CHARACTERISATION OF PRIMES DIVIDING THE INDEX OF A CLASS OF POLYNOMIALS AND ITS APPLICATIONS

ANUJ JAKHAR

(Received 16 January 2024; accepted 10 February 2024)

Dedicated to Professor Sudesh Kaur Khanduja

Abstract

Let \mathbb{Z}_K denote the ring of algebraic integers of an algebraic number field $K = \mathbb{Q}(\theta)$, where θ is a root of a monic irreducible polynomial $f(x) = x^n + a(bx + c)^m \in \mathbb{Z}[x]$, $1 \le m < n$. We say f(x) is monogenic if $\{1, \theta, \ldots, \theta^{n-1}\}$ is a basis for \mathbb{Z}_K . We give necessary and sufficient conditions involving only a, b, c, m, n for f(x) to be monogenic. Moreover, we characterise all the primes dividing the index of the subgroup $\mathbb{Z}[\theta]$ in \mathbb{Z}_K . As an application, we also provide a class of monogenic polynomials having non square-free discriminant and Galois group S_n , the symmetric group on n letters.

2020 Mathematics subject classification: primary 11R04; secondary 11R29, 11Y40.

Keywords and phrases: rings of algebraic integers, index of an algebraic integer, power basis.

1. Introduction and statements of results

Let $K = \mathbb{Q}(\theta)$ be an algebraic number field with θ in the ring \mathbb{Z}_K of algebraic integers of K and let f(x) of degree n be the minimal polynomial of θ over the field \mathbb{Q} of rational numbers. Let d_K denote the discriminant of K and D_f the discriminant of the polynomial f(x). It is well known that d_K and D_f are related by the formula

$$D_f = [\mathbb{Z}_K : \mathbb{Z}[\theta]]^2 d_K.$$

We say that f(x) is monogenic if $\mathbb{Z}_K = \mathbb{Z}[\theta]$, or equivalently, if $D_f = d_K$. In this case, $\{1, \theta, \dots, \theta^{n-1}\}$ is an integral basis of *K* and *K* is a monogenic number field. A number field *K* is called monogenic if there exists some $\alpha \in \mathbb{Z}_K$ such that $\mathbb{Z}_K = \mathbb{Z}[\alpha]$.

The determination of monogenity of an algebraic number field is one of the classical and important problems in algebraic number theory. An arithmetic characterisation of monogenic number fields is a problem due to Hasse (see [6]). Gaál's book [5] provides some classifications of monogenity in lower degree number fields. Using Dedekind's Index Criterion, Jakhar *et al.* [8] gave necessary and sufficient conditions

The author is thankful to IIT Madras for NFIG grant RF/22-23/1035/MA/NFIG/009034.

[©] The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

for $\mathbb{Z}_K = \mathbb{Z}[\theta]$ when θ is a root of an irreducible trinomial $x^n + ax^m + b \in \mathbb{Z}[x]$ having degree *n*, providing infinitely many monogenic trinomials. Jones [9] computed the discriminant of the polynomial $f(x) = x^n + a(bx + c)^m \in \mathbb{Z}[x]$ with $1 \le m < n$ and proved that when gcd(n, mb) = 1, there exist infinitely many values of *a* such that $\mathbb{Z}_K = \mathbb{Z}[\theta]$ where $K = \mathbb{Q}(\theta)$ and θ has minimal polynomial f(x). He also conjectured that if gcd(n, mb) = 1 and *a* is a prime number, then the polynomial $x^n + a(bx + c)^m \in \mathbb{Z}[x]$ is monogenic if and only if $n^n + (-1)^{n+m}b^n(n-m)^{n-m}m^m a$ is square-free. Recently, Kaur and Kumar [12] proved that this conjecture is true. Jones [11] gave infinite families of number fields *K* generated by a root θ of an irreducible quadrinomial, quintinomial or sextinomial for which $\mathbb{Z}_K = \mathbb{Z}[\theta]$. He also proved in [10] that if θ is a root of an irreducible polynomial of the type $f(x) = x^p - 2ptx^{p-1} + p^2t^2x^{p-2} + 1 \in \mathbb{Z}[x]$ and *p* is an odd prime with $p \nmid t$, then $\mathbb{Z}_K \neq \mathbb{Z}[\theta]$.

