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Abstract

In this note, for any given simple group obtained from an orthogonal or unitary group of non-
zero index, by a procedure similar to the construction of Chevalley groups and twisted groups,
we construct a simple group which is identified with the given simple classical group. The simple
groups constructed in this note can be interpreted as generalized simple groups of Lie type. Thus
all simple groups of Lie type of types An, Bn, Cn and Dn and all generalized simple groups of
Lie type constructed in this note exhaust all simple classical groups with non-zero indices.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 20 H 20.

In [3], by a similar method to that used in [4], [6], [2], we constructed a
family of simple groups associated with the Satake diagrams. The simple
groups associated with the Satake diagrams of types AIII, BI, DI are identified
with some simple groups obtained from the orthogonal or unitary groups
corresponding to the forms whose Witt indices and the anisotropic kernels
were not considered explicitly in [3]. In general, the simple groups of Lie
type of the types An, Bn, Cn, Dn are the linear and symplectic groups, and
orthogonal and unitary groups corresponding to the forms whose Witt indices
are sufficiently large. The remaining simple classical groups are not Chevalley
groups or twisted groups, that is, the simple groups of Lie type. In this
note, for constructing the remaining simple classical groups, we consider Witt
indices and the anisotropic kernels of the forms carefully and we get a method
which is similar to the method of [4], [6] and [2], and is more explicit than the
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54 Cheng Chon Hu [2]

method of [3]. By this method, for a simple classical group corresponding to
a given form, we construct a simple group which is identified with the simple
classical group. The simple groups constructed in this note can be interpreted
as generalized simple groups of Lie type. It follows that all simple groups of
Lie type of types An, Bn, Cn and Dn and all generalized simple groups of
Lie type constructed in this note exhaust all simple classical groups with
non-zero indices. Furthermore, in this note, we prove that every generalized
simple group of Lie type has a "quasi-Bruhat" decomposition which is a
generalization of the Bruhat decomposition of the simple groups of Lie type
and has a (B, N) pair. Thus, in this note, we prove that every simple classical
group has a "quasi-Bruhat" decomposition and has a (B, N) pair also.

Let AT be a field of characteristic not equal to 2.
Now, we shall consider the Witt index and the anisotropic kernel of a

Hermitian form or of a quadratic form.
(I) Let K be a field such that there is a non-trivial involutive automorphism

a of K. For each t e K, we write a{t) = t. Let V be a vector space of di-
mension n + 1 over K endowed with a non-singular Hermitian scalar product
which determines a Hermitian form / . We denote by v (or v(f)) the Witt
index of / . Then the Hermitian form /relative to the basis B = {v0, ...,vn}
has the form:

+ XnXo + -KiXn_i +Xn-iX\ + 1- Xv-iXn-v+\ + Xn-v+\Xv-\

k = n-2v, yi€K, ff(y,-) = y,-, i=l,...,k+l.

It is clear that (yi,y2»--->y*+i)> denoted by Ao(/), is associated with the
anisotropic kernel of the form / . Clearly, we have Y^=i 7iUU ^ 0 for all

t

(II) Let V be a vector space of dimension n + 1 over K endowed with a
non-singular symmetric scalar product which determines a quadratic form / .
We denote by v (or v(f)) the Witt index of / . Then the quadratic form /
relative to the basis B = {VQ,••.,vn} has the form

/ = xoxn + +

k = n-2v, yt€K, i = 1,..., k + 1.

It is clear that (y\,y2,---,yk+i)> denoted by Ao(/), is associated with the
anisotropic kernel of the form / . Clearly, we have J2*i=i 7^} ¥=• 0 f° r au<

We will use the notations defined in [1] without explanation.
Henceforth, we fix a form / which is a Hermitian form of a quadratic

form and we denote by v the Witt index v{f) of / .
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[3] Classical groups 55

Let B = {VQ, V\,..., vn} be a basis of vector space Vc of dimension n + 1
over C. Relative to the basis B, each linear transformation of Vc can be
expressed as an (« + 1) x (n + 1) matrix over C. Let L be the Lie algebra
of all (n + 1) x (n + 1) matrices of trace zero over C. Then L = An. Let
etj be the elementary matrix with (/, ̂ -coefficient 1 and other coefficients
0 and htj = en - ejj, 0 < i,j < n, i ^ j . Let h be the subalgebra of all
diagonal matrices in L. It is clear that L = h + Z),y> &eu is a r o ° t space
decomposition of L where Ce/y is the root space of L corresponding to the
co-root hij, 0 < i,j < n, i ^ j . Clearly, A is a Cartan subalgebra of L and h
is a subspace of L spanned by {hij, 0 < i,j < n, i ^ j} over C.

Let Bo = {eo,e\,...,en} be an orthonormal basis of a Euclidean space
of dimension n + 1. It is convenient that we denote by e, - e; the root
corresponding to the co-root h,j, 0 < i, j < n, i ^ j . Thus, the root system
4> of L relative to h can be expressed in the form {e, - ej, 0 < i, y < n,i ^ j'}
and A = {e, - e,+i,0 < i < n - 1} is a fundamental root system of <J>.

