J. Austral. Math. Soc. (Series A) 30 (1981), 469-472

THE LAWS OF SOME METABELIAN VARIETIES

RICHARD LEVINGSTON

(Received 22 April 1980, Revised 10 July 1980)

Communicated by D. E. Taylor

Abstract

It is shown that if m, n are relatively prime positive integers, then the variety consisting of those soluble groups of exponent mn in which any subgroup of exponent m or n is abelian has a basis of two-variable laws.

1980 Mathematics subject classification (Amer. Math. Soc.): 20 E 10.

Since the paper of Higman (1959), it has been of interest to ask which varieties have a 2-variable basis for their laws. In this note, we show that certain metabelian varieties are defined by 2-variable laws.For unexplained results and notation on varieties of groups see Neumann (1967), while for other group-theoretical results see Gorenstein (1968).

THEOREM. Let m and n be relatively prime positive integers. Then the following set of laws forms a basis for the laws of the variety $\mathfrak{A}_m\mathfrak{A}_n \vee \mathfrak{A}_n\mathfrak{A}_m$:

(1) $x^{mn} = 1$. (2) $[x^m, y^m]^m = 1$. (3) $[x^n, y^n]^n = 1$. (4) $[[x, y], [x^{-1}, y]] = 1$.

Let \mathfrak{V} denote the variety defined by the laws (1)-(4), and let \mathfrak{U} denote the variety $\mathfrak{A}_m\mathfrak{A}_n \vee \mathfrak{A}_n\mathfrak{A}_m$. We prove that $\mathfrak{U} = \mathfrak{V}$ in a series of lemmas. Note however that the laws (1)-(4) hold in $\mathfrak{A}_m\mathfrak{A}_n$ and in $\mathfrak{A}_n\mathfrak{A}_m$, so we have $\mathfrak{U} \leq \mathfrak{V}$.

LEMMA 1. (a) Groups in \mathfrak{V} of exponent dividing m or n are abelian.

(b) Finitely-generated soluble groups in \mathfrak{V} are in \mathfrak{U} .

469

⁽c) 2-generator groups in \mathfrak{V} are metabelian.

[©] Copyright Australian Mathematical Society 1981

Richard Levingston

PROOF. The law (3) reduces to [x, y] = 1 in a group of exponent dividing *m*, as does the law (2) in a group of exponent dividing *n*. Hence (a) holds.

Let $G \in \mathfrak{V}$ be a finitely-generated soluble group. Then G is finite. Now $F(G) = F_1 \times F_2$, where F_1 has exponent dividing m and F_2 has exponent dividing n. Let $G_i = G/F_i$ for i = 1, 2. Then G is a subgroup of $G_1 \times G_2$, and it suffices to show that G_1 and G_2 lie in \mathfrak{U} .

Now $F(G_1)$ has exponent dividing *n*, by law (1) and part (a). But if $g \in G_1$ has order dividing *n* then again by law (1) $\langle g, F(G_1) \rangle$ has exponent dividing *n*, and so by (a) is abelian. Hence every element of G_1 of order dividing *n* centralizes $F(G_1)$. But $\mathcal{C}_G(F(G_1)) \leq F(G_1)$ (Gorenstein (1968), Theorem 6.1.3), so $F(G_1)$ contains all the elements of G_1 of order dividing *n*. Hence $G_1/F(G_1)$ has exponent dividing *m*, and so by part (a) is abelian. Then $G_1 \in \mathfrak{A}_n \mathfrak{A}_m \leq \mathfrak{U}$. An exactly similar argument shows that $G_2 \in \mathfrak{A}_m \mathfrak{A}_n \leq \mathfrak{U}$. Hence $G \in \mathfrak{U}$.

By Theorem 2.1 of Higman (1959), (c) is a consequence of the law (4).

LEMMA 2. $[x^m, (x^n)^y] = 1$ is a law of \mathfrak{B} .