Let $K = \mathbb{Q}(\theta)$ be an algebraic number field where θ has minimal polynomial $f(x) = x^n + a(bx + c)^m$ over \mathbb{Q} with $1 \le m < n$. We characterise all the primes dividing the index of $\mathbb{Z}[\theta]$ in \mathbb{Z}_K . As an application, we provide necessary and sufficient conditions for $\mathbb{Z}_K = \mathbb{Z}[\theta]$. We also establish a more general result confirming [9, Conjecture 4.1]. Further, we give a class of monogenic polynomials of prime degree q having non square-free discriminant and Galois group isomorphic to the symmetric group S_q . In some examples, we determine the index $[\mathbb{Z}_K : \mathbb{Z}[\theta]]$ as well.

Throughout the paper, D_f will stand for the discriminant of $f(x) = x^n + a(bx + c)^m$ with $1 \le m < n$. Jones [9, Theorem 3.1] proved that the discriminant D_f is given by

$$D_f = (-1)^{\binom{n}{2}} c^{n(m-1)} a^{n-1} [c^{n-m} n^n + (-1)^{m+n} a b^n m^m (n-m)^{n-m}].$$
(1.1)

We prove the following result.

THEOREM 1.1. Let $K = \mathbb{Q}(\theta)$ be an algebraic number field with θ in the ring \mathbb{Z}_K of algebraic integers of K having minimal polynomial $f(x) = x^n + a(bx + c)^m$, $1 \le m < n$, over \mathbb{Q} . A prime factor p of the discriminant D_f of f(x) does not divide $[\mathbb{Z}_K : \mathbb{Z}[\theta]]$ if and only if p satisfies one of the following conditions:

- (i) when $p \mid a$, then $p^2 \nmid ac$;
- (ii) when $p \nmid a, p \mid b, p \mid c$, then m = 1 and $p^2 \nmid c$;
- (iii) when $p \nmid ac$ and $p \mid b$ with $j \ge 1$ as the highest power of p dividing n, then either $p \mid b_1$ and $p \nmid c_2$ or p does not divide $b_1[(ac^m)b_1^n + (-c_2)^n]$, where

$$b_1 = \frac{mabc^{m-1}}{p}, \quad c_2 = \frac{1}{p}[ac^m + (-ac^m)^{p^i}];$$

(iv) when p does not divide ab and $p \mid c$, then m = 1 and either $p \mid b_2$ with $p \nmid c_1$ or p does not divide $b_2[(ab)b_2^{n-1} + (-c_1)^{n-1}]$, where

$$b_2 = \frac{1}{p} [ab + (-ab)^{p'}], \quad c_1 = \frac{ac}{p} \quad and \quad n-1 = p^l s', p \nmid s';$$

Monogenic polynomials

3

(v) when p does not divide abc and $p \mid m$ with $n = s'p^k$, $m = sp^k$, $p \nmid gcd(s', s)$, then the polynomials

$$x^{s'} + a(bx+c)^s$$
 and $\frac{1}{p} \Big[pt(bx+c)^m - \sum_{j=1}^{p^{k-1}} {p^k \choose j} (x^{s'})^{p^k-j} (a(bx+c)^s)^j \Big]$

are coprime modulo p, where $t \in \mathbb{Z}$ is an integer such that $a = a^{p^k} + pt$; (vi) when $p \nmid abcm$, then p^2 does not divide D_f .

The following corollary is immediate. It extends the main results of [9].

COROLLARY 1.2. Let $K = \mathbb{Q}(\theta)$ and $f(x) = x^n + a(bx + c)^m$ be as in Theorem 1.1. Then $\mathbb{Z}_K = \mathbb{Z}[\theta]$ if and only if each prime p dividing D_f satisfies one of the conditions (i)–(vi) of Theorem 1.1.

If we take gcd(n, mb) = 1 and c = 1, then conditions (ii)–(v) of Theorem 1.1 are not possible. So in the special case when c = 1 and gcd(n, mb) = 1, the above corollary provides the main result of [12] stated below. This gives infinite families of monogenic polynomials and establishes a more general form of [9, Conjecture 4.1].