Let 6 be the map of BQ defined by 0(e,) = -?„_,, 6(en_,) = -e , ,0 < i <
v - l,O(ej) = -ej,v < j < n - v. Clearly, 0 can be extended as a linear
transformation of h which is denoted by 0 also, and 0 = XWQ where T is a
non-trivial symmetry of the Dynkin diagram of A and «>o is an element of
the Weyl group of <J>. For each r e $ , w e define r = 0(r) and r' = j(r + r).
Let Ao = {r e A; r' = 0} and 4>o = {r e O; r' = 0}. A Dynkin diagram of A is
called the diagram of form / if every root of Ao is denoted by a black node
and every root of A* = A\Ao is denoted by a white node, and two distinct
roots r\ and r-i of A* are joined by a curved arrow when r\ = r'2. Clearly, the
linear transformation 0 of A and the diagram of form / which is identified
with the Satake diagram of type AIII given in Table I are determined by v.
We define <D* = <D\<I>o; O, = {r € O*; r = r}; O u = O*\Of, O m = {re<Du;
r + r e $} ; O U a = O n \ O u 6 ; Olfc = {r + /•; r e O n 6 } ; O,a =

For Ao(/) = {yu y2, • • •, y*+i}, k = n - 2v, we define

Let Jv be the I / X I / matrix

Li
and let A be the matrix
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Clearly, Q,{A,-,-+i,0 < i < n — 1; e,;,0 < /,y < n, i ^ y} is a Chevalley basis
of L. Let Lz be the subset of all linear combinations of the elements of Cj
with the coefficients in Z of rational integers and LK = Lz ® K (see page 62
of [1]). We define a transformation />e of LK by Pe{M) = -AM'A~l, for all
Af e LK. Clearly, pe is an automorphism of LK- Since yl'yl"1 = / we have
pe(M) = M for all MeLK, so p\ = I where / is the identity map.

Clearly, <J>m = {±(e,-e7) , / = 0 , . . . , v - 1 , v + k + 1 , . . . , n , j = v,...,v+k}
and <J>i u O n a = {±(e, - ej),i,j = 0,...,v - \,v + k + \,...,n,i < j},
so we have pe(er) = -kref, r e <J>, er,er e Cb where Kr e K satisfy the
condition (A): AI, kr = 1 if r € On a u<t>\\ y, = y"11 if r = A(e, - ej) € Oni,,
y' = i/, . . . , i / + A:, / = 0,1, ,i/ — l,*/ + /c + l, ,/i ,A= 1 or—1; All, krk, = 1
and krk-r = 1 for all r 6 O.

We may summarize the results mentioned above as follows.

PROPOSITION 1. Let f be a Hermitian form or quadratic form such that
i/(f) = v and Ao(/) = (y\,yi,...,7k+i)- Then there exist a Chevalley basis
Cb = {hr, reA;er,re 4>} ofL = An, n = 2v + k and an involutive automor-
phism ps ofLK = Lz®K such that Pe(er) = -kre-r, r e $ , er, er € Cb where
kreK satisfy the condition (A) mentioned above.

Henceforth, we denote by F the non-trivial involutive automorphism a
of K if / is a Hermitian form, we denote by F the identity transformation
/ of K if / is a quadratic form, and we write F(t) = t for any t e K. We
denote by G the Chevalley group L{K) = {xr(t) = exp(tader); r e <&, t e K).
Clearly, F can be extended to an involutive automorphism F of G in this
way: F{xr{t)) = xr(t), r € <J>, t e K, Moreover, the involutive automorphism
Pe of LK can be extended to an involutive automorphism of G (denoted by
Pe also) in this way: pe(xr(t)) = xr{-kri), r € 4>, t e K. We define an
automorphism a of G by a = peF, so a(xr(t)) = xr(-krt), r e O, t e K
because kr = kr for all r e O. Obviously, we have pB = / and F2 = I and
PeF = Fpe, so a2 = I. Thus a is an involutive automorphism of G.

We define some notation and terminology which will be used later.
(I) If r € O,, X}{t) = xr(t),te Kr = {t€ KJ = -t}, W} = wr; hj(v) =

hr(v), v<=K;' = {veK;v = v}; N}{U) = nr(u), ueK;= Kr\0.
(Ha) If r € * n a , X){t) - xr(t)xf(-t), t<=Kr = K; W) = wrwr; hl

r(v) =
hr(v)hr(V), VGK;' = Kr\0; Nr

l(u) = nr(u)nf(-u), ueK? = Kr\0.
(lib) If r € O m , X}{t) = xr{t)xf{-krt)xr+r{-{NrMtt), t€Kr = K;

W} = wr+r, hl
r(v) = hr(v)hr(V), v e K*' = Kr\0; N}(u) = hr(u)nrnrnr,

UEK;1.

