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This paper characterises the steady and time-periodic behaviour of swirling jets using
numerical bifurcation analysis. Its objective is to elucidate the dynamics of fully
developed, unconfined, laminar swirling jets under variations in the Reynolds number Re
and swirl ratio S. Within the (0, 0) ≤ (Re, S) ≤ (300, 3) range, the steady, axisymmetric
flow exhibits several distinct patterns ranging from a quasi-columnar jet along the central
axis at low S to a radial jet attached to the containing wall at high S with various
forms of vortex breakdown in between. A cusp bifurcation appears in the steady solution
manifold which triggers bistable behaviour due to a competition between inner and outer
low pressure regions associated with vortex breakdown and entrainment of the ambient
fluid, respectively. Instability of the steady flow is linked to eigenmodes which are singly
(|m| = 1) or doubly (|m| = 2) azimuthally periodic, although additional instabilities with
other azimuthal wavenumbers occur at (Re, S)-values beyond the leading neutral curves.
The various branches of limit cycle solutions stemming from these neutral curves are
associated with both super- and sub-critical Hopf bifurcations. The resulting unsteady flow
fields exhibit a wide array of rotating, three-dimensional flow structures, and comparisons
between the time-averaged and steady flow patterns highlight the role of these unsteady
nonlinear interactions on the overall behaviour of swirling jets. Similarities and differences
between this laterally unconfined jet and broader classes of swirling flows, including
confined swirling jets and unconfined vortex models, are also discussed.
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1. Introduction

This paper describes a numerical bifurcation analysis of unconfined, incompressible
swirling jets. Even in the laminar regime, swirling jets host a suite of rich physics due
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to the complex interplay among axial and azimuthal shear layers, centrifugal instabilities
and propagating inertial waves. Although scientifically interesting in their own right,
these flows are of crucial importance to the engineering of various modern technologies
including gas turbine combustors, cyclonic separators and aeronautical lift and control
surfaces. Swirling jets are also a core feature of numerous natural flows including
tornadoes, cyclones and quasars. At a more fundamental level, even turbulent eddies in
general are affected by many of the same phenomena as swirling jets, such as vortex
breakdown.

Despite their significance, obtaining detailed and repeatable characterisations of the
swirling jet parameter space via experiments or conventional time-marching computations
remains challenging. This is due partly to the sheer variety of different flow patterns that
have been reported across the literature, but also to the multistability and hysteresis which
can relate distinct states. Without a deeper understanding of the overall parameter space,
any observation must be taken in the specific context of the flow configuration, including
the initial conditions, confinement, external noise sources and geometrical variations.
There is a need for a more comprehensive ‘taxonomy’ of swirl flow configurations and
dynamics in order to relate different studies by a more general set of behaviours. This
observation serves as a key motivation for this work, with our focus here being on
unconfined, fully developed laminar swirling jets.

As suggested above, one of the most salient features of swirling flows is the phenomenon
of vortex breakdown. Vortex breakdown occurs when the axial flow along or near
the vortex axis abruptly stagnates beyond a certain level of swirl. In most swirling
flow configurations, this phenomenon is associated with exchanges of stability and
multistability among various axisymmetric and spiral states (Leibovich 1984; Ash &
Khorrami 1995). A classic early example is Lambourne & Bryer’s (1962) famous
photograph of the flow over a delta wing exhibiting simultaneous ‘spiral’ and ‘bubble’
breakdown patterns. Throughout the literature of swirling flows, significant effort has been
exerted to categorise the observed forms of vortex breakdown into relatively few canonical
types.

In the inviscid limit, columnar swirling flows (i.e. axisymmetric rotating flows with
bulk axial motion and zero radial velocity) are subject to three fundamental instability
mechanisms which generally interact to control the overall stability behaviour. First is
centrifugal instability which occurs due to a local imbalance between the centrifugal
force and the radial pressure gradient. In the linear limit, asymptotic analyses have shown
that this mechanism tends to most strongly amplify helical modes with wavenumber
vectors that are oriented along the direction of zero strain of the bulk flow (Leibovich
& Stewartson 1983; Billant & Gallaire 2013). Next, the Kelvin–Helmholtz instability
arises in swirling jets due to both the axial and azimuthal components of velocity
shear. Under the so-called ‘tilting shear’ approximation (which neglects curvature
effects) it has been shown that the linear shear mechanism in swirling flows tends
to selectively amplify helical disturbances with a wavenumber vector parallel to the
direction of maximal strain of the bulk flow (Martin & Meiburg 1994; Gallaire & Chomaz
2003a). Finally, the stability of columnar swirling jets is influenced by the Coriolis
effect, giving rise to travelling inertial waves (Kelvin 1880). As originally suggested
by Squire (1960) and Benjamin (1962) and later clarified by Wang & Rusak (1997)
and Wang et al. (2016), this Coriolis mechanism is closely related to the nonlinear
phenomenon of vortex breakdown, although the overall vortex breakdown process is
more delicate in flow situations where the shear and centrifugal mechanisms are also
active.
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This study is directed towards laminar swirling jets exhausting into open environments,
where viscosity and geometry, in addition to generating their own new physics, prohibit
any clean separation of the basic mechanisms discussed above. The first efforts
to understand such flows appeared in the 1960s and were primarily motivated by
engineering applications in swirl-stabilised combustion. Early studies of swirling jets
(Chigier & Chervinsky 1967) focused heavily on developing empirical correlations for
the macroscopic flow characteristics based on measured turbulence statistics. Although
controlled fundamental experiments were commonplace at the time in confined swirling
flows such as vortex tubes (Harvey 1962; Sarpkaya 1971) and rotating cylinders (Vogel
1968), it was not until over two decades later that studies began to investigate the
physical processes underlying these statistics in unconfined swirling jets. For example,
influential work by Farokhi, Taghavi & Rice (1989) highlighted the effect of swirl and
forcing distribution (and not just magnitude) on the flow characteristics. Other authors
such as Panda & McLaughlin (1994) and Martin & Meiburg (1996) expanded on these
ideas, advancing a dynamical systems perspective toward the behaviour of swirling jets
which emphasised the role of coherent vortical structures and instabilities over turbulence
statistics. Such ideas are the basis of most recent studies of turbulent swirling jet dynamics
(Oberleithner et al. 2011; Tammisola & Juniper 2016; Manoharan et al. 2020); however,
our study is exclusively focused on swirling jets at much lower Reynolds numbers.

Within this modern paradigm, the LadHyX group performed a series of experiments
examining the dynamics of transitional water jets discharging from a rotating pipe into
a large tank. Beginning with the study by Billant, Chomaz & Huerre (1998), they
systematically explored the vortex breakdown process at various Reynolds numbers as
a function of the swirl ratio. A key contribution of this research was the description of
the ‘cone’ form of vortex breakdown and the bistable relationship between it and the
more well-known ‘bubble’ form over a certain range of swirl and Reynolds numbers.
Time-domain simulations have corroborated this interpretation of the cone and bubble as
bistable breakdown states in swirling jets (Ogus, Baelmans & Vanierschot 2016; Moise
2020), but the relationship between these states has not yet been clearly shown. This
dynamics will be explicitly demonstrated in this paper through numerical continuation
of the relevant solution branches.

Another feature of the LadHyX experiments was the use of planar flow visualisation
techniques along multiple measurement planes. These methods were used by Billant
et al. (1998) to provide a clearer perspective of the jet’s three-dimensional dynamics
compared to earlier line-of-sight observations. In particular, their visualisations detailed
a spiral flow structure of azimuthal periodicity |m| = 2 which rotated in time in the same
direction as the imposed rotation. This instability appeared at swirl ratios well below those
associated with the formation of any central stagnation point and diminished at higher
levels of swirl as either cone or bubble-type breakdown appeared. In certain conditions
after breakdown, the flow was dominated by asymmetric, |m| = 1, spiral structures. Note
that, throughout the range of swirl ratios examined by Billant et al. (1998), unsteady
‘Kelvin–Helmholtz-like billows’ were also present, although these structures were not a
major focus of that study.

In a later study using the same experimental apparatus, Loiseleux & Chomaz (2003)
focused more specifically on the system’s behaviour before vortex breakdown. They
described three distinct pre-breakdown regimes where a variety of unsteady axisymmetric
and spiral structures exchange dominance with varying swirl. In the non-swirling
case, the shear layer rolled up into nominally axisymmetric ring structures due to the
Kelvin–Helmholtz instability. In the first regime, at low swirl ratios, co-rotating spiral
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structures began to appear over the primary axisymmetric vortex rings, presumably due
to secondary instability. The azimuthal periodicity of these spiral structures gradually
decreased from |m| = 7 to |m| = 5 with increasing swirl until reaching a transitional stage
where axisymmetric ring structures again prevailed. In the second regime, the co-rotating
|m| = 2 spiral instability reported by Billant et al. (1998) strongly dominated the flow
dynamics, eliminating any distinction between primary vs secondary instability. Finally,
in the third regime immediately preceding vortex breakdown, a distinct counter-rotating
motion with |m| = 1 periodicity appeared in addition to other intermittent axisymmetric
and three-dimensional structures of similar amplitude.

Similar experimental descriptions of deterministic flow structures in swirling jets
have also been detailed by Liang & Maxworthy (2005, 2008). Their observations agree
qualitatively with the earlier studies by the LadHyX group, while providing more
quantitative insight into the dynamics thanks to improved velocimetry techniques. In
particular, spectral analysis suggested that the axisymmetric oscillations emphasised by
Gallaire & Chomaz (2003b) are primarily excited by external noise, suggesting a passive
amplifier role for the m = 0 pulsations associated with convective instability. In contrast,
they argued that the pre-breakdown |m| = 2 and post-breakdown |m| = 1 instabilities
also reported by Billant et al. (1998) represent self-excited flow oscillations that are
present independent of external noise. This latter point is further supported by the lack
of receptivity of swirling jets to |m| = 2 forcing, as observed in the experiments of
Gallaire, Rott & Chomaz (2004). Based on their observations, Liang & Maxworthy (2005)
further characterised the bifurcations underlying the self-excited instabilities by fitting
their measured oscillation amplitude–swirl ratio relationship to an unforced supercritical
Landau equation model. Despite a relatively high level of background noise, they found
evidence that both instabilities are associated with supercritical Hopf bifurcations and
determined approximate critical swirl values for each. The numerical results presented in
this paper corroborate the existence of Hopf bifurcations associated with both |m| = 2 and
|m| = 1 self-excited oscillations but, significantly, also show the presence of subcritical
bifurcations. Ruith et al. (2003) performed a comprehensive numerical investigation
of unconfined swirling flow using the Grabowski & Berger (1976) vortex model.
Based on both axisymmetric and three-dimensional unsteady simulations, Ruith et al.
(2003) systematically surveyed the parameter space and noted the emergence of steady,
axisymmetric vortex breakdown and its eventual instability toward spiralling vortical
structures associated with either |m| = 2 or |m| = 1. Thanks to their detailed study,
the Grabowski–Berger vortex has become a standard flow for analysis of swirling flow
dynamics, attracting significant theoretical attention over the previous decade (Gallaire
et al. 2006; Vyazmina et al. 2009; Meliga, Gallaire & Chomaz 2012; Qadri, Mistry &
Juniper 2013; Pasche, Avellan & Gallaire 2018). However, it is also important to note
that this model vortex does not capture all aspects of the flows found in a broad class of
physically interesting swirling jet applications. For instance, the Grabowski–Berger vortex
is defined by a fixed parallel inflow condition which exhibits substantial axial co-flow over
the entire radial extent of the domain. Swirling jets, in contrast, are typically surrounded by
nominally quiescent surroundings. As a result of key differences like this, the relationship
between the dynamics of the Grabowski–Berger vortex model and those of many swirling
jets realised in the laboratory or in practical hardware is unclear. This paper will highlight
some important commonalities and distinctions between their behaviours.

Recently, Moise & Mathew (2019) performed nonlinear simulations of a different fixed
vortex model which is more representative of this broader class of swirling jets. They
documented a variety of characteristic flow states and, as expanded upon in a subsequent
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paper (Moise 2020), described hysteresis with respect to swirl among these states. As
mentioned above, their simulations are some of the first to demonstrate hysteresis between
bubble and cone-type vortex breakdown topologies. Their results also reproduced some
of the experimentally observed |m| = 1 and |m| = 2 spiral structures from Billant et al.
(1998) and Liang & Maxworthy (2005), in addition to several new flow features. However,
their time-domain solution approach did not support a detailed bifurcation analysis like
the one we will pursue here.

In summary, many key elements of unconfined laminar swirling jets dynamics have
been identified. Both experiments and simulations have described a variety of coherent
flow patterns and documented multistability among the different flow states. Theories have
also been developed to explain, under specific conditions, the basic physical mechanisms
which interact in more general situations to express the observed features. Yet, this
body of existing knowledge still requires a consistent, comprehensive framework for
comparison, generalisation and interpretation. The main contribution of this study is a
series of bifurcation analyses which unambiguously characterise the nonlinear dynamics
of steady and time-periodic solutions in an unconfined swirling jet configuration with a
fully developed inflow profile. This provides insight into the topology of the underlying
parameter space, which, in turn, enables a deeper and more general understanding of the
physics controlling swirling jet behaviour.

