L. ]

Definition 3.2 Lemma 3.1 describes transformations of pairs of operators { £, M}.
It shows that such transformations preserve the property of the existence of Darboux
transformations for a given operator £, and splits the operators M into equivalence
classes. We call this transformation an expansion.

Remark 3.3 Notice that the resulting operators of the initial Darboux transforma-
tion and of the one generated for £ by M + A o £ are the same.

Given an operator £ of the form (1.1), we shall be considering different pairs
{£, M}, where M is an operator in K[D]. Using expansion we can eliminate all the
mixed derivatives in M in the case £ has the form (1.1).
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Definition 3.4 Let L € K[D] be ofthe form (1.1) and let M € K[D] be an arbitrary
operator. Then denote the result of elimination of the mixed derivatives in M using
L as g (M).

Definition 3.5 Given L € KI[D] of the form (1.1), we define the bi-degree
deg,. M = (m, n) of operator M with respect to £ as follows: m is the highest deriva-
tive with respect to D, in 75 (M), and # is that with respect to D,. We shall say that
m + n is the total degree of M.

Definition 3.6 By the degree or total degree of a Darboux transformation £; =
©(L, M, N) we shall understand the degree or the total degree of M.

3.2 Normalization of Darboux Transformations Using Composition with Laplace
Transformations

Definition 3.7 Let there be a Darboux transformation of arbitrary £ € K[D] de-
fined by some M € K[D]; that is, (2.1) holds. Let the result, operator £, € K[D],
be transformed into some £, € K[D] by a Darboux transformation defined by some
M, € K[D], thatis, Nj o L1 = £; o M, for some Ny € K[D]. Then the composition
of these two Darboux transformations is a Darboux transformation transforming £
into £, defined by N; o N o £ = £; o M; o M.

The following lemma allows us to use expansion and composition together.

Lemma 3.8 (Correctness of the composition of two Darboux transformation with
expansion) The result of composition of two Darboux transformations does not de-
pend on the choice of the operator M within its class of equivalence under expansion.

Proof Let there be a Darboux transformation of arbitrary £ € K[D] defined by
some M € K[D]; i.e, (2.1) holds. Let the result, operator £, € K[D], be trans-
formed into some £, € K[D] by a Darboux transformation defined by some M, €
K[D]; i.e., Ny o L1 = L, o M; for some N; € K[D]. Consider (M + A o £) and
M;+BoL; for some A, B € K[D], which belongs to the same classes of equivalence
under the expansion as M and M, correspondingly. That is, we have

(3.1) N+LioA)yoL=Lio(M+AoL),
Ni+L,0B)oL; =Lyo(M;+BoLy).
Then the composition is
N1+ L0B)oN+LyjoA)oL=N;+L,0B)oLyo(M+AoL),
which, using equality (3.1), can be re-written as
N1 +L0B)o(N+LyjoA)oL=Lo(My+BoLy)o(M+AolL).
After expanding some multiples and re-grouping we have

NioN+LyoC+NjoLjoA)oL=LoMoM+Eo0L+BoLl;oM),
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where C = BoN+BoL oA, and € = M;0A+BoLoA. Finally, substituting No L
for £; o M we obtain that the “M” operator of this Darboux transformation belongs
to the same equivalence class that M; o M does under the expansion transformation.

|

Then one of the results of [2] can be interpreted as follows.

Theorem 3.9 Let L € K[D] be of the form (1.1) and let M € K[D] define a Darboux
transformation for £, and deg, M = (m,n). Let M, = D, +aand M, = D, + b
define LT for operator (1.1). Then

(1) degmr(MoM,) = (m—1,n+1),
(i) degmr(MoM,) =(m+1,n—1),
(iii) 7w(My o M,) = b, — c + ab, which is an operator of order zero,
(iv) w(M, o M) = ax — ¢ + ab, which is an operator of order zero.

Summarizing all the results we can formulate the following theorem.

Theorem 3.10 Let L € KI[D] be of the form (1.1) and let M € K[D] define
a Darboux transformation for £. Let deg, M = (m,n). Then for every i =
1,...,min(m, n), there exists an operator NM; without mixed derivatives having the
property that deg . M; = (m — i, n+1) and M; defines a Darboux transformation of L.