For each r e O*, we write r' = ^{r + r) and define I\(r) = {s & I(r);s > S},
where I(r) = { i e $ V = ir1, q = 1, \ or 2}.
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The following statement (B) is easily verified.
(BI) If r = X(ej - eq), j = 0, \,...,v - 1, q = n - j , r e Olfc, X = 1 o r - 1 ,

h(r) = {n = X(ej -ev-i+i), i = l,...,k+ 1; r = rp, p = k + 1 + 1},

I(r) = {r, = X{ej - ev-i+i), rt = X(e^i+i - eq),

i=l,...,k+l; r = rp, p = k+ 1 + 1}.
(Blla) If r e Oi ia, I\ (r) = {rp}, rp = r or T according to r > r or f > r, p =

1,1(r) = {r,r} (r * r).

(Bllb) If r G <D, lb, h (r) = h (r + r), I(r) = I(r + r),r + r

For any r e <D% we define K{r) = Kr, x • • • x Kr,, Xr{T) =
T = (ti,t2,-..,tP) € Jf(r), and D(T) = 2*+/ y,f,<,. We write A? = «r»r if
r 6 3>iia, Â

1 = nrnfnr if r e Onj , Â 1 = nr(uo), Mo being a fixed element of
K*r if r € O, and A:; ^ 0. Wedefine Wx = {w), r e * • ) , Â 1 = (N*{u), r e O*,
u e K;)\ Hl = Nl n # ; [ / ' = { « € f/; <j(«) = M}, Vl = {v e V; a{v) = v},
Gx = (Ul, V1), Go = {xa(t), a € O0, t e ^;/^>, 7 1 = Go n G1.

Clearly, for any form / given by (I) or (II), the group G1 is determined by
i/(/), Ao(/) and ^ , F , so we denote by ^n( i / ( / ) ,Ao(/) ;^ ,F) the group Gl.

We denote by <D+ (respectively O~) the positive (respectively negative)
root system containing A (respectively -A), clearly, we have <D+ = - O ~ .

We define <D*+ = <D* n <D+ and O*~ = -<D*+, Z;+ = {r e <S>*+;r > s,
s € /(r)} and i ; - = - Z ; + , A; = {r e A*; r > r} and O;+ = {r e *•+; r > f}.

Let WQ = (wa, a e O0) and ^ = WQ n ^ ' .
By [3] we have the following propositions and corollary immediately.

PROPOSITION 2. (a) Wl = {Wr
l, r e AJ; Wo

1}.

(b) Le/ rus e O*. TAen /Aere exwte w e JT1 ^MCA that (s[,r[) ^ 0, 5i =

(c) L^ 5 e O*. r/ie« rAere cxwr w eWl and re A} such that w(s) e /(/•).

PROPOSITION 3. (a) Let r e O;+, 5 e 2;+, r e K; and T e K(s). Then
X}{t),Xs{T) e Ul andXLr{t),X-s(T) e V1.

(b) £acA element u ofU1 (u ^ /) and each element v ofV1 {v ^ /) have
a unique expression in the forms

r, e o;+,sj e s;+,r, e ^;(, r, e K{Sj), Tj ? (0,...,0) - 0,

i = 1 , 2 , . . . , p , j = 1 , 2 , . . . , q , r i < r 2 < • • • < r p , s x < s 2 < • • • < s g .

n G o*+,Sj € z ; + , u e A , ; , r , e K(Sj), Tj ± o, i = l , 2 , . . . , / ,

j = \ , 2 , . . . , m , r l < r 2 < - - < r h s x < s 2 < ••• < s m .
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We shall define 7,(«) = {/•,}, Jx{v) = {-r,}; J{u) = { r , , . . . , r p } ; J(v) =
{-ri,...,-ri}, J{u)* = {si,...,sg}; J(v)* = {-sl,...,-sm}.

COROLLARY 1. Let r e A*, and U,T G K(r). Let u' = Nxu(Nx)-x and
u" = X-r(U)uX-r(-U), and v' = Nr

lv(Nr
l)-x and v" = Xr{T)vXr{-T)

where u e Ul and v eVl satisfy r $ J(u)* and -r £ J(v)*. Then u', u" e Ul

and v',v" 6 V1 satisfy r $ J{u')* U J(u")* and -r <£ J(v')* u J(v")*.

For each r G 4>n6, we write s = r + r and n = Nrj. By 6.4.4 and 5.2.2 of
[1], and n2 = 1, for each t e K*, we have

X}{t) = xr(t)xr(-krt)xs({rikrtt)

nrnrxr{t)xs(\nkrtt)x-f{2k-xrx)x-r{t-x)

x-r(r
l)h-r(-r

l)x
x-r(r

l)h-f(r
l)nrn,nr

= X-r(2rl)hnrnfnrX-r(2rl)

where h = h-r(r
l)h-s{2kr-

lt-l)h-f(r
l).

Since X}{t),X]_r{2t~x) e C , we have hnrnrnr 6 6 ' . It is easily verified
that h = hls{i~l), so hl_s(i-

l)nrn,nr e Gl where t = ttkr.
By the statement mentioned above and [3] we have the following proposi-

tions and corollary immediately.

PROPOSITION 4. (1) Hx c Nl c Gl and Nl/Hl s Wl.
(2) For any r ed> ' , / € Kr, N}Xr{t)N} = X-r{u), u e Kr.

