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Abstract

The Kuramoto–Sivashinsky equation is a prototypical chaotic nonlinear partial
differential equation (PDE) in which the size of the spatial domain plays the role of
a bifurcation parameter. We investigate the changing dynamics of the Kuramoto–
Sivashinsky PDE by calculating the Lyapunov spectra over a large range of domain
sizes. Our comprehensive computation and analysis of the Lyapunov exponents and the
associated Kaplan–Yorke dimension provides new insights into the chaotic dynamics of
the Kuramoto–Sivashinsky PDE, and the transition to its one-dimensional turbulence.
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1. Introduction
The Kuramoto–Sivashinsky partial differential equation (PDE) models a wide variety
of nonlinear systems with intrinsic instabilities, such as wave propagation in chemical
reaction–diffusion systems [21], the velocity of laminar flame front instabilities [29],
thin fluid film flow down inclined planes [30], and hydrodynamic turbulence [6, 15,
24]. In the Kuramoto–Sivashinsky PDE the large-scale dynamics is dominated by a
destabilizing “diffusion”, whereas small-scale dynamics is dominated by stabilizing
hyperdiffusion, and a nonlinear advective term stabilizes the system by transferring
energy from the large unstable modes to the small stable modes [32, p. 199].
The interplay between these contrasting features leads to significant spatio-temporal
complexity [4, 5, 16, 17], from intermittent disorder, through to chaos and turbulence:
“turbulence” in the Kuramoto–Sivashinsky PDE is typically described as weak,
incipient or localized, rather than fully turbulent; however, this regime provides
mathematical insights into the transition from dynamical chaos to true turbulence
[17, 24]. Lyapunov exponents characterize this chaos and turbulence [8, 27, 34],
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and are increasingly used to analyse such spatio-temporal complexity in various
applications such as turbulent Poiseuille flow [19], turbulence in flames [14] and
Rayleigh–Bérnard fluid convection [2, 36].

Here we extend previous research by Manneville [23] and by Tajima and
Greenside [33] by discovering new details of how the dynamics of the Kuramoto–
Sivashinsky PDE becomes increasingly chaotic as the size of the domain increases, for
both periodic and odd-periodic boundary conditions. To measure the degree of chaos,
Section 3 computes the Lyapunov exponents using the classic algorithm introduced
by Benettin et al. [1] and Shimada and Nagashima [28], but now in new detail over
a comprehensive range of domain sizes. By comparison, Tajima and Greenside [33]
explored the Kuramoto–Sivashinsky PDE (2.1) with rigid boundary conditions over
a range of domain lengths, whereas we explore periodic (2.2) and odd-periodic (2.3)
cases, we use an order of magnitude increased resolution in the domain lengths, and we
also cover the transition to chaos regime. The Lyapunov exponents describe the rate
at which neighbouring trajectories diverge under a chaotic flow, and thus provide a
quantitative measure of the degree of chaos in a system. Section 3 analyses the growth
of the Lyapunov exponents with increasing domain size, and then uses the Lyapunov
spectra to identify the onset of chaos and to characterize new details of the increasingly
complex spatio-temporal dynamics of the Kuramoto–Sivashinsky PDE.

A further use of the Lyapunov exponents is in defining the Kaplan–Yorke dimension
of the attractor of a dynamical system [18]. The Kaplan–Yorke dimension bounds
above the fractal dimension of the chaotic attractor, and approximates the number
of effective modes necessary to describe the dynamics on the attractor [12]. For
a Kuramoto–Sivashinsky PDE defined on either a periodic or odd-periodic domain,
Section 4 confirms more accurately how the Kaplan–Yorke dimension scales roughly
linearly with the domain size. This linear scaling corresponds well with the scaling
observed by Manneville [23] and Tajima and Greenside [33] for the Kuramoto–
Sivashinsky PDE with rigid boundary conditions.

Our detailed analysis of the chaotic dynamics of the Kuramoto–Sivashinsky PDE
and its dependence on domain size provides new insights into the onset of chaos.
In many chaotic systems, we can identify that discrete point at which a bifurcation
parameter permits chaos, but our new visualization of the comprehensive computation
of Lyapunov exponents highlights the gradual changes which drive a system into the
chaotic regime, and thence into one-dimensional turbulence.