Lemma 3.11 (M can be multiplied by a function on the left) Let there exist a Dar-
boux transformation of operator £ € K[D] with some operator M € K[D]. Then for
every invertible element p € K there exists a Darboux transformation of operator £
with operator pM.

Proof The conditions of the lemma imply that, for some N, £, € K[D], equal-
ity (2.1) holds. Therefore, po No L = po L0 p~!o poMis true also. Since the
symbol of £, is not altered under gauge transformations, operator po £1 0 p~!isan
operator of the form (1.1), and we have proved the statement of the lemma. ]

Let £ € K[D] be of the form (1.1) and M € K[D] of arbitrary form and order
defining a Darboux transformation for £. Theorem 3.10 and Lemma 3.11 imply that
using operations of expansion, composition with LTs, and division by a function on
the left, we can bring such Darboux transformation into a normalized form with M
having no mixed derivatives and having one of the following symbols:

Sym(M) = x*, k>0,
Sym(M) = Yk, k>0,
Sym(M) = X* + qY*, k>0, q#0.

Before we decide which of these to use in further considerations, let us consider the
uniqueness problem for Darboux transformations.
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3.3 Uniqueness of Darboux Transformations for Given £ and M

Theorem 3.12 Let L € K[D] be of the form (1.1) and let M € K[D] define some
Darboux transformation. Then, unless for its normalized form we have Sym(M) = X*
or Sym(M) = Y¥, such a Darboux transformation is unique.

If for its normalized form Sym(M) = X* (resp. Sym(M) = Y*) and there exist two
Darboux transformations: £ = (L, M, N) and L, + L] = (L, M+ M, N +N’),
then

SymM{) = X*"' L{ =D, +~, (resp. Sym(M{)=Y*"'L{ =D, +7).

for some vy € K.

Proof Since £ is of the form (1.1), there are only four possibilities for £7 :

L1 =Dy+BDy+7, B#0,

L{:Dx""%
L{:Dy—l—fy,
L]=1.

Then £, = (L, M,N),and L1 + L] = (L, M+ M’ N+ N’) implies

M{oL =L] oM.

Case L] = 1 cannot take place, because if it does, then M| o £L = M, which is
impossible, as Sym(M) cannot be divisible by XY
Let Sym(M) = Xk k > 0, then

Sym(M/) - X - Y = Sym(L]) - X*,
which implies that Sym(£]) must be divisible by Y, which is only possible if £ =
D, + 7. Then Sym(M/) cannot contain extra Y -s, and therefore, Sym(M/) = X*~1.
Analogously, if Sym(M) = Y*, k > 0, we have £! = D,+7 and Sym(M/) = Y* 1
Let Sym(M) = X* + qY*, then
Sym(\}) - XY = Sym(£}) - (X* + q1"),
which means that Sym(£]) must be divisible by XY, which is impossible. ]
Theorem 3.12 guarantees the uniqueness of a Darboux transformation for given
M and £ if Sym(M) = X* + qY*. Further below we shall be interested in Darboux

transformation of the total degree two, and we choose the normal form for such
transformations with Sym(M) = X + gY.
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4 Existence of a Darboux Transformation Defined by M of Bi-degree
(1,1)

Even for the simplest case of M of total degree 1, the problem of describing all Dar-
boux transformations is not easy [10]. For the case of M of total degree 2, which is
considered here, the problem becomes very difficult.

Theorem 4.1 Let L be of the form (1.1) and M € K[D] in the form
M =D, +qD, +r.

If there exists a corresponding Darboux transformation, then the corresponding operator
Nis given by N = M — (Ing)x + q,. The necessary and sufficient conditions for the
existence of a Darboux transformation for such pair (£, M) are

(4.1) — qry + qzry + gut — bgy + g + qZ(by —aq, — ax) — q3ay

+qy9x — 4xyq = 0,
—cgx + (c — ar)gyq + (ar + r,)qx + (¢, — my)q2
+(rry —ary — ryb — 14y — ray + c)g = 0.
Proof Compare the corresponding coefficients on the both sides of equality (2.1).
|

Darboux Theorem 2.3 provides us with a particular solution of system (4.1). The
following statement is Theorem 2.3 written out more explicitly for the case of M of
bi-degree (1, 1).

