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Explicit Form of Cassels’ p-adic Embedding
Theorem for Number Fields

Arturas Dubickas, Min Sha, and Igor Shparlinski

Abstract. In this paper, we give a general explicit form of Cassels’ p-adic embedding theorem for
number ûelds. We also give its reûned form in the case of cyclotomic ûelds. As a byproduct, given
an irreducible polynomial f over Z, we give a general unconditional upper bound for the smallest
prime number p such that f has a simple root modulo p.

1 Introduction

1.1 Motivation

We start by recalling a result of Cassels [4] that gives a p-adic embedding for ûnitely
generated ûelds of characteristic 0, which we reproduce here for the convenience of
the reader.

_eorem 1.1 Let K be a ûnitely generated extension of the rational ûeld Q, and let S
be a ûnite set of non-zero elements of K. _en there exist inûnitely many primes p such
that there is an embedding

(1.1) σ ∶K ↪ Qp

of K into the ûeld of p-adic numbers Qp for which ∣σ(β)∣p = 1 for all β ∈ S, where ∣ ⋅ ∣p
denotes the p-adic valuation.

_eorem 1.1 is o�en a useful tool when one needs to employ p-adic techniques to
solve various problems in number ûelds. _e point is that for many natural problems
over general ûelds of characteristic zero, one can expect to get a result that is not
worse than the corresponding one in the case of an algebraic number ûeld, or even
in the case of the ûeld of rational numbers. For example, the above theorem has been
used for a long time in the study of recurrence sequences over number ûelds; see, for
example, [5, 10, 14–16].
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1.2 Main Results

In this paper, we supplement the methods of Cassels [4] with several new ingredients
and give an explicit version of _eorem 1.1 in the case when K is a number ûeld. We
believe these new ingredients can be of independent interest and may ûnd several
other applications.

To begin with, we state the following general theorem and several subsequent
corollaries. _roughout the paper, for an algebraic number α ∈ Q, we denote
its (Weil) absolute logarithmic height by h(α). For an integer m ≥ 1, we deûne
log+ m = max{1, logm}, so that log+ m = logm for all m ≥ 3.

_eorem 1.2 Let K be a number ûeld of degree d ≥ 2 generated by α1 , . . . , αm ∈ K∖Q
over Q, and let β1 , . . . , βn be some ûxed non-zero elements of K. _en there exists a
prime number p satisfying

p ≤ md exp(d
m

∑
i=1

h(α i))(dn
m

∑
i=1

h(α i) + d
n

∑
i=1

h(β i) + dn log+ m)
O(d2)

such that (1.1) holds and ∣σ(β i)∣p = 1, for 1 ≤ i ≤ n.

Corollary 1.3 Let K be a number ûeld of degree d ≥ 2 generated by α1 , . . . , αm ∈ K∖Q
over Q. _en there exists a prime number p satisfying

p ≤ exp(d
m

∑
i=1

h(α i))(dm
m

∑
i=1

h(α i) + dm)
O(d2)

,

such that (1.1) holds and ∣σ(α i)∣p = 1, for 1 ≤ i ≤ m.

Corollary 1.4 Let K be a number ûeld of degree d ≥ 2 generated by an algebraic
integer α over Q, and let β1 , . . . , βn ∈ Z[α] be some ûxed non-zero algebraic integers
(respectively, units) of K. _en there exists a prime number p satisfying

p ≤ exp(dh(α))(dh(α) + d)
O(d2)

such that (1.1) holds and ∣σ(β i)∣p ≤ 1 (resp., ∣σ(β i)∣p = 1), for 1 ≤ i ≤ n.

_e above results depend on the generators we choose for K over Q. In contrast,
the following bound is independent of the choice of generators, but involves the dis-
criminant of K.

Corollary 1.5 Let K be a number ûeld of degree d ≥ 2 with discriminant DK , and let
β1 , . . . , βn be some ûxed non-zero elements of K. Furthermore, suppose that K has at
least one real embedding. _en there exists a prime number p satisfying

p ≤
√

∣DK ∣(n log ∣DK ∣ + d
n

∑
i=1

h(β i))
O(d2)

,

such that (1.1) holds and ∣σ(β i)∣p = 1, for 1 ≤ i ≤ n.

For a prime number ℓ and an integer m, we write, as usual, ℓe∥m if e is the largest
integer with ℓe ∣ m.
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Given an integer m ≥ 2, suppose that ℓ = P(m), where P(m) denotes the largest
prime divisor of m and ℓe∥m. Deûne

δ(m) =

⎧⎪⎪
⎨
⎪⎪⎩

ϕ(m/ℓe) if ℓ ≡ 1 (mod m/ℓe),
1 otherwise,

where ϕ is Euler’s totient function. In particular, δ(m) = 1 if m is a power of a prime
or m ≥ ℓe+1.
For cyclotomic ûelds, we can get a reûned explicit form of _eorem 1.1.

_eorem 1.6 Let K be the m-th cyclotomic ûeld with m > 2, and let β1 , . . . , βn be
some ûxed non-zero elements of K. _en there exists a prime number p satisfying

p ≤ (d
n

∑
i=1

h(β i) + dn)
O(dδ(m))

,

where d = ϕ(m), such that (1.1) holds and ∣σ(β i)∣p = 1 for 1 ≤ i ≤ n.

1.3 Approach

To prove_eorems 1.2 and 1.6 we follow, roughly speaking, the original proof of Cas-
sels and make each step there explicit. For our purpose, we need to tackle the fol-
lowing three subproblems that appear to be new and contain the main techniques in
this paper. We believe that these problems and our contribution to them can be of
independent interest.
First, given generators α1 , . . . , αm of K over Q, we need to construct a primitive

element α of K such that h(α) can be bounded explicitly in terms of heights h(α i),
1 ≤ i ≤ m, and [K ∶Q]. We study this problem much more than what we need in our
particular application in Section 2.

