
The Formation of Binary Stars
fA U Symposium, Vol. 200, 2001
H. Zinnecker and R. D. Mathieu, eds.

Formation of Wide Binaries by Fragmentation

Peter Bodenheimer

UCO/Lick Observatory, Department of Astronomy and Astrophysics,
University of California, Santa Cruz, CA 95064, USA

Andreas Burkert

Max-Planck-Institut fur Astronomie, Koniqstuhl 17, D-69117
Heidelberg, Germany

Abstract. Although observations strongly suggest that fragmentation
during the protostar collapse is the primary formation mechanism for
wide binaries, the theoretical calculations as yet do not well explain the
statistical properties of such systems. The results of a number of nu-
merical simulations are discussed, and it is pointed out that, although
fragmentation is obtained in such calculations, in many cases either the
initial conditions are not realistic, or the calculations are insufficiently
resolved, or the calculations have not been taken far enough to account
for the accretion of most of the initial core material onto the compo-
nents of the forming system. Certain aspects of the numerical results are,
however, consistent with the fragmentation hypothesis.

1. Introduction-Issues

Fragmentation during the collapse of a rotating cloud has been generally ac-
cepted as the most likely process for the formation of wide binaries (Boss 1988).
The earlier numerical simulations produced a wide variety of fragmentation out-
comes. However, calculations with more realistic initial conditions and better
numerical resolution indicate that the occurrence and understanding of frag-
mentation are more difficult than previously thought. A number of issues still
remain to be resolved.

1. How are the general observed properties of binary and multiple systems
explained? How can we understand the distribution of binaries according
to period, the distribution of secondary masses for a given primary mass,
and the distribution of orbital eccentricities?

2. How is the frequency of binary systems explained? How are single stars
explained?

3. What are the details of the formation process? The possibilities for wide
binaries include (1) spontaneous fragmentation during collapse of a ro-
tating protostellar cloud; (2) induced fragmentation through cloud-cloud
collisions; and (3) fragmentation, through one of the above processes, into
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a small cluster followed by interactions and captures. Is hierarchical frag-
mentation important?

4. What is the interaction between binaries and disks? How do orbits evolve
after formation?

5. Why are close brown dwarf companions rare among G-K main-sequence
stars, while wide brown dwarf companions and single brown dwarfs are
apparently more frequent?

6. How does the cluster environment affect binary formation? Although most
stars apparently form in clusters, most of the numerical simulations treat
the collapse of individual molecular cloud cores.

7. What is the influence of magnetic fields?

8. How are binary formation processes modified in the early universe?

The observed properties of binaries are well described in other papers in
this volume; however it should be noted here that it is clear that binary for-
mation occurs along with star formation and that the general characteristics of
binary systems have already become established by the time the stars reach the
quasi-static pre-main-sequence phase (Mathieu 1994). The discovery of binary
protostars is already underway (Mundy; this volume); for example, millimeter
observations of L1551 NE (Moriarty-Schieven et al. 2000) show two components
with unequal fluxes and a separation of about 300 AU, right in the range found
by several numerical simulations. Also, N2H+ observations of the Bok globule
CB 230 (Launhardt, Sargent, & Zinnecker 2000) show a binary of separation
of about 4000 AU, on the high end of the angular momentum distribution for
main-sequence systems (Duquennoy & Mayor 1991).

2. Numerical Calculations

2.1. Initial Conditions

A wide variety of numerical simulations have been published over the past 20
years. We here state the typical assumed initial conditions for these simulations
and compare them with observations, concentrating on the simulations that start
with parameters appropriate to the dense cores of molecular clouds.

Cloud has an assumed geometry: spherical, or cylindrical, or oblate, or prolate.
Observationally, cores appear to be non-spherical with perhaps a prolate
shape with an axis ratio of 2:1.

Cloud has no infall motion and is rotating uniformly. In fact more than one-half
of observed cores have a detectable gradient in the line-of-sight velocity,
which is interpreted as a rotation; at a size of 0.1 pc, the typical angular
velocity n ~ 4 x 10-13 s-l and specific angular momentum JIM ~ 1021

cm2 s-l (Goodman et al. 1993).
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Cloud has a mass of about 1 solar mass and a radius of 0.05 parsec, consistent
with observations except that the typical core has a mass of a few solar
masses.