PROPOSITION 5. (a) Let y eYx, h e Hl and n G Nx. Then hyh~x,nyn~x

(b) Hx c Yx c Gx and for each r G O * , hx(v) &Hx,ve K;'.
(c) Let r e i ; = i ; + u Z p , T G AT(r) and y eYx. Then yXr{T)y~x =

xr(T'), r e Kir).
(d) Let u G Ux, v G F 1 a«rfy G y1. TAe« yw}'"1 G Ux andyvy~x G F1.
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COROLLARY 2. UlYl = YlUl and Bx = UXYX is a subgroup ofGx.

For each r e A*,, Ao is said to be connected with r if there is a e Ao such
that (r, a) ^ 0. We denote by Ar the set {r, r) if Ao is not connected with r,
and the set Ao U {r,s} if Ao is connected with r, where s e A * satisfies r ̂  s
and r1 = s'. All such Ar are given in Table II. The following lemma is easily
verified.

LEMMA 1. (a) Let r e A}. Then 7,(r) = {s e <D;+; Wr
l(s) e <D~}.

(b) Let re A} and b e Bx. Then b = Xr(T)u'y', T e K(r), y' e Yx and
u' e Ux satisfy N}u'N) =u*e Ul.

For each r e AJ, let Or denote the root system with the fundamental Ar

and let 4>; = <J>f\Or n Oo.
Assuming Ar ^ {r, r}, the Satake diagram of Ar is given by Case 4 in Table

I of [3] (see Table I4 of [3]). We shall use the structure constants for each
pair of O; which are determined by Case 4 mentioned above in [3] (see page
21 of [3]). In this note, we write k + 1 instead of the n - 1 used in [3] and
p = (k + 1) + 1 instead of the n used in [3].

LEMMA 2. Suppose r e A J , / , (r) = {rx, r2,..., rk+u rp) and T = {tx,..., tp)
e K{r), T * 0. Then X.r(T) = Xr{T*)N}Xr{T* ')y, y e Y\ T, T*' e *( r ) .

PROOF. We shall consider the Cases 1, 2 and 3.
(I) Cases 1 and 2 are just the Cases 1 and 2 of Lemma 1 of [3]. Thus,

by the results of Lemma 1 of [3], our lemma is established immediately for
these Cases 1 and 2.

(II) Case 3 is just the Case 4 of Lemma 1 of [3]. We shall use the notations
used in the Case 4 of Lemma 1 of [3]. By the statement (A), we have k-n =
y"1 for all / = 1,2,.,.,k + 1. Since T ^ 0, there is an integer m, 1 < m <
k+\, such that tk+i = • • • = tm+i = 0 and tm ^ 0. We write / = -y~xtm and
rp = r0, and t0 = $nD(T) + e,ee Kro, S = - e , D{T) = £*+/ y"1/,?,. As in
the Case 4 of Lemma 1 of [3] we have

X . r ( T ) = Xl_ro(to)X
l_ri ( * , ) • • • Xl,^ ( t k + l )

where
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and

Since ?, = y,-, an y, ^ 0 for all / = 1,2,...,k + 1 and r / 0 we have

E?=i' ft'/'* * 0> '? = JT1^. i = I , . . . , * + I. Since e = - e and
D(T) = D(T) we have § ^ 0. Then, by a similar method to that used in the
proof of the Case 4 of Lemma 1 in [3], finally, we have

X-r(T) = Xr(T*)NxXr(T* ')y, y e Y\ T, T*' e K{r), Nx = nrnrnr.

The lemma is established for Case 3, and the proof is complete.

LEMMA 3. Let re A}. Then BxuBxNr
xBx is a subgroup ofG1.

PROOF. (1) By Proposition 4 and Corollary 2 we have {N})~1 = hN),
heH1 and Bl = (Bl)~i respectively. Thus we have

(2) In order to prove that B1 u BXN}BX is closed under multiplication
it is sufficient to show N)BXN) c Bl UBXN}BX. Let b e Bx. Then by
statement (b) of Lemma 1, we have x = N)bNx = X-r(T)u*y* where T e
K(r) and u* is an element of Ux as given in statement (b) of Lemma 1,
y* = Nxy'Nx e Yx. Suppose T ^ 0. Then it follows from Lemma 2 that
x = Xr(T')NxXr(T*')yu*y*, T*,T" € K{r), y € Yx. Thus by Proposition
5 we have x € BXNXBX. Suppose T = 0. Then we have x e Bx. We
may summarize the results considered above in a single formula as follows:
NXBXNX CBXUBXNXBX.

It follows from (1) and (2) that Bxl)BxNxBx is a subgroup of Gx.

LEMMA 4. Letr G A J andn e Nx. Then Bx nBx Nx Bx c BxnNxBxijBxnBx.

PROOF. Let w be the image of n under the natural homomorphism from
N onto W. Then w eWx. We shall consider two cases separately.