Second, given a primitive element α of K and an arbitrary element β, β can be
expressed uniquely as a linear combination of the basis {1, α, . . . , αd−1}. We need to
bound the heights of the coeõcients explicitly. _is is handled in Section 3.

_ird, given an arbitrary irreducible polynomial f over Z, we need to derive an
upper bound for the smallest prime p such that f has a simple root modulo p. We
study this problem extensively by using elementary arguments in Section 4.

Now, we give a brief outline of the proof of_eorem 1.2. We ûrst construct a prim-
itive element α of K with bounded height from the given generators α1 , . . . , αm . Let
f be the minimal polynomial of α over Z. Put βn+i = β−1

i for 1 ≤ i ≤ n. _en, for
1 ≤ i ≤ 2n, we express β i as a linear combination of the basis {1, α, . . . , αd−1} such that
all the coeõcients are in reduced form, and denote by b i the least common multiple
of the denominators of the coeõcients. Note that a prime p is suitable if it satisûes the
following two conditions:
● f has a simple root modulo p.
● p does not divide any b i , 1 ≤ i ≤ 2n.
Using the results and techniques developed in solving the above three subproblems,
we derive an upper bound for the smallest such prime p; see Section 5 formore details.
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_roughout the paper, we use the Landau symbols O and o. Recall that the asser-
tion U = O(V) is equivalent to the inequality ∣U ∣ ≤ cV with some constant c, while
U = o(V) means that U/V → 0.

2 “Height” of a Number Field

2.1 Definitions and Main Results

Let K be a number ûeld generated by α1 , α2 , . . . , αm over Q. In this section, we show
the existence of a primitive element α of K of small height. We present more general
versions than we actually need for our purpose.

Given a polynomial f (x) = adxd +⋅ ⋅ ⋅+a0 = ad(x−α1) ⋅ ⋅ ⋅ (x−αd) ∈ C[x], where
ad ≠ 0, its height is deûned by H( f ) = max0≤i≤d ∣a i ∣, and its Mahler measure by

M( f ) = ∣ad ∣
d

∏
i=1

max{1, ∣α i ∣}.

For each f ∈ C[x] of degree d, these quantities are related by the following inequality

(2.1) H( f )2−d ≤ M( f ) ≤ H( f )
√
d + 1.

_e le� inequality of (2.1) follows from the identity

ad−i = (−1)iad ∑
1≤ j1<⋅⋅⋅< j i≤d

α j1 ⋅ ⋅ ⋅ α j i ,

since each product ∣adα j1 ⋅ ⋅ ⋅ α j i ∣ does not exceed M( f ) (see, e.g., [20, Lemma 3.11]).
_e right inequality of (2.1) follows from the so-called Landau inequality M( f ) ≤

(∑
d
i=0 ∣a i ∣

2)
1
2 , which was proved, for instance, in [3], [9] and [17].

For an algebraic number α ∈ Q of degree d, itsMahlermeasureM(α) is theMahler
measure of its minimal polynomial f over Z, that is, M(α) = M( f ). _en the (Weil)
absolute logarithmic height h(α) of α is equal to d−1 logM(α). We also deûne the
usual height H(α) of α as the height of f , namely, H(α) = H( f ).

_eorem 2.1 Let α1 , . . . , αm be some algebraic numbers of degree d1 , . . . , dm ≥ 2,
respectively, and let K = Q(α1 , . . . , αm) be of degree d over Q. _en K contains an
algebraic number α satisfying K = Q(α) and such that

h(α) ≤ log(m⌊d/2⌋) + h(α1) + ⋅ ⋅ ⋅ + h(αm).

Equivalently, the bound of _eorem 2.1 can be written as

M(α) ≤ (m⌊d/2⌋)d
m

∏
i=1

M(α i)
d/d i .

Corollary 2.2 Let α1 , . . . , αm be some algebraic numbers of degree d1 , . . . , dm ≥ 2
and usual height H1 , . . . ,Hm , respectively, and let K = Q(α1 , . . . , αm) be of degree d
over Q. _en K contains an algebraic number α satisfying K = Q(α) and

H(α) ≤ (md)d
m

∏
i=1

(d i + 1)d/(2d i)
m

∏
i=1

Hd/d i
i .
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Corollary 2.3 Let f ∈ Z[x] be a polynomial of degree d with height H whose splitting
ûeld K is of degree D over Q. _en for some algebraic number α satisfying K = Q(α),
we have

h(α) ≤ log((d − 1)⌊D/2⌋) +
d − 1
d

log(H
√
d + 1),

and

H(α) ≤ (d − 1)DDD(d + 1)(d−1)D/(2d)H(d−1)D/d .

2.2 Preparations

To prove the above results, we use the following two known facts.

Lemma 2.4 Let K be a separable extension of degree d > 1 of a ûeld F. Suppose
K = F(α1 , . . . , αm). _en, for any ûnite subset S of F, there are at least ∣S∣m−1(∣S∣−d+1)
m-tuples (b1 , . . . , bm) ∈ Sm for which the element α = b1α1 + ⋅ ⋅ ⋅ + bmαm is primitive
for K over F, namely, K = F(α).

Lemma 2.5 Let f ∈ Z[x1 , . . . , xm] be a non-zero polynomial in m variables. _en,
for any algebraic numbers γ1 , . . . , γm , we have

h( f (γ1 , . . . , γm)) ≤ log L( f ) +
m

∑
i=1

h(γ i)degx i
f ,

where degx i
f is the partial degree of f , and L( f ) is the sum of moduli of the coeõcients

of f .

Lemma 2.4 is the main result of [2] (see also [22, Lemma 3.3] for a slightly weaker
result), whereas Lemma 2.5 is exactly [20, Lemma 3.7].

