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Abstract

A study is made of a non-linear diffusion equation which admits bifurcating
solutions in the case where the bifurcation is asymmetric. An analysis of the
initial-value problem is made using the method of multiple scales, and the
bifurcation and stability characteristics are determined. It is shown that a
suitable interpretation of the results can lead to determination of the choice of
the bifurcating solution adopted by the system.

1. Introduction

In a recent paper, Benjamin [1] has argued strongly that symmetric bifurcations
having the form shown in Fig. l(a) rarely occur in nature. An inhomogeneity in a
physical system may cause a departure from symmetry and the resulting bifur-
cation picture may well be more likely to have the structure shown in Fig. l(b).
It is certainly true that there are many known instances when Fig. l(b) applies
rather than Fig. l(a). The classical Benard convection problem in fluid mechanics,
for example, results in symmetric supercritical bifurcation, but factors such as
variations in fluid properties and surface tension gradients transform the situation
into the asymmetric picture of Fig. l(b).

(a) Symmetric bifurcation
I

(b) Asymmetric bifurcation
Fig. 1
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Our object in this paper is to outline a simple technique for dealing with asym-
metric bifurcations. By way of motivation, consider the boundary-value problem

Xv — av2-v3 = 0, 0 < x < n,) .

where X, a are real constants, and where a prime denotes differentiation with
respect to x. The eigenvalues of the linearized problem occur at the points
?. = n1, n = 1,2,3,..., and the structure of the equation suggests that the bi-
furcation curve emanating from each eigenvalue may have the form shown in
Fig. l(b).

Confining our attention to the neighbourhood of the first eigenvalue X = 1, we
can determine the bifurcating solution by applying the standard Poincare-
Linstedt method. We introduce a real parameter e whose norm is a measure of
the norm of the bifurcating solution, and write

V(X)=EV1(X)+E2V2(X)+...,

A - l = e A 1 +

Substituting (1.2) into (1.1) and equating to zero coefficients of like powers of e,
we obtain a sequence of boundary-value problems as follows:

!/; + !>! = 0 , y1(0) = U l (^)=0, (1.3)

v'2 + v2 = - / . i vx+av\, t)2(0) = v2(n) = 0, (1.4)

V3 + v3= -?.2vl-A.lv2 + 2avlv2 + v\, v3(0) = v3(n) = 0, (1.5)

and similarly for higher order terms. Equation (1.3) has the solution

vt(x) = sin x. (1.6)

Application of the Fredholm alternative now shows that (1.4) has a solution if its
right-hand side is orthogonal to sin x. This requirement gives

and the solution of (1.4) is

—, (I-')
3n

v2(x) = - ( 3+cos2x+ -xcosx-4cosx ). (1.8)

The Fredholm alternative applied to the right-hand side of (1.5) yields the
expression

X2=i+ya\ (1.9)

where y is a constant obtainable from elementary integrations.
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To order e2 the bifurcation curve is now seen to have the form

A - l = — e+{i+ya2)e2. (1.10)
3

We observe that the second term on the right-hand side of (1.10) is much smaller
than the first unless a is itself very small, specifically, unless a and e are comparable.
If a is large compared with e, (1.10) describes a curve in the (A, e) plane which is a
slight departure from a straight line through the bifurcation point X = 1, £ = 0.
Jn this case (1.10) does not extend to the turn-around point of the bifurcation
curve in Fig. l(b), and therefore does not describe the most interesting feature of
the problem (1.1). If, on the other hand, a = O(s), then (1.10) does describe the
turn-around of the curve.

Since the quantity a is a measure of the degree of asymmetry, it follows from
the preceding discussion that a perturbation technique gives the most useful
results when the asymmetry is small. There are, in fact, many practical situations
in which asymmetry is small; the convection problems mentioned earlier belong
to this category. But when this is the case it should be possible to utilize the small-
ness of the asymmetry from the outset, and we propose to show in this paper how
this can be done. A parameter is introduced to measure the asymmetry, and a
perturbation based on the smallness of this parameter is developed. In this work
we demonstrate the technique by treating a particular model nonlinear diffusion
equation; the extension to more general problems, however, is fairly evident. In
addition to computing the solution branches we shall use the same perturbation
to determine their stability and to discuss their evolution from given initial states.

We shall consider the following non-linear partial differential equation:

— =—-+Xv-eav2-v3 (1.11)
dt dx2

in the domain t > 0, 0 < x < n. Here A, £ and a are real parameters where,
without loss of generality, we take e > 0 and a > 0. We shall look for solutions
in the form of perturbation expansions for £ sufficiently small. Equation (1.11) is
subject to the boundary conditions

v(0,t) = v(n,t)=0, t>0, (1.12)

together with initial conditions which will be specified later.
In Section 2 we solve the initial-value problem using a multiple scaling technique.