COROLLARY 1.3 [12]. Let $f(x) = x^n + a(bx + 1)^m \in \mathbb{Z}[x]$ be a monic irreducible polynomial of degree n with gcd(n, mb) = 1. Then $\mathbb{Z}_K = \mathbb{Z}[\theta]$ if and only if each prime p dividing D_f satisfies either (i) $p \mid a$ and $p^2 \nmid a$ or (ii) $p \nmid a$ and $p^2 \nmid D_f$.

The following proposition follows readily from the proof of Theorem 1.1(vi) and is of independent interest.

PROPOSITION 1.4. Let $f(x) = x^q + a(bx + c)^m \in \mathbb{Z}[x]$, $1 \le m < q$, be an irreducible polynomial of prime degree. If there exists a prime p such that p divides D_f and $p^2 \nmid D_f$ with $p \nmid abcm$, then the Galois group of f(x) is S_q .

The following result is an immediate consequence of Corollary 1.3 and Proposition 1.4. It provides a class of monogenic polynomials having non square-free discriminant and Galois group equal to a symmetric group.

COROLLARY 1.5. Let *m* be a positive odd integer and $f(x) = x^q + a(bx+1)^m \in \mathbb{Z}[x]$ be a polynomial having prime degree $q \ge 3$ with $q \nmid b$. If $a \notin \{0, \pm 1\}$ and D_f/a^{q-1} are square-free numbers, then f(x) is a monogenic polynomial having Galois group S_q .

The following example is an application of Theorem 1.1, Corollary 1.3 and Proposition 1.4. In this example, $K = \mathbb{Q}(\theta)$ with θ a root of f(x).

EXAMPLE 1.6. Let *p* be a prime number. Consider $f(x) = x^p + p(x+1)^{p-1}$. Note that $|D_f| = p^p(p^{p-1} - (p-1)^{p-1})$. Using Proposition 1.4, it is easy to check that the Galois group of f(x) is S_p . By Corollary 1.3, $\mathbb{Z}_K = \mathbb{Z}[\theta]$ if and only if $p^{p-1} - (p-1)^{p-1}$ is square-free. We now compute $[\mathbb{Z}_K : \mathbb{Z}[\theta]]$ for p < 20. For p = 2, 3, 7, 11, 17, it can be verified that the number $p^{p-1} - (p-1)^{p-1}$ is square-free; and hence $\mathbb{Z}_K = \mathbb{Z}[\theta]$. Next we calculate the exact value of $[\mathbb{Z}_K : \mathbb{Z}[\theta]]$ corresponding to p = 5, 13 and 19.

[3]

- (i) For p = 5, it can be easily checked that $D_f = 5^5 \cdot 3^2 \cdot 41$. In view of Theorem 1.1(i), 5 does not divide $[\mathbb{Z}_K : \mathbb{Z}[\theta]]$. Also, 3 divides $[\mathbb{Z}_K : \mathbb{Z}[\theta]]$ and 41 does not divide $[\mathbb{Z}_K : \mathbb{Z}[\theta]]$ by Theorem 1.1(vi). Since $D_f = [\mathbb{Z}_K : \mathbb{Z}[\theta]]^2 \cdot d_K$, where d_K is the discriminant of K, we see that $[\mathbb{Z}_K : \mathbb{Z}[\theta]]$ is 3 when p = 5.
- (ii) Consider p = 13. One can verify that $D_f = 13^{13} \cdot 5^2 \cdot 7 \cdot 67 \cdot 109 \cdot 157 \cdot 229 \cdot 313$. By Theorem 1.1(i), 13 does not divide $[\mathbb{Z}_K : \mathbb{Z}[\theta]]$. Also in view of Theorem 1.1(vi), 5 divides $[\mathbb{Z}_K : \mathbb{Z}[\theta]]$ and the primes 7, 67, 109, 157, 229, 313 do not divide $[\mathbb{Z}_K : \mathbb{Z}[\theta]]$. Since the exact power of 5 dividing D_f is 2, $[\mathbb{Z}_K : \mathbb{Z}[\theta]] = 5$.
- (iii) When p = 19, then one can check that the prime factorisation of D_f is given by $19^{19} \cdot 7^3 \cdot r$ with r a square-free number. Arguing as above, 19 and each prime p dividing r do not divide $[\mathbb{Z}_K : \mathbb{Z}[\theta]]$ and 7 divides $[\mathbb{Z}_K : \mathbb{Z}[\theta]]$. Therefore, $[\mathbb{Z}_K : \mathbb{Z}[\theta]] = 7$.