Cloud has a distribution of density that is somewhat centrally condensed. Ob-
servationally, cores have a distribution of density near p ex: R-2 in the
outer regions, beyond a few thousand AU, but closer to p ex: R-1 in the
inner regions (Andre, Ward-Thompson, & Motte 1996; Ward-Thompson,
Motte, & Andre 1999).

Cloud has an initial assumed density perturbation, for example random noise or
a 10% m == 2 mode. In fact, cloud density structure seems to be somewhat
irregular. Core linewidths at a scale of 0.1 pc are superthermal suggesting
some turbulence (Barranco & Goodman 1998), but the turbulent motions
are subsonic.

Cloud is isothermal at T ~ 10 K and has a number density of 104 to 105 cm-3 ,

in agreement with observations. These parameters indicate that the cores
are near virial equilibrium.

The main parameters are:

a == thermal energy/Igravitational energy I

/3 == rotational energy /]gravitational energy I·

2.2. Is there a Criterion for Fragmentation?

For the case of cloud cores of uniform density and uniform rotation a number
of analytical and numerical studies have been done. Analytic results showed
(Tohline 1981; Hayashi et al. 1982) that collapsing rotating clouds fragment for
a/3 < 0.12. However even the early numerical simulations, which were not well
resolved, did not agree with the analytic result and indicated, with considerable
uncertainty, that fragmentation occurred for a < 0.4, practically independent
of /3 (Bodenheimer, Tohline, & Black 1980). Recent high-resolution collapse
calculations with an SPH code that always resolves the Jeans mass (Tsuribe &
Inutsuka 1999a) also show that initially uniform clouds fragment only for a < 0.4
with a slight dependence on (3; corresponding semi-analytical calculations give
the same result (Tsuribe & Inutsuka 1999b).

For the more realistic case of non-uniform density, the situation has not been
explored very systematically. Boss (1993) showed that for somewhat prolate
clouds with a Gaussian initial density profile, the critical value of a is reduced
to about 0.3. Assuming a profile p ex: R-1, Burkert, Bate, & Bodenheimer
(1997) showed that several fragments were produced near the centers of clouds
with initial a == 0.35 and two different values of /3. On the other hand, Tsai
& Bertschinger (1989) showed that the singular isothermal sphere (p ex: R-2 )

is stable against fragmentation. However, the value of a for such a sphere is
0.5. In general, as the degree of central concentration increases, the parameter
space available for fragmentation seems to shrink (see also Tsuribe & Inutsuka
2000). Given the large number of pararneters needed to describe the initial
condition for collapse, it seems unlikely that a simple criterion can be derived;
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Figure 1. Four stages during the collapse of a prolate cloud core
with a == 0.47 plus subsonic turbulence. The greyscale indicates the
logarithm of the surface density, viewed toward the equatorial plane.
Upper left: time == 8.7 x 1010 s, plot scale == 1017 em, log Pmax ==
-17.21. Upper right: time == 8.7 x 1011 s, plot scale == 5 x 1016 em, log
Pmax == -16.6. Lower left: time == 1.74 x 1012 s, plot scale == 5 x 1016

em, log Pmax == -15.8. Lower right: time == 2.3 x 1012 s, plot scale
== 1 x 1015 cm, log Pmax == -7.6.

for example the typical cloud core is somewhat turbulent and probably not
uniformly rotating. However the approximate rule that the collapsing cloud
fragments into a number of pieces equal to the number of Jeans masses at the
initial state (Larson 1978) is roughly verified in a number of simulations that
are not highly centrally condensed.

2.3. Questions

The above discussion suggests some more specific questions regarding the out-
come of fragmentation calculations.