(1) Suppose w(r) e <J>+. Let b e B and x = nbNx. Then by state-
ment (b) of Lemma 1, we have x = nXr{T)u'y'Nx = nXr(T)n-xnu'y'Nx =
Xs{T')nNxu*y* where T e K(r), V e K(s), s = MinI(w(r)), and w* is an
element of Ux as given in statement (b) of Lemma 1 and y* = Nxy'Nx e Yx.
Clearly, we have s e Z*,+. Thus XS(T') e Ux c Bl, so BxnBxNr

xBx c
BxnNxBx.

(2) Suppose w(r) e O~. Let «i = nNx and Wi be the image of n{ under
the natural homomorphism from iV onto W. Then W\(r) e O+. It follows
from statement (1) above that BxnxB

xN}Bx c BxnxN)Bl. Clearly, we have
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[9] Classical groups 61

BxnxN
xBx cBxnxB

xNxBx. Thus BxnxB
lNxBx = BxnxN

xBx = BxnBx. By
Lemma 3 we have

BxnBxNxBx cBxnxB
xNxBxNxBx c BxnxB

x(Bx uBxNxBx)

= BxnNxBxUBxnBx.

The proof is complete.

THEOREM 1. LetG\ = BXNXBX. Then Gx is a subgroup of G1 andGx = Gx.

PROOF. (1) For each w e Wx we have w~l e Wx, so (AT1)"1 = Nx

by Proposition 4. It follows that (BXNXBX)-X = (BX)-X(NX)-X{BX)-X =
BxNlBx.

(2) In order to prove that Gx is closed under multiplication it is sufficient
to show BxnxB

xri2Bl c Gx for each pair nx,n2 € Nx. By Propositions 2
and 4 we have n2 = n^Nx

lN
x
2---N

x
h, r, e AJ, / = 1,2,...,A, n£ € iV1, the

image of n^ under the natural homomorphism from N onto Ŵ  being an
element w0 of W£. Thus we have nj 6 F 1 C 5 l , so we have BxnxB

xn2B
x c

BxnxB
xNr\B

xBxNx
2B

x-BxNr
x
hBx,rieA*I,i= 1,2 A. By Lemma 4 we

have

BxnxB
xn2B

x c (BxnxB
x UBxnxNr\B

x)BxNr\B
x •••BxNr\B

x

C- CBXNXBX.

By statements (1) and (2) above, Gi is a subgroup of G1.
Since 5 1 , AT1 c <7i, we have C/1, Vx c Gi. It follows that Gx = Gx.
Let Wx* = WX\WX and AT1* = (A?, r e A*,). By Propositions 2 and

4, for each w e W1*, we can choose an element nw of Nx* such that nw

corresponds to w under the natural homomorphism from N onto W. The
elements ««, for all w e W1* form a set AT1*. For each to 6 (f'*, we define

ul'~ = u-nux.
Since <D* n Oo = 0 . by Theorem 1, we obtain the following corollary

immediately.

COROLLARY 3. Gx = \Jw€Hn.BxnwBx = \JweWi.U
xYxnwUl~ {disjoint

union).

This disjoint union gives the decomposition of Gx into double cosets with
respect to Bx. This decomposition of G1 is called the quasi-Bruhat decompo-
sition of Gx. Clearly, this quasi-Bruhat decomposition of G1 is a generalized
Bruhat decomposition of Steinberg groups and Chevalley groups. For each
T e K(r), T^0,reA% we have D(T) ^ 0 since D(T) defined in this note
is associated with AQ( / ) . Thus, the group G1 constructed in this note has the
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quasi-Bruhat decomposition Gl = BlNlBl which is more explicit than the
quasi-Bruhat decomposition G1 = BlNlV1Bl (not unique) given in [3] for
the groupG1 constructed in [3].

Henceforth, we assume A" is a field of characteristic p > 5 and assume
v(f) > 2 if / is a quadratic form.

By [3], we have the following lemma immediately.

LEMMA 5. Let r,s e O*+ such that r1 ^ s'. Then there exists h(x) € Hl

such that X(r) = I, x(s) ¥= 1 or x(s) = 1, x(r) * 1, and X(P) = 1 far all

COROLLARY 4. Suppose f is a Hermitian form and rltr2 € <J>*+ such that
^ r2 and r\ ^ r2. Then there is h(x) e Hx such that xifi) = ±1,

or xfo) = ±\, X(ri)

COROLLARY 5. Suppose v(f) > 2. Then for any r e O n / , n I?,+, T e K(r),
T ^ (0,..., o, tp) there are sx e O* and u e K*t such that

x = Xs\ (u)Xr(T)Xs\ (-u) = X} (v), seQucve K;.

PROOF. Since r € $ n j we have ro = r + r e 4>u, so r$ = e^- em where
m — n - h and h is an integer satisfying 0 < h < v - 1. Then we have
I \ ( r ) = { r i , r 2 , . . . , r k + l , r p = rQ} w h e r e r,- = e / + I / _ , - e m , i = l , . . . , k + 1.
Since T ^ (0,...,0,tp) there exists at least tj e K*, 1 < j < k + 1. Since
v{f)>2 there exists î = ep - e/+I,_i € On A where p is an integer satisfying
0 < p < v - 1 and p ^ h. Let M e #*. Then, by 5.2.2 of [1] we have
X^(u)Xr(T)Xs\(-u) = Xs{ktjU) where s = ep - em e Ol la and X = 1 or - 1 .
Since tj ^ 0 and M ^ 0 we have XtjU € AT*, so the corollary follows.