Theorem 4.2 (Darboux main theorem for bi-degree (1,1)) Let £ € K[D] be an
arbitrary operator of the form (1.1) and let 1y, 1, be two linearly independent solutions
of L1p = 0. Then there exists a Darboux transformation with

a B

M=D,+—-D,+ —,
d~7 d

where

d= =1y + by, o= P19 — Wathix, B =~y + Yoy

Remark 4.3 If we denote by 1) the ratio of these particular solutions, 1) = w—f, then

)
M in the statement of Theorem 4.2 can be written in more simple form:

'(/Jx ¢1y¢x 7/)1x
M=D,— = -
b %Dy " '1/111[])/ ¢1

Remark 4.4 In order to describe all Darboux transformations for M of bi-degree
(1,1), we need to solve system (4.1) for g, r, where a, b, ¢ are known and are not
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constants in general. The usual differential elimination techniques do not lead to a
general solution.

A different approach can be to notice that in the system (4.1) the second equation
is non-linear in both g, 7, while the first equation is nonlinear in g only. The first
equation is a linear first-order non-homogeneous PDE on r, and since we know its
particular solutions (Theorem 4.2), one may solve it in quadratures. These quadra-
tures are expressed in terms of g, and therefore, after substituting the expression for
r into the second equation, one gets even more nonlinear, rather large, PDE.

In the rest of the paper we will prove that the general solution of system (4.1) is
given by the class of particular solutions from Theorem 4.2.

5 Gauge Transformations of Pairs and Corresponding Invariants

Our plan is to address our problem using invariants methods. In this section we study
gauge transformations of pairs (£, M), which are almost classical, the only difference
being that we apply them to the pairs of operators. These transformations are not
strong enough to simplify our system significantly, and completely new transforma-
tions will be introduced in Section 6. However, we shall use gauge transformations
of pairs too.

Definition 5.1 Given some operator R € K[D] and invertible function g € K, the
corresponding gauge transformation is defined as

R — RE, Rg:gfloRog,

where o denotes the operation of the composition of operators in K[D]. It is conve-
nient to take ¢ in the form ¢ = exp(«). Then we shall avoid fractions while writing
this transformation out on the coefficients of XR.

Our first step towards simplification of the problem is the following simple obser-
vation.

Lemma 5.2 Let L = D.D,+aDy+bD,+c € K[D] and M = Dy+qD,+r € K[D]. If
a Darboux transformation exists for the pair (£, M), then one also exists for (MS, L8),
where g is an arbitrary invertible element of K.

Proof Indeed, from the Darboux equality (2.1) for the pair (M, £), we have

1 1

g 'oNogogloLog=g'oLiogog oMoy,
and, therefore, N€ o £8 = L3 o MS. Recalling that gauge transformations do not
change the symbol of an operator, we conclude the proof of the lemma. ]

Therefore, it is natural to consider our problem for the equivalence classes of the
pairs (M, £). In order to define every class uniquely we determine a generating set of
all the invariants of these pairs under the gauge transformations.
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Definition 5.3 Let R € K[D] be an operator and let T be some transformation act-
ing on K[D]. Then a function of the coefficients of R and of the derivatives of these
coefficients is called a differential invariant if it is unaltered under the action of T on
R. The sum and the product of two differential invariants is an invariant; a derivative
of an invariant is also an invariant. In the infinite set of all possible differential in-
variants there is some subset (not necessarily proper) of differential invariants which
generate all others using algebraic operations and derivatives. We shall call such a
subset a generating set of invariants.