2. Proof of Theorem 1.1

In what follows, while dealing with a prime number p, for a polynomial h(x) in $\mathbb{Z}[x]$, we shall denote by $\bar{h}(x)$ the polynomial over $\mathbb{Z}/p\mathbb{Z}$ obtained by interpreting each coefficient of h(x) modulo p.

We first state the following well-known theorem. The equivalence of assertions (i) and (ii) of the theorem was proved by Dedekind (see [2, Theorem 6.1.4], [3]). A simple proof of the equivalence of assertions (ii) and (iii) is given in [7, Lemma 2.1].

THEOREM 2.1. Let $f(x) \in \mathbb{Z}[x]$ be a monic irreducible polynomial having the factorisation $\bar{g}_1(x)^{e_1} \cdots \bar{g}_t(x)^{e_t}$ modulo a prime p as a product of powers of distinct irreducible polynomials over $\mathbb{Z}/p\mathbb{Z}$ with each $g_i(x) \in \mathbb{Z}[x]$ monic. Let $K = \mathbb{Q}(\theta)$ with θ a root of f(x). Then the following statements are equivalent:

- (i) *p* does not divide $[\mathbb{Z}_K : \mathbb{Z}[\theta]]$;
- (ii) for each *i*, either $e_i = 1$ or $\overline{g}_i(x)$ does not divide $\overline{M}(x)$ where

$$M(x) = \frac{1}{p}(f(x) - g_1(x)^{e_1} \cdots g_t(x)^{e_t});$$

(iii) f(x) does not belong to the ideal $\langle p, g_i(x) \rangle^2$ in $\mathbb{Z}[x]$ for any $i, 1 \le i \le t$.

The next lemma (see [7, Corollary 2.3]) is easily proved using the binomial theorem.

LEMMA 2.2. Let $k \ge 1$ be the highest power of a prime p dividing a number $n = p^k s'$ and c be an integer not divisible by p. If $\bar{g}_1(x) \cdots \bar{g}_r(x)$ is the factorisation of $x^{s'} - \bar{c}$ into a product of distinct irreducible polynomials over $\mathbb{Z}/p\mathbb{Z}$ with each $g_i(x) \in \mathbb{Z}[x]$ monic, then

$$x^{n} - c = (g_{1}(x) \cdots g_{r}(x) + pH(x))^{p^{k}} + pg_{1}(x) \cdots g_{r}(x)T(x) + p^{2}U(x) + c^{p^{k}} - c$$

for some polynomials $H(x), T(x), U(x) \in \mathbb{Z}[x]$.

PROOF OF THEOREM 1.1. Let *p* be a prime dividing D_f . In view of Theorem 2.1, *p* does not divide $[\mathbb{Z}_K : \mathbb{Z}[\theta]]$ if and only if $f(x) \notin \langle p, g(x) \rangle^2$ for any monic polynomial

 $g(x) \in \mathbb{Z}[x]$ which is irreducible modulo p. Note that $f(x) \notin \langle p, g(x) \rangle^2$ if $\bar{g}(x)$ is not a repeated factor of $\bar{f}(x)$. We prove the theorem case by case.

Case (i): $p \mid a$. In this case, $f(x) \equiv x^n \pmod{p}$. Clearly, $f(x) \in \langle p, x \rangle^2$ if and only if p^2 divides ac^m ; consequently, $p \nmid [\mathbb{Z}_K : \mathbb{Z}[\theta]]$ if and only if $p^2 \nmid ac$.