The rest of this article is organised as follows. Section 2 details our flow configuration by
defining the geometry, the continuous governing equations and the boundary conditions.
Section 3 describes the numerical methods, including the weak formulation, the finite
element discretisation and the numerical algorithms used to obtain the results. Section
4 presents our results regarding the steady, axisymmetric flow states in swirling jets
and characterises the stability of these solutions with respect to three-dimensional and
unsteady behaviour. In § 5, we turn our attention to periodic solutions and examine
the dynamics of nonlinear limit cycles associated with the instabilities identified in § 4.
Finally, § 6 presents a summary of our results in the context of existing literature and
suggests directions for future research.

2. Flow configuration

We consider viscous, constant-density swirling jets discharging from a long, straight,
rotating pipe into a semi-infinite domain as depicted in figure 1. Conventional
cylindrical-polar coordinates defined by x = (x, r, θ) are adopted with the origin located at
the centre of the pipe exit. All quantities are dimensionless; the lengths being normalised
by the pipe diameter D = 2R and the velocities by the steady, volume-averaged flow
velocity U through the pipe. Consequently, the two independent parameters governing
this flow are the swirl ratio S = ωR/U and the Reynolds number Re = DU/ν where ω is
the rotation rate of the pipe and ν is the fluid’s kinematic viscosity. The fluid motion is
described by the velocity u = (ux, ur, uθ )

T and pressure p fields, which together evolve in
the domain according to the incompressible Navier–Stokes and continuity equations,

∂u
∂t
+ u · ∇u = −∇p+ 1

Re
∇2u, (2.1a)

0 = ∇ · u. (2.1b)

The swirling jet configuration we have selected has some important distinctions from
the experimental set-ups used at LadHyX (Billant et al. 1998) or by Liang & Maxworthy
(2005, 2008). First, unlike the top hat-like jet profiles seen in these experimental
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Figure 1. Schematic of the meridional plane of the axisymmetric domain Ω with boundary Γ .

Boundary Constraints

Inlet, Γi ux = 2− 8r2 ∂xur = 0 uθ = 2Sr
Pipe, Γp ux = 0 ur = 0 uθ = S
Wall, Γw ux = 0 ur = 0 uθ = 0

Axis, Γa

{ ∂rux = 0 ur = 0 uθ = 0, if m = 0
ux = 0 ∂rur = 0 ∂ruθ = 0, if |m| = 1
ux = 0 ur = 0 uθ = 0, if |m| ≥ 2

Open, Γo (−p̃I + Re−1∇u) · n− 1
2 u min(0, u · n) = 0

Table 1. List of boundary conditions.

studies, our jet issues from the pipe with a fully developed velocity profile. This choice
conveniently eliminates any significant dependence of the jet’s velocity profile on the
length of the inlet pipe and the Reynolds number. Second, in order to simplify the
geometry, we have placed the reservoir wall flush with the pipe exit and included far-field
boundary conditions which simulate an unconfined jet. Conversely, the experimental
studies cited above have injected the jet some distance past the containing wall into a
closed tank with a lateral and axial extent of the order of ten times the jet diameter.

A complete listing of the boundary conditions associated with (2.1) are given in table 1.
Axial flow is controlled by a prescribed steady mass flux through the pipe, and no-slip
conditions are enforced for all velocity components on the rotating pipe wall Γp and
the fixed exit-plane wall Γw. Conceptually, the inlet pipe is sufficiently long such that
a region exists where the flow is fully developed but exit effects are negligible. The
upstream boundary Γi is located at some x = −� in this region where the distribution
of axial and azimuthal velocity is fixed to match the Poiseuille solution. Note that
instead of rigidly enforcing a parallel inflow at Γi, less-restrictive Neumann conditions are
enforced on the radial component of velocity to minimise inlet reflections and scattering
of upstream-propagating vorticity disturbances and inertial waves (Rusak 1998). On the
central axis Γa, three-dimensional symmetry constraints based on a Fourier expansion
along θ are derived from parity considerations for each velocity component in the limit
of r→ 0 for each azimuthal wavenumber m (Boyd 2013). The jet exits the pipe into a
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semi-infinite, quiescent reservoir which is truncated to the large but finite radius R∞ for
practical purposes. The nominal configuration used for this paper is specified by the values
� = 4 and R∞ = 40 which were selected on the basis of a parameter sensitivity analysis
presented in Appendix A. However, as will be discussed later, many calculations were
repeated on meshes with higher � and R∞ values in order to ensure grid independence.

To accurately model the unconfined flow, transparent constraints along the open
boundary Γo are required. As emphasised by Ruith, Chen & Meiburg (2004) and Vyazmina
et al. (2009), such conditions must not only allow flow to passively exit the domain without
generating wave reflection artefacts but must also enable free entrainment from the far
field. A constraint which satisfies both of these requirements in non-swirling flows and
emerges naturally in the variational formulation of (2.1) is the well-known free-outflow
condition given by (−pI + Re−1∇u) · n = 0, where I is the identity matrix and n is the
outward unit normal vector. However, this condition raises two major concerns for the
strongly swirling and recirculating flows considered here. First, the free-outflow condition
requires the normal derivative of the normal flow component to exactly balance the
pressure along the boundary. In a scenario where centrifugal effects due to swirl induce
a physical variation in pressure along the open boundary, the free-outflow condition will
generate non-physical flow gradients to match this variation. Second, when there is inward
flow across the boundary, the free-outflow condition does not restrict the energy entering
the domain and may lead to ill-posedness.

To mitigate these problems, other studies employing free-outflow conditions for
investigations of open swirling flows have employed extended computational domains
with artificial sponge layers. This approach seeks to avoid the aforementioned concerns
by using large amounts of artificial dissipation to rapidly develop the flow to a purely
outward Poiseuille form with negligible azimuthal velocity before it reaches the outflow
boundary. While effective, such treatment adds design challenges and computational
expenses associated with the parameters of the sponge layer and the increased domain size.
We have taken a different approach. The boundary stress issue is avoided by excluding
the centrifugal pressure variations from the normal stress balance on the boundary,
while ill-posedness is avoided using a robust directional outflow condition which remains
well-posed even with substantial entrainment from the domain exterior. To decouple the
centrifugal pressure from the outflow boundary condition, we proceed by defining the
modified pressure p̃ = p− po along the open boundary. Here, po is a scalar potential which
characterises the centrifugal pressure variations along Γo via the relation

∇po · t = u2
θ

r

∣∣∣∣∣
Γo

, (2.1c)

where t is the positively oriented unit tangent vector along Γo. Since (2.1c) only defines po
up to a constant, we take po = 0 at Γw ∩ Γo for uniqueness. Then, saving the details for the
next section, po is excluded from the pressure term in the open boundary condition so that
centrifugal pressure variations are decoupled from the flow gradients on the boundary.

Next, to address the issue of recirculating flow from the domain exterior, we adopt
the directional outflow condition (−pI + Re−1∇u) · n− 1

2 u min(0, u · n) = 0, following
Bruneau & Fabrie (1994). This condition, reviewed recently by Bertoglio et al. (2018), is
identical to the conventional Neumann-type free-outflow condition along any part of the
open boundary with a local outflow, but exhibits dissipation related to the weak form
of the advection term wherever back flow (i.e. u · n < 0) occurs. This yields a stable
Robin-type condition which bounds the energy influx and promotes well-posedness while
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still respecting the important exchange of mass and momentum across the open boundary
(Braack & Mucha 2014).

Combining the directional outflow condition with the centrifugal pressure decoupling
approach yields the modified directional outflow boundary condition given in table 1.
This condition is applied along the entirety of the open boundary Γo. In the absence of
swirl, this constraint reduces exactly to the directional outflow condition and further to the
free-outflow condition if the flow is also purely outward across Γo.

3. Problem formulation

3.1. Numerical method
Our numerical methods are derived from the variational form of (2.1) and the boundary
conditions of table 1 including (2.1c). To remove the coordinate singularity at r = 0,
(2.1a) is first multiplied by the radial coordinate (Meliga & Gallaire 2011). Then, taking
the standard real or complex L2 inner product 〈•, •〉Ω and introducing test functions q̌ =
(ǔ, p̌, p̌o)

T, we integrate over the domain, seeking in the appropriate spaces q = (u, p, po)
T

such that ∀q̌
〈
rǔ,

∂u
∂t
+ u · ∇u

〉
Ω

+
〈
∇(rǔ),−pI + 1

Re
∇u

〉
Ω

+ 〈p̌, ∇ · u〉Ω

+
〈
rǔ, pon− 1

2
u min(0, u · n)

〉
Γo

+
〈

p̌o, ∇po · t − u2
θ

r

〉
Γo

= 0. (3.1)

Note that weak form of the modified directional outflow condition described above results
in a boundary integral along Γo which is simplified by the application of the divergence
theorem to the viscous and pressure terms of (2.1).

The spatial discretisation consists of a Delaunay triangulation of the meridional plane
constructed using GMSH (Geuzaine & Remacle 2009). After experimentation with several
different meshes, we selected a primary triangulation for Ω with � = 4 and R∞ = 40
which features 140 055 elements, although many key calculations were also repeated on
larger meshes to ensure mesh convergence. Finally, an inf-sup stable discrete problem is
formed by projecting the weak formulation of (3.1) onto the basis of Taylor–Hood (P2 ×
P1) finite elements associated with the mesh using FreeFEM (Hecht 2012). The velocity u
and pressure p are defined respectively on bi-quadratic and bi-linear elements over the full
domain Ω , while the centrifugal pressure po is defined on linear elements along only the
boundary Γo. The resulting discrete flow states have 915 839 total degrees of freedom on
the primary mesh. Further details of the mesh and an assessment of the robustness of our
results to the selected discretisation are provided in Appendix A.

3.2. Solution methodologies
Although our actual implementation is based on the weak form of the autonomous
nonlinear system (3.1), for convenience of notation, further discussion will make use of
the strong state-space form,

M
∂q
∂t
+R(q;Re, S) = 0, (3.2)
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where Re and S are parameters and the strong forms of the mass matrix and steady
Navier–Stokes operators are, respectively,

M =
⎛
⎝ I 0 0

0 0 0
0 0 0

⎞
⎠ and R(q) =

⎛
⎜⎜⎜⎝

u · ∇u+∇p− 1
Re
∇2u

∇ · u

∇po · t − u2
θ

r

⎞
⎟⎟⎟⎠ . (3.3a,b)

This notation neglects several important aspects of the weak form, including the boundary
conditions and the restriction of (2.1c) to Γo. In our parallel implementation, all problems
are abstracted to the linear algebra level by FreeFEM (Hecht 2012; Moulin, Jolivet &
Marquet 2019) and solved in a distributed manner using PETSc (Balay et al. 2020) based
on direct factorisation via MUMPS (Amestoy et al. 2001) except where noted otherwise.

3.2.1. Identification and continuation of equilibrium states
Since the geometry and boundary conditions are independent of θ and t, the steady states
q0(x, r) of this flow represent axisymmetric fixed points of (3.2). Such solutions are
commonly termed ‘base flows’ or ‘steady states’ in the stability literature; we will refer
to them as the latter in this paper. Hence, q0 is defined as an equilibrium satisfying

R0(q0;Re, S) = 0, (3.4)

where the 0-subscript on R0 is used to indicate a restriction of the steady
three-dimensional operator R to its axisymmetric Fourier component. A similar
m-subscript convention is used throughout this paper to indicate the restriction of any
three-dimensional operator to the mth component of its azimuthal Fourier decomposition
by formally replacing any partial derivatives along θ with the product im.

One simple strategy to find q0 is by locking the values of all parameters and using
Newton’s method to iteratively refine an initial guess for the steady flow. In this approach,
the correction δq0 to the initial guess q0 is then determined by solving the linear problem,

J0(q0)δq0 = R0(q0), (3.5)

where the action of the Jacobian matrix is

Jm(q0)δqm =

⎛
⎜⎜⎜⎜⎝

u0 · ∇m(•)+ (•) · ∇0u0 − 1
Re
∇2

m(•) ∇m(•) 0

∇m · (•) 0 0

−2uθ,0

r
(•) · eθ 0 ∇m(•) · t

⎞
⎟⎟⎟⎟⎠

⎛
⎝ δu

δp
δpo

⎞
⎠

m

,

(3.6)
and eθ refers to a unit vector along θ . Following each iteration, the state is updated as
q0 ← q0 − δq0, and the process is repeated until the norm of the residual converges within
‖R0‖ < 10−10.