Theorem 5.4 Let L = DD,+aD,+bD,+c € K[D] and M = D,+gD, +r € K[D].
On the set of all pairs (£, M) of such operators, consider the gauge transformation of
those with function exp(a) :

() (M, L) — (MR gexp(e)y,

The following functions are invariants and in addition form a generating set of all dif-
ferential invariants for such transformations:

9,

m=a, —b,,
(5.1)
h=ab—c+a,,

R=r—b—qa.
Remark 5.5 Functionsh = ab—c+ay, k = ab—c+b, are known as h- and k-Laplace
invariants, as they are invariants of operator £ considered individually (without M)

under the gauge transformations. Both of them are present here: h is present in its
original form, and k is hiddenin masm = h — k.

Proof To find a generating set of differential invariants we use the method of reg-
ularized moving frames introduced by Fels and Olver in [3]. A good overview of
recent developments in the area can be found in [6]. Note that our case is infinite
dimensional, so the connected difficulties have been treated in [9].
The transformations in question can be defined coordinate-wise as follows.
a=a+a, b =b+aoy,
€ = c+aoy +bay + oy + ooy,
=4, r1:r+ax+qaya

where L&) = D.D, + a\Dy + b1 D, + ¢; and M@ = D+ q1Dy + 1. We are
choosing a cross-section as follows

(5.2) (a); =0, (b)x =0,
where ] is a string of the form
X0 XYY,

n
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wheren =0,1,2,...,andm = 0,1,2,... and X is a string of the form x . . . x, where
o~

I
I=0,1,2,....

) ) )
For every f € K[D], the notation f; stands for the mixed derivative of f: of order
n order with respect to x and m with respect to y, while fx stands for the Ith derivative
of f with respect to x.
This gives us consistently all the values for the parameters of the pseudo-group
action, Qu, Qty, Quxyy - . . 2

ay = —b, Qy = —a, Qyy = —dy,

while we choose the value for « e arbitrarily, as it does not appear explicitly in the
definition of the pseudo-group action. Then we evaluate the edge invariants on the
frame:

(bl)y:by"'axy:by_ax»
cg=c—ab—ab—a,+ab=c— a,— ab,

rn=r—>b—qa,

which constitute the generating set of differential invariants of the pair under the
gauge-transformations of the pair. Invariants m and h differ by a sign from the first
two we have just obtained; the third invariant we have obtained is exactly R from the
statement of the theorem. ]

Definition 5.6 We shall call invariants (5.1) the gauge invariants of the pair.
Express the coefficients of the pair (£, M) in terms of invariants
r=b+qa+R, c=ab—h+a,.

After these substitutions system (4.1) does not depend on b itself, but only on its
derivatives b, and b,,. Therefore, we can effectively use gauge-invariant m by en-
forcing the substitution b, = a, — m. Then system (4.1) simplifies to the following
one:

=0,
Qa + q:h — qhy — °hy — qem + q:R, + +qm, — qR,, — q,gh — qRm + qRR,, = 0,

where Q = —2¢*m + ¢°R,, + R + q,qx — qR« — qx,q. Therefore, this system can be
simplified further:

—2q°m+q’Ry + @R+ qyqx — qRx — 4yq = 0,
(53) 9ch — qhe — @’y = qum + qeRy+
+gmy — qRy, — g,qh — qRm + qRR,, = 0,
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In our Darboux transformation problem, operator £ is considered to be given;
therefore, the gauge-invariants i and m are given, and the problem is reduced to the
search for the general solution to system (5.3) with respect to unknowns q and R.

Although system (5.3) is visually shorter than system (4.1), it is still hard to solve
using the usual methods such as the differentiation-cancellation technique.

Note that invariantiation and in particular moving frames method have been use-
ful for investigation of Darboux-like methods earlier; see for example [4, 8, 13].

6 Gauged Evolution of Pairs and Corresponding Invariants

Lemma 6.1 Let L,M € K|[D] be two arbitrary operators in K[D] and let £ be of
order larger than one, while M is a first-order operator. Then if a Darboux transforma-
tion exists for the pair (£, M), it also exists for the pair (£ + M, M), where § € K is
arbitrary.

Proof The existence of a Darboux transformation for the pair (£, M) means that
for some N, £, € K[D], where £; has the same symbol as £. Therefore,

Nol =L,0M.
Then
(6.1) No(L+BoM)y=LioM+NofoM=(L;+No3)oM.