Case (ii): $p \nmid a$ and p divides both b and c. In this situation, $f(x) \equiv x^n \pmod{p}$ and it is easy to see that $f(x) \in \langle p, x \rangle^2$ if and only if p^2 divides c^m . Therefore, $p \nmid [\mathbb{Z}_K : \mathbb{Z}[\theta]]$ if and only if $p^2 \nmid c^m$, that is, m = 1 and $p^2 \nmid c$.

Case (iii): $p \nmid ac$ and $p \mid b$. As $p \mid D_f$, it is clear from (1.1) that $p \mid n$. Write $n = p^j s'$, $p \nmid s'$. By the binomial theorem,

$$f(x) \equiv x^n + ac^m \equiv (x^{s'} + ac^m)^{p'} \pmod{p}$$

Let $\bar{g}_1(x) \cdots \bar{g}_t(x)$ be the factorisation of $h(x) = x^{s'} + ac^m$ over $\mathbb{Z}/p\mathbb{Z}$, where $g_i(x) \in \mathbb{Z}[x]$ are monic polynomials which are distinct and irreducible modulo p. Write h(x) as $g_1(x) \cdots g_t(x) + pH(x)$ for some polynomial $H(x) \in \mathbb{Z}[x]$. Applying Lemma 2.2 to h(x) and keeping in view that

$$f(x) = h(x^{p^{i}}) + a(bx)^{m} + {\binom{m}{1}}a(bx)^{m-1}c + \dots + {\binom{m}{m-1}}a(bx)c^{m-1}$$

with $p \mid b$, we see that

$$f(x) = \left(\prod_{i=1}^{t} g_i(x) + pH(x)\right)^{p^i} + pT(x)\prod_{i=1}^{t} g_i(x) + p^2U(x) + ac^m + (-ac^m)^{p^i} + ma(bx)c^{m-1}$$
(2.1)

for some polynomials T(x), $U(x) \in \mathbb{Z}[x]$. As $j \ge 1$, the first three summands on the right-hand side of (2.1) belong to $\langle p, g_i(x) \rangle^2$ for each i, $1 \le i \le t$. So $f(x) \in \langle p, g_i(x) \rangle^2$ for some i, $1 \le i \le t$, if and only if $mabc^{m-1}x + ac^m + (-ac^m)^{p^i} = p(b_1x + c_2)$ does so. Clearly, $p(b_1x + c_2)$ belongs to $\langle p, g_i(x) \rangle^2$ for some i if and only if either p divides both b_1 , c_2 or $p \nmid b_1$ and the polynomials $\overline{b}_1x + \overline{c}_2$, $x^n + \overline{ac^m}$ have a common root. One can easily check that the polynomials $\overline{b}_1x + \overline{c}_2$ and $x^n + \overline{ac^m}$ have a common root if and only if $(-\overline{c}_2/\overline{b}_1)^n = -\overline{ac^m}$, that is, if and only if $p \mid [(-ac^m)b_1^n - (-c_2)^n]$. Hence, $f(x) \notin \langle p, g_i(x) \rangle^2$ for any i if and only if either $p \mid b_1$ and $p \nmid c_2$ or p does not divide $b_1[(ac^m)b_1^n + (-c_2)^n]$. This proves the theorem in case (iii) by virtue of Theorem 2.1.

Case (iv): $p \nmid ab$ and $p \mid c$. In this case, $\overline{f}(x) = x^m(x^{n-m} + \overline{ab^m})$. If $m \ge 2$, then x is a repeated factor and it is easy to check that $f(x) \in \langle p, x \rangle^2$, that is, p always divides $[\mathbb{Z}_K : \mathbb{Z}[\theta]]$ by Theorem 2.1. So, assume now that m = 1. By (1.1), $p \mid (n-1)$, say $n-1 = p^l s'$ with $p \nmid s'$. Write $x^{s'} + ab = g_1(x) \cdots g_l(x) + pH(x)$, where $g_1(x), \ldots, g_l(x)$ are monic polynomials which are distinct as well as irreducible modulo p and $H(x) \in \mathbb{Z}[x]$. Applying Lemma 2.2 to $h(x) = x^{s'} + ab$, we can write $f(x) = x(x^{n-1} + ab) + ac$ as