While sufficient for such purposes as initialising a solution branch, the straightforward
approach outlined above is not always robust for continuation of a branch along a
parameter. In general, nonlinear systems may exhibit multiple solutions at identical
parameter values, and the domain of convergence for Newton’s method shrinks as the
Jacobian matrix becomes singular near a bifurcation point. A more suitable approach for
such systems involves tracing branches of q0 using a predictor–corrector scheme which
can ‘jump’ over singularities (Keller 1978). Methods of this type treat both the state vector
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q0 and a continuation parameter α (here either S or Re) as unknowns in (3.4), and require
an additional constraint to compensate for this new degree of freedom.

Our continuation approach relies on a predictor–corrector scheme with a tangent
predictor step and a Moore–Penrose corrector sequence. For the predictor step, we exploit
the fact that the null vector associated with the augmented Jacobian matrix at a point on
the solution curve lies tangent to the solution curve at that point. More precisely, the null
vector y = (yq, yα)T satisfies

y ∈ ker
([

J0(q0, α),
∂R0(q0, α)

∂α

])
, (3.7)

where the vector ∂R0/∂α is approximated via finite differences. To determine y and fix its
orientation with respect to the parameter, we set yα = −1 and solve

J0(q0, α)yq =
∂R0(q0, α)

∂α
. (3.8)

Thus, a linear prediction for a new point on the solution curve is obtained by taking
(q0, α) = (q0, α)+ h(yq, yα)/‖y‖, where h is a parameter which controls the size and
orientation of the predictor step. To enable accurate branch tracing without the expense
of needlessly small steps, the magnitude of h must be consistently adjusted throughout
the continuation process. Our approach uses an adaptive scaling for h based on the
convergence behaviour of the previous corrector sequence following Allgower & Georg
(1990) and described below. Furthermore, to ensure a consistent sense of direction along
the solution branch, the sign of h must be flipped when a saddle-node bifurcation is
traversed. We achieve this by monitoring the sign of the inner product between the null
vectors associated with each consecutive pair of solution points. When these points lie on
either side of a limit point, the inner product is negative and the sign of h is reversed.

Following each predictor step, a nonlinear correction sequence is required to converge
from the predicted point to a true equilibrium solution q0. For this we have adopted a
Moore–Penrose approach where each Newton iteration of the corrector is constrained to
be orthogonal to the kernel of the augmented Jacobian matrix at the current point. Thus,
at each iteration, we are faced with the bordered linear system,

⎛
⎝J0(q0, α)

∂R0(q0, α)

∂α
yT

q yα

⎞
⎠ (

Δq0
Δα

)
=

(R0(q0, α)

0

)
. (3.9)

While (3.9) could be directly assembled and solved at each iteration, this approach is
avoided for two reasons. First, since it contains y, the augmented system matrix in (3.9)
requires the solution of (3.8) prior to its assembly at each iteration. Second, the presence
of the dense vectors yT

q and Jα on the borders of this augmented system matrix greatly
complicate its overall structure in comparison to the sparse Jacobian matrix J0 underlying
the conventional system in (3.5).

Instead, we have adopted a block elimination strategy to treat (3.9) without explicitly
forming the bordered system. We begin by separately solving (3.8) and (3.5). Since these
systems involve the same J0, only a single sparse matrix must be assembled and factored
to solve both problems. Then, using some algebra based on the Schur complement,
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the solution to (3.9) is deduced as

Δα = yT
q δq0

1+ yT
q yq

, (3.10a)

Δq0 = δq0 − yqΔα. (3.10b)

From here, the state is updated as (q0, α)T ← (q0, α)T − (Δq0, Δα)T and the process
is repeated until reaching the same convergence tolerance of ‖R0‖ < 10−10. For further
efficiency gains, we treat this corrector sequence as a Newton-chord iteration where a
single factorisation of J0 from the first corrector iteration is reapplied to the remaining
iterations until convergence. Once convergence is achieved, the null vector from the last
corrector iteration is then reused in the next predictor step.

As indicated above, well-designed adaptive step controls for the predictor are a key
aspect of robust continuation methods. Nonetheless, strict convergence conditions are also
needed for the corrector to ensure robust and accurate branch tracing. Our requirements
include: (i) a monotonic convergence of the residual norm during the corrector iterations,
(ii) a decrease in the norm of the correction by at least a factor of two in each iteration,
(iii) a norm of the first correction smaller than one, (iv) an angle between consecutive
tangent vectors of less than 30◦ and (v) no more than ten corrector iterations per step.
If any of these conditions fail to be met during the corrector process before the residual
norm reaches the allowed tolerance, the step is rejected, and a new corrector sequence
begins from a predictor with half the original step size. Otherwise, the converged step is
accepted, and the step size for the next predictor is scaled based on requirements (ii–iv) as
described in Allgower & Georg (1990).

3.2.2. Stability analysis of steady states
The stability of axisymmetric equilibrium solutions to (3.2) is assessed by the long-time
asymptotic evolution of superimposed three-dimensional infinitesimal perturbations q́ to
q0. Due to the underlying symmetries of the flow system, any solution to (3.2) can be
expanded as a superposition of modes q̂m associated with azimuthal wavenumber m,
growth rate σ and frequency f according to

q́(x, r, θ, t) ∝ q̂m(x, r) eimθ+(σ+i2πf )t + q̂∗m(x, r) e−imθ+(σ−i2πf )t, (3.11)

where ∗ denotes complex conjugation and q́ is arbitrarily small. In general, the modal
decomposition given above is not immediately useful for analysis as the modes are
nonlinearly coupled and may be strongly non-orthogonal at finite times. However, under
the particular circumstances associated with our stability analysis, namely the arbitrary
smallness of the disturbances and the asymptotic scaling of time, the modes in (3.11) are
both independent and orthogonal. From this standpoint, they are therefore equivalent to
the eigenmodes of (3.2) when linearised about q0 and subjected to homogeneous forms of
the boundary conditions listed in table 1. As a result, the overall stability characteristics of
any q0 can be deduced from the spectrum of the generalised eigenvalue problem,

λM q̂m + Jm(q0)q̂m = 0, (3.12)

where λ = σ + i2πf is the eigenvalue. If the real part of every eigenvalue of (3.12) satisfies
σ < 0, then q0 is stable; otherwise, it is unstable. For broad-spectrum calculations, (3.12)
is solved with the shift-and-invert technique using the Krylov–Schur method in SLEPc to
within a tolerance of ‖λM q̂m + Jmq̂m‖ < 10−6‖q̂m‖ (Hernandez, Roman & Vidal 2005).
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Then, if needed, the dominant eigenvalues are refined individually using power iteration
to ensure convergence within a tolerance of 10−10.

It is worth pointing out here that even if q0 is classified as stable according
to the definition above, some perturbations may exhibit very large transient growth
due to non-normality before eventually converging to the dominant eigenmode in the
long-time limit (Trefethen et al. 1993; Schmid 2007). As exemplified by the study of
harmonically forced coaxial jets at low swirl by Montagnani & Auteri (2019), this linear
transient growth mechanism opens pathways for subcritical and non-critical exchanges
of stability for certain perturbations of small but finite size through nonlinear processes.
Additionally, as demonstrated by Garnaud et al. (2013) and Coenen et al. (2017),
convective non-normality can lead to inaccurate or unphysical modal representations of
the linear dynamics in truncated computational flow domains due to spatial disturbance
amplification, floating-point numerical errors, and interactions between upstream and
downstream boundary conditions (Lesshafft 2018). Although the Reynolds numbers we
will investigate lie far below the values considered in those studies, we have nonetheless
carefully checked our results for convergence with respect to the domain length on a
sequence of larger meshes with R∞ up to 400.

Some comments are also worthwhile in regards to the morphology of the eigenmodes.
First, it should be emphasised that the form of (3.11) is fully general for the system at
hand and does not constrain the three-dimensional structure of the perturbations. As a
result, the sense of winding of non-axisymmetric disturbance modes is not always clear.
This is in contrast to ‘weakly global’ approaches which restrict perturbations to strictly
helical forms constrained by a uniform axial wavenumber (i.e. helical pitch) across each
axial station, thereby imposing a definite sense of winding. Second, due to fact that the
perturbations are real, the conjugate symmetry q̂m = q̂∗−m holds for the modes of (3.11).
This guarantees that any mode associated with properties (m, σ, f ) has an equivalent
conjugate with (−m, σ,−f ). Consequently, we restrict our attention to m ≤ 0 without loss
of generality.

Finally, we remark on the sense of rotation of the perturbations. The azimuthal phase
velocity of the perturbations is given by−2πf /m according to (3.11). Since the rotation of
the pipe is positive with respect to the right hand rule along the x-axis, non-axisymmetric
structures with f > 0 rotate in the same direction as the pipe due to our choice of m ≤ 0.
Henceforth, such structures will be simply referred to as co-rotating, while those with
f < 0 will be termed counter-rotating. Unsteady m = 0 structures do not have a sense of
rotation due to axisymmetry. In order to avoid confusion with regards to the various sign
conventions used in existing studies, we will report our results exclusively in terms of
unsigned values for the azimuthal periodicity |m| and use the frequency to indicate the
rotation direction of non-axisymmetric structures with respect to the pipe’s rotation.

3.2.3. Identification and continuation of local bifurcation points
By definition, a generic local bifurcation point simultaneously satisfies (3.4) and (3.12)
with σ = 0. Thus, bifurcation points correspond to solutions of the system,

R0(q0, α) = 0, (3.13a)

Lm(q0, f , α)q̂m = 0, (3.13b)

where Lm(q0, f , α) = i2πf M + Jm(q0, α). With the addition of a normalisation condition
to fix the amplitude and phase of the bifurcating eigenmode, a Newton method to
solve (3.13) can be easily derived. However, the most straightforward approach requires
the explicit formation and factorisation of a large bordered matrix associated with a
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fully augmented linearised system at each iteration. To reduce computational cost, our
implementation leverages an exact block Crout decomposition similar to that of Salinger
et al. (2002) which breaks the large system into smaller, more tractable pieces.

In the general case of a non-axisymmetric Hopf bifurcation (i.e. a codimension-1
bifurcation associated with non-zero m and f ), the solution process requires the resolution
of (3.5), (3.8), and three complex sub-problems given by

Lm(q0, f , α)ŵm = Hm(q̂m)δq0, (3.14a)

Lm(q0, f , α)b̂m = ∂Lm(q0, f , α)qm

∂α
− Hm(q̂m)yq, (3.14b)

Lm(q0, f , α)ĉm = i2πM q̂m, (3.14c)

where ŵm, b̂m and ĉm are intermediate solution vectors. In (3.14), the vector ∂Lmqm/∂α is
approximated via finite differences and the action of the Hessian tensor is

Hm+n(q̂m)δqn =
(

ûm · ∇nδun + δun · ∇mûm, 0, −2ûθ,mδuθ,n

r

)T

. (3.15)

Importantly, this forward substitution process only requires the sparse matrices J0 and Lm
to be assembled and factored once at each iteration. Then, the required correction can be
deduced from back substitution as

Δf = Im{q̂H
mb̂m}(1− Re{q̂H

mŵm})+ Re{q̂H
mb̂m}Im{q̂H

mŵm}
Im{q̂H

mb̂m}Re{q̂H
mĉm} − Re{q̂H

mb̂m}Im{q̂H
m
ˆ̂cm}

, (3.16a)

Δα = 1− Re{q̂H
mŵm} − Re{q̂H

mĉm}Δf

Re{q̂H
mb̂m}

, (3.16b)

Δq0 = δq0 − yqΔα, (3.16c)

q̂m = ŵm + b̂mΔα − ĉmΔf . (3.16d)

To complete the iteration, the state is updated as (q0, α, f )T ← (q0, α, f )T −
(Δq0, Δα, Δf )T and q̂m ← q̂m/‖q̂m‖. This procedure is repeated until the norm of the
residual of (3.13) converges within the tolerance, (i.e. until

√
‖R0‖2 + ‖Lmq̂m‖2 < 10−10).

Note that in the special case of a limit point, the algorithm above can be significantly
simplified. In that case, all arithmetic is real and J0 = Lm since m = f = 0. Thus, only one
matrix is required, and (3.14c) and (3.16a) can be omitted since ĉm and δf are zero.

After a bifurcation point is identified with respect to the primary parameter
α, its associated neutral curve may be traced along a second parameter β using
predictor–corrector methods. We have adopted a zeroth-order approach where the
predictor increments β by some amount h and takes the first step in the Newton scheme
for (3.13) using (3.14) and (3.16). Then, the corrector completes the remaining Newton
iterations subject to the same requirements given in § 3.2.1, and h is adjusted according
to the same adaptive strategy. When necessary, continuation around codimension-2
bifurcation points is achieved by exchanging the roles of the parameters α and β in this
procedure.

3.2.4. Identification and continuation of periodic orbits
Following a Hopf bifurcation, a family of periodic solutions to (3.2) branches from the
axisymmetric equilibrium. Expanding these solutions into a temporal–azimuthal Fourier
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series truncated at level N allows the discrete representation,

q(x, r, θ, t) = q̄0(x, r)+
N∑

j=1

[q̂jm(x, r) eijmθ+i2jπft + q̂∗jm(x, r) e−ijmθ−i2jπft], (3.17)

where q̄0 represents the time- and azimuth-mean flow and the q̂jm represent the various
harmonic components of the nonlinear oscillation. Note that the comments regarding the
morphology and rotation of the eigenmodes given in § 3.2.2 also apply to the Fourier
components in this expansion.