Since N must be of the same order as M, N is a first-order operator. In addition, 3
is zero-order operator. Therefore, the symbol of the operator £; + N o 3 is the same
as the symbol of £;, which is the same as the symbol of £. Therefore, equality (6.1)
defines a Darboux transformation for pair (£ + M, M). [ |

Definition 6.2 This transformation on the pairs, that is (£, M) — (ZJ, JV[),
L5 L+BoM, M- M
we shall call evolution of the pair (or B-evolution of the pair).

Definition 6.3 Let L = D.D, +aDy+bD, +c € K[D] and let M € K[D] be arbi-
trary. On the set of all the pairs (£, M) of such operators, consider the consequential
application of the gauge transformations and of the evolution. For given «, § € K:

(6.2) (L, M) > (LEP@) 1 gep(@) ppexp(@)y,
We shall call these transformations gauged evolution of the pairs.

Theorem 6.4 Let L = DD, +aD,+bD, +c € K[D] and M = D, +qD, +r €
K[D]. The gauged evolutions of the pairs (£, M) of such operators have the following
generating set of differential invariants:

R R?
s I3 =2h+ (7) - —

(6.3) L=gq, 12:2m—Ry+(§) ;

X
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Remark 6.5 Notice that gauged evolution generating invariants (6.3) are expressed
in terms of generating gauge invariants g, i, m, R only. This means that the gauged
evolutions split the set of pairs (£, M) into larger equivalence classes than the gauge
transformations of pairs do. Also we see that those “small” gauge classes can belong
to the “larger” gauged evolution classes only entirely.

Proof Evolution (6.2) can be defined coordinate-wise as follows:

a=a+ao,+B3, b =b+a+fq,
€ = c+ao, +bay, + ayy + aya, + fr+ oy + Bqay,

q1 =4, n=r+aoxtqa,

where £&P@) 4 gexPl@) — DD, +a;D, + D, + ¢; and Meple) = D+ q1Dy + 1.
We are setting a cross-section by setting most of the coordinate functions to zero:

(a); =0, (b1);=0, (r)x=0,

where ] and X are the same notations as in (5.2). Then at the beginning we have
three equations,
611:07 b1:O, T1:0

and three variables, parameters to determine: /3, c, and . The determinant is not
0, so there is a unique solution for such a system. At the next step we consider first
prolongations only, which gives us 5 equations for 5 variables, and this linear system
has non-zero determinant. In general, considering the i-th prolongation we have
2i + 3 variables and the same number of equations as well as a non-zero determinant
of the corresponding linear system. Therefore, we have defined a frame, and the
generating set of invariants in this case consists of the corner invariants:

I'=q,

. re+by gt —qxb
I =r,—ax— + > —qya—qa, +b,,

q q

. a, br qb qr ab+ar ga*> bV r, b r?

F=c—=—-—— e v - 2
2 2 ¢ 2¢ 2 4 4q 29 29 4q
Substituting

r=b+qa+R, c=ab—h+a,, ax=>b,+m,

we obtain (up to a sign and a multiplication by 2) the invariants claimed in the state-
ment of the theorem. ]

Definition 6.6 We shall refer to invariants (6.3) as gauged evolution invariants.
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7 Solution of the PDE System. Description of All Darboux
Transformations of Total Order Two.

In Lemma 6.1 we showed that the property of the existence of a Darboux transfor-
mation for a pair is invariant under the gauged evolutions. This does not necessarily
mean that there is some explicit invariant form for system (4.1). Theorem 7.1 demon-
strates, however, that in this particular case, we can have such an explicit invariant
form. We also see that the invariantizing system can be written in a much simpler
form than system (4.1).

Theorem 7.1 (Necessary and sufficient conditions for the existence of a Darboux
transformation in terms of evolution)  Given pair (£, M), where L = DD, +aDy +
bD,, +c € K[D] and M = D, + gD, +r € K[D], there exists a corresponding Darboux
transformation if and only if its evolution invariants (q, I, Is) satisfy the following two
conditions simultaneously:

(7.1) IZ+Qxy =0,
(72) I3.x + qII’:,y + (qy - qx/q)l3 = QxQxy - Qxxy7
where Q = Ingq.