Using a similar method to that used in [3], by Lemma 5, the following
corollary is easily verified.

COROLLARY 6. Let n e W*. Then there exists h(x) € H1 such that
nh{X)n~x = h(x') ? h(X) and X(fi) = x'iP) = 1 far all p e <D0.

LEMMA 6. Suppose y eY and y ^ I. Then
(1) y $ Z l where Z l is the centre ofG1, and
(2) there exists w e t / 1 such that yuy~lu~l — u* ^ I or there exists

v e V1 such that yvy~lv~l = v* ^ I.

PROOF. It is clear that statement (1) and statement (2) are equivalent. We
shall prove statement (1).
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By a similar method to that used in Lemma 6 of [3], the following state-
ment (C) is easily verified.

(C): Suppose y e Z1. Then y = h(xo)nw, w e Wo.
(1) Suppose y e Z 1 and w / / . Then there exists r € <J>n6 such that s / r

and s ^ r, s = w(r). Then we have X}(\)yX}{-\) ^ y. Thus we have a
contradiction.

(2) Suppose y € Z1 and w = I. Then by statement (C) we have y =
^(*o) ¥= I- Thus it follows from (4.B) of [3] that there exists r e O* such that
;fo(r) ^ 1. Then we have X}{\)yX}{-\) ^ y. Thus we have a contradiction.

By the results of Cases (1) and (2) mentioned above we have y £ Z1 .
The proof is complete.
For each r € <DJ+, we define X) = {X)(t), t runs through Kr).
We shall denote by Rl an arbitrary normal subgroup of Gl satisfying \Rl \ >

1.
Using the results mentioned above, by a similar method to that used in

[3], the following lemmas, corollary and theorem are easily established.

LEMMA 7. \RlnUl\>l.

LEMMA 8. There exists r e <&*,+ such that \Rl n X} \ > 1.

LEMMA 9. For every s € <J>}+, X} c R1.

COROLLARY 7. Ul,Vl cRl.

THEOREM 2. Gl is a simple group.

Clearly, A*t can be expressed in the form A| = {/•,-, i e /} where / is a finite
set of indices. We shall denote by «, the element A^ and denote by tu, the
element Wjj where i e / . We denote by Â 1 the subgroup of iV1 consisting of
all elements of iV1 which correspond to the elements of W^ under the natural
homomorphism from N onto W.

THEOREM 3. The subgroups Bl,Nl form a (B, N)-pair in Gx.

PROOF. We shall verify that the subgroups Bl,Nl satisfy the axioms BN1-
BN5 in Section 8.2 of [1].

(1) By Theorem 1, Gx is generated by Bl and NK
(2) It is easily verified that B1 r\Nl = iVjJ and Â 1 is a normal subgroup of

l
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(3) Clearly, for any i e I, n, corresponds to IO, under the natural homomor-
phism from N onto W. Thus we have Nl/(Bl nNl) = Nl/N£ s Wl/Wo

x s
W1*, where Wx* is generated by {wh i e / } , wf = I for all / e / .

(4) By Lemma 4, for any n € JV1, / e / we have BlmBlnBl c BxntnBx U

(5) By Proposition 4, we have ntX}.ni = XLr., i e / , so «,5'/i, ^ 2?1 for all
i € / .

The proof is complete.
Let Bz be the set of all linear combinations of the elements of B

= {vo,...,vn) with the coefficients in Z of rational integers and let V =
Bz <8>z K- Then V is a vector space of dimension n + \ over K and B ® 1 =
{vQ®\,...,vn®\}, abbreviated to B, is a basis of V. Let 5D(/,) be the set of
all h x h diagonal matrices over K and U (respectively W) the set of all upper
(respectively lower) unitriangular matrices of SLn+i(K). For each form /
with matrix A relative to the basis B, we define

Uf = {Te V;T'AT = A}; Vf = {Te \;T'AT = A};

Hf = {HeSD(n+l);H'AH = A},

Yk+\

"h-Dv

N = ln = 'k+l

;Yk+leSLk+x{K),Dv,DZ&SD(v),Y'AY = A

;DU € SD(V),D
2

V = DV,DV = DVJV

(Ii, being the h x h identity matrix).

THEOREM 4. Let f be a Hermitian form or a quadratic form with matrix
A (relative to the basis B). Let v = v(f) be the Witt index of f and Ao(f) be
the anisotropic kernel of f. Then

F = I,

,F) = PSUn+l(K,f),

iff is a Hermitian form;

An(v(f),AQ(f);K,F) =

iff is a quadratic form.