Substituting the expansion (3.17) into (3.2) and evaluating the result in Fourier space
yields a discrete time–azimuthal spectral representation of the unsteady Navier–Stokes
system governing periodic orbits. The resulting ‘harmonic-balance’ system (Hall et al.
2013) is

R0(q̄0)+
N∑

j=1

H0(q̂
∗
jm)q̂jm = 0, (3.18a)

1
2

k−1∑
j=1

Hkm(q̂(k−j)m)q̂jm + Lkm(q̄0, kf )q̂km +
N∑

j=k+1

Hkm(q̂∗(j−k)m)q̂jm = 0, (3.18b)

where (3.18b) is written for k = 1, 2, . . . , N and any terms involving harmonics higher
than level N are discarded by the truncation. Here, the summations account for the
coupling effect of Reynolds stresses resulting from nonlinear interactions among the
various harmonics. More specifically, the mean Reynolds stress term in (3.18a) describes
the steady, axisymmetric forcing generated by accumulating the interactions of each
unsteady component with its corresponding conjugate. Similarly, the oscillatory Reynolds
stress terms in (3.18b) describe the unsteady forcing associated with each Fourier
component via sum and difference harmonic interactions.

Since (3.2) is autonomous, the frequency f of the orbit is unknown and must be
determined in a coupled manner with q during the solution process. To uniquely define
the solution with respect to a fixed phase reference along the orbit, we use the integral
phase condition (Kuznetsov 1998) which yields the additional constraint

N∑
j=1

j(q̂H
jmM q̂∗jm − q̂T

jmM q̂jm) = 0. (3.18c)

Accordingly, the nonlinear system (3.18) is fully specified.
The solution process for (3.18) is handled entirely in the spectral domain. For each

cycle, the order N of the scheme is initialised at N = 4 and refined based on an iterative
process which ensures that the highest resolved harmonic contains less than 1 % of the total
unsteady kinetic energy in the domain. If the amplitude of the highest harmonic exceeds
this threshold, the value of N is increased by 1 and the continuation process for that cycle
is repeated from the beginning. Using this approach, the highest order required for any
limit cycle considered in this paper was N = 6, with higher oscillation amplitudes and
lower frequencies typically requiring higher N. The numerical procedure itself is based
on straightforward extensions of the fixed-parameter and predictor–corrector methods
discussed in § 3.2.1. Nonetheless, unlike the earlier systems which could be efficiently
solved using distributed direct methods combined with block factorisation algorithms,
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(3.18) is not amenable to direct Newton approaches due to the large size and block-dense
structure of its associated Jacobian matrix (see (B3) in Appendix B). To avoid such costs,
we have resorted to iterative Newton–Krylov approaches based on a right-preconditioned
generalised minimal residual (GMRES) scheme using PETSc (Balay et al. 2020). As far
as the results are concerned, however, these numerical details are of little importance since
convergence of (3.18) is defined using the same threshold as the previous systems (i.e. an
overall residual norm below 10−10). Further details about these numerics and the specific
solution algorithms are provided in Appendix B.

4. Characterisation of steady states

This section characterises the equilibrium solutions represented by the steady
axisymmetric flow in the (Re, S)-parameter space. These nonlinear solution branches are
traced using the Moore–Penrose continuation method described in § 3.2.1 with either S or
Re as the free parameter. Once identified, the stability of the steady solutions is determined
using eigenvalue calculations as outlined in § 3.2.2, and any apparent instabilities are
tracked to their corresponding bifurcation points following § 3.2.3. In order to monitor the
evolution of the steady flow as the parameters are varied, the minimum of the velocity
along the central axis, min ux(x, 0), is extracted from each equilibrium solution. This
allows steady solutions exhibiting centrally located recirculation features to be easily
identified as those having min ux(x, 0) < 0.

4.1. Rotation effects
We begin by characterising the development of the steady flow with varying S at a
fixed Reynolds number of Re = 100. A bifurcation diagram, synthesised from a total
of 155 distinct steady solutions and eigenvalue calculations, is shown in figure 2 along
with visualisations of representative flow and eigenmode patterns. The diagram reveals a
solution curve which may be divided into three segments connected by two saddle-node
bifurcations at SB = 2.103 and SF = 2.046. At this Reynolds number, the only unstable
eigenvalues are associated with m = 0 and appear on the real axis such that f = 0.
Thus, the steady flow is everywhere stable toward both non-axisymmetric and oscillatory
disturbances, and the eigenvectors associated with the unstable eigenvalues are real and
axisymmetric.

The first portion of the solution branch exists on the interval 0 ≤ S ≤ SB and is
linearly stable. At S = 0, the solution (point 1 in figure 2) represents a non-swirling,
quasi-columnar jet which dissipates as it proceeds downstream and entrains the ambient
fluid. As S is increased from 0, rotation enhances entrainment in the shear layer
surrounding the jet, decreasing min ux(x, 0) as S increases. Despite this additional mixing,
the jet remains quasi-columnar (point 2 in figure 2) until S ∼ 2.06, when a central
deceleration region characterised by streamlines bulging away from the jet axis gradually
starts to emerge. At S = 2.089 (point 3 in figure 2), the deceleration in this region becomes
sufficient to form a stagnation point on the central axis at x = 2.54, followed immediately
by the emergence of a small central pocket of recirculating flow. This recirculation zone,
a clear manifestation of vortex breakdown, swells and creeps upstream as the rotation
increases until reaching S = SB, where the first segment terminates as the solution curve
turns backwards on itself with respect to S at a saddle-node bifurcation.

The saddle-node bifurcation at SB also marks the upper bound of the second portion
of the solution curve which exists for SF < S < SB. Along this segment, the radial and
axial extent of the ellipsoidal recirculation zone apparent in the solution at SB (point 4 in
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Figure 2. (a) Bifurcation diagrams at Re = 100 showing how the minimum centreline velocity of the steady
flow and the growth rate of the non-stable eigenvalues change with S. Frequencies are not shown since
all non-stable eigenvalues have f = 0. Thick black and thin grey curves indicate the respective stable and
unstable solution branches. Saddle-node bifurcation points (labelled 4 and 6) are filled in grey. (b) Meridional
projections of axisymmetric streamfunction isolines and azimuthal vorticity contours over (x, r) ∈ [−1, 9]×
[0, 5] for selected steady flow fields (upper half-plane) and, when non-stable, eigenmodes (lower half-plane) as
indicated in the diagrams. Stagnation streamlines are shown in black.

figure 2) expands dramatically as the rotation decreases. This expansion is accompanied
by a gradual reduction in the concavity of the forward portion of the central recirculation
zone, causing the jet to flatten into a conically spreading sheet as it flows around the front
of the stagnation region (point 5 in figure 2). By S = 2.05, the widening recirculation
region becomes mildly convex, spreading the jet outwards along an increasingly diverging
trajectory with respect to the axis, due to the increasing entrainment of the ambient fluid.
During this transition, intensifying recirculation between the diverging jet and the wall
develops into a pronounced outer ring vortex surrounding the jet. With only a slight
further decrease in rotation, the jet flares open even further, bending back toward the wall,
impinging upon it, and then attaching to it via the Coandă effect. The point of intersection
between the wall and the outer stagnation streamline moves rapidly inwards as S makes its
final approach to SF. When the second segment ends at S = SF (point 6 in figure 2), the
stagnation streamline delimiting the boundary between the outer ring vortex and the jet
intersects the wall at r = 11.3. Notably, this reattachment point is similar in radius to the
vessels commonly used for controlled experimental studies (Billant et al. 1998; Liang &
Maxworthy 2005), suggesting that non-small confinement effects will be present even for
large experimental domains.

As indicated by the positive real eigenvalues shown in figure 2, the solutions along
the second segment of the solution curve are unstable and repel disturbances. Because
of their saddle nature, these solutions do not correspond to practically observable flow
states. Nonetheless, important physical insights can still be gleaned from their behaviour.
In particular, no steady solutions containing a bubble-type recirculation zone (point 4 in
figure 2) exist for S > SB, indicating that the flow transitions abruptly to a new nonlinear
attractor as the rotation is increased beyond SB. Similarly, the steady solutions exhibiting
strong outer recirculation zones (point 6 in figure 2) do not exist at rotation rates below SF.
Furthermore, the inward curvature apparent in the structure of the critical eigenvector at

924 A14-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

61
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.615


Nonlinear dynamics of fully developed swirling jets

S = SF bears a distinct qualitative resemblance to the quasi-columnar flow states along the
first solution segment (e.g. point 3 in figure 2). The same is true of the critical eigenvector
at S = SB with respect to the third segment described below. Overall, these results clearly
demonstrate that an interval of hysteresis exists between the bistable steady states from SF
to SB as indicated by the background shading in the bifurcation diagram of figure 2.

The third and final segment along the Re = 100 solution curve exists as a stable solution
for S ≥ SF. As S increases following the second saddle-node bifurcation, the separation
vortex surrounding the jet contracts, and the jet is pulled even more strongly towards the
wall. Beyond S ∼ 2.4, the axial flow beyond the pipe is almost completely suppressed,
and the jet instead proceeds radially outward along the wall immediately after exiting the
pipe. At even higher S > 3, a region of reversed axial flow begins to extend upstream
into the inlet pipe, signalling the onset of vortex breakdown within the pipe. In the
present case of Re = 100, the emergence of pipe breakdown happens smoothly, and the
solution segment remains single valued for S > 3. However, at higher Re � 250, our
investigations showed that the pipe vortex breakdown process involved a sequence of
two saddle-node bifurcations separated by a saddle solution, consistent with the theory of
Wang & Rusak (1997). Nevertheless, as the focus of our study is on swirling jets and since
vortex breakdown in pipes has been well-studied elsewhere (e.g. Meliga & Gallaire 2011),
we limit the presented results to rotation rates low enough to avoid the issue of vortex
breakdown in the pipe. Even so, we did extend our analysis well into the pipe breakdown
regime up to S = 5 to search for additional solution folds and branch connections relevant
at lower S values, finding none.

4.2. Reynolds number effects
Next, we consider the Re dependence of the steady flow at fixed pipe rotation rates. Three
bifurcation diagrams, obtained for S = 1.8, S = 2.05 and S = 2.3, are presented in figure 3
along with visualisations of the critical instability modes. In addition, at the suggestion of
a referee, we have provided maps of the regions of high structural sensitivity (Giannetti
& Luchini 2007; Qadri et al. 2013) which were computed based on a discrete adjoint
approach. Note that calculations were extended up to Re = 1000 in each case to search for
additional solution folds or branch connections relevant to the lower Re values shown,
although none were found. Before detailing the specifics of each case individually, it
is worthwhile to highlight how relatively modest changes in the pipe rotation rate can
fundamentally change how the steady flow evolves as Re is varied. Moreover, while there
is a clear stabilising effect of viscosity, both the critical Re and the structure of the critical
modes varies significantly from case to case.

All of the fixed-S cases exhibit similar behaviour for Re � 10. Beginning at the Stokes
(Re← 0) limit, the system is elliptic and linear, and the viscous swirling flow emerges
from the pipe and quickly dissipates without ever forming a separating shear layer or
recirculation zone. As Re increases to ∼ 10, a shear layer forms that separates from the
pipe’s lip at x = 0. In addition, nonlinearity gives rise to centrifugal effects proportional
to S2 which cause the jet to expand radially outward. Note that, as mentioned in § 2, the
shape and thickness of the boundary layers in the pipe are essentially independent of the
Reynolds number since the incoming flow is fully developed. Instead, the primary effect
of increasing Re is to reduce the role of viscosity after the flow exits the rotating pipe.

With the exception of very low Reynolds numbers, where it dissipates too quickly
to form a distinct jet, the steady flow at S = 1.8 takes the form of a quasi-columnar
swirling jet without any noticeable deceleration along the central axis (see pattern 2 from
figure 2). In this case, the value of min ux(x, 0) reported in figure 3 is equivalent to the
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Figure 3. Bifurcation diagrams showing how the steady flow’s minimum centreline velocity and the growth
rate and frequency of the non-stable disturbances develop with Re for S = 1.8, S = 2.05 and S = 2.3.
Bifurcation points are outlined in black and filled according their azimuthal periodicity as indicated.
Visualisations of the critical disturbance modes at ReU for S = 1.8 and S = 2.05 as well as ReL for S = 2.05 are
also presented. The visualisations include meridional projections of the structural sensitivity map with overlaid
steady flow streamlines and isometric views of the three-dimensional azimuthal vorticity field at isocontour
levels corresponding to ±20 % of the maximum.

centreline velocity at the domain exit ux(R∞, 0) which slowly rises with increasing Re
as the dissipation decreases. The axisymmetric equilibrium manifold at S = 1.8 is single
valued for all relevant Re. However, this steady flow solution only remains stable up to
ReU = 128.8. At this point, the steady flow experiences a Hopf bifurcation associated
with a co-rotating |m| = 2 mode. As Re increases further, the flow becomes even more
unstable, both due to the rising growth rate of the existing unstable mode and due to new
instabilities which occur in subsequent bifurcations.