2.3 Proofs

Proof of_eorem 2.1 We apply Lemma 2.4 to

F = Q and S = {−⌊d/2⌋, . . . , ⌊d/2⌋}

(note that d > 1). Since ∣S∣ = 2⌊d/2⌋ + 1 ≥ d, the number ∣S∣m−1(∣S∣ − d + 1) ≥ ∣S∣m−1

is positive. _us, there are some m (not necessarily distinct) integers b1 , . . . , bm ∈ S
such that the element α = b1α1 + ⋅ ⋅ ⋅ + bmαm satisûes K = Q(α). Applying Lemma 2.5
to the polynomial f (x1 , . . . , xm) = b1x1+⋅ ⋅ ⋅+bmxm of length L( f ) = ∣b1∣+⋅ ⋅ ⋅+∣bm ∣ ≤
m⌊d/2⌋, with γ1 = α1 , . . . , γm = αm , we deduce

logM(α)
d

= h(α) = h( f (α1 , . . . , αm)) ≤ log(m⌊d/2⌋) + h(α1) + ⋅ ⋅ ⋅ + h(αm)

= log(m⌊d/2⌋) + log(
m

∏
i=1

M(α i)
1/d i) .

_is implies the required inequalities of _eorem 2.1.
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Proof of Corollary 2.2 Note that by the right inequality of (2.1), we have M(α i) ≤
H i

√
d i + 1 for i = 1, . . . ,m. _us,

m

∏
i=1

M(α i)
d/d i ≤

m

∏
i=1

Hd/d i
i

m

∏
i=1

(d i + 1)d/(2d i) .

Now, selecting α as in _eorem 2.1, we have deg α = d. Hence, by the le� inequality
of (2.1) and_eorem 2.1, we obtain

H(α) ≤ 2dM(α) ≤ (md)d
m

∏
i=1

M(α i)
d/d i ≤ (md)d

m

∏
i=1

(d i + 1)d/(2d i)
m

∏
i=1

Hd/d i
i ,

as claimed.

Proof of Corollary 2.3 Write the polynomial f ∈ Z[x] in the form f = f0 f n1
1 ⋅ ⋅ ⋅ f nq

q ,
where f1 , . . . , fq ∈ Z[x] are distinct irreducible polynomials of degrees d1 , . . . , dq ≥ 2,
respectively, and f0 ∈ Z[x] is a product of linear polynomials. Assume that q ≥ 1,
since the claim is trivial otherwise, by taking α = 1. _us, D > 1. Furthermore, in view
of

d = n1d1 + ⋅ ⋅ ⋅ + nqdq + deg f0 ,
we have d i ≤ d for each i = 1, . . . , q.

Put m = d1 − 1+ ⋅ ⋅ ⋅ + dq − 1. It is clear that the splitting ûeld K of f is generated by
arbitrary d1 − 1 roots of f1, arbitrary d2 − 1 roots of f2, . . . , arbitrary dq − 1 roots of fq .
By _eorem 2.1, there is an algebraic number α ∈ K satisfying K = Q(α) and

M(α) ≤ (m⌊D/2⌋)D
q

∏
i=1

M( f i)(d i−1)D/d i ,

since we have d i −1 copies ofM( f i) for each i = 1, . . . , q. Using (d i −1)/d i ≤ (d−1)/d
(which follows from d i ≤ d) and

M( f1) ⋅ ⋅ ⋅M( fq) = M( f1 ⋅ ⋅ ⋅ fq) ≤ M( f1 ⋅ ⋅ ⋅ fq)M( f0 f n1−1
1 ⋅ ⋅ ⋅ f nq−1

q ) = M( f )

(which follows from the multiplicativity of the Mahler measure and M( f i) ≥ 1), we
ûnd that

M(α) ≤ (m⌊D/2⌋)
D
M( f )(d−1)D/d .

Note that m ≤ d − 1, and by the right inequality of (2.1), M( f ) ≤ H( f )
√
d + 1 =

H
√
d + 1. _erefore, using these estimates and applying the le� inequality of (2.1), we

ûnd that

h(α) =
logM(α)

D
≤ log(m⌊D/2⌋) +

d − 1
d

log(M( f ))

≤ log((d − 1)⌊D/2⌋) +
d − 1
d

log(H
√
d + 1),

and
H(α) ≤ 2DM(α) ≤ (mD)DM( f )(d−1)D/d

≤ ((d − 1)D)D(H
√
d + 1)

(d−1)D/d

= (d − 1)DDD(d + 1)(d−1)D/(2d)H(d−1)D/d ,

as claimed.
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3 Bounding the Heights of Coefficients

3.1 Main Result

Let L/K be a number ûeld extension of degree d ≥ 2, and let L = K(α). _en, for any
non-zero β ∈ L, there exist some a0 , a1 , . . . , ad−1 ∈ K such that

β = a0 + a1α + ⋅ ⋅ ⋅ + ad−1αd−1 .

Now, we bound the height of each coeõcient a i , 0 ≤ i ≤ d − 1, as follows.

_eorem 3.1 Let L/K be a number ûeld extension of degree d ≥ 2, and L = K(α).
Given non-zero β ∈ L, and a0 , a1 , . . . , ad−1 ∈ K, such that

β = a0 + a1α + ⋅ ⋅ ⋅ + ad−1αd−1 ,

we have

h(a i) ≤ dh(β) + 3d(d − 1)h(α) + d log(
d − 1

i
) + d(d − 1) log 2 + log d ,

for i = 0, 1, . . . , d − 1.

Note that since we have

(
d − 1

i
) ≤ 2d−1 , i = 0, 1, . . . , d − 1

for the binomial coeõcients, _eorem 3.1 implies that

h(a i) ≤ dh(β) + 3d(d − 1)h(α) + 2d(d − 1) log 2 + log d

for each i = 0, 1, . . . , d − 1. _is implies the following corollary.

Corollary 3.2 Under the same assumptions and notation as in _eorem 3.1, we have

h(a i) < dh(β) + 3d2h(α) + 2d2 ,

for i = 0, 1, . . . , d − 1.