1. A typical molecular cloud core is centrally condensed and has a ~ 0.4,
{3 ~ 0.02. Will it fragment?

2. Numerical resolution is important and the Jeans condition must be satis-
fied (Bate & Burkert 1997; Truelove et al. 1997, 1998). For highly resolved
calculations, do different numerical codes give consistent results?
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Figure 2. Contours of equal density and velocity vectors in the equa-
torial plane during the fragmentation of a cloud with initial a == 0.35
and {3 == 0.23, as calculated with a nested-grid code (Burkert, Bate,
& Bodenheimer 1997). Upper left: t == 1.176 X 1012 s; upper right:
t == 1.190 X 1012 s; lower left: t == 1.209 X 1012 s; lower right:
t == 1.217 X 1012 s. Scale is in cm.
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3. Do fragmentation results depend strongly on the form and amplitude of
the assumed initial perturbation?

4. Is fragmentation of a rotating collapsing cloud a reasonable solution to the
problem of formation of a wide binary?

In the next section the general results of fragmentation calculations are discussed
with a view toward answering these questions.

3. Fragmentation: Results

Fragmentation calculations have many possible outcomes, for example binary
formation (Boss 1993; Bate, Bonnell, & Price 1995), induced fragmentation by
an initial central binary of further fragments in a surrounding disk (Bonnell &
Bate 1994), formation of a small cluster (Monaghan & Lattanzio 1991; Boss
1996; Klapp & Sigalotti 1998), fragmentation of filaments (Monaghan 1994;
Inutsuka & Miyama 1997), or formation of a binary plus low-mass fragments
(Burkert & Bodenheimer, unpublished).

The first question posed above has been addressed in a number of numerical
simulations. For example Boss (1993) shows that for the appropriate values of
(a, (3) a prolate core does fragment if the axis ratio is 2:1 but does not fragment
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Figure 3. Contours of equal density and velocity vectors in the equa-
torial plane during the fragmentation of a cloud with initial a == 0.35
and {3 == 0.23, as calculated with an SPH code (Burkert, Bate, &
Bodenheimer 1997). Upper left: t 1.135 x 1012 s; upper right:
t == 1.160 X 1012 s; lower left: t == 1.175 X 1012 s; lower right:
t == 1.907 X 1012 s.

if the axis ratio is 1.5:1. The results of Tsuribe & Inutsuka (2000) indicate that
a centrally condensed spherical cloud with a == 0.4 would not fragment during
the isothermal phase. Another example, which includes a moderate turbulence,
is shown in Figure 1. The starting point is a cloud of 1 M0 with a uniform
sound speed of 1 x 104 em s-1 with no ordered rotation and with a dimension
Rmax == 1.088 X 1017 em. The cloud is prolate with a density profile

( ) (
x2 y2+z2 )P r == Pc exp - ~ - b2

where the central density Pc == 6.2 X 10-18 g cm-3 , a == Rmax/ 1.73, and b == a/2.
A turbulent velocity field with P(k) rv k-4 is imposed, giving a ratio of kinetic
energy to gravitational potential energy of 0.3 and a ratio of internal energy
to gravitational potential energy of 0.47. The subsonic turbulent velocity field
results in a net specific angular momentum j == 3.1 X 1020 cm2 s-l.

The isothermal evolution of the collapse is followed with an SPH code of
40,000 particles. The first frame, at an early time, shows evidence of a turbulent
structure. In the second frame, two condensations appear, which later merge,
but turbulence prevents overall collapse. In the third frame, a single core of
almost uniform density has formed; it is about to collapse. The fourth frame
shows, on a much smaller scale, a disk with a density of about 10-11 g cm-3,

which is starting to heat, and a central object with much higher density. By
the end of the simulation no fragmentation had occurred; further calculations
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are required. This calculation and others therefore indicate that the standard
molecular cloud core is not likely to fragment during the early collapse phases,
although the subsequent adiabatic evolution remains to be investigated. If the
initial core has highly supersonic turbulence (Klein & Fisher; this volume) frag-
mentation does occur; however for typical low-mass star-forming cores, such
turbulence is not observed.