At S = 2.05, the jet has up to three steady solutions for the range of Re investigated.
These include one solution curve connected to the Stokes solution in the Re→ 0 limit, and
a pair of solutions disconnected from the first which stem from a saddle-node bifurcation at
ReF = 95.82. Setting aside the issue of instability for a moment, the upper solution branch
represents a quasi-columnar jet flow for Re � 140. As Re increases beyond this value, the
streamlines along the axis bulge outwards until a central bubble-type recirculation zone
gradually emerges at Re ∼ 168 without bifurcation. For Re > 168, the recirculation zone
enlarges and eventually gives way to various multi-cellular recirculation features similar to
those found in the axisymmetric simulations of Ruith et al. (2003). However, since these
steady solutions are linearly unstable to a broad range of three-dimensional disturbances,
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Nonlinear dynamics of fully developed swirling jets

we will not investigate them in detail here. In contrast to the upper solution branch, both
solutions of the pair which appear at ReF always exhibit at least one central stagnation
point. At Re = 100, these fixed-S solutions correspond to the second and third solution
segments from the fixed-Re results described in the previous subsection. As was the case
there, the saddle solution (lower grey curve in figure 3) exhibits a transitional structure
between bubble-type and cone-type central recirculation features (see pattern 5 and 6 from
figure 2), while the node solution (lower black curve in figure 3) represents a flared-open
cone structure dominated by a strong outer ring vortex (see patterns 6 and 7 from figure 2).
Qualitatively, these structures persist as Re varies, although the recirculation zones become
significantly larger as Re increases.

Returning to the question of stability, the steady flow at S = 2.05 is stable and single
valued until the saddle-node bifurcation at ReF. The newly born saddle solution branch is
unstable with respect to non-oscillatory m = 0 perturbations throughout its existence, but
both of the other branches remain linearly stable until Hopf bifurcations occur at ReU =
113.8 on the quasi-columnar solution branch and at ReL = 177.6 on the lower branch.
Unlike the S = 1.8 case which had a leading instability associated with |m| = 2, the
bifurcations in this case are both associated with counter-rotating |m| = 1 modes. Shortly
after their leading |m| = 1 instability, both of the now-unstable branches experience
additional bifurcations associated with co-rotating |m| = 2 modes followed by a variety
of others.

Finally, we consider the case of S = 2.3. At this high level of rotation, the steady solution
curve is again single valued over the relevant range of Reynolds numbers. As Re increases
away from the Stokes limit, the flow quickly transitions into a radial wall-jet solution with
an enormous central recirculation zone (similar to pattern 8 from figure 2). The fluid’s
inertia increasingly resists this abrupt lateral reorientation of the flow, resulting in the
formation of a ring-shaped separation vortex surrounding the pipe exit (similar to pattern 7
from figure 2) which grows with Re. The strongly swirling flow remains stable well beyond
the critical Reynolds numbers of previous cases, eventually succumbing to a co-rotating
|m| = 1 Hopf bifurcation at Re = 348.4.

4.3. Discussion: overall steady flow characteristics
Having separately considered the steady flow’s behaviour at constant Re and S, we
conclude our analysis of the steady flow with a more holistic perspective toward its
overall dynamics. The single-parameter bifurcation curves discussed previously represent
one-dimensional slices cut from a two-dimensional manifold of steady solutions over the
(Re, S) parameter space. Likewise, the bifurcation points from the earlier diagrams are
extended into neutral curves delimiting the steady flow’s dynamically distinct regions.
Taken together, this analysis synthesises calculations from over 20 000 distinct steady
states. The resulting three-dimensional bifurcation diagram is presented in figure 4 along
with a stability map formed by projecting the neutral curves from the solution manifold
onto the Re–S plane. The stability map provides a comprehensive overview of the
dynamics of the free swirling jet steady flow over the region (Re, S) ∈ [0, 0]× [300, 3]
while the bifurcation diagram provides a more detailed representation of the state-space
topology for (Re, S) ∈ [40, 1.8]× [200, 2.3].

Figure 4 indicates that bistability between two distinct axisymmetric steady states exists
over a range of swirl and Reynolds numbers. This transition to bistable behaviour is
triggered by a codimension-2 cusp bifurcation at (Re, S) = (47.10, 2.175), well before any
of the oscillatory linear modes are destabilised. These results shed light on the different
physics and sequences of bifurcations between laterally confined and unconfined flows.
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Figure 4. (a) Three-dimensional bifurcation diagram and (b) two-dimensional stability map for the swirling
jet steady flow. Each neutral curve delimits the locus of critical points corresponding to each value of m. Thus,
criticality occurs at the outermost neutral curve along the manifold. Points where the neutral curves of the
leading and secondary eigenmodes cross are indicated by small filled circles.

In confined flow situations, bistability typically occurs between steady columnar and
breakdown states, as demonstrated theoretically (Lopez 1994; Wang & Rusak 1997; Meliga
& Gallaire 2011) and evidenced experimentally (Sarpkaya 1971). Thus, vortex breakdown
in confined flows is typically associated with an abrupt, hysteretic transition as the swirl
parameter increases. In this unconfined flow, however, bistability is not associated with
the initial occurrence of vortex breakdown. Rather, it results from a competition and
interaction between the secondary recirculating flow surrounding the jet and the central
recirculation zone as described in § 4.1. As the central recirculation zone grows in size,
its relative strength compared with the outer recirculation zone decreases, resulting in a
sudden transition from a breakdown state with a small central bubble to a cone or wall-jet
state with a ring-shaped separation vortex around the pipe exit as S increases beyond SB.
This distinction raises an important practical consideration: What radius is required of
a closed experimental apparatus to approximate an unconfined flow? While we have not
directly studied the effect of lateral confinement, our results along the intermediate and
lower solution manifolds show significant radial flow across the open boundary which
would clearly be affected by the introduction of a solid lateral wall. This suggests that any
experimental device attempting to avoid confinement effects should at least exceed the
radial extent of the unconfined domain used in this study.

Our results should also be contrasted with results from unconfined swirling flows
with widespread axial co-flow. Meliga et al. (2012) have shown that the steady solution
manifold for the Grabowski–Berger vortex is single valued for Re ≤ 300 and that a central
recirculation zone appears gradually in the flow field as the swirl parameter increases.
This qualitatively different result from those reported here appears to stem from the axial
co-flow surrounding the vortex centre in that model, which suppresses the formation of
an outer recirculation zone. This, in turn, prevents the competing physics which lead to
bistability and hysteresis of the steady flow. This suggests that if the velocity of the co-flow
surrounding the jet is decreased, a threshold will be reached where an outer recirculation
region can form and potentially give rise to bistable behaviour. While we are not aware
of any studies which have directly investigated this idea, Moise & Mathew (2019) have
explored the dynamics of the more jet-like ‘Maxworthy’ swirling flow model with a
widespread, but very weak axial co-flow fixed to 1 % of the core velocity. They presented
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Nonlinear dynamics of fully developed swirling jets

evidence of hysteresis between bistable breakdown states similar to those detailed in this
study, supporting the idea that the presence of an outer recirculation zone, enabled by a
sufficiently weak axial co-flow, is necessary for bistability of the unconfined steady flow.

The diagrams in figure 4 also reveal that, for S ≤ 3 and Re ≤ 300, the initial transition
to unsteady behaviour always originates at Hopf bifurcations associated with either
|m| = 1 or |m| = 2 depending on the local flow state and parameter values. Nonetheless,
particularly at higher Re, additional instabilities of other azimuthal periodicities bifurcate
from the unstable steady flow at parameter values beyond the primary |m| = 1 or |m| = 2
instabilities. For example, the Hopf bifurcations associated with m = 0 occur at parameter
values well beyond the critical values of the leading non-axisymmetric modes. Even
though |m| = 1 has a lower minimum critical Re, it is clear from the diagrams that |m| = 2
is typically destabilised at lower values of swirl on the upper manifold. Regardless, the
steady solution manifold is unstable toward both modes over an appreciable portion of
the parameter space which is not limited to the quasi-columnar flow regime. This will be
explored further in the following section which focuses on the periodic solution branches.

5. Characterisation of limit cycle states

In this section, we turn our attention to the structure and dynamics of the time-periodic
solutions originating from Hopf bifurcations of the steady flow. These nonlinear solution
branches are traced using the continuation method described in § 3.2.4 which plainly
reveals saddle-node bifurcations of limit cycles and allows identification of multi-stable
periodic states. However, temporal behaviours beyond those characterised here are
certainly likely, as we have not sought periodic orbits which are disconnected from the
steady flow solution manifold, determined the Floquet stability of the identified periodic
states, or considered quasiperiodic or chaotic dynamics.

Compared with the steady flows examined previously, the flow topology and nonlinear
dynamics of the periodic solution branches tend to be significantly more complex.
Nonetheless, as in § 4, min ux(x, 0) is again useful for monitoring the evolution of
the overall flow structure as the parameters are varied due to its relation to the
vortex breakdown phenomenon. Importantly, even though the flow fields are unsteady,
this minimum represents a static value corresponding to the axisymmetric mean flow
component in order to satisfy continuity for non-axisymmetric oscillations. In addition
to the minimum axial velocity along the centreline, we also monitor periodic solutions
through the frequency and amplitude of the oscillation. Henceforth, the reported frequency
and azimuthal periodicity values for a given limit cycle correspond to its fundamental
oscillation. It should be noted, however, that the limit cycles do contain higher temporal
and azimuthal harmonics due to nonlinearity which are accounted for in our results.
The limit cycle amplitude is defined by the unsteady energy norm ‖ú‖ = ‖u− ū‖ which
includes contributions from the fundamental oscillation and all resolved harmonics over
the full domain.

5.1. The quasi-columnar jet regime
We begin our study of the periodic orbits by characterising their dynamics in the
quasi-columnar flow regime. As apparent from the previous section, and particularly
figure 4, for S � 2, the flow assumes a quasi-columnar jet structure, and the steady
solution manifold is single valued. In this low-swirl regime, the steady flow experiences
its primary linear instability via Hopf bifurcations associated with |m| = 1 and |m| = 2
modes above certain critical parameter values. According to figure 3, as the Reynolds
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Figure 5. Bifurcation diagrams showing the evolution of the minimum centreline velocity, amplitude and
frequency of the periodic solutions (left) with varying S for Re = 125 and Re = 150 and (right) with varying Re
for S = 2. The steady solution curves are shown for reference in black, while the blue and red curves correspond
to the |m| = 1 and |m| = 2 periodic solution curves, respectively. Outlined circles represent Hopf bifurcation
points. The dotted light vertical lines indicate the intersections of the parameter sweeps at (Re, S) = (125, 2)

and (150, 2). The periodic solutions at (Re, S) = (150, 2) are visualised in figure 6.

number increases beyond ∼160, a number of additional |m| = 2 (and, eventually, |m| = 3
and other) modes bifurcate from the quasi-columnar steady flow, which each give rise
to their own distinct periodic solution branches. To start, we will consider relatively low
Reynolds number to focus our analysis on the leading |m| = 1 and |m| = 2 periodic orbits
in the quasi-columnar regime. The bifurcation diagrams for this case are presented in
figure 5. The dynamics of the quasi-columnar flow at higher-Re will be considered near
the end of this section.

Figure 5 demonstrates distinct bifurcation behaviours for the |m| = 1 and |m| = 2
critical modes. For the |m| = 1 oscillation, the limit cycle consistently departs from the
steady solution manifold via supercritical Hopf bifurcations. Conversely, for |m| = 2, the
bifurcation is subcritical, as finite-amplitude limit cycle states exist prior to the |m| = 2
Hopf points. In both cases, the oscillation frequency is insensitive to S but decreases
noticeably with increasing Re. The multivaluedness displayed by the solution curves
in the bifurcation diagram indicates the possibility of multistability with respect to the
steady flow and the |m| = 1 and |m| = 2 cycles. In addition, the fact that the |m| = 1 and
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Figure 6. Visualisations of |m| = 1 (top two rows) and |m| = 2 (bottom two rows) limit cycle oscillations at
(Re, S) = (150, 2) via streamlines and axial velocity contours over (x, r, θ) ∈ [−1, 5]× [0, 3]× [0, 2π]. The
top and bottom image sequences show (from left to right) axial slice planes at x = 1/2, 1, 2 of the instantaneous
flow as viewed from downstream along with a three-dimensional isometric view. The middle image sequences
show meridional slice planes at three equally spaced phase points with time increasing from left to right,
followed by a comparison of the associated mean (top half) and steady (bottom half) flow. The dashed circle on
each axial slice plane indicates the position of the pipe wall. The dotted lines show the intersection of the axial
and meridional planes at each point of phase, with arrows in the axial planes indicating how these lines move
with time. The yellow and black surfaces in the isometric views represent the respective positive and negative
isocontour values indicated in the figure.

|m| = 2 cycles coexist for an appreciable range of swirl suggests that a quasiperiodic orbit
containing elements of both cycles could exist nearby in the state space.