3.2 Proof of Theorem 3.1

In the sequel, we use the following formulas without special reference (see, e.g., [20]).
For any n ∈ Z and b1 , ⋅ ⋅ ⋅ , bk , γ ∈ Q, we have

h(b1 + ⋅ ⋅ ⋅ + bk) ≤ h(b1) + ⋅ ⋅ ⋅ + h(bk) + log k,
h(b1 ⋅ ⋅ ⋅ bk) ≤ h(b1) + ⋅ ⋅ ⋅ + h(bk),
h(γn) = ∣n∣h(γ),

h(ζ) = 0 for any root of unity ζ ∈ Q.

We now assume that α1 = α, α2 , . . . , αd are the conjugates of α over the ûeld K.
Put

β i =
d−1

∑
j=0
a jα

j
i , for i = 1, . . . , d .

So, h(α i) = h(α) and h(β i) = h(β) for 1 ≤ i ≤ d.
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To solve the above system of d linear equations in d unknowns a0 , . . . , ad−1, we
denote the appearing Vandermondematrix byV = (α j−1

i )1≤i , j≤d . By [6, Formula (6)],
the inverse of V is given by

V−1 = (
(−1)i+ jσd− j(α1 , . . . , α̂ i , . . . , αd)

∏
i−1
m=1(α i − αm)∏

d
k=i+1(αk − α i)

)

T

1≤i , j≤d
,

where T stands for the transpose, and σk(α1 , . . . , α̂ i , . . . , αd) stands for the k-th sym-
metric function in the d − 1 variables α1 , . . . , αd without α i ; for instance, in the case
i = d, we have σ1(α1 , . . . , αd−1) = α1 + ⋅ ⋅ ⋅ + αd−1 and σd−1(α1 , . . . , αd−1) = α1 ⋅ ⋅ ⋅ αd−1.

Hence,

(3.1) a j−1 =
d

∑
i=1
β i

(−1)i+ jσd− j(α1 , . . . , α̂ i , . . . , αd)

∏
i−1
m=1(α i − αm)∏

d
k=i+1(αk − α i)

.

Since σd− j(α1 , . . . , α̂ i , . . . , αd) is a polynomial with coeõcients 1 in d − 1 variables
α1 , . . . , αd (without α i) of degree d − j, length (d−1

d− j), and degree 1 in each variable αk ,
k ≠ i, by Lemma 2.5, we ûnd that

h(σd− j(α1 , . . . , α̂ i , . . . , αd)) ≤ log(
d − 1
d − j

) +∑
k≠i

h(αk) = log(
d − 1
d − j

) + (d − 1)h(α).

On the other hand, in order to bound the denominator of (3.1) we observe that

h(∏
k≠i

(αk − α i)) ≤ ∑
k≠i

h(αk − α i) ≤ (2d − 2)h(α) + (d − 1) log 2,

since each term h(αk − α i) does not exceed 2h(α) + log 2.
_us, the absolute logarithmic height of each of the d summands in (3.1) is bounded

from above by

h(β) + (3d − 3)h(α) + log(
d − 1
d − j

) + (d − 1) log 2.

Hence, we conclude that

h(a j−1) ≤ d(h(β) + (3d − 3)h(α) + log(
d − 1
d − j

) + (d − 1) log 2) + log d

for j = 1, . . . , d. By replacing j − 1 by i and observing that

(
d − 1
d − j

) = (
d − 1
d − i − 1

) = (
d − 1

i
),

we see that this is exactly the required inequality of _eorem 3.1.

4 Simple Roots of Polynomials Modulo a Prime

4.1 Background and Main Results

In this section, given an irreducible polynomial f ∈ Z[X], we derive an upper bound
for the smallest prime p such that f has a simple root modulo p.
First of all, we mention a sharp upper bound of Bellaïche [1] under the assumption

that both the Generalized Riemann Hypothesis and the Artin Conjecture are true
for the Artin L-functions associated with the irreducible representations of G, where
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G is the Galois group of the splitting ûeld of f over Q. Namely, under the above
assumptions, by Bellaïche [1,_éorème 16], ifM is the product of all the distinct prime
divisors of the discriminant of a monic irreducible polynomial f ∈ Z[x] of degree
d ≥ 1, then
● there exists a prime p = O(d2(logM+d log d)2) such that p ∤ M and f has at least

one root modulo p;
● there exists a prime p = O(d4(logM+d log d)2) such that p ∤ M and f has at least

two roots modulo p.
Here, we give unconditional upper bounds of such smallest prime p for any ir-

reducible polynomial f ∈ Z[X] without assuming that f is monic. In fact, for our
purpose we need a slightly more general result where p also avoids divisors of a given
integer Q.
Assume ûrst that the polynomial f that we consider is of degree 1. _en we can

take the smallest prime p that is coprime to the leading coeõcient of f . So in the
sequel, we suppose that the degree of f is greater than or equal to 2.

We ûrst give a generic approach on how to ûnd such a prime p, which yields a
rather simple upper bound for p.

_eorem 4.1 Given an irreducible polynomial f = adXd + ⋅ ⋅ ⋅ + a1X + a0 ∈ Z[X] of
degree d ≥ 2 and of height H, there exists a prime number

p ≤

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

H, if gcd(a0 ,M) = 1 and ∣a0∣ > 1,
2H(dM)d , if ∣a0∣ = 1,
2H(dHM)d , if gcd(a0 ,M) > 1,

where M is the product of all the distinct prime divisors of the discriminant of f such
that f has a simple root modulo p.

We now present an upper bound for such a prime p that behaves much better than
that of _eorem 4.1 with respect to H (however, in some cases _eorem 4.1 is still
stronger). In fact, we present it in a slightly more general form.

_eorem 4.2 Given an irreducible polynomial f ∈ Z[X] of height H and of degree
d ≥ 2, and an integer Q ≥ 3, there exists a prime number p satisfying

p ≤ CdH(d logQ log+ H)d +H(logQ)cd
2
,

where c and C some absolute constants such that f has a root modulo p and p ∤ Q.