2. The Kuramoto–Sivashinsky equation

On the spatial domain 0 ≤ x ≤ L for some domain size L, the one-dimensional
Kuramoto–Sivashinsky PDE for field u(x, t) is

∂tu + ∂4
xu + ∂2

xu + u∂xu = 0. (2.1)

We apply either periodic boundary conditions,

u(x + L, t) = u(x, t) for all 0 ≤ x ≤ L, (2.2)
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or odd-periodic boundary conditions,

u(x, t) = ∂2
xu(x, t) = 0 at x = 0, L. (2.3)

In the Kuramoto–Sivashinsky PDE, the second-order diffusive term ∂2
xu is

destabilizing, whereas the fourth-order hyperdiffusion term ∂4
xu is stabilizing, resulting

in large-scale instabilities and small-scale dissipation, with the transfer of energy from
large to small scales mediated by the nonlinear term u∂xu, producing a stabilizing
influence on the system [32, p. 199].

The Kuramoto–Sivashinsky PDE (2.1) supports several symmetries, although in the
turbulent regime they only hold in a time-averaged sense [5, 35]. Of particular interest
for periodic domains (2.2) are the Galilean invariance, u(x, t)→ u(x − ct, t) + c for all
speeds c, and the spatial translation invariance, u(x, t)→ u(x + d, t) for all d. These two
symmetries do not hold for odd-periodic domains (2.3). The Kuramoto–Sivashinsky
PDE (2.1) with odd-periodic domains (2.3) is particularly well studied [9, 10, 22, 25]
compared to that with periodic domains, as the removal of periodic symmetries
simplifies somewhat the analysis of the dynamics. The relatively simpler dynamics of
the odd-periodic case is observed in Section 3 when comparing the periodic and odd-
periodic Lyapunov spectra. The most obvious point of difference is that the Galilean
and translation invariances support two zero Lyapunov exponents which are absent
from the Lyapunov spectra for the odd-periodic case. Commonly for the periodic case,
a zero mean condition is imposed to remove the Galilean invariance and consequently
one of the zero Lyapunov exponents [5, 6, 35]; we do not impose the zero-mean
condition.

As the size L of the spatial domain varies, the Kuramoto–Sivashinsky PDE (2.1)
produces distinctly different dynamics [4, 5, 16]. For periodic boundary conditions
(2.2), Figure 1 shows the increasing complexity of the Kuramoto–Sivashinsky
dynamics as domain size L increases, from a stable travelling wave when L . 13
through to spatio-temporal chaotic turbulence when L ≈ 100. Figure 2 for the odd-
periodic boundary conditions (2.3) also shows an increase in the complexity of the
dynamics as L increases, progressing from an oscillating cell when L . 17 through to
spatio-temporal turbulence when L ≈ 100. For both types of boundary conditions, the
spatial domain size L plays the role of a bifurcation parameter.

Our aim is to provide new details of the character of the trend to spatio-temporal
complexity and “turbulence” with increasingly long domains L. To do this, Section 3
comprehensively computes the 24 most positive (that is, the largest) Lyapunov
exponents across a significant range of domain lengths L. It is these most positive
Lyapunov exponents which determine the nature of the chaotic dynamics. Then
Section 4 evaluates the Kaplan–Yorke dimension over the same range of L to show
that the dimension of the chaotic attractor grows linearly with L.

3. Evaluating the Lyapunov exponents

In a dynamical system, the Lyapunov exponents measure the exponential
divergence of initially close trajectories, with positive Lyapunov exponents indicating
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Figure 1. Simulations of the Kuramoto–Sivashinsky PDE (2.1) with (2.2) depend upon the size of the
periodic spatial domain L: (top left) for L = 12, a travelling wave emerges; (top right) for L = 13.5,
intermittent bursts disrupt the travelling wave structure; (bottom left) for L = 36, chaotic cellular
structures criss-cross and interact; and (bottom right) for L = 100, spatio-temporally complex patterns
of “turbulence” occur. Each simulation is shown over the same time range.

divergent trajectories and negative Lyapunov exponents indicating convergence [3, 8].
A chaotic system, due to its sensitivity to initial conditions, must have at least one
positive Lyapunov exponent. Furthermore, an increasingly chaotic system has an
increasing number of positive Lyapunov exponents. This section evaluates Lyapunov
exponents of the Kuramoto–Sivashinsky PDE (2.1) for increasing domain size L, and
interprets each increase in the number of positive Lyapunov exponents as a transition
to an increasingly chaotic system.