Proof Expressing m and h using the second and the third equations of (6.3) and
using b, = a, — m system (5.3) can be written as in the statement. [ |

We also invariantize the class of particular solutions for system (4.1) that we de-
rived from Darboux Wronskian formulas.

Theorem 7.2 (Darboux transformations constructed from Wronskians) Let £ =
D.D, + aD, + bD, + ¢ € K[D] and let 1\, be two linearly independent elements
of its kernel. Let ) = %, A= ‘;ﬂ, and B = % Then for L there exists a Darboux
b »

transformation such that the evolution invariants of the corresponding pair (M, L) are
as follows:

B A-B
(7.3) qZ—X, L, =B, — A, I3:—AX+T.
Proof Compute the values of the gauged evolution invariants (6.3) for M con-
structed using Darboux formulas given in Theorem 4.2. Then we have

q= _wx
vy

I — _¢xxy wxxwxy ¢xyy wxy¢yy
2 — + P + - P 9

/l/}X wx ¢y 11[}y

2

13 _ _¢xxy + wxxifxy + xy 7

¢x fox 21/),&,/1;,

which can be rewritten in a very short form using notations A and B. ]
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The value of I from Theorem 7.2 is a particular solution of (7.2), a first-order
linear non-homogeneous PDE on I5.

Let us solve (7.2). One useful idea is to consider g in the form q = —z,/z,, where
z is not required to be a ratio of two particular solutions of £(1)) = 0. For this g € K,
invariants I, I, can be computed straightforwardly: I, = g, I, = —(Inq)y,.

Equation (7.2) is a first order non-homogeneous, and the general solution can
be obtained as the sum of its particular solution and of the general solution of the
corresponding homogeneous PDE. As a particular solution we take the expressions
from (7.3). Note that for this particular solution z = 1, where 1) is some particular
solution of L1 = 0.

Using expression for g in terms of z the homogeneous PDE corresponding to (7.2)
can be written as

ZyZ
13(@ — X2)/)/) —I3ﬁx+ Zi[g,y =0.

Zy z; zy
Considering I5 in the form I; = ¢/ for suitable ] € K[D] and assuming z, # 0, the

PDE is equivalent to

(7.4) T— 5 + L
Ze  Zy

=0,

the non-homogeneous part of the equation being T = z/z2 — z,,/ z)z,. After ap-
plying the method of characteristics, which we follow more carefully in the proof of
Theorem 7.4, we choose change of variables £ = x,1 = z(x, y), and, in the new
variables, equation (7.4) has the form

Je T
e &,

and, therefore,

J— / T(&,7(,m) z (€ 7, m) dé + F(n),

where y = y(, n) is the solution of z(£, y) — ) for y and F(n) is an arbitrary function
of ). Changing variables back we have

J— / T(6,5(6,2)) 2 (€, (€, 2)) de + F(2).

This means that the homogeneous part of PDE (7.2) has the general solution

I =G(z) - eXp(/ T(&}7(572))%(57)7(5,2))116) ;

where G(z) is an arbitrary function of z. Then since we know the particular solu-
tion, I39(¢), where ¢ = 1, /1); for two particular solutions of Lu = 0, the general
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description of all Darboux transformations of total order two will be as follows:
z z z
7.5 == L=(Z) - (X
o5 a=— =), (3,
X
I = G(Z)~€Xp</ T(E,)7(572))25(57)7(572))%) + Io (Y2 /11).

However, formulae (7.5) do not serve either of our two purposes: short description of
all possible Darboux transformations and proof of completeness. Indeed, we would
have to decide whether the series of particular solutions (7.3) is the same as the ob-
tained general solution.

Thus, we approach the solution of (7.2) in a different manner. The next theorem
implies that we can construct a series of particular solutions of (7.2) using an arbi-
trary function z rather than 1), which must be the ratio of two linearly independent
particular solutions ¢, and v, of the initial PDE £ = 0.