PROOF. First we show that $[x^m, (x^n)^{\nu}] = 1$ is a law of \mathfrak{U} . In other words, we must show that it is a law in $\mathfrak{A}_m\mathfrak{A}_n$ and in $\mathfrak{A}_n\mathfrak{A}_m$. In $\mathfrak{A}_m\mathfrak{A}_n$, a commutator *c* has order *m*, and so since (m, n) = 1, *c* is an *n*th power. Also *n*th powers commute. So $[x, y, z^n] = 1$ is a law of $\mathfrak{A}_m\mathfrak{A}_n$. But $[x^m, (x^n)^{\nu}] = [x^m, y^{-1}, x^n]^{\nu}$, so $[x^m, (x^n)^{\nu}] = 1$ is a law of $\mathfrak{A}_m\mathfrak{A}_n$.

Similarly $[z^m, [x, y]] = 1$ is a law of $\mathfrak{A}_n \mathfrak{A}_m$. But $[x^m, (x^n)^y] = [x^m, [x^n, y]]$, so $[x^m, (x^n)^y] = 1$ is a law of $\mathfrak{A}_n \mathfrak{A}_m$. Hence $[x^m, (x^n)^y] = 1$ is a law of \mathfrak{A} .

But now suppose $G \in \mathfrak{V}$ does not satisfy $[x^m, (x^n)^y] = 1$. Then G contains elements g, h with $[g^m, (g^n)^h] \neq 1$. But by Lemma 1 (b) and (c) $\langle g, h \rangle \in \mathfrak{U}$. Hence $[g^m, (g^n)^h] = 1$, a contradiction. Hence $[x^m, (x^n)^y] = 1$ is a law of \mathfrak{V} .

LEMMA 3. \mathfrak{V} contains no non-abelian simple group.

PROOF. Suppose $G \in \mathfrak{V}$, G a non-abelian simple group. Then we deduce some properties of G.

(i) If $g \in G$, then $g^m = 1$ or $g^n = 1$.

For if $g \in G$ with $g^m \neq 1$ and $g^n \neq 1$, then by Lemma 2, $\mathcal{C}_G(g^m)$ contains all conjugates of g^n . But G is simple, so G is generated by the conjugates of g^n . Then g^m is central in G, which is absurd, since G is a non-abelian simple group.

(ii) Suppose that g, h are non-commuting elements of G of the same order, and let $H = \langle g, h \rangle$. Then H is a Frobenius group, with $\langle g \rangle$ and $\langle h \rangle$ as Frobenius complements. In particular, there is an integer α with $\langle g \rangle = \langle g^{\alpha} \rangle$ and $g^{-\alpha}h \in H'$.

Let g, h have order μ . By (i), we may assume for definiteness, that μ divides m. Then by Lemma 1 (c), H is metabelian, and so finite. Again g and h are nth powers. But H' is generated by elements [a, b] with a conjugate of g and b a conjugate of h. Then by law (3), these elements have order dividing n. Since H' is abelian, it follows that H' has exponent dividing n. Now by (i), H/H' acts regularly on H'. Hence H is a Frobenius group. Since H/H' is abelian, it is cyclic (Gorenstein (1968), Theorem 5.3.14(ii). See also Theorem 10.3.1).

Now by (i), $H' \cap \langle g \rangle = H' \cap \langle h \rangle = 1$, as $(\mu, |H'|) = 1$. But $H/H' = \langle gH', hH' \rangle$, so H/H' has exponent exactly μ . Since H/H' is cyclic, we have $|H:H'| = \mu$, whence $H = H' \langle g \rangle = H' \langle h \rangle$. In other words, $\langle g \rangle$ and $\langle h \rangle$ are Frobenius complements. Then $\langle g \rangle$ and $\langle h \rangle$ are conjugate in H (Gorenstein (1968), Theorem 6.2.1(ii)). Choose $a \in H$ with $\langle h^a \rangle = \langle g \rangle$, say $h^a = g^a$. Then $g^{-\alpha}h = (h^a)^{-1}h = [a, h] \in H'$ as required.

(iii) G contains a non-cyclic abelian subgroup.