Formally, Lyapunov exponents measure trajectory divergences in the infinite time
limit, with different Lyapunov exponents corresponding to divergences in different
orthogonal directions. The existence of these time limits is ensured (almost
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Figure 2. Simulations of the Kuramoto–Sivashinsky PDE (2.1) with (2.3) depend upon the size of the
odd-periodic spatial domain L: (top left) for L = 17.5, an oscillating cell emerges; (top right) for L = 18.2,
intermittent bursts disrupt the cell structure; (bottom left) for L = 41, chaotic cellular structures criss-cross
and interact; and (bottom right) for L = 100, spatio-temporally complex patterns of “turbulence” occur.
Each simulation is shown over the same time range.

everywhere) by Oseledec’s multiplicative ergodic theorem [8, 26]. In numerical
calculations of Lyapunov exponents, complications due to the infinite time limit are
avoided by computing N iterations of the divergence of trajectories over finite time
intervals T , with N large but finite [1, 7, 11, 28, 31]. At the end of each iteration,
the divergent trajectories are reorthonormalized. This reorthonormalization ensures
that the tracked directions remain orthogonal, rather than all converging to that of the
largest positive Lyapunov exponent [11]. This rescaling is valid in the ergodic case,
because the Lyapunov exponents are (almost everywhere) independent of a trajectory’s
initial condition. However, the finite-time numerical approximation generally results
in some numerical error (for example, [7]).
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Algorithm 1 assumes that the vector function of time u(t) ∈ Rn satisfies the
dynamical system

u̇ = f(t,u), (3.1)

with initial condition u(0). Trajectories are first evolved for time τ to ensure initial
transients have decayed and thus that the system is close to an attractor. Then
Algorithm 1 numerically solves the ordinary differential equation (ODE) (3.1) for a
time N · T to compute the m most positive Lyapunov exponents λi for i = 1, . . . ,m ≤ n
using reduced QR decomposition to reorthonormalize after each of N time intervals
of length T [1, 7, 11, 28, 31]. As is standard, the resulting Lyapunov exponents are
ordered such that λ1 ≥ λ2 ≥ · · · ≥ λm.

Algorithm 1 The classic algorithm for computing the spectrum of Lyapunov
exponents for a dynamical system, introduced by Benettin et al. [1], and Shimada
and Nagashima [28].

du/dt = f(t,u): the dynamical system ODE
u(0): the initial value of u
m: the number of the most positive exponents to compute
τ: time to simulate system before computing exponents
T : time between reorthonormalization steps
N: the total number of reorthonormalization steps
ε: perturbation magnitude (typically take ε = 10−6).

Output:
λi: the m most positive Lyapunov exponents, i = 1, . . . ,m.

1: compute u(0) := u(τ) via solving ODE on [0, τ]
2: set t j := τ + jT , for j = 0, 1, 2, . . . ,N
3: choose initial orthogonal directions Q(0) :=

[
q(0)

1 · · · q(0)
m

]
4: for j = 1 : N do
5: compute u( j) := u(t j) via solving ODE with u(t j−1) = u( j−1)

6: for i = 1 : m do
7: compute w( j)

i := u(t j) via ODE with u(t j−1) = u( j−1) + ε q( j−1)
i

8: approximate Ψ(t j, t j−1)q( j−1)
i := (w( j)

i − u( j))/ε
9: end for

10: construct Ψ(t j, t j−1)Q( j−1) :=
[
Ψ(t j, t j−1)q( j−1)

1 · · · Ψ(t j, t j−1)q( j−1)
m

]
11: compute Q( j)R( j) := QR(Ψ(t j, t j−1)Q( j−1))
12: end for
13: for i = 1 : m do
14: compute λi :=

∑N
j=1 log R( j)

i,i /(NT )
15: end for
16: return {λi}.
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Figure 3. The m = 24 most positive Lyapunov exponents λi for (top) L = 20 and (bottom) L = 100
calculated using Algorithm 1 with odd-periodic boundary conditions (2.3) and different interval times T .
An accurate Lyapunov exponent is approximately constant as T varies. When L = 20 there is no range
of T for which all 24 exponents are constant, but the most negative ones are least important. For L = 100,
all m = 24 Lyapunov exponents are reasonably constant for 1 < T < 10.