The solution obtained in this way enables us to determine the bifurcating branches
and their stability. In Section 3, we discuss the important role that asymmetry
plays in determining which of two stable branches a dynamical system chooses.
We shall show that, in a situation like Fig. l(b), the lower branch is in a specific
sense "more stable" than the upper branch, and is therefore the one more likely
to be selected by the system.
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2. Evolution of solutions

We outline now a method of solving the boundary-value problem (1.11)-(1.12)
together with the initial condition

00

v(x,0) = eh(x) = e £ hksinkx. (2.1)
k=\

We follow closely the procedure used by Matkowsky [3] and introduce a second,
slow time scale defined by

z = e21. (2.2)

Equation (1.11) then takes the form

dv 2 dv d v 23

dt dz dx2

and we assume the solution to have the structure

v(x,t,z,e) = e[uo(x,t,z)+e2u1(x,t,z)+...'}. (2.4)

Set X = 1 +£2 n, substitute (2.4) into (2.3) and equate coefficients of like powers of
e. We obtain a sequence of equations, the first two of which are

du0 , d2 u0 , . ,_ .,.

— ^ + -—°+Mo=0 (2.5)
ot ox

and
U0 (2-6)

dt dx2 dz

The boundary and initial conditions are respectively

u0 = 0, ux = 0 on x = 0,7t, (2.7)
and

uo(x, 0,0) = h(x), ih(x, 0,0) = 0. (2.8)

The solution of (2.5) satisfying the boundary conditions is

OO

uo(x,t,x)=Aol(z)sinx+ £ AOk(z)exp(-aki)sinkx, (2.9)
k = 2

where ak =k2-\ > 0 for k = 2,3,.... The slowly varying functions AOk(z) must
satisfy the initial conditions

AOk(0)=hk, A: = 1,2,.... (2.10)

The next step in the procedure is to substitute for u0 from (2.9) in the right-hand
side of (2.6), and to determine the functions AOk(z) such that the solution t/t
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satisfies the boundary conditions and is bounded on the fast time scale. Since the
terms corresponding to k ^ 2 in (2.9) are damped on the fast time scale, they have
no effect on the boundedness of ut. Thus we can write (2.6) in the form

du, d2u^ , dA01 . A . , 2 . . 2 , . .3 • 3
4. r+U] = — - sinx — fiA01 smx + aA^sm x+AoiSm x

dt ox dx
+exponentially damped terms. (2.11)

It is clear now that the equation determining AOi is obtained by applying the
Fredholm alternative to the explicitly stated terms on the right-hand side of
(2.11). (See [3] for further discussion of this point.) In this manner we obtain for
A01(x) the initial-value problem:

^ ^ ! = 0 , ^o i (0 )=* , . (2-12)
dx in 4

Equation (2.12) is a generalization of the celebrated Landau equation which
has been used to describe the evolution of disturbances in fluid dynamics stability
problems. An equation of the form (2.12) has been proposed in the study of
viscosity variations [4] and surface curvature [2] in the Benard convection problem.

Equation (2.12) can be written in the form

dx 4

where A(
o
l),AiQ) are given by

Clearly the solutions A(
o
l) and A ^ exist only when

,>-^)2; (2.15)

they coalesce when (2.15) becomes an equality.
The steady-state solutions of (2.13) are obviously the null solution, and the

solutions A{,U, A(
o
2) when (2.15) holds. Although the general solution to the initial-

value problem (2.13) can be written down, it is unnecessary to do so, since its
behaviour can be inferred from the following considerations. When p O w e
have that A(

o
l) > 0 > A(

o
2). If hx > A^\ the gradient A'0l is initially negative,

and remains negative for all x ^ 0. The solution therefore approaches Ag1'
asymptotically as T -• co. If o < ht < A^\ the gradient is initially positive and
remains positive, and the solution again tends to A(

o
l) as x-* oo. Thus for \i > 0

and hl > 0 the solution approaches A(
o
l) asymptotically as T-> co; the approach
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can be shown to be exponential. By similar reasoning we can see that for /i > 0
and ht < 0 the solution tends to Atf* as T-> OO. Hence we see that A^KAtfi are
both stable solutions when \i > 0.