PROOF. Clearly, we have tr: M —> -A~X~M'A for all M e LK and it has
been shown that G = An{K) consists of all the automorphisms of LK defined
by M — TMT~l, T e SLn+i(K) for all M e LK. We consider which of
these automorphisms T commute with a. In order for this to be so, T must
satisfy the condition -A~]'(7'-l)'~M'T''A = -TA~XJ}'AT-X which implies
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M'T'ATA'1 = T'ATA~XM'. As this holds for all M e LK we must have
T'ATA~X = XI for some X € K. Thus T'AT = XA. Suppose T is an upper
unitriangular matrix. Then by comparing the (0, ̂ -coefficients on each side
we have X= 1. Similarly, if T is lower unitriangular a comparison of (n,0)-
coefficients shows that X = 1. Thus the matrices T giving rise to the elements
of Ul and V1 are precisely the matrices of Uf and of Vf respectively. How-
ever, SUn+i(K,f) is generated by its Uf and Vf, and Qn+i(AT,/) is generated
by its Uf and Vf also (see the Appendix). Thus Gl, the group generated by
Ul and V1, consists of all transformations M -* TMT~\ M € L& where
T € SUn+i(K, f) if / is a Hermitian form, T e Sin+i(K, f) if / is a quadratic
form. Therefore, Gl is isomorphic to PSUn+l (K, / ) if / is a Hermitian form,
to P£ln+l(K, f) if / is a quadratic form. The proof is complete.

For each form / and each n of N, we define {U/)~ = {T e Uf,nTn~{ e
K/}; and 5 / = UfYf and JVy = i//N. By Theorems 2, 3 and 4 we have the
following theorems immediately.

THEOREM 5. (a) PSUn+x{K,f) = \Jn^UfYfn{Uf)-, F ± I {disjoint
union),

(b) P£ln+l(K,f) = UneN UfYfn(Uf)-, F = J (disjoint union).

THEOREM 6. (a) PSUn+l(K,f) has a (B,N) pair (Bf,Nf).
(b) Pnn+l(K,f) has a (B,N) pair (Bf,Nf).

TABLE I

III O
r

112 O
r

O
f

113 O- -o
s

TABLE II

REMARK. Suppose Ao = 0 . Then all the nodes of the Dynkin diagram of
the "A^-index" (A, Ao, a*) corresponding to the form / are white, and therefore
the group Gl = An(u(f),Ao(f);K,F) is a Chevalley group or twisted group.
Thus PSUn+\(K,f) and PCln+\(K,f) are the orthogonal and unitary groups
corresponding to the forms / whose Witt index is sufficiently large. So there
is no semi-simple anisotropic kernel for the form f, so Y1 = H' and Bl =
UlHl, and Bl is a Borel subgroup of Gl. Then Gl is fe-split (Chevalley form)
or fc-quasi-split (Steinberg form).
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Suppose Ao # 0 . Then there are some black nodes in the Dynkin diagram
of the "fc-index" (A, Ao, a*) corresponding to the form / . Thus PSUn+i (K, f)
and PGln+\(K, f) are the orthogonal and unitary groups corresponding to the
forms / whose witt index is not sufficiently large. There is a semi-simple
anisotropic kernel for the form / , so Yl ? H1 and Bl ^ UlHl, and Bx is
not a Borel subgroup of Gl. Then Gl is not fc-split or /c-quasi-split, so Gl is
a fc-non-split form.

Appendix

In this appendix, we shall prove the following statement.
(A) Suppose n > 5 and v(f) > 1. Suppose f is a Hermitian form (resp.

a quadratic form). Then PSUn+i(K,f) = (Uf,Vf) (resp. Piln+l(K,f) =
{Uf,Vf)).

This statement has been used in the arguments proving Theorem 4.
We first assume that / is a Hermitian form.
We shall denote by \M\ the determinant of a matrix M. For each basis

B = {vo, • • •»Vn} of V, there exists an (n + 1) x (n + 1) matrix W such that
W{vi) = «;, / = 0,...,n, where «; = vh i = 0,...,v - 1, vf = «„+„_,-,
/ = v,..., 2v - 1, v* = V-v+t, i = 2v,..., n. It is easily verified that B* =
{v£,...,v*} is a basis of V and W'W = I and

W~lAW = A* =

Clearly, the matrix A relative to the basis B* has the form A*. Let / be the
form with the matrix A relative to the basis B. Then / has the form /* with
the matrix A* relative to the basis B*. Let f* be the form with the matrix

[ i H relative to the basis B*. Let Ai e SD(k+X) be such that Ai - Ai = A
where A = AQ. We denote by Sp the set of all v x (k + 1) matrices over K,
and denote by Sau (respectively Sai) the set of all v x v upper (respectively
lower) unitriangular matrices over K. We define

(I)

(Is)

(Ha) T(H{) =

c

c,
Hx

1

4+i.

\ € Sau,
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(lib)

Classical groups 67

T(H2) =
H2

H2->

(Ilia) t/'«2.) =

(Illb) U2(Q2) =

(IVa)

(IVb)

h Qx

Qi Iu

h+\.

Hi € Sai,

GLV{K), Q\ = -Qi,

V2(P2) =

, Q2eGLv(K),Q'2 = -Q2,

h+x. _
-PxAxP'i Px

Iu_
-AP\ /fc+U

-P2AiP'2 Iv P2

-AP'2 / f c + i .