In implementing Algorithm 1 for the Kuramoto–Sivashinsky PDE (2.1) an n-
dimensional approximate system is used, either spectral in space for the periodic
case (2.2) or finite differences for the odd-periodic case (2.3). In either case we
choose truncations so that the maximum wavenumber resolved was kmax ≈ 9 (which
decays extremely rapidly, on a time scale of 1/k4

max ≈ 10−4). Initial conditions were
random and normally distributed ∼N(0, 1). After some testing of different transient
times τ, we selected τ = 2000, which is smaller than some other studies (for example,
Wittenberg and Holmes [35] used τ = 100 000), but repeatedly provided consistent and
expected dynamics. A total of N = 1000 reorthonormalization steps are performed
in the exponent computations. This choice of N computes fairly accurate Lyapunov
exponents within a reasonable time frame.

An important decision in the numerical calculation of the Lyapunov spectrum is the
size of each time interval T between reorthonormalizations. Figure 3 demonstrates
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how the choice of interval T in Algorithm 1 affects the calculation of the m = 24 most
positive Lyapunov exponents, for small domain L = 20 or large domain L = 100, in
the case of odd-periodic boundary conditions (2.3) (the periodic case (2.2) provides
similar plots). For a small interval T (T . 0.1 for L = 20, and T . 1 for L = 100) the
most positive Lyapunov exponents are inaccurate, because T is too small to sufficiently
capture the trajectory divergence, leading to an unstable QR decomposition. For larger
interval T (T & 0.1 for L = 20, and T & 10 for L = 100), the most negative of the
m = 24 Lyapunov exponents evolve for too long and are corrupted towards the more
positive exponents. Based upon Figure 3 we generally chose reorthonormalization
interval T = 2. With this choice of T we accurately resolve the most positive Lyapunov
exponents, while also computing a sufficient number of negative Lyapunov exponents
for the evaluation of the Kaplan–Yorke dimension for the chosen range of domains.

Figures 4 and 5 plot the 24 most positive Lyapunov exponents for the Kuramoto–
Sivashinsky PDE (2.1) over different domain sizes, 0 < L ≤ 100, with periodic (2.2)
and odd-periodic (2.3) boundary conditions, respectively. Although these calculations
of the Lyapunov exponents contain noise, the exponents generally increase as
L increases, and larger values of L generally have more positive exponents. However,
the increase in the Lyapunov exponents is limited as they appear to be bounded above
by about 0.1, for both the periodic and odd-periodic cases. This upper bound 0.1
matches with the upper bound observed for the rigid boundary condition case [23, 37].

We now further explore the Lyapunov exponents in the periodic case. The structure
of the positive Lyapunov exponents is noisy, but there are some reasonably clear
trends: here we show that the ith positive Lyapunov exponent on a domain length
L is approximately

λi(L) ≈ 0.093 − 0.94(i − 0.39)/L. (3.2)

To derive this approximation, first look at the i-dependence for various fixed L:
Figure 6 plots the median of Lyapunov exponent λi(L) for fixed L as a function of
index i. The median of Lyapunov exponent λi(L) accounts for the noisy data in
Figure 4 and is defined as the median of λi(x) over the interval x ∈ [L − 1, L + 1] (21
data points). Then the vertical bars for each point represent plus and minus the mean
absolute deviation (MAD) over the domain of x: these statistics are more robust to
outliers than the usual mean and standard deviation, and so appear to be more suitable
here. Figure 6 indicates that the Lyapunov exponents are, for fixed L, approximately
equispaced in i, especially for i ≤ 5.

In Figure 6 the magnitude of the slope of the i-dependence decreases as the
domain length L increases, so we try to fit a function of the power-law form λi(L) ≈
a + (b + ci)/Lp for various exponents p. Figure 7 plots the residual error in the fit
as a function of exponent p, showing that there is a minimum error at p ≈ 1; this
minimum occurs both in the rout mean square error and the MAD error. In view of
the fluctuations in the MAD, it seems reasonable to choose the case of the exponent
p = 1 reported by equation (3.2). Moreover, this is the exponent which best fits our
preconception that the chaos in the Kuramoto–Sivashinsky PDE is “extensive”: that
the number of positive Lyapunov exponents increases linearly with domain length L.
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Figure 4. The 24 most positive Lyapunov exponents λ1, λ2, . . . , λ24, computed for the Kuramoto–
Sivashinsky PDE (2.1) on the periodic (2.2) spatial domain for domain sizes 0 < L ≤ 100. The bottom
plot provides a more detailed look at those Lyapunov exponents near zero.