We denote the discriminant of f by ∆. Choosing Q = 3∣∆∣ we derive the following
corollary.

Corollary 4.3 Given an irreducible polynomial f ∈ Z[X] of height H and of degree
d ≥ 2, there exists a prime number p satisfying p ≤ H(d log+ H)O(d2) , such that f has
a simple root modulo p.

Remark 4.4 Let f be the n-th cyclotomic polynomial with n > 2. _en it is well
known that, for a prime p, f has a simple root modulo p if and only if p ≡ 1 (mod n).

https://doi.org/10.4153/CJM-2015-021-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-021-2


Explicit Form of Cassels’ p-adic Embedding _eorem for Number Fields 1055

Linnik’s theorem says that such a prime p can be chosen so that p = O(nL), where L is
an absolute constant. A recent result of Xylouris [23] says that we can choose L = 5.18.

4.2 Products of Polynomial Values

First, we give a lower bound on the product of polynomial values that is necessary for
our argument and can be of independent interest.

Lemma 4.5 Let f ∈ C[x] be a polynomial of degree d ≥ 1, and assume that the
absolute value of the leading coeõcient of f is not less than 1. _en for each integer
L ≥ 51(2d + 1), we have

L

∏
j=1

max{ 1, ∣ f ( j)∣} ≥ (L/5)dL/18 .

Proof Call a point j ∈ S = {1, 2, . . . , L} good if the distance from j to the nearest root
of f is at least 1. _en ∣ f ( j)∣ ≥ 1. Since each open disc of radius 1 and center at a root
of f contains at most two points of the set S, there are at least L−2d good points in S.
Consider four open discs D1 ,D2 ,D3 ,D4 of radius L/6 each, with centers at L/10,

11L/30, 19L/30, 9L/10, respectively, and put D5 ∶= C ∖ ⋃4
j=1 D j . It is easy to see that

the distance from each point of the set S to D5 is at least

min{L/6 − L/10,
√

(L/6)2 − (2L/15)2} = min{L/15, L/10} = L/15.

Now, if at least d/10 roots of f lie in D5, we obtain ∣ f ( j)∣ ≥ (L/15)d/10 for each good
j ∈ S. _us, as L ≥ 100d, we deduce

L

∏
j=1

max{ 1, ∣ f ( j)∣} ≥ ∏
j−good

∣ f ( j)∣ ≥ (L/15)(L−2d)d/10 > (L/15)2dL/21 > (L/5)dL/17 ,

which is stronger than required.
Alternatively, when D5 contains less than d/10 roots of f , the union ⋃4

j=1 D j must
contain at least 0.9d roots of f . _us, some D i , where i ∈ {1, 2, 3, 4}, contains at least
0.225d roots of f . Now, we put k = 1 if i = 3 or i = 4, and k = 4 if i = 1 or i = 2. _e
set Dk contains at least 4L/15 − 2d − 1 ≥ 0.247L good points of S. (Here, we use the
bound L ≥ 51(2d + 1).) _e distance between any two points of Dk and D i is at least
19L/30− L/6−(L/10+ L/6) = L/5. Consequently, the distance from each good point
in Dk to D i is at least L/5. _us,

L

∏
j=1

max{1, ∣ f ( j)∣} ≥ ∏
j−good in Dk

∣ f ( j)∣ ≥ (L/5)0.247L⋅0.225d > (L/5)dL/18 .

_is completes the proof.

Note that the lower bound of Lemma 4.5 is sharp up to the constants. For instance,
for f (x) = xd , we have

L

∏
j=1

max{1, ∣ f ( j)∣} = L!d ≤ LdL .
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4.3 Polynomial Congruences

For a polynomial f ∈ Z[X] of degree d ≥ 1 and two positive integers L and q, we
deûne

N(L, q) = ∣{1 ≤ j ≤ L ∶ f ( j) ≡ 0 (mod q)}∣ and N(q) = N(q, q).

Recall that the content of a polynomial f is deûned as the greatest common divisor
of the coeõcients of f . We also need the following three bounds on N(L, q) when
q = ℓk is a prime power.

Lemma 4.6 Given a positive integer k and a prime number ℓ, suppose that the
content of f is coprime to ℓ, and that f has m distinct zeros over C. _en we have
N(ℓk) ≤ mℓk−1 .

Lemma 4.7 Given a positive integer k and a prime number ℓ, suppose that the content
of f is coprime to ℓ. _en we have N(ℓk) ≤ 2ℓk(1−1/d) .

Lemma 4.8 Given positive integers L, k, and a prime number ℓ, we have

∣N(L, ℓk) −
L
ℓk

N(ℓk)∣ < d .

Lemma 4.6 is well known and also trivial; Lemmas 4.7 and 4.8 follow directly
from [7, Lemma 2] and [8, _eorem 1], respectively.

4.4 Prime Divisors of Polynomial Products

_e following uniform lower bound on the number of prime divisor is one of our
main technical tools but may also be of independent interest.
As usual, let ω(k) denote the number of distinct prime divisors of an integer k ≥ 1.

Lemma 4.9 _ere are absolute constants c1 , c2 > 0 such that for any polynomial
f (X) ∈ Z[X] of degree d ≥ 1 and of height H, for each integer L ≥ 2d + 1, for the
product

W(L) =
L

∏
j=1

max{1, ∣ f ( j)∣},

we have

ω(W(L)) ≥ min{
c1L

log+ H
, Lc2/d} .