$$f(x) = x \left[\left(\prod_{i=1}^{t} g_i(x) + pH(x) \right)^{p^l} + pT(x) \prod_{i=1}^{t} g_i(x) + p^2 U(x) + ab + (-ab)^{p^l} \right] + ac,$$
(2.2)

where T(x), U(x) belong to $\mathbb{Z}[x]$. Note that $x, \bar{g}_1(x), \ldots, \bar{g}_t(x)$ are distinct irreducible factors of $\bar{f}(x)$. Since $l \ge 1$, the first three summads inside the square bracket on the right-hand side of (2.2) belong to $\langle p, g_i(x) \rangle^2$ for each $i, 1 \le i \le t$. So $f(x) \in \langle p, g_i(x) \rangle^2$ for some $i, 1 \le i \le t$, if and only if $(ab + (-ab)^{p^l})x + ac = p(b_2x + c_1)$ does so. Clearly, the polynomial $p(b_2x + c_1)$ belongs to $\langle p, g_i(x) \rangle^2$ for some i if and only if either pdivides both b_2 , c_1 or $p \nmid b_2$ and the polynomials $\bar{b}_2x + \bar{c}_1$, $x^{n-1} + \bar{ab}$ have a common root. The polynomials $\bar{b}_2x + \bar{c}_1$ and $x^{n-1} + \bar{ab}$ have a common root if and only if $(-\bar{c}_1/\bar{b}_2)^{n-1} = -\bar{ab}$. Thus, $f(x) \in \langle p, g_i(x) \rangle^2$ for some i if and only if either p divides both b_2 , c_1 or $p \nmid b_2$ and $p \mid [(-ab)b_2^{n-1} - (-c_1)^{n-1}]$. So we conclude that p does not divide $[\mathbb{Z}_K : \mathbb{Z}[\theta]]$ if and only if m = 1 and either $p \mid b_2$ with $p \nmid c_1$ or p does not divide $b_2[(ab)b_2^{n-1} + (-c_1)^{n-1}]$. This proves the theorem in case (iv).

Case (*v*): $p \nmid abc$ and $p \mid m$. As $p \mid D_f$, p divides n in view of (1.1). Write $n = s'p^k$, $m = sp^k$ with $p \nmid gcd(s', s)$ so that $f(x) = (x^{s'})^{p^k} + a(bx + c)^{sp^k}$. Set $h(x) = x^{s'} + a(bx + c)^s$. Let $t \in \mathbb{Z}$ be an integer such that $a = a^{p^k} + pt$. Then one can easily check that $f(x) \equiv h(x)^{p^k} \pmod{p}$. Let $h(x) \equiv g_1(x)^{d_1} \cdots g_t(x)^{d_t} \pmod{p}$ be the factorisation of h(x) into a product of irreducible polynomials modulo p with $g_i(x) \in \mathbb{Z}[x]$ monic and $d_i > 0$. Write

$$f(x) = h(x)^{p^{k}} + pt(bx+c)^{m} - \sum_{j=1}^{p^{k}-1} \binom{p^{k}}{j} (x^{s'})^{p^{k}-j} (a(bx+c)^{s})^{j}.$$

Now $f(x) = (g_1(x)^{d_1} \cdots g_t(x)^{d_t})^{p^k} + pM(x)$ for some $M(x) \in \mathbb{Z}[x]$. Since k > 0, by Theorem 2.1, p does not divide $[\mathbb{Z}_K : \mathbb{Z}[\theta]]$ if and only if $\overline{M}(x)$ is coprime to $\overline{h}(x)$, which holds if and only if the polynomial

$$\frac{1}{p} \left[pt(bx+c)^m - \sum_{j=1}^{p^k-1} {\binom{p^k}{j}} (x^{s'})^{p^k-j} (a(bx+c)^s)^j \right]$$

is coprime to h(x) modulo p. This proves the theorem in case (v).