In the subcritical regime, -%(l6a/9n)2 < n < 0, the situation is a little
different. Here we have that 0 > A^ > A\?\ Hence if At > 0 the gradient is
negative for all T ^ 0 and the solution tends to the null solution. If 0 > /i, > A^o

l),
the gradient is positive and the solution increases towards 0 as t-+oo. When
A(

o
i) > hi> A^ t n e gradient is negative and the solution decreases towards

AtfK Finally, when A(
0

2) > /I, the gradient is positive and the solution approaches
Atf) asymptotically as T -» oo. Thus, in the subcritical regime 0 and A(^) a r e s t a° l e

solutions.
Although we have not attempted to do so here, it is possible to show rigorously

that the results stated in the two preceding pargraphs are valid in the sense of first
approximations for small e.

3. Discussion

We have seen in the preceding sections that when n> fi, where

the system has three solutions (except when n = 0); one of these solutions is
unstable while the other two are asymptotically stable in the linear approximation.
The question then arises naturally, as n increases towards and beyond the bifur-
cation point, does the system prefer one or other of the two stable solutions or
are they equally likely to occur? Linear stability theory, which is concerned with
infinitesimal disturbances, cannot answer this question since it provides no
information regarding domains of attraction of stable solutions. Recently
Weinberger and Rosenblat [5] discussed this issue with respect to a dynamical
system subject to random noise, and indicated a possible answer in terms of the
probability that the system would eventually choose one of the stable solutions.
The analysis of Section 2, however, enables us to discuss the question in deter-
ministic terms.

When n < p. the system "ocupies" the null solution which is in fact globally
stable. Suppose that \i is increased very gradually, and consider the behaviour of
the system when p. < n < 0. For each fie(fi,0) there are disturbances which will
displace the system from the null solution and cause it to move towards the lower
branch A'0

2). Specifically, these are disturbances for which /ij is negative with
\h1\>\Ai

0
1)\. Since A'0

1) -> 0 as \i-> oo, the magnitude of h^ at which this "snap-
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through" occurs can become smaller and smaller. In other words, if the system is
subject to a disturbance with /», < 0, however small, it will snap-through to the
lower branch Atf* before n has reached the bifurcation value 0.

The restriction hx < 0 is in practice not significant. In a laboratory situation
both positive and negative disturbances can be expected to occur, and it requires
only one negative disturbance to cause snap-through. In an experiment it might
be possible to control the magnitude, H, say, of all possible disturbances, but it
seems highly improbable that one could control their sign. Our discussion suggests,
however, that no matter how small H is, snap-through from the null solution to
the lower branch will eventually take place.

We can summarize these results in the following way.

Let H > 0 be arbitrarily small. Then there exists p. =ji(H)e(fi,0) such that, for
each ue(/Z, 0), there is an h(x) with \\h(x)\\ < H for which the solution of the initial-
boundary-value problem

— = — + u+e2(nu-au2-u3),
dt dx2 ) (3.2)

JU(0,0 = W(TI,0=0, u(x,0) =

tends as t —> ao to u<2^(x), where

u(2)(x)=A(i3
2)sinx + O(e2) (3.3)

is a steady solution of (3.2).

Suppose now that, somewhere in the interval fi < fi < 0, the system occupies
the solution A^ as a result of snap-through. The next point to consider is whether
and under what circumstances it will snap back to the null solution. The appro-
priate initial-boundary-value problem for disturbances in this case is obtained by
setting u(x,t) = u{2\x)+U(x,t) in (3.2). We obtain

U2-U3))^+U+e(nV2au U a U u U u U )
dt dx2 (3.4)

) = U(n,t)=0, U(x,0) = h(x).

This system can be analysed in precisely the same way as was done in Section 2,
and it is unnecessary to present the details. In fact the results for (3.4) can be
deduced from a suitable interpretation of the results of Section 2. If ht < 0 the
solution of (3.4) tends to the null solution (that is, the lower branch) as t -* oo.
Similar behaviour occurs if 0 < hx < A^-A^. It follows that all disturbances
to the lower solution are damped if their norm is less than A^-A^, ar>d t r " s

quantity increases monotonically as n increases from fi towards 0. Therefore if we
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set a limit H to the magnitude of disturbances there will be a range of values of n
close to 0 for which the system cannot snap back to the (original) null solution.
In other words, we have the following result:

Let H > 0 be as in the previous result. Then there exists /; = fi(H)e(fi,0) such
that for each fie(fi,O) the solution of the initial-boundary-value problem (3.4)
tends to 0 as t -> oo for all h(x) such that \\h{x)\\ ^ H.

We conclude therefore that under normal circumstances the system will snap-
through to and remain on the lower branch, which is in this sense "more stable"
than the upper branch. Asymmetry, even though small, can play a decisive role
in determining the selection of alternative linearly stable branches.
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