Theorem 7.3 (Another large class of particular solutions for the PDE on I5) Let
z € K be arbitrary and non-constant and let F = F(z) be an arbitrary function of z,

then
_ z _ (F@)«
z (FQ)y
and function
Zay  Zuky | Zay
(7.6) Ii(z) = — ) 7 22,2,

gives particular solutions of (7.2). More strongly, if instead of z we use the argument
F(2), that is I3(z) is replaced by I3y (F(z)), we still have particular solutions of (7.2).

Proof The proof can be verified by direct substitution. ]

In other words, on the invariant level we can forget about the fact that ¢ must
be a ratio of two solutions. Of course such a trick would not work in general for
the pre-invariantized system. If we took Darboux Wronskian Formulas and substi-
tute arbitrary functions instead of solutions we would not necessarily get a Darboux
transformation. So the invariantization using gauged evolutions factors out some
meaningful conditions, which justifies giving them a separate name.

Using the new class of particular solutions discovered in Theorem 7.3, we can
find the general solution for the invariantized system (see it in Theorem 7.1) in the
following form.

Theorem 7.4 (Simple Description of all Darboux transformations of bi-degree (1, 1))
All Darboux transformations of some L = DD, + aDy + bD,, + ¢ € K[D] generated
by some M, M = Dy + gD, + r € K[D] are parametrized by z € K an arbitrary non
constant and can be written as
B A-B
q:—g7 IZZB),—A,” I3:—AX+T,

where A = z,,/zc and B = z,/z,.
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Proof Find z € K such that g = —z./z,. Then according to (7.1) we must have
I, = —(In(g))xy, which in terms of z has the form given for I, in the statement of the
theorem.

Now we solve (7.2) for I;. The solution of this equation can be obtained as the
sum of particular solution (7.6) and of the general solution of the corresponding
homogeneous PDE,

V4 ZyZ V4
(7.7) g(i&—xf)—gﬂ+igyzo
Zy 2 z,

Considering I in the form I; = ¢/ for suitable ] € K[D] this equation can be re-
written equivalently as

Again we have homogeneous and non-homogeneous parts, and therefore, the
general solution can be represented as the sum of a particular solution of the non-
homogeneous part and the general solution of the homogeneous one.

Using the methods of characteristics, one can find the general solution of the ho-
mogeneous part of (7.4). Consider the equality

dx  dy
—1/z, 1/z,’

which can be rewritten in the form z.dx + z,dy = d(z) = 0, and, therefore, z =
z(x,y) = C, where C is a constant. Therefore, we consider the following change of

variables:
£=x, }
n = z(x,y),

which is non-degenerate, since the Jacobian is nonzero:

a&,n)

Ax,y)

& &
Nx My

=1, =2z, #0.

Expressed in the new variables equation (7.4) has the form J¢/z.(§,n) = 0, and,
therefore, the general solution is ] = H(z), where H(z) is an arbitrary function of z.

Notice now that since both I34(z) and I34(F(z)) are solutions of (7.2), therefore,
their difference is a solution of (7.7). Subtracting (7.6) from I3,(G(z)) we have

1 2FIF///_3(F//)2
XZ)/(

Loa = =
30d )

5 ) = 2,2,G(2),

where G(z) is an arbitrary function. Therefore,

J30d = In(I304) = G1(2) +In(zz,),
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where G(z) is an arbitrary function, is a solution of (7.4). Therefore, the general
solution of (7.4) is ] = Gi(z) +In(z.z,) + H(z). Correspondingly, the general solution
of (7.7), which is the homogeneous part of the PDE we needed to solve (7.2), is
I = exp(J), which is I = G(z)z.z,. Adding to this the particular solution of the
non-homogeneous part, I3, we conclude that

ZF/F/// _ S(FI/)Z
Iy = 2,2,G(2) + I3(z) = zxzyT + I30(2).