We now move on to describing the morphology of the periodic flow states in this flow
regime. At the parameter values discussed in this section, the mean flow structure of
all limit cycles remains quasi-columnar (i.e. min ux(x, 0) = ux(R∞, 0)), and the unsteady
flow patterns are not strongly affected by the parameters. Figure 6 presents mean and
instantaneous flow visualisations of the |m| = 1 and |m| = 2 limit cycles at (Re, S) =
(150, 2) along with a depiction of the corresponding steady flow. Animated visualisations
of these periodic flow states have also been provided in supplementary movies 1 and
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2, available at https://doi.org/10.1017/jfm.2021.615, respectively. Note that the phase
references selected to define θ = 0 and t = 0 for these visualisations are arbitrary due to
the system’s θ and t invariance. This invariance property also allows the time evolution of
non-axisymmetric structures to be understood equivalently by rotation. In forward time,
translation along θ proceeds in the opposite direction as the motion of the unsteady
structures due to our convention that the signed value of m be non-positive.

Beyond their distinct azimuthal periodicities, the |m| = 1 and |m| = 2 limit cycles
correspond to completely different patterns of unsteady flow which lead to major
differences in their overall structure and dynamics. The leading |m| = 1 limit cycle is
associated with Kelvin–Helmholtz-like roll-up of the shear layer surrounding the jet. On
an instantaneous basis, this limit cycle manifests itself as a nearly helical, counter-rotating,
co-winding flow structure concentrated near the pipe exit. Based on this topology, it seems
likely that the |m| = 1 oscillation is driven primarily by the shear mechanism discussed
in § 1. The |m| = 1 oscillation does not significantly alter the quasi-columnar jet’s mean
momentum distribution over the parameter range studied here as there is relatively small
topological difference between the axisymmetric mean flow associated with the |m| = 1
limit cycle and the corresponding steady flow at identical parameter values. This similarity
between the steady and mean flow fields is further demonstrated by the small effect of the
|m| = 1 oscillation on min ux(x, 0) as apparent in the bifurcation diagrams of figure 5.

The leading |m| = 2 limit cycle represents an oscillation of the swirling jet which is
strikingly similar to the pre-breakdown |m| = 2 instability described in the experiments
of Billant et al. (1998). The unsteady flow features a large, slowly co-rotating spiral
structure which yields distinctive trident- and S-shaped flow patterns when visualised via
meridional and axial slice planes, respectively. Unlike the relatively small and almost
helical vortex roll-up associated with the |m| = 1 oscillations, the |m| = 2 limit cycle
features substantial velocity fluctuations which extend several diameters axially and
radially from the pipe exit. This reach leads to much higher entrainment of the fluid
surrounding the jet than is present in either the steady flow or the |m| = 1 limit cycle
states. Because the jet’s momentum is vigorously redistributed radially outward by these
oscillations, there are significant differences between the topology of the mean flow states
and the corresponding steady flow states. Even though the mean flow associated with the
|m| = 2 oscillations is quasi-columnar at Re = 150 in the sense that there is no centreline
stagnation zone, the additional mixing provided by the unsteady flow leads to a region
of strongly non-parallel flow in the vicinity of the pipe exit. This abrupt deflection of the
mean flow leads to a significant reduction in the minimum centreline velocity associated
with the |m| = 2 limit cycle as shown in figure 5. Nonetheless, as the Reynolds number
increases and the oscillation amplitude rises, the growing momentum deficit near the
centreline eventually gives rise to an off-axis precessing stagnation point, triggering vortex
breakdown.

Before ending this section, we briefly address the periodic solutions present in the
quasi-columnar regime at higher Reynolds numbers. Many of these periodic orbits feature
multi-valued solution manifolds, and their structures are associated with a broad range of
wavenumbers and frequencies. For this reason, we only provide some illustrative examples
of the numerous limit cycles which come into existence as Re increases. Figure 7 displays
a bifurcation diagram showing the dynamics of the quasi-columnar flow oscillations
at Re = 300 alongside corresponding visualisations at selected points. Animations are
also given for the m = 0 and |m| = 3 oscillations in supplementary movies 3 and 4,
respectively.

The counter-rotating |m| = 1 and co-rotating |m| = 2 limit cycles shown in the
bifurcation diagram of figure 7 exhibit similar dynamics and structures to their lower-Re
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Figure 7. Visualisations of selected limit cycles at Re = 300 at the points indicated by the small points in
the corresponding bifurcation diagram. Flow visualisations follow the format of figure 6, although only a
single meridional and axial slice plane is shown for each solution. Recall that the arrows on the axial slice
planes indicate the motion of the dotted line showing the plane intersections, not the motion of the flow field.
Three-dimensional representations are also provided in the case of the m = 0 and |m| = 3 limit cycles.

analogues, albeit with higher oscillation amplitudes. One key distinction, however, is that
an entire ‘family’ of structurally similar, slowly co-rotating |m| = 2 cycles are apparent
rather than a single |m| = 2 oscillation, testifying to the strong non-normality arising in
the system as Re increases. Moreover, the diagram also indicates the presence of new
counter-rotating |m| = 2 limit cycles. These oscillations are associated with a separate
instability which will be discussed below alongside figure 10.

For now, we will turn our attention to solutions with other wavenumbers, beginning
with m = 0. The axisymmetric oscillation bifurcates in a subcritical manner from the
steady flow at S = 1.718 but its solution curve almost immediately turns forward in a
saddle-node bifurcation. This oscillation leads to the formation of axisymmetric vortex
rings near the pipe exit which, as shown in supplementary movie 3, propagate downstream
along the jet’s shear layers. Like the |m| = 1 shear layer oscillations studied above, the
m = 0 limit cycle has an almost negligible effect on the mean flow. However, compared
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with the ‘bending’ |m| = 1 oscillations, these ‘bulging’ m = 0 structures are both more
stable (in the sense that they require higher Re and S values to bifurcate) and weaker
(as their overall amplitude is smaller). The clear difference between these results and
those in experiments which often include axisymmetric vortex shedding at pre-breakdown
conditions (Billant et al. 1998; Loiseleux & Chomaz 2003; Liang & Maxworthy 2005)
is noteworthy. This distinction may be related to the jet exit profile, as those experiments
tend to have thinner boundary layers while the jet profile used here is fully developed.
As shown by Michalke (1984), the inviscid linear dynamics of fully developed jets is
dominated by |m| = 1 disturbances, while jets with thinner boundary layers tend to prefer
m = 0 modes. In either case, Michalke’s (1984) review for non-swirling jets suggests only
passive convective instability, a viewpoint also supported by the experiments mentioned in
§ 1. Nonetheless, as our results do show evidence of self-excited behaviour for both m = 0
and |m| = 1 modes at moderate swirl levels, it seems likely that sharper shear layers would
preferentially promote the axisymmetric oscillation.

Figure 7 also highlights the role of higher-wavenumber oscillations in the dynamics at
Re = 300. While the amplitudes of these |m| ≥ 3 instabilities are clearly dwarfed by the
|m| = 2 ‘Billant’ instability discussed earlier for all relevant S, their dynamics may still be
relevant to physical situations. In particular, the emergence of the |m| = 3 oscillation at
relatively low S and high Re in our results is qualitatively consistent with the experimental
observations of Billant et al. (1998) and Liang & Maxworthy (2005), although their
transitions occurred at significantly higher Reynolds numbers. This indicates that a
periodic attractor with |m| = 3 which bifurcates from the steady flow could be responsible
for their observed transition. Furthermore, the demonstrated existence of other limit cycle
states with even higher periodicities suggests that such structures may represent relevant
attractors for certain other high-Re conditions.

5.2. The vortex breakdown regime
In this section, we turn our focus to the various periodic states present at intermediate swirl
levels where the steady flow transitions from a quasi-columnar jet to a lateral jet along the
dump plane wall. According to figure 4, the steady flow solution manifold in this regime
is characterised by multivaluedness over 2 � S � 2.1. The drastic changes in steady
flow topology and recirculation characteristics associated with the vortex breakdown
phenomenon correspond to similarly dramatic shifts in the behaviour of the periodic
solutions. As before, the number of periodic solutions present at intermediate swirl rises
dramatically as the Reynolds number increases. For practical reasons, we have therefore
limited our analysis in this section to Re ≤ 200.

Beginning with the case of Re = 150, the evolution of the periodic solutions with
changing S are shown in the bifurcation diagrams and visualisations of figure 8. The
solutions detailed in this diagram begin near the end of the quasi-columnar flow regime at
S = 2. As the rotation is increased beyond this value, the vortex breakdown phenomenon
begins to manifest itself on the periodic and steady solutions. However, compared to the
steady solutions, the periodic solutions clearly require a higher value of S in order to form
a central recirculation zone. We suspect that this may be attributed to the increased mixing
associated with the oscillations resisting the central momentum deficit required to yield an
internal stagnation point. Nonetheless, once the central recirculation zone does form, the
|m| = 1 and |m| = 2 oscillations are both rapidly quenched as the bubble enlarges. Both
the |m| = 1 and |m| = 2 oscillations restabilise before the first saddle-node bifurcation of
the steady flow is encountered at SB, leading to a brief interval of stability of the steady
flow corresponding to a steady ‘bubble’ breakdown state.
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Figure 8. Bifurcation diagram for Re = 150 at intermediate swirl showing the evolution of the minimum
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using the format of figure 6 at the indicated points. Only one phase point of the instantaneous flow is shown.
Note that the three-dimensional isocontours from this figure onward correspond to radial velocity fluctuations,
unlike the isocontours for axial velocity fluctuations shown in § 5.1.

As S decreases along the intermediate solution manifold after reaching SB, the steady
solution curve is initially only unstable with respect to a non-oscillatory m = 0 mode
as discussed in § 4.1. However, |m| = 1 and 2 Hopf bifurcations eventually do give rise
to non-axisymmetric periodic solutions which branch from the steady solution. These
limit cycle oscillations feature cone-shaped central recirculation zones which are clearly
different from the bubble-shaped recirculation zones associated with their analogues
along the upper solution manifold. Nonetheless, the unsteady structures and frequencies
associated with both oscillations remain qualitatively similar to the |m| = 1 and |m| = 2
structures from before.

We now proceed to a higher Reynolds number case at Re = 200. Figure 9 includes all
of the periodic solution branches detected on the presented interval. Clearly, many more
distinct limit cycles are present at Re = 200 than at Re = 150, indicating a dramatic rise in
complexity. Nonetheless, it should again be emphasised that even more complex behaviour
is possible. The system may support or favour quasiperiodic and/or chaotic attractors over
the purely periodic solutions considered here.

The analysis in § 4 indicated that several different instabilities with |m| = 1 and |m| = 2
exist at Re = 200. The periodic solutions present in the quasi-columnar flow regime before
breakdown can be seen in figure 9 as the periodic solution curves with non-zero amplitude
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showing the evolution of the minimum centreline velocity, amplitude and frequency with S. The periodic
solution branches are labelled sequentially in the order of appearance of their terminal bifurcation points along
the steady flow solution curve.

at S = 2, i.e. curves 1–5. The solutions numbered 1 through 3 consist of a family of
slowly co-rotating |m| = 2 oscillations which include the |m| = 2 instability described
in § 5.1 on branch 1 and other similar, but more spatially extended oscillations on branches
2 and 3. These branches disappear as the penetration depth of the jet decreases with
increasing S due to the higher entrainment and, eventually, the emergence of the central
stagnation region. Similarly, solution branch 4, an |m| = 1 oscillation, represents the same
|m| = 1 instability of the quasi-columnar flow seen in figure 8. Neither the morphology
nor the frequency of the |m| = 1 oscillation changes significantly from the Re = 150 case,
although its dynamics does show a pleated pair of saddle-node bifurcations at Re = 200
which was not present before. Finally, solution branch 5 corresponds to a counter-rotating
|m| = 2 oscillation which was also apparent in figure 7.

Visualisations of the flow structures on branch 5 are shown in figure 10 and animated in
supplementary movie 5. In the quasi-columnar flow regime, its unsteady motion takes the
form of a long, counter-rotating, co-winding double spiral. As the rotation increases, this
structure gradually moves upstream until it eventually interacts with the recirculating flow
along the wall near the pipe exit. Even when the flow along the centreline is everywhere
positive, these strong near-wall velocity fluctuations produce powerful Reynolds stresses
which greatly assist entrainment and dramatically distort the mean flow near the pipe
exit in comparison with the steady flow. As S increases further, the growing interactions
between the near-wall fluctuations and the mean flow reduce the penetration of the jet and
cause the outer recirculation features to further dominate the flow dynamics. Eventually,
this dynamics reaches a crux signalled by the appearance of a saddle-node bifurcation
concurrent with stagnation of the on-axis flow. From this point onwards, the separation
vortex overwhelmingly dominates the flow behaviour, rapidly pulling the initial stagnation
point open into a massive region of reversed flow which deflects the jet radially outwards
until it attains a wall-jet morphology and eventually terminates along the lower part of the
steady solution manifold.