Section 4 explores this issue further via the Kaplan–Yorke dimension, and finds results
consistent with the approximate formula (3.2).

4. Compute the Kaplan–Yorke dimension

The Kaplan–Yorke dimension is a measure of the dimension of an attractor [18],
and is defined in terms of a sum of the most positive Lyapunov exponents

DKY = j +

∑ j
i=1 λi

|λ j+1|
, (4.1)

where j is the largest index such that
∑ j

i=1 λi ≥ 0. The Kaplan–Yorke dimension
is an upper bound of the Hausdorff dimension of the attractor, and as each of the
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Figure 5. The 24 most positive Lyapunov exponents λ1, λ2, . . . , λ24, computed for the Kuramoto–
Sivashinsky PDE (2.1) on the odd-periodic (2.3) spatial domain for domain sizes 0 < L ≤ 100. The
bottom plot provides a more detailed look at those Lyapunov exponents near zero.

j Lyapunov exponents corresponds to an orthogonal direction, the Kaplan–Yorke
dimension approximates the minimum number of modes required to describe the
emergent dynamics of the system on the attractor [12].

In formula (4.1), the term
∑ j

i=1 λi/|λ j+1| is usually a fraction in (0, 1) and so the
index j is roughly the Kaplan–Yorke dimension. Using the approximation (3.2) to
the Lyapunov exponents for the periodic case, one may straightforwardly estimate
the j for which

∑ j
i=1 λi ≈ 0, namely, j ≈ 0.2L − 0.2. This is acceptably close to the

Kaplan–Yorke dimension, DKY ≈ 0.226 L − 0.160, shown in Figure 8 and obtained
from extensive computation. The Kaplan–Yorke dimension does not always follow
this linear trend, particularly at low domain sizes L . 50, indicating stable or less
chaotic regions among the general trend of increasing chaos with domain size L. For
larger domain sizes L & 50 we observe only a few sharp localized deviations from the
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Figure 6. Positive Lyapunov exponents λi for the periodic case (2.2), Figure 4, as a function of index i.
The joining lines are purely to aid visualization. For each L the data point plotted is the median of λi(x)
over the window x ∈ [L − 1, L + 1], with error bars indicating plus and minus the mean absolute deviation
over the domain of x.

Figure 7. Fit the Lyapunov exponents λi(L) ≈ a + (b + ci)/Lp for various exponents p and then plot the
residual error as a function of exponent p: here the root mean square error (RMS) and the mean absolute
deviation (MAD). The minima of these curves suggest the optimum exponent p ≈ 1.

linear trend (for example, L ≈ 64.1 and L ≈ 80.1 for the periodic and non-periodic
cases, respectively). We interpret these localized deviations at larger L as indicative of
small windows of less chaotic dynamics [5].

Table 1 presents Lyapunov exponents and Kaplan–Yorke dimensions for six
different periodic domain sizes L = 12, 13.5, 22, 36, 60, 100 (the case L = 22 is chosen
for comparison with the Lyapunov exponents of Cvitanović et al. [5]: our Lyapunov
exponents agree with theirs to a difference of about 0.002), whereas Table 2 presents
Lyapunov exponents and Kaplan–Yorke dimensions for six different odd-periodic
domain sizes L = 17.5, 18.1, 18.2, 41, 60, 100. These tables demonstrate how the
increasingly positive Lyapunov exponents reveal the onset of chaotic dynamics and
the increasing dimension of the chaotic attractor. These calculations of the Lyapunov
exponents and Kaplan–Yorke dimensions with odd periodic domains are compatible
with previously calculated Kaplan–Yorke dimensions [25].
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Figure 8. The Kaplan–Yorke dimension DKY dependence on domain size L, computed for the Kuramoto–
Sivashinsky PDE (2.1) on (top) the periodic spatial domain (2.2), and (bottom) the odd-periodic spatial
domain (2.3). In both cases, the Kaplan–Yorke dimension increases linearly with the domain size L, with
DKY ≈ 0.226L − c for c = 0.160 and 2.106, respectively. This linearity appears most accurate for larger
domains, L & 80. At lower domain sizes, (top) L . 80 and (bottom) L . 60, there are several non-chaotic
regions where the Kaplan–Yorke dimension is not of interest.