Notice that this expression is exactly I3o(F(z)). Now we have proved that

a=-2 h=(7) (), b=l

z, z, Zy

However, notice that the application of g to z and g to F(z) gives the same result,
that is q(F(z)) = q(z). The same is true for I,: I,(F(z)) = I;(z). Therefore, we can
substitute z = F(z) and have the statement of the theorem, which we write in terms
of z again for convenience. ]

Comparing Theorem 7.4 with Theorem 7.2, we see that the general solution of the
invariantized system (see it in Theorem 7.1) is much richer than the class of the in-
variantized particular solutions (7.3). Does this mean that our hypothesis was wrong
and that there must be something else besides Darboux transformations generated
by Darboux Wronskians formulas? In the following theorem, lifting our results back
into pre-invariantized situation, we conclude the proof of our hypothesis.

Theorem 7.5 Given operator L = DD, + aD, + bD, + ¢ € K[D], every Darboux
transformation generated by M, M = D, + gD, + r € K[D] is described by Darboux
Wronskian formulas.

Proof Let NL = LM be some Darboux transformations with the gauged evolution
invariants (g, I, I5). According to Theorem 7.4 there exists z € K such that

_zx B
q_ Zy_ A7
z z
4= (2), (),
Z), y Zx / x

A-B
I =I5(2) = —Ac + 5

where A = z,,/z¢, B = zy,/z,. Comparing this with the invariants given in Theo-
rem 7.2, we conclude that there are some Darboux transformations constructed by
Darboux formulae that have the same gauged evolution invariants.

Now let us find among the pairs that are constructed using Darboux formulas and
having these gauged evolution invariants (q, I, I5) those that have the same gauge
invariants as our initial pair (£, M).
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Let us denote the gauge invariants of the pair (£, M) by (my, hg, qo, Ro). Then I,
and I5 can be expressed in terms of (g, ho, qo, Ro); see (6.3). Therefore,

2my =1L — (Ro/q)x + Roy, 2hy =I5+ R}/(29) — (Ro/q)x-

Now, since (I, I) are given in terms of z, then invariants (11, hy) are given in terms
of z and Ry. That is, it is enough to find among the pairs that are constructed using
Darboux Wronskians formulas a pair with the same Ry.

Choose arbitrary functions z; and ¢y and construct an operator £’ of the
form (1.1) that has two solutions: z; and zz; and with coefficient ¢ = ¢;. Using
the same pair of solutions construct M’ using Darboux formulas; see Theorem 4.2.

Then R’ corresponding to the pair (£’, M’) can be expressed in terms of z, z;, and
¢o in the form

22125

R =— ¢+ T(z,z21),

—2Zx21,y t 2yZ1 x

where T(z,z;) is a certain expression depending on z and z; only. This means that
for every z; we can uniquely find such ¢ that R” = R,.

Therefore, for arbitrary z; there exist a Darboux transformation (£’, M) con-
structed using Darboux formulas for which all gauge invariants (h, k, q, R) of the
pair are correspondingly the same as those of the initial pair (£, M).

Since those agree, then (£, M) is different from (L', M’) by a gauge transfor-
mation, and therefore, (£, M) can be also constructed using Darboux Wronskian
formulas. [ ]

8 Conclusions

This paper closes an essential question for the theory of Darboux transformations.
Darboux Wronskians formulas are complete for Darboux transformation of total or-
der two of operators £ = D,D, +aD, + bD, + ¢ with non-constant coefficients. Since
for Darboux transformations of total order there are two famous exceptions, Laplace
transformations, the case of the total order two has been crucial.

We saw that a newly introduced transformations of pairs, gauged evolutions, may
have much deeper role than just a tool in the proof of our specific problem (Theo-
rem 7.3 and the paragraph after it).

We found a very short invariant description of all possible Darboux transforma-
tion for £ = DD, +aDy + bD, + c generated by M in the form M = D, +¢qD, +r €
K[D] (Theorem 7.4).

Now it is natural to expect completeness of Darboux Wronskians formulas for
transformations of orders higher than two. We expect this one to be rather difficult
to prove. Simple repetition and adjustments of the methods and ideas of this paper
will not work. For example, one of the crutial points was the introduction of the
gauged evolutions, which cannot be defined for pairs (£, M) if M has order larger
than £.
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