(V) X(Dl/) =
Dv Iu —.

V-Dv Dv

Pi

Dv € SD(V), D2=DV,

(VI) Y(U) =

(Vis)

Iu

\Iu

U

Ux.

h+x.

U e GLk+l{K), V'A0U = Ao,

Ui e SLk+l(K), U'IAQUI = Ao.

Henceforth, we assume n > 5, 1 < v < | n .

We denote by G* the group generated by all matrices Y(Ui), Ul(Qi),
U2(Q2), Vl{Pi), V2{P2), T{Hi) and T{H2) mentioned above.

We shall first show the following statements.

(Al) Let t e K* be such that tt = 1. Then there exists X e K* such that
t = XX-K

PROOF. Let e be a fixed element of K* satisfying e = -e and let KQ = {t e
K;I = t}. Therefore, we have t = a + be,a,be Ko. Since tt = a2- b2e2 = 1
there exist xo, j>o € KQ such that A = XQ + yoe e K* and (xo,yo) satisfies each
of the equations in (A. 1.1):

(A.1.1) (a-l)x-e2by = 0, bx-(a+l)y =

It is easily verified that XX ~l = t. The statement (Al) follows.

https://doi.org/10.1017/S1446788700031190 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700031190


68 Cheng Chon Hu [16]

(A2)

(1)
(2) 1 =

PROOF. Since (_?i o) = (o i ) ( - \ ° ) (o 1) statement (1) follows. Statement
(2) is clear.

The following statement is easily verified.

Y(U)T(C)Y(U)-1 = T(C); Y{U)X{DV)Y{U)-X = X{DV);

Y(U)T(Hi)Y(U)-1 = T{Hi), i = 1,2;

^ 1 ' i = 1,2;
1), i = 1,2.

For each X e K*, we denote by //,(A) the h x h matrix

(A3)

1

and we define

l j

D{k) =
r/.

(A4) Let T € SUn+i(K,f*). Then T can be expressed in the form

(a,4) T =V1{P2)T{CX)Y{UX)V\PX)X(DV),

where T(C\) and Y(U\) are matrices of types (Ib) and (VIb) respectively.
PROOF. By Theorem 3 of Section 8, Chapter 7 of [5], T can be expressed

in the form
T=V2(P2)T(C)Y(U)Vl(Pl)X(Dl/)

where T(C) and Y(U) are matrices of types (I) and (VI) respectively. Let
fi = \T(U)\. Then, by (Al), there exists X&K* such that Al"1 = / j , s o r has
the expression (a,4) where T{C{) = /(A)7*(C) and Y(Ui) = D{n~x)Y{U). It
is easily verified that T{C\) and Y{U\) are matrices of type (Is) and (Vis)
respectively. The statement (A4) follows.

(A5) SUn+i(K,DcG*.

PROOF. By the assertion given in 14.5.1 of [1], all matrices T(C{) of type
(Ib) belong to the subgroup of G* generated by all matrices T(HX), T(H2),
I/1 (GO and U2(Q2). Thus, by (A2) and (A4), statement (A5) follows.

We denote by G* the subgroup of G generated by all Ul{Qi), U2(Q2),
Vl(Pi), V2(P2), T(Hi) and T(H2) of type (III), (IV) and (II) respectively.
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(A6)

Classical groups 69

PROOF. By (A3), G* is a normal subgroup of G*. Clearly, all the matrices
T{Hi) and T(H2) of type (II) belong to PSUn+i(K,f). By Theorem 1 of
Section 2, Chapter 8 of [5], all the matrices UX{Q{), U2(Q2), Vl(Px) and
V2(P2) of type (III) and (IV) belong to PSUn+i{K,f*), so G* is a normal
subgroup of PSUn+l(K,f*). Since G* # {/} and PSUn+1(K,f*) is a simple
group we have PSUn+i{K,f*) = G*.

(Aa) L*r / be a Hermitian form. Then PSUn+i(K,f) = (Uf, Vf).
PROOF. Let Ma (respectively Mb) be the set consisting of all the matri-

ces Ul(Qi), Vl(Pi) and T(HX) of type (Ilia), (IVa) and (Ila) (respectively
U2(Q2), V\P2) and T(H2) of type (Illb), (IVb), and (lib)). Clearly, all
the matrices of Ma (respectively of Mb) are upper (respectively lower) uni-
triangular matrices relative to the basis B. Thus, it is easily verified that
Uf (respectively Vf) coincides with Ma (respectively Mb) relative to the
basis B. By (A6), PSUn+i(K,f*) = (Ma,Mb) relative to the basis B*, so
PSUn+i(K,f) = (Uf, Vf) relative to the basis B. The proof is complete.

We define

/(-!) =

ro I

1 0
h-\

h+i.

By a similar argument to that used proving statement (Aa), in which we
shall take the matrix / ( - I ) instead of the matrix I{X)D(fi~x), X,n € K*,
XX~l = n, the following statement (Ab) can be established immediately.

(Ab) Let fbea quadratic form. Then PQn+l(K,f) = (Uf, Vf).
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