Figure 8 shows that as the domain size L increases, the Kaplan–Yorke dimension
scales linearly with DKY ∝ 0.226L for sufficiently large L (L & 80). Similarly, in the
case of rigid boundary conditions u, ∂xu = 0 at x = 0 and at x = L, both Manneville [23]
and Tajima and Greenside [33] found the Kaplan–Yorke dimension to scale as 0.230L
when 50 < L < 400. The small 2% difference in the coefficient suggests that the scaling
of the Kaplan–Yorke dimension for the Kuramoto–Sivashinsky PDE (2.1) on domain
sizes L & 80 only depends on the nature of the given boundary condition through an
additive constant. In contrast, for smaller domain sizes L . 50, all points in the domain
are somewhat close to a boundary, and boundary effects play a more dominant role in
the dynamics. The linear scaling of the attractor, here measured with the Kaplan–
Yorke dimension, is a defining feature of an extensively chaotic system [4, 13].
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Table 1. The 12 most positive Lyapunov exponents and the Kaplan–Yorke dimension for several domain
sizes L and periodic boundary conditions (2.2).

L = 12 L = 13.5 L = 22 L = 36 L = 60 L = 100

λ1 0.003 0.059 0.043 0.080 0.089 0.088
λ2 −0.005 0.004 0.003 0.056 0.067 0.082
λ3 −0.088 −0.004 0.002 0.014 0.055 0.070
λ4 −0.089 −0.227 −0.004 0.003 0.041 0.061
λ5 −0.186 −0.730 −0.008 −0.003 0.030 0.048
λ6 −3.524 −1.467 −0.185 −0.004 0.005 0.041
λ7 −3.525 −1.529 −0.253 −0.021 0.003 0.033
λ8 −9.835 −6.956 −0.296 −0.088 0.000 0.028
λ9 −9.849 −6.963 −0.309 −0.160 −0.004 0.018
λ10 −9.959 −7.977 −1.965 −0.224 −0.009 0.012
λ11 −10.01 −7.993 −1.967 −0.309 −0.029 0.005
λ12 −10.12 −9.199 −5.599 −0.373 −0.066 0.003
DKY 1.663 3.259 5.198 8.229 13.56 22.44

Table 2. The 12 most positive Lyapunov exponents and the Kaplan–Yorke dimension for several domain
sizes L and odd-periodic boundary conditions (2.3).

L = 17.5 L = 18.1 L = 18.2 L = 41 L = 60 L = 100

λ1 −0.001 0.000 0.036 0.067 0.076 0.094
λ2 −0.166 −0.003 −0.001 0.038 0.056 0.077
λ3 −0.272 −0.194 −0.073 0.017 0.042 0.063
λ4 −0.299 −0.280 −0.268 0.001 0.027 0.056
λ5 −0.300 −0.377 −0.359 −0.008 0.021 0.044
λ6 −0.526 −4.813 −4.044 −0.029 0.006 0.036
λ7 −0.619 −4.923 −4.348 −0.076 0.000 0.031
λ8 −1.794 −1.391 −1.395 −0.162 −0.007 0.022
λ9 −3.780 −3.145 −3.070 −0.237 −0.029 0.017
λ10 −6.513 −5.525 −5.383 −0.283 −0.050 0.008
λ11 −9.692 −8.700 −8.538 −0.318 −0.094 0.001
λ12 −9.854 −9.540 −10.10 −0.355 −0.146 0.000

DKY 0.000 1.081 2.482 7.056 11.35 20.75

5. Conclusion

Through an exhaustive computation and analysis of the positive and least negative
Lyapunov exponents, we investigated the development of spatio-temporal chaos in
the Kuramoto–Sivashinsky PDE (2.1) as the domain size L increases. We found new
details of how the Lyapunov exponents and the Kaplan–Yorke dimension increase with
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domain size, and are able to identify successive transitions into more chaotic regimes
as individual Lyapunov exponents change sign from negative to positive, indicating
additional directions in which trajectories of the chaotic system diverge.

The spatial extensivity of the Kuramoto–Sivashinsky PDE (2.1) that we have
confirmed here in new detail indicates that the system in a large domain may be viewed
as composed of interacting subsystems, approximately uncorrelated for short enough
times [13, 35, 37]. This interpretation suggests that we should be able to successfully
simulate the “turbulence” in the Kuramoto–Sivashinsky PDE (2.1) on very large
domains by appropriately coupling relatively small patches of simulations across space
using the equation-free paradigm [20]. Exactly what may be an appropriate coupling
is the subject of ongoing research.
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