Case (*vi*): $p \nmid abcm$. Since $p \mid D_f$ and $p \nmid abcm$, it follows from (1.1) that $p \nmid n(n-m)$. Let β be a repeated root of $\bar{f}(x) = x^n + \bar{a}(\bar{b}x + \bar{c})^m$ in the algebraic closure of $\mathbb{Z}/p\mathbb{Z}$. Then

$$\bar{f}(\beta) = \beta^{n} + \bar{a}(\bar{b}\beta + \bar{c})^{m} = \bar{0}; \quad \bar{f}'(\beta) = \bar{n}\beta^{n-1} + \bar{m}\bar{a}\bar{b}(\bar{b}\beta + \bar{c})^{m-1} = \bar{0}.$$
 (2.3)

On substituting $\bar{n}\beta^{n-1} = -\bar{m}\bar{a}\bar{b}(\bar{b}\beta + \bar{c})^{m-1}$ in the first equation of (2.3), we see that

$$(b\beta + c)^{m-1}(ab(n-m)\beta + nac) \equiv 0 \pmod{p}.$$

Monogenic polynomials

Observe that $(b\beta + c) \neq 0 \pmod{p}$, otherwise $\beta = \overline{0}$ in view of the first equation of (2.3) which is not possible as $p \nmid ac$. Therefore, keeping in mind that $p \nmid abcn(n-m)$,

$$\beta \equiv -\frac{nc}{b(n-m)} \pmod{p} \tag{2.4}$$

is the unique repeated root of $\overline{f}(x)$ in $\mathbb{Z}/p\mathbb{Z}$ and it can be easily checked that β has multiplicity 2. Assuming that β is a positive integer satisfying (2.4), we can write

$$f(x) = (x - \beta + \beta)^{n} + a(b(x - \beta + \beta) + c)^{m},$$

= $\sum_{k=0}^{n} {n \choose k} \beta^{n-k} (x - \beta)^{k} + a \Big(\sum_{k=0}^{m} {m \choose k} (b\beta + c)^{m-k} b^{k} (x - \beta)^{k} \Big),$
= $(x - \beta)^{2} g(x) + f'(\beta) (x - \beta) + f(\beta),$

where f'(x) is the derivative of f(x) and

$$g(x) = \sum_{k=2}^{n} \binom{n}{k} \beta^{n-k} (x-\beta)^{k-2} + a \left(\sum_{k=2}^{m} \binom{m}{k} (b\beta+c)^{m-k} b^{k} (x-\beta)^{k-2} \right)$$

is in $\mathbb{Z}[x]$. Then

$$\bar{f}(x) = (x - \beta)^2 \bar{g}(x),$$
 (2.5)

where $\bar{g}(x) \in (\mathbb{Z}/p\mathbb{Z})[x]$ is separable. Write $g(x) = g_1(x) \cdots g_l(x) + ph(x)$, where $g_1(x), \ldots, g_t(x)$ are monic polynomials which are distinct as well as irreducible modulo p and $h(x) \in \mathbb{Z}[x]$ monic. Therefore, we can write

$$f(x) = (x - \beta)^2 \left(\prod_{i=1}^t g_i(x) + ph(x)\right) + f'(\beta)(x - \beta) + f(\beta).$$

So, by Theorem 2.1, p does not divide $[\mathbb{Z}_K : \mathbb{Z}[\theta]]$ if and only if $\overline{M}(x)$ is coprime to $x - \beta$, where

$$M(x) = \frac{1}{p} [p(x - \beta)^2 h(x) + (x - \beta)f'(\beta) + f(\beta)],$$

that is, $f(\beta) \neq 0 \pmod{p^2}$. By (2.4), since $p \nmid abcmn(n-m)$, we see that $f(\beta) \neq 0$ $(\text{mod } p)^2$ if and only if $(n^n c^{n-m} + (-1)^{n+m} b^n (n-m)^{n-m} m^m a) \neq 0 \pmod{p^2}$. This final case completes the proof of the theorem.

3. Proof of Proposition 1.4

The following two results on Galois groups will be used in the proof of Proposition 1.4.

THEOREM 3.1 [1, Theorem 2.1]. Let $f(x) \in \mathbb{Z}[x]$ be a monic irreducible polynomial of degree n, having a root θ . Let p be a rational prime which is ramified in $\mathbb{Q}(\theta)$. Suppose that $f(x) \equiv (x-c)^2 \phi_2(x) \cdots \phi_r(x) \pmod{p}$, where $(x-c), \phi_2(x), \dots, \phi_r(x)$ are monic polynomials over \mathbb{Z} which are distinct and irreducible modulo p. Then the Galois group

of f(x) over \mathbb{Q} contains a nontrivial automorphism which keeps n - 2 roots of f(x) fixed.