Proof Let t = ω(W(L)) be the number of distinct prime divisors ofW(L). Since
L ≥ 2d + 1, we obviously haveW(L) ≥ 2, so we also have t ≥ 1. _us, adjusting the
constant c1 we can assume that L ≥ 51(2d + 1).
For a prime ℓ, we deûne rℓ(L) by ℓrℓ(L)∥W(L). _en we have

rℓ(L) =
Kℓ(L)
∑
k=1

N(L, ℓk),
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where N(L, ℓk) is as in Section 4.3 and

Kℓ(L) = max{ r ∶ ∃1 ≤ j ≤ L, ℓr ∣ f ( j), f ( j) ≠ 0} .

Clearly, ∣ f ( j)∣ ≤ 2HLd for 1 ≤ j ≤ L. _erefore,

(4.1) Kℓ(L) ≤ log(2HLd)/ log ℓ.

We use Lemma 4.6 for k ≤ d and Lemma 4.7 for k > d. Furthermore, from
Lemma 4.8, we ûnd that

rℓ(L) ≤ L
Kℓ(L)
∑
k=1

N(ℓk)
ℓk

+ dKℓ(L) ≤ L
d

∑
k=1

d
ℓ
+ L

∞
∑

k=d+1
2ℓ−k/d + dKℓ(L)

= d2Lℓ−1 +
2Lℓ−1

ℓ1/d − 1
+ dKℓ(L).

Notice that since log x ≤ x − 1 for x > 0, we have
1

ℓ1/d − 1
≤

d
log ℓ

.

_en

rℓ(L) ≤ d2Lℓ−1 + 2dLℓ−1(log ℓ)−1 + dKℓ(L) < (d + 3)dLℓ−1 + dKℓ(L).

_erefore, recalling (4.1), we obtain

ℓrℓ(L) ≤ (2HLd)d exp((d + 3)dL
log ℓ
ℓ

) .

Let L be the set of distinct prime divisors ofW(L). _en we have

∣W(L)∣ ≤ (2HLd)dt exp((d + 3)dL∑
ℓ∈L

log ℓ
ℓ

) .

Notice that

∑
ℓ∈L

log ℓ
ℓ

= O(log t),

because it is bounded by the sum over the ûrst t primes. Hence,

(4.2) ∣W(L)∣ ≤ (2HLd)dt exp(O(d2L log t)) .

Denoting by T1 and T2 the two terms in the product on the right-hand side of (4.2)
(so that ∣W(L)∣ ≤ T1T2), we see that at least one of the inequalities ∣W(L)∣ ≤ T2

1 or
∣W(L)∣ ≤ T2

2 holds. More precisely, we have

∣W(L)∣ ≤ (2HLd)2dt(4.3)
or

∣W(L)∣ = exp(O(d2L log t)) .(4.4)

On the other hand, by Lemma 4.5, if L ≥ 51(2d + 1), we have

(4.5) ∣W(L)∣ ≥ (L/5)dL/18 .

If (4.3) holds, then comparing (4.3) and (4.5), we ûnd that

t ≥
c1L

d log+ H
,
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where c1 is some absolute constant.
Alternatively, if (4.4) holds, then applying the same argument, but using (4.4)

and (4.5), we obtain t ≥ Lc2/d , where c2 is an absolute constant. _is completes the
proof.

4.5 Proofs

Proof of_eorem 4.1 If gcd(a0 ,M) = 1 and ∣a0∣ > 1, then we pick a prime divisor p
of a0. _en 0 a simple root of f modulo p, and, clearly, p ≤ H.

Suppose ∣a0∣ = 1. Compute f (±iM), 0 ≤ i ≤ d. _en there exists at least one i0
such that ∣ f (i0M)∣ ≠ 1 or ∣ f (−i0M)∣ ≠ 1. Assume that ∣ f (i0M)∣ ≠ 1 without loss of
generality. Pick a prime divisor p of f (i0M). Since p ∤ M, i0M is exactly a simple
root of f modulo p. So, p ≤ 2H(dM)d .
Finally, suppose that m = gcd(a0 ,M) > 1. Compute f (±ia0M), 0 ≤ i ≤ d. _en,

there exists at least one i0 such that ∣ f (i0a0M)∣ ≠ ∣a0∣ or ∣ f (−i0a0M)∣ ≠ ∣a0∣. As-
sume that ∣ f (i0a0M)∣ ≠ ∣a0∣ without loss of generality. Pick a prime divisor p of
f (i0a0M)/a0. Since p ∤ M, i0a0M is exactly a simple root of f modulo p. So,
p ≤ 2H(dHM)d .

Proof of_eorem 4.2 First, we note that for the irreducible polynomial f we con-
sider, since the units of Z[X] are exactly ±1, the content of f is 1.

Let s = ω(Q). Clearly,

s ≤
logQ
log 2

< 2 logQ .

Let W(L) be the product of Lemma 4.9 and let t = ω(W(L)) be the number of
distinct prime divisors ofW(L).

Our goal is to show that for some suõciently small L we have s < t, which in turn
immediately yields the bound

(4.6) p ≤ max{∣ f ( j)∣ ∶ j = 1, . . . , L}

on the desired prime p.
By Lemma 4.9 we either have

t ≥
c1L

d log+ H
,(4.7)

or

t ≥ Lc2/d ,(4.8)

If (4.7) holds, then it is suõcient to require that

(4.9) L ≥ c3d logQ log+ H

for some absolute constant c3 > 0.
If (4.8) holds, then it suõces to require that

(4.10) L ≥ (logQ)c4d

for some absolute constant c4.
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Finally, comparing (4.9) with (4.10), we choose

L = ⌈C0d logQ log+ H + (logQ)c0d⌉ ,

where c0 and C0 are some suõciently large absolute constants. Now, from (4.6) it is
easy to see that we can choose a prime

p ≤ 2HLd ≤ CdH(d logQ log+ H)d +H(logQ)cd
2

for some absolute constants c and C such that f has a root modulo p and p ∤ Q.

Proof of Corollary 4.3 We recall that by [11, _eorem 1] and (2.1), the discriminant
∆ of f satisûes

(4.11) ∣∆∣ < d2dH2d−2 .

_e required result now follows from _eorem 4.2.