After the emergence of the central recirculation zone, the periodic solution curves
consist of co- and counter-rotating |m| = 1 and |m| = 2 oscillations superposed upon
non-columnar mean flow fields. For example, representative visualisations of solution
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Figure 10. Visualisation of the flow structures at two points along branch 5 of figure 9. Both representations
are extracted from the volume (x, r, θ) ∈ [−2, 10]× [0, 6]× [0, 2π].

branch 6, which corresponds to a co-rotating |m| = 1 oscillation, are shown in figure 11
and supplementary movie 6. Initially, the morphology of the solutions on branch 6 take
the form of a gently azimuthally precessing ellipsoidal ‘bubble’ recirculation region
with a counter-winding spiral tail similar to the structure described in the simulations
of Ruith et al. (2003). It is clear by comparison with the steady flow solutions along
the intermediate manifold that these |m| = 1 oscillations dramatically limit the size of
the mean recirculation zone. However, as S decreases in this unconfined flow, the small
recirculation bubble rapidly opens up into a much larger asymmetric cone structure
resembling the observations of Billant et al. (1998).

As another example, solution branch 7, which corresponds to counter-rotating |m| = 2
oscillations, is visualised in figure 12 and supplementary movie 7. The unsteady
structures on curve 7 take the form of vortex filaments arranged in a co-winding
double spiral concentrated along the shear layers between the jet and the inner and
outer recirculation zones. These shear layer fluctuations greatly enhance mixing of the
jet fluid with its surroundings. At first, these oscillations primarily entrain fluid from
the central recirculation zone, causing the time-averaged central recirculation zone to
radially compress and axially elongate relative to the corresponding steady flow field.
This ‘squeezing’ of the central bubble allows the solutions along curve 7 to exhibit more
negative velocities along the axis than the steady flow and stalls the expansion of the
central bubble with decreasing swirl. However, as rotation further decreases and the central
recirculation bubble begins to swell, these oscillations begin to instead favour entrainment
from the outer recirculation zone. This transition reverses the previous trend whereby the
mean central vortex bubble is compressed, rather causing the central recirculation zone
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Figure 11. Visualisation of the flow structures at S = 2.05 along branch 6 of figure 9. The visualised volume
is (x, r, θ) ∈ [−2, 10]× [0, 6]× [0, 2π].
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Figure 12. Visualisation of the flow structures at two points along branch 7 of figure 9. In both cases, the
visualised volume is (x, r, θ) ∈ [−2, 10]× [0, 6]× [0, 2π].

to expand to a larger size than is seen in the steady flow. Nonetheless, this expansion
of the central vortex weakens the oscillation, leading to a complex chain of nonlinear
behaviours which manifest a pleated pair of saddle-node bifurcations and ultimately result
in the demise of the solution curve.

For completeness, we also briefly describe the solutions along branches 8–10.
Solution branch 8 is a co-rotating |m| = 2 instability as shown by the representative
visualisations in figure 13 and supplementary movie 8. The solutions on branch 8 can
be interpreted as the |m| = 2 analogue of the |m| = 1 solutions on branch 6. That is,
they correspond to oscillatory motions featuring a pulsating, non-axisymmetric ellipsoidal
recirculation bubble with a counter-winding spiral tail. This structure closely resembles the
‘double-helical’ breakdown mode described in the Grabowski–Berger vortex simulations
of Ruith et al. (2003). Much like the solutions on branch 6, these oscillations retard the
expansion of the time-average central recirculation zone as S decreases in comparison
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Figure 13. Visualisation of the flow structures of branches 8 (top row) and 9 (bottom row) of figure 9. The
representations correspond to the visualisation volumes (x, r, θ) ∈ [−2, 10]× [0, 6]× [0, 2π] and (x, r, θ) ∈
[−4, 20]× [0, 12]× [0, 2π], respectively.

with the corresponding steady flow solutions. Visualisations of representative solutions
along curve 9 are also shown in figure 13 and in supplementary movie 9. Unlike branch 8,
the |m| = 1 oscillations on branch 9 do not have a significant influence on the overall size
of the recirculation zone of the mean flow. Nonetheless, these oscillations do introduce
a sizeable non-axisymmetric component to the central recirculation zone which causes
a gentle, large-scale precession resulting in an asymmetric cone state similar to that
described by Billant et al. (1998). Finally, solution branch 10 represents a higher-Re
occurrence of the same post-breakdown |m| = 1 oscillation shown at Re = 150 in figure 8.

5.3. The wall-jet regime
After the flow transitions from a quasi-columnar jet to the wall-jet regime, the steady flow
solution manifold once again becomes single valued for S � 2.2. As shown in figure 4,
a co-rotating |m| = 1 instability appears in this high-swirl regime for sufficiently high
Re. Note that this instability belongs to a different neutral curve than the other |m| = 1
modes described in this study. Although other instabilities will certainly appear in this
flow regime at higher parameter values, we detected no additional bifurcations for S ≤ 3
and Re ≤ 300.

A bifurcation diagram and visualisation of the mean and instantaneous flow for the
|m| = 1 limit cycle in the wall-jet regime at Re = 300 is presented in figure 14. A
video showing the periodic motion through a complete oscillation is also included in
supplementary movie 10. This limit cycle bifurcates in a supercritical manner with respect
to its neutral curve and consists of a co-rotating, counter-winding radial spiral structure
along the shear layer separating the spreading jet from the centrally recirculating fluid.
This is clearly different from the |m| = 1 shear layer instabilities covered earlier (e.g. at
S = 2.05, ReL in figure 3) which instead feature oscillations localised to the shear layer
separating the jet from the outer recirculating fluid. Nonetheless, this oscillation does not
significantly influence the mean distribution of momentum, as can be seen by comparing
the steady and time-averaged flows. Unlike the instabilities analysed earlier, this limit cycle
generates a small, but noticeable, motion in the pipe immediately upstream of the dump
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Figure 14. Bifurcation diagram and visualisations for the |m| = 1 limit cycle in the wall-jet regime at
Re = 300.

plane due to a slight precession of the leading stagnation point near the exit plane. This
suggests that at parameter values beyond those investigated here, the onset of breakdown
in the pipe may be linked to three-dimensional (rather than axisymmetric) motions due
to downstream conditions related to the dynamics of the free jet after it exits the pipe.
This bears certain similarities to the three-dimensional scenarios for vortex breakdown
of columnar flows in finite-length rotating pipes discussed by Wang et al. (2016). Their
linear analysis focused on the dynamics of propagating Kelvin waves which are trapped
by the asymmetric streamwise boundary conditions and showed that, in certain cases, the
primary instability in swirling pipe flow is non-axisymmetric. The configuration studied
here, on the other hand, is much more complex, involving additional physical mechanisms
both within and beyond the pipe as well as nonlinear effects.

5.4. Discussion: overall limit cycle characteristics
This subsection reviews the results of our analysis of the swirling jet’s periodic solutions
and discusses them in the context of existing literature. Just as in § 4.3, the various limit
cycle solution curves can be interpreted as solution manifolds over the (Re, S) parameter
space. However, many of these solution manifolds are multivalued over a significant
portion of the parameter space due to subcritical bifurcation behaviours or other nonlinear
effects and almost all overlap with other limit cycle manifolds in the (Re, S) space.
These qualities make a clear, global visualisation of the limit cycle dynamics analogous
to figure 4 difficult to realise. Nonetheless, the results show that a variety of different
limit cycle structures ranging in periodicity from 0 ≤ |m| ≤ 5 and exhibiting both co-
and counter-rotating temporal behaviours and diverse spatial structures exist over a large
portion of the parameter space.

The fact that limit cycle states with different periodicities, rotation directions, and
winding orientations exist at identical points in the parameter space is remarkable.
Throughout the literature of swirling flows, there is a wide range of reported properties
of the observed periodic structures. For example, Ruith et al. (2003) noted in their
survey that confined experiments have typically reported co-winding spiral structures
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while unconfined experiments have favoured the counter-winding orientation. Liang &
Maxworthy (2005) have similarly emphasised differences in the structures’ observed
rotation direction and speed across different studies. In our study, we have not found any
evidence to support the idea that the limit cycle states have a global preference toward a
single rotation or winding direction. However, we have not carried out the Floquet analyses
necessary to ascertain the limit cycles’ stability characteristics, which could be biased
toward particular rotation or winding traits. This indicates an important direction for future
work.

Another important takeaway from this section is the significance of high-order
bifurcation behaviours. Limit cycle oscillations stemming from supercritical Hopf
bifurcations with a third-order normal form have been documented in swirling jets by
several authors (Liang & Maxworthy 2005; Oberleithner et al. 2011; Meliga et al. 2012;
Manoharan et al. 2020). However, we are not aware of swirling jet studies which have
conclusively demonstrated the type of fifth- or higher-order Hopf bifurcations recorded
here, although hysteresis behaviour consistent with this idea has been reported (Billant
et al. 1998; Moise 2020). Aside from its physical implications, this is an important
distinction because standard weakly nonlinear methods which employ a third-order
Stuart–Landau amplitude (Sipp & Lebedev 2007; Meliga et al. 2012; Manoharan et al.
2020) cannot capture these types of bifurcation behaviours. Several of the bifurcations
recorded in our study would require a higher-order weakly nonlinear expansion (e.g.
Barkley, Tuckerman & Golubitsky 2000) to be modelled appropriately. Moreover, our
results did not show any specific link between the nature of a bifurcation and the azimuthal
periodicity, rotation direction, or winding orientation of its ensuing limit cycle structures.
Indeed, the super- or sub-critical nature of a bifurcation is determined by nonlinear effects
stemming from interactions among the limit cycle fundamental, its harmonics and the
mean flow. Such behaviours cannot be understood based purely on linear dynamics,
although, as pointed out by a referee, the presence of subcritical dynamics in swirling
jets does underscore the significance of the linear transient growth phenomena due to
non-normality.

Lastly, we consider the role of unsteady nonlinear interactions in the jet’s limit cycle
dynamics. Harmonic interactions represent a key aspect of any nonlinear oscillation.
However, as evidenced by Sipp & Lebedev (2007), in certain cases, their dominant
effect amounts to a steady Reynolds stress which only impacts the mean flow, while, in
others, they also lead to significant Reynolds stress oscillations which directly influence
the flow’s oscillatory behaviour. While modelling the latter situation requires nonlinear
methods, in the former case, a linear analysis about the mean flow (based upon either
a nonlinear calculation or an experimental measurement) can often assess some aspects
of the oscillation such as its linear stability, relative shape and frequency with fair
accuracy (Barkley 2006). This raises an important practical question: Is mean flow stability
analysis a robust technique for characterising certain features of limit cycle oscillations in
swirling jets? A recent analysis by Manoharan et al. (2020) has demonstrated that, in the
specific situation of a turbulent swirling jet where the limit cycle oscillation appears at a
supercritical Hopf bifurcation, the mean flow analysis approach is effective. However, it
remains to be seen whether the same is true in general.

This question was addressed by performing linear stability calculations on mean flow
fields associated with the limit cycle states presented above at several representative
conditions, and comparing them with linear calculations from the steady flow and the
fully nonlinear results. The results of this analysis are given in table 2, along with the
percentage of the unsteady kinetic energy contained in the limit cycle fundamental. Many
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Re S |m| Visualisation %KEf f σM fM σS fS

150 2.000 1 Figure 6 Movie 1 92.2 −0.1432 0.0417 −0.1501 0.1454 −0.1403
150 2.000 2 Figure 6 Movie 2 74.3 0.0349 0.1383 0.0373 0.1055 0.0433
300 1.987 0 Figure 7 Movie 3 94.7 0.4618 −0.0625 0.4792 0.1272 0.4523
300 1.367 3 Figure 7 Movie 4 84.3 0.1011 0.0370 0.1033 0.0397 0.1044
200 2.000 2 Figure 10 Movie 5 77.3 −0.0167 −0.0109 −0.0227 0.3398 0.0214
200 2.050 1 Figure 11 Movie 6 84.3 0.0237 −0.0014 0.0247 0.0034 0.0038
200 2.075 2 Figure 12 Movie 7 88.3 −0.0427 −0.0103 −0.0415 −0.1253 −0.0379
200 2.073 2 Figure 13 Movie 8 93.0 0.0215 −0.0019 0.0225 0.0035 0.0229
200 2.036 1 Figure 13 Movie 9 97.6 −0.0021 −0.0002 −0.0021 0.0008 −0.0015
300 2.766 1 Figure 14 Movie 10 99.2 0.7258 −0.0007 0.7258 0.0208 0.7268

Table 2. Comparison of selected nonlinear limit cycle results with frequency predictions from linear stability
calculations about the mean flow and steady flow. Here, %KEf is the percentage of the unsteady kinetic energy
contained in the limit cycle fundamental, f is the nonlinear limit cycle frequency, σM and fM are the growth
rate and frequency of the mean flow eigenvalue and σS and fS are the growth rate and frequency of the steady
flow eigenvalue. Movies are available at https://doi.org/10.1017/jfm.2021.615.

of these cycles clearly do not satisfy the marginal stability property (Sipp & Lebedev
2007), (i.e. σM = 0) implying that unsteady harmonic interactions do influence the limit
cycle dynamics. Nonetheless, the results also indicate that, in most cases, surprisingly
accurate estimates of the limit cycle oscillation frequency can be obtained using mean
flow stability analysis, even when the growth rate is not small. Similar determinations
have been reached for swirling jets in the turbulent regime by Oberleithner et al. (2011),
Tammisola & Juniper (2016) and Mukherjee et al. (2021), in addition to the more formal
demonstration mentioned above by Manoharan et al. (2020). This outcome is particularly
convenient for the interpretation of experimental data, where time averages are readily
accessible. Of course, for computations, the mean flow itself must be determined prior to
applying this analysis.