Let p be the largest prime dividing the exponent of G. Then G is generated by elements of order p. Hence G contains a pair g, h of non-commuting elements of order p. Let $H = \langle g, h \rangle$. Then by (ii) H is a Frobenius group, with H' abelian. Let C be a complement to H' in H, and let q be a prime dividing |H'|. Then |C| = p, and C acts regularly on the abelian group $O_q(H')$. Since q < p, $O_q(H')$ must be non-cyclic.

(iv) G does not exist.

By (iii), G contains a non-cyclic abelian subgroup, so for some prime p, G contains the non-cyclic group of order p^2 . Hence choose $g, h \in G$ such that $\langle g, h \rangle$ is non-cyclic of order p^2 . Suppose for definiteness that p divides m.

Let $A = \mathcal{C}_G(g)$. By (i) A has exponent dividing *m*, so by Lemma 1 (a) A is abelian. If $a \in A^{\#}$ then again $\mathcal{C}_G(a)$ has exponent dividing *m*, and is abelian. Also $A \leq \mathcal{C}_G(a)$. So $\mathcal{C}_G(a)$ centralizes g. Then $\mathcal{C}_G(a) \leq A$. Hence we have $A = \mathcal{C}_G(a)$ for any $a \in A^{\#}$. In particular $A = \mathcal{C}_G(g^{-1}h)$.

Now as G is simple, G is generated by elements of order p (for example, the conjugates of g). Then there is an element k of order p in G - A, as A is abelian but G is not. Let $H_1 = \langle g, k \rangle$ and $H_2 = \langle h, k \rangle$. Then by (ii) there are integers α, β with $1 \leq \alpha, \beta < p$ such that $g^{-\alpha}k \in H'_1$ and $h^{-\beta}k \in H'_2$. Replacing g by g^{α} and h by h^{β} , we suppose that $g^{-1}k \in H'_1$ and $h^{-1}k \in H'_2$. But H'_1 and H'_2 have exponent dividing n, so $(g^{-1}k)^n = (h^{-1}k)^n = 1$. Then $g^{-1}k, h^{-1}k$ are mth powers, and so by law (2), $[g^{-1}k, k^{-1}h]^m = 1$. But since [g, h] = 1, $[g^{-1}k, k^{-1}h] = [k, g^{-1}h]$. As $k^m = (g^{-1}h)^m = 1$, $[g^{-1}k, k^{-1}h]^n = [k, g^{-1}h]^n = 1$, by law (3). Since (m, n) = 1, we have $[k, g^{-1}h] = 1$. Then $k \in \mathcal{C}_G(g^{-1}h) = A$, contradicting the choice of k.

Lemma 4. $\mathfrak{U} = \mathfrak{V}$.

Richard Levingston

[4]

PROOF. Suppose $\mathfrak{U} \neq \mathfrak{V}$. Then as $\mathfrak{U} < \mathfrak{V}$, there is a law of \mathfrak{U} which is not a law of \mathfrak{V} . Hence there is a finitely-generated group G with $G \in \mathfrak{V} - \mathfrak{U}$. By Lemma 3 and Lemma 1 (b), all finite groups in \mathfrak{V} are in \mathfrak{U} . Hence G is infinite. We show first that G'' is perfect. Since G/G''' is finitely-generated and soluble, we have by Lemma 1 (b) that $G/G''' \in \mathfrak{U}$. But all groups in \mathfrak{U} are metabelian. Hence G'' = G''' as required.

Now G/G'' is finite, while G is finitely-generated. Then G'' is finitely-generated. Now by Zorn's Lemma, G'' has a maximal normal subgroup N. Then G''/N is a simple group, which is non-abelian since G'' is perfect. But $G''/N \in \mathfrak{B}$, contradicting Lemma 3 and completing the proof.

References

D. Gorenstein (1968), Finite groups (Harper and Row, New York, Evanston, London).

- G. Higman (1959), 'Some remarks on varieties of groups', Quart. J. Math. Oxford Ser. 10, 165-178.
- H. Neumann (1967), Varieties of groups (Ergebnisse der Mathematik und ihrer Grenzgebiete 37, Springer-Verlag, Berlin, Heidelberg, New York).

Department of Mathematics Institute of Advanced Studies The Australian National University P.O. Box 4 Canberra, A.C.T. 2600 Australia

472