5 Explicit Form of Cassels’ p-adic Embedding Theorem

5.1 Arbitrary Number Fields

Let K be a number ûeld of degree d ≥ 2, and let β1 , . . . , βn be some ûxed non-zero
elements of K. By _eorem 1.1, there exist inûnitely many primes p such that there is
an embedding

(5.1) σ ∶K ↪ Qp

for which ∣σ(β i)∣p = 1, for 1 ≤ i ≤ n. In order to prove _eorem 1.2, we derive an
upper bound for such a prime p.
First, we assume that K = Q(α) and that the minimal polynomial of α over Z is f .

Put
S = {β1 , . . . , βn , βn+1 , . . . , β2n},

where βn+i = β−1
i for 1 ≤ i ≤ n. So, in order to ensure that ∣σ(β i)∣p = 1 for 1 ≤ i ≤ n,

we only need to ensure that ∣σ(β i)∣p ≤ 1 for 1 ≤ i ≤ 2n.
Note that every β i , 1 ≤ i ≤ 2n, can be expressed uniquely as

β i =
1
b i

(a i ,0 + a i ,1α + ⋅ ⋅ ⋅ + a i ,d−1αd−1),

where b i , a i ,0 , . . . , a i ,d−1 ∈ Z, b i ≥ 1, and gcd(a i ,0 , . . . , a i ,d−1) = 1. Moreover, for
1 ≤ i ≤ 2n, applying Corollary 3.2, we ûnd that

(5.2) log b i ≤ max
0≤ j≤d−1

h(a i , j/b i) < dh(β i) + 3d2h(α) + 2d2 .

We claim that a prime p satisûes (5.1) if it satisûes the following three conditions:
(a) f (a) ≡ 0 (mod p) for some a ∈ Z,
(b) ∆ /≡ 0 (mod p), where ∆ is the discriminant of f ,
(c) b i /≡ 0 (mod p), for 1 ≤ i ≤ 2n.
Indeed, if f satisûes Conditions (a) and (b), then, by Hensel’s lemma, there exists an
element η ∈ Zp such that f (η) = 0, whereZp denotes the set of p-adic integers. _en,
we deûne an embedding σ ∶K → Qp , by setting σ(α) = η. Under Condition (c), we
can see that ∣σ(β i)∣p ≤ 1 for 1 ≤ i ≤ 2n.
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_erefore, to get an upper bound for such smallest prime p satisfying (5.1), we can
use_eorem 4.2 directly with Q = 3∣∆∣b1 ⋅ ⋅ ⋅ b2n by applying (4.11) and (5.2). It follows
that we can pick a prime p satisfying (5.1) and such that

p ≤ H(dnh(α) + d
n

∑
i=1

h(β i) + d log+ H + dn)
O(d2)

,

where H = H( f ) is the height of f .
In addition, by (2.1), we ûnd that H ≤ 2d exp(dh(α)). So, we obtain

p ≤ H(dnh(α) + d
n

∑
i=1

h(β i) + dn)
O(d2)

and

p ≤ exp(dh(α))(dnh(α) + d
n

∑
i=1

h(β i) + dn)
O(d2)

.(5.3)

Proof of_eorem 1.2 Since K is generated by α1 , . . . , αm ∈ K ∖Q over Q, by _eo-
rem 2.1, there exists an algebraic number α such that K = Q(α) and

h(α) ≤ log(dm) + h(α1) + ⋅ ⋅ ⋅ + h(αm).

_us,

exp(dh(α)) ≤ (dm)d exp(d
m

∑
i=1

h(α i))

and

dnh(α) + d
n

∑
i=1

h(β i) + dn ≤ d(n
m

∑
i=1

h(α i) +
n

∑
i=1

h(β i) + n log(dm) + n)

= O((n
m

∑
i=1

h(α i) +
n

∑
i=1

h(β i) + n log+ m)d log d) .

Combining these two inequalities with (5.3), we see that p satisûes the inequality

p ≤ md exp(d
m

∑
i=1

h(α i))(n
m

∑
i=1

h(α i) +
n

∑
i=1

h(β i) + n log+ m)
O(d2)

dO(d2) ,

which concludes the proof.

Proof of Corollary 1.3 It is easy to see that the result follows directly from _eo-
rem 1.2.

Proof of Corollary 1.4 We only need to notice that for the ûxed algebraic integers
(resp., units) β1 , . . . , βn ∈ Z[α], b i = 1 for 1 ≤ i ≤ n (resp., 1 ≤ i ≤ 2n). _en the result
follows directly from Corollary 4.3 and (2.1).

Proof of Corollary 1.5 SinceK has at least one real embedding, by [19,_eorem 1.2],
there exists an element α of K such that K = Q(α) and

h(α) ≤
log ∣DK ∣

2d
.

Notice that ∣DK ∣ ≥ 7.25d when d ≥ 16; see [13, Section 2]. _en the desired result
follows from (5.3).
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5.2 Cyclotomic Fields

In this section, we consider the special case when K is them-th cyclotomic ûeld with
m > 2, namely, K = Q(ζm), where ζm is an m-th primitive root of unity. Fix some
non-zero elements β1 , . . . , βn of K. We want to get an upper bound for the smallest
prime p such that there is an embedding

(5.4) σ ∶K ↪ Qp

for which ∣σ(β i)∣p = 1, for 1 ≤ i ≤ n.
In order to obtain a better bound, we need to reûne (4.7) and (4.8) in this special

case. Here, we use the notation in Section 4.5 without special indication. We also note
that in this case f is the m-th cyclotomic polynomial, and the degree of K (or f ) is
d = ϕ(m).