6. Conclusion

This investigation characterises the dynamics of an unconfined, fully developed swirling
jet using bifurcation analysis. It shows how variations in the swirl ratio S and Reynolds
number Re affect the morphology of the system’s steady and time-periodic solutions
and how the state-space topology of the associated solution manifolds are linked to the
physical structure of the flow. The swirling jet transitions from a quasi-columnar jet along
the central axis at low S to a radial jet along the dump plane wall at high S. In between
these limits, a nonlinear exchange of stability occurs due to a competition between two
low pressure regions: a central region which is associated with vortex breakdown, and
an outer region which forms due to entrainment of the ambient fluid exterior to the jet.
This transition in flow structure is linked to a cusp bifurcation within the steady solution
manifold which manifests parameter hysteresis over a small range of S ∼ 2 for Re > 47.1.

Beyond certain critical parameter values, the steady solution manifold becomes unstable
toward infinitesimal perturbations which break the time and azimuthal symmetry of the
steady system. Over the range of parameters investigated, the initial Hopf bifurcations
are always associated with |m| = 1 or |m| = 2 disturbance modes. Additional instabilities
corresponding to unsteady m = 0 and |m| ≥ 3 perturbations only occur at points on the
solution manifold where at least one |m| = 1 or |m| = 2 mode is already unstable. The
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neutral curves associated with each linear disturbance mode represent the intersections of
the various periodic solution manifolds and the steady solution manifold in the state space.
The nonlinear limit cycle solutions which stem from these neutral curves are associated
with both super- and sub-critical bifurcation behaviour. In the physical space, the limit
cycle solutions display a wide array of three-dimensional, co- and counter-rotating flow
structures which often exhibit very different time-averaged flow patterns compared against
their steady counterparts at identical parameter values. Many of these structures bear
strong resemblances to coherent structures reported in previous experiments. For example,
the |m| = 2 limit cycle in the pre-breakdown regime at Re = 150 (see figure 6) is
reminiscent of the |m| = 2 instability detailed by Billant et al. (1998). Similar parallels
may also be drawn between the |m| = 1 (figure 11) and |m| = 2 (figure 13) periodic
solutions which occur in the vortex breakdown regime at Re = 200 and the single and
double spiral forms of vortex breakdown reported in a broad range of swirling flows
including top-hat jets (Liang & Maxworthy 2005), the Grabowski–Berger vortex (Ruith
et al. 2003) and confined vortex tubes (Sarpkaya 1971), among others.

As remarked in § 1 and the previous paragraph, a unified framework that allows a global
understanding of a general swirling flow configuration, and the similarities or distinctions
between flow patterns across different flow configurations and parameter spaces, remains
a key open challenge for the community. The present work contributes to this broader
aim by definitively relating a suite of steady and time-periodic states in fully developed
laminar swirling jets with flush injection into a semi-infinite reservoir. Nonetheless, further
work will be necessary to extend these conclusions to a broader suite of swirling jet
arrangements including, in particular, jets with thinner boundary layers and with varying
levels of lateral and axial confinement. Additionally, limit cycle stability calculations (i.e.
Floquet analysis) should be performed to identify transition to quasiperiodic and other
higher dimensional dynamical behaviours.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.615.
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Appendix A. Mesh sensitivity analysis

This appendix serves to assess the sensitivity of the presented results to the properties of
the computational mesh. To achieve this, comparative calculations were performed against
the primary mesh M using four test meshes A0–A3 listed in table 3. The properties of
these test meshes were selected to separately assess specific details of the discretisation.
In particular, the meshes A0 and A1 are used to assess the sensitivity of the results to the
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Mesh � R∞ rh nt DOF SB SF SU fU SL fL

M 4 40 — 140 055 915 839 2.0856 2.0182 1.3262 7.4224× 10−5 2.0540 −0.23924
A0 6 40 1.0 151 854 993 481 2.0856 2.0182 1.3262 7.4224× 10−5 2.0540 −0.23925
A1 4 60 1.0 179 845 1 175 463 2.0856 2.0190 1.3212 7.5203× 10−5 2.0541 −0.23924
A2 4 40 1.5 312 875 2 041 894 2.0876 2.0197 1.3256 7.4182× 10−5 2.0552 −0.23967
A3 4 40 0.8 90 396 591 972 2.0836 2.0166 1.3124 7.3656× 10−5 2.0528 −0.23878

Table 3. Comparison of mesh properties and critical S and f values along the Re = 200 steady solution curve.
Here, rh is the mesh refinement factor relative to M based on edge vertex density, nt is the total number of
triangles and DOF is the total number of discrete degrees of freedom. As indicated in § 4, the saddle-node
bifurcations at SB and SF are associated with non-oscillatory m = 0 modes, while the Hopf bifurcations at SU
and SL are associated with oscillatory |m| = 2 and |m| = 1 modes, respectively.

position of the respective inlet and open boundaries, while A2 and A3 gauge the sensitivity
of the results to refining and coarsening the mesh, respectively.

Bifurcation diagrams for Re = 200 with varying S were computed on each mesh to
quantify the dependence of the results on the mesh properties. The curves are almost
indistinguishable from each other due to their similarity. To illustrate, the critical S and f
values associated with the bifurcation points are tabulated in table 3. These data indicate
excellent agreement across the various meshes as most numerical values are identical down
to at least three significant digits. Consequently, we consider the results obtained on mesh
M to be well converged.

Appendix B. Numerical methods for periodic orbits

This appendix further details the algorithms and numerical tools used to solve (3.18) and
allow the identification and continuation of periodic solutions as discussed in § 3.2.4. We
first direct our attention to the algorithms, beginning with the fixed-parameter solver which
iteratively refines an initial guess for a periodic orbit. This is analogous to the procedure for
steady states associated with (3.5). For convenience, we introduce the following notation
for the Nth-order discrete Fourier representation of a harmonic-balanced quantity with an
azimuthally m-periodic fundamental component in real arithmetic,

q̃N
m = (q̄0, Re{q̂m}, Im{q̂m}, . . . , Re{q̂Nm}, Im{q̂Nm})T. (B1)

The solution process is based on a block factorisation scheme which algebraically
isolates (3.18c) from the augmented system. In each step, we first find ṽN

m and ãN
m which

satisfy

J̃ N
m(q̃N

m, f )ṽN
m = R̃N

m(q̃N
m, f ), (B2a)

J̃ N
m(q̃N

m, f )ãN
m =

∂R̃N
m(q̃N

m, f )
∂f

, (B2b)
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where R̃N
m(q̃N

m, f ) is the combined residual of (3.18a) and (3.18b) in real arithmetic,

J̃ N
m(q̃N

m, f ) = ∂R̃N
m/∂ q̃N

m is the associated real Jacobian matrix given by

⎡
⎢⎢⎢⎢⎢⎢⎣

J0(q̄0) Re{H0(q̂
∗
m)+ H∗0(q̂m)} Im{−H0(q̂

∗
m)+ H∗0(q̂m)} . . .

Re{Hm(q̂m)} Re{Lm(q̄0, f )+ H∗m(q̂2m)} Im{−Lm(q̄0, f )+ H∗m(q̂2m)} . . .

Im{Hm(q̂m)} Im{Lm(q̄0, f )+ H∗m(q̂2m)} Re{Lm(q̄0, f )− H∗m(q̂2m)} . . .

...
...

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

, (B3)

and ∂R̃N
m/∂f = 2π(0,−MIm{q̂m}, MRe{q̂m}, . . . ,−NMIm{q̂Nm}, NMRe{q̂Nm})T. The

resolution of (B2) relies on iterative Krylov subspace methods as discussed below, and
a significant savings is realised by applying the same factorisation of the preconditioner
during the iterations for both equations.

Once intermediate vectors are obtained from (B2), the corrections which complete the
Newton step for (3.18) are determined via

δf = (φ̃
N
m)TṽN

m

(φ̃
N
m)TãN

m

, (B4a)

δq̃N
m = ṽN

m − ãN
mδf , (B4b)

where φ̃
N
m = (0, M�{q̂m},−M�{q̂m}, . . . , NM�{q̂Nm},−NM�{q̂Nm})T is a phase reference

derived by linearising (3.18c). Then, the solution is updated as (q̃N
m, f )← (q̃N

m, f )−
(δq̃N

m, δf ), and the process is repeated until the norm of the residual of (3.18) converges
within the tolerance.

After a branch of periodic solutions has been identified, parametric continuation is
performed using a Moore–Penrose predictor–corrector scheme in a similar manner to the
approach based on (3.9). In the case where the periodic state is initialised from a Hopf
point, the initial null vector is simply the bifurcating eigenvector. However, in general,
the harmonic-balanced null vector ỹ = (ỹN

q,m, ỹf , ỹα)T ∈ ker(J̃ N
m, ∂R̃N

0 /∂f , ∂R̃N
m/∂α) is

determined by setting ỹα = −1 and solving (B2b) and

J̃ N
m(q̃N

m, f , α)b̃
N
m =

∂R̃N
0 (q̃N

m, f , α)

∂α
, (B5)

where ∂R̃N
m/∂α is approximated via finite differences. With a bit of algebra, we then find

ỹf = (φ̃
N
m)Tb̃

N
m

(φ̃
N
m)TãN

m

, (B6a)

ỹN
q,m = b̃

N
m − ãN

mỹf . (B6b)

Once the null vector is known, the prediction is obtained as in § 3.2.1 using the
step parameter h. Next, the Moore–Penrose correction orthogonal to the null vector is
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determined by solving the augmented problem,⎛
⎜⎜⎜⎜⎜⎜⎜⎝

J̃ N
m(q̃N

m, f , α)
∂R̃N

m(q̃N
m, f , α)

∂f
∂R̃N

m(q̃N
m, f , α)

∂α

(φ̃
N
m)T 0 0

(ỹN
q,m)T ỹf ỹα

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎝

Δq̃N
m

Δf

Δα

⎞
⎟⎠ =

⎛
⎜⎝
RN

m(q̃N
m, f , α)

0

0

⎞
⎟⎠ .

(B7)
As in the steady case, (B7) is broken up and solved using a bordering algorithm. The null
vector is determined using (B2b), (B5), (B6), and (B4a) to find ãN

m, b̃
N
m, ỹf , ỹN

q,m and δf .
We then solve (B2a) and back out the Moore–Penrose Newton correction algebraically via

Δα = (ỹN
q,m)TṽN

m + [yf − (ỹN
q,m)TãN

m]δf

1+ (ỹN
q,m)Tỹq + y2

f

, (B8a)

Δf = δf − yf Δα, (B8b)

Δq̃N
m = ṽN

m − ãN
mΔf − b̃

N
mΔα. (B8c)

Finally, the solution and null vector are updated as before until reaching convergence. For
efficiency, the same factorisation of the preconditioner is applied for all of the corrector
iterations, and the continuation process follows the same convergence requirements and
adaptive sizing strategy as described in § 3.2.1.

To conclude, we describe the preconditioned iterative methods used to resolve the linear
systems arising at each Newton step in the above algorithms. While a detailed analysis
and optimisation of these numerics is beyond the scope of this study, we have found the
GMRES algorithm (Saad & Schultz 1986) to be both a computationally tractable and
numerically robust approach when used in conjunction with a suitable preconditioner
and a backward-stable projection step. Our implementation leverages a block-Jacobi
right preconditioner based on memory-efficient low-rank approximate factorisations for
the blocks along the main diagonal of the Jacobian matrix using the block low-rank
capability of MUMPS (Amestoy et al. 2001). After applying the preconditioner, the
Arnoldi iterations are performed using the iteratively refined Gram–Schmidt routine
available in PETSc (Balay et al. 2020). With this approach, the dimension of the Krylov
subspace required to attain convergence of the linear systems ranges from O(10) to O(100),
with faster convergence occurring when harmonic interactions are small and the diagonal
blocks are dominant.
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