The typical fragmentation calculation, including the one shown in Figure 1,
has not been carried out long enough so that most of the material in the original
cloud has collapsed to the equatorial plane. Thus the final outcome in these
systems, as influenced by fragmentation at later stages as well as by captures,
mergers, and escapes, is not known. Under the assumption that an initial binary
fragmentation does take place and there is no further fragmentation, Bate (2000)
has followed approximately the accretion of the rest of the cloud material onto
the binary. He finds that an initial state of large mass ratio tends to evolve
towards smaller mass ratio, and that a system with low angular momentum is
more likely to evolve to a system with equal masses than one with high angular
momentum.

Turning to the second question, results may depend qualitatively on nu-
merical resolution, particularly if the Jeans condition is not satisfied. Even
if it is satisfied, calculations must show numerical convergence. A number of
comparisons have been made between different numerical codes. For example,
Burkert, Bate, & Bodenheimer (1997) compared the collapse of centrally con-
densed clouds as calculated with a grid code and with an SPH code. The results
are shown in Figures 2 and 3. Apart from showing that the two codes give qual-
itatively the same results, these figures also demonstrate that the formation of
an initial central binary in a close orbit can induce the formation of additional
fragments farther out, and that the fragmentation process can lead to a small
cluster. Further tests are described in Bodenheimer et al. (2000) and Boss et
al. (2000). We may conclude that different numerical codes with similar degree
of resolution produce about the same results; however the question of numerical
convergence has not been investigated thoroughly enough. The effect of the ini-
tial perturbation (question 3 above) has also not been investigated extensively,
but existing studies, for example Tsuribe & Inutsuka (1999a) and Bodenheimer,
Yorke, & Burkert (1999), indicate that the occurrence of fragmentation depends
only slightly on the form of the initial perturbation, but the details of how the
initial fragmentation phase proceeds is likely to be strongly affected.

4. Conclusions

In summary, we now turn to the fourth question posed above: Does fragmen-
tation during a rotating collapse explain the properties of wide binaries? This
theory has the following advantages:

1. A wide range of orbital angular momenta is predicted, depending on the
angular momentum of the initial cloud core plus effects of captures after
fragmentation into a small cluster.

2. Calculations do indicate presence of circumstellar and circumbinary disks
(see, for example, Bodenheimer et al. 2000).
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3. This process predicts that components of young binaries are coeval, in
agreement with most comparisons of young binaries with pre-main se-
quence evolutionary tracks. However, this constraint is not very strong,
since derived ages are not accurate to better than 1-2 Myr.

4. The calculations predict eccentric orbits, in agreement with the fact that
most binary orbits, except the tidally circularized very close orbits, have
a wide range of eccentricities.

5. Cloud core angular momenta are of the correct order of magnitude to
explain wide binary orbits. Although Simon (1992) points out that core
angular momenta are a factor 10 larger than the typical orbital angular
momenta of wide binaries, in fact the typical core angular momenta are
probably overestimated by up to a factor of 3 (Burkert & Bodenheimer
2000). Furthermore, not all of the core angular momentum ends up in the
binary; according to one of the very few calculations that has been carried
to the point where accretion onto a forming binary is essentially complete,
the result shows that roughly half of the core angular momentum does not
end up in the binary orbit but is deposited in a circumbinary disk (Bate
et al. 1995).

6. The calculated fragments are themselves unstable to collapse and probably
to fragmentation, so hierarchical multiples could. be explained.

However, the fragmentation hypothesis, and in particular the numerical
calculations which support it, also have a number of problems:

1. For standard core parameters, fragmentation tends to set in just at the
density where the center of the cloud is beginning to heat. Many calcu-
lations have not treated radiation transport but have assumed adiabatic
heating starting from an assumed critical density. The precise treatment
of radiation transfer may be important.

2. The role of magnetic fields in regulating the protostellar collapse and frag-
mentation phase has not been explored in sufficient detail.

3. Since there are so many possible initial conditions, the statistics of mass
ratio distributions 'and eccentricities will be difficult to derive from detailed
three-dimensional calculations.

4. Numerical simulations have not been well compared with observations, for
example, with millimeter fluxes.

5. It is much more difficult to explain close binaries by this process, but it is
highly questionable that there are two completely independent processes
for binary formation, since the transition in observables from close binaries
to wide binaries is so smooth.
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