LEMMA 3.2 [4, Lemma 2]. Let f(x) be an irreducible polynomial of degree $n \ge 2$. If the Galois group of f(x) over \mathbb{Q} contains a transposition and a p-cycle for some prime p > n/2, then the Galois group is S_n .

PROOF OF PROPOSITION 1.4. Let α be any root of f(x), so that $[\mathbb{Q}(\alpha) : \mathbb{Q}] = q$. By the fundamental theorem of Galois theory, the Galois group of f(x), say G_f , contains a subgroup whose index is q. By Lagrange's theorem, q divides the order of G_f . So, by Cauchy's theorem, G_f has an element of order q. Hence, G_f contains a q-cycle. Now we show that G_f contains a transposition. By hypothesis, there exists a prime p such that $p \mid D_f$ and $p \nmid abcm$. As in (2.5) in the proof of Theorem 1.1(vi), $f(x) \equiv$ $(x - \beta)^2 g_1(x) \cdots g_t(x) \pmod{p}$, where $x - \beta$, $g_1(x), \ldots, g_t(x)$ are monic polynomials over \mathbb{Z} which are distinct and irreducible modulo p. Also, if $K = \mathbb{Q}(\theta)$ with θ a root of f(x), then keeping in mind the hypothesis $p^2 \not a D_f$ and the relation $D_f = [\mathbb{Z}_K : \mathbb{Z}[\theta]]^2 d_K$, we see that $p \mid d_K$. Hence, p is ramified in K. Therefore, by Theorem 3.1, the Galois group of f(x) contains a transposition. Hence, by Lemma 3.2, the Galois group is S_q .

References

- [1] A. Bishnoi and S. K. Khanduja, 'A class of trinomials with Galois group S_n ', *Algebra Colloq.* **19**(1) (2012), 905–911.
- [2] H. Cohen, A Course in Computational Algebraic Number Theory (Springer-Verlag, Berlin–Heidelberg, 1993).
- [3] R. Dedekind, 'Über den Zusammenhang zwischen der Theorie der Ideale und der Theorie der höheren Kongruenzen', *Götttingen Abh.* **23** (1878), 1–23.
- [4] M. Filaseta and R. Moy, 'On the Galois group over Q of a truncated binomial expansion', *Colloq. Math.* 154 (2018), 295–308.
- [5] I. Gaál, *Diophantine Equations and Power Integral Bases: Theory and Algorithms*, 2nd edn (Birkhäuser/Springer, Cham, 2019).
- [6] H. Hasse, Zahlentheorie (Akademie-Verlag, Berlin, 1963).
- [7] A. Jakhar, S. K. Khanduja and N. Sangwan, 'On prime divisors of the index of an algebraic integer', J. Number Theory 166 (2016), 47–61.
- [8] A. Jakhar, S. K. Khanduja and N. Sangwan, 'Characterisation of primes dividing the index of a trinomial', *Int. J. Number Theory* 13(10) (2017), 2505–2514.
- [9] L. Jones, 'A brief note on some infinite families of monogenic polynomials', *Bull. Aust. Math. Soc.* 100 (2019), 239–244.
- [10] L. Jones, 'On necessary and sufficient conditions for the monogenity of a certain class of polynomials', *Math. Slovaca* 72(3) (2022), 591–600.
- [11] L. Jones, 'Infinite families of monogenic quadrinomials, quintinomials and sextinomials', *Colloq. Math.* 169 (2022), 1–10.
- [12] S. Kaur and S. Kumar, 'On a conjecture of Lenny Jones about certain monogenic polynomials', *Bull. Aust. Math. Soc.*, to appear. Published online (21 November 2023).

ANUJ JAKHAR, Department of Mathematics,

Indian Institute of Technology (IIT) Madras, Chennai, India e-mail: anujjakhar@iitm.ac.in, anujiisermohali@gmail.com