Proof of_eorem 1.6 Recall that, for a prime ℓ, we have ℓe∥m. In particular, e = 0
when ℓ ∤ m. By the basic theory of cyclotomic ûelds (for example, see [21, Chapter 2]),
f has a root modulo ℓ if and only if f can be factored completely modulo ℓ, and if and
only if ℓ ≡ 1 (mod m/ℓe). In particular, if ℓ ≡ 1 (mod m/ℓe), then f has ϕ(m/ℓe)
distinct roots modulo ℓ. Moreover, if ℓ ∣ m, then ℓ ≡ 1 (mod m/ℓe) is possible only
when ℓ = P(m), where, as before, P(m) denotes the largest prime divisor of m.
Combining the above considerations with [18, Corollary 2], for a prime ℓ ∤ m and

any integer k ≥ 1, we have

N(ℓk) ≤
⎧⎪⎪
⎨
⎪⎪⎩

d , if ℓ ≡ 1 (mod m),
0, otherwise.

So, for a prime ℓ ∤ m, we obtain

(5.5) rℓ(L) ≤ L
∞
∑
k=1

d
ℓk

+ dKℓ(L) ≤ 2dLℓ−1 + dKℓ(L).

Next, for any prime number ℓ and integer k ≥ 1, it is easy to see that N(ℓk) ≤

ℓN(ℓk−1) ≤ ⋅ ⋅ ⋅ ≤ ℓk−1N(ℓ). _en, for a prime ℓ ∣ m and ℓe∥m, we ûnd that

N(ℓ) =
⎧⎪⎪
⎨
⎪⎪⎩

ϕ(m/ℓe), if ℓ = P(m) and ℓ ≡ 1 (mod m/ℓe),
0, otherwise;

and for k ≥ 2,

N(ℓk) ≤
⎧⎪⎪
⎨
⎪⎪⎩

ϕ(m/ℓe)ℓk−1 , if ℓ = P(m) and ℓ ≡ 1 (mod m/ℓe),
0, otherwise.

_us, for a prime ℓ ∣ m and ℓe∥m, applying the same arguments as those in Sec-
tion 4.5, we derive that

rℓ(L) ≤
⎧⎪⎪
⎨
⎪⎪⎩

(ϕ(m/ℓe) + 3)dLℓ−1 + dKℓ(L), if ℓ = P(m) and ℓ ≡ 1 (mod m/ℓe),
dKℓ(L), otherwise.

_erefore, comparing this inequality with (5.5), for any prime ℓ, we deduce

rℓ(L) ≤ 4dLδ(m)ℓ−1 + dKℓ(L),
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where δ(m) has been deûned in Section 1.
_en applying the same arguments as Section 4.5, for L ≥ 51(2d+1), we can deduce

the following analogue of (4.7) and (4.8):

t ≥
c1L

d log+ H
or t ≥ Lc2/δ(m) ,

where c1 and c2 are two absolute constants, and H = H( f ). So, for any integer Q ≥ 3,
we can choose a prime p satisfying

p ≤ CdH(d logQ log+ H)d +H(logQ)cdδ(m)

for some absolute constants c and C, and such that f has a root modulo p and p ∤ Q.
Finally, applying the same arguments as Section 5.1 and noticing that h(ζm) = 0, we

get the following upper bound for the smallest such prime number p satisfying (5.4):

p ≤ (d
n

∑
i=1

h(β i) + dn)
O(dδ(m))

,

where d = ϕ(m).

6 Comments

It is certainly interesting to understand how tight our bounds are. Denoting by pk the
k-th prime number and deûning

β i =
R−1

∏
r=0

pnr+i , i = 1, . . . , n,

for some suõciently large integer parameter R, we see from the prime number theo-
rem that

n

∏
i=1
β i = exp((1 + o(1))nR log(nR)) .

On the other hand, the smallest prime p with ∣σ(β i)∣p = 1, for 1 ≤ i ≤ n, obviously
satisûes

p > pnR = ( 1 + o(1))nR log(nR) = ( 1 + o(1))
n

∑
i=1

h(β i).

Here is a less obvious example that illustrates the sharpness of our results in Sec-
tion 2 for d = 2. Although in our application we do not need so strong result, by a
recent groundbreaking results of Maynard [12] and Zhang [24], there exists a posi-
tive integer t such that k + t and k − t are both prime for inûnitely many positive
integers k. Take k large enough and consider the following quadratic polynomial
fk(x) = x2 − 2kx + t2 with height 2k. Its splitting ûeld is K = Q(

√
(k + t)(k − t)), so

each α satisfying K = Q(α) is of the form

α = a + bβ with β =
√

(k + t)(k − t)

and rational a and b ≠ 0. We claim that H(α) > n/3 for all such α. To prove this,
assume that a2x2 + a1x + a0 ∈ Z[x], where a2 > 0, is the minimal polynomial of
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α = a + bβ and write b = b0/b1 with coprime b0 ∈ Z ∖ {0} and b1 ∈ N. Note that the
discriminant of a2x2 + a1x + a0 is

a2
1 − 4a0a2 = a2

2(a + bβ − a + bβ)
2 = a2

2(2bβ)
2 =

4a2
2b

2
0(k + t)(k − t)

b2
1

.

In particular, this yields that b2
1 ∣ 4a2

2(k + t)(k − t).
Now, if k+ t or k− t is a prime divisor of b1, then this divisor also divides a2. _us,

H(α) ≥ ∣a2∣ ≥ k − t > k/2, which is stronger than claimed. If, otherwise, neither k + t
nor k − t divides b1, then 4a2

2/b
2
1 is an integer, so b2

1 ≤ 4a2
2b

2
0. It follows that

(k + t)(k − t) =
b2
1

4a2
2b2

0
(a2

1 − 4a0a2) ≤ a2
1 + 4∣a0∣a2

≤ 5max{∣a0∣, ∣a1∣, ∣a2∣}
2 = 5H(α)2 .

_is implies the inequality H(α) > k/3, as claimed (provided that k is large enough).
Hence, our example shows that the exponent (d − 1)D/d in Corollary 2.3 is sharp for
d = 2 (in this case we automatically have D = 2).
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