THE LAWS OF SOME METABELIAN VARIETIES

RICHARD LEVINGSTON

(Received 22 April 1980, Revised 10 July 1980)
Communicated by D. E. Taylor

Abstract

It is shown that if m, n are relatively prime positive integers, then the variety consisting of those soluble groups of exponent $m n$ in which any subgroup of exponent m or n is abelian has a basis of two-variable laws.

1980 Mathematics subject classification (Amer. Math. Soc.): 20 E 10.

Since the paper of Higman (1959), it has been of interest to ask which varieties have a 2 -variable basis for their laws. In this note, we show that certain metabelian varieties are defined by 2 -variable laws. For unexplained results and notation on varieties of groups see Neumann (1967), while for other group-theoretical results see Gorenstein (1968).

Theorem. Let m and n be relatively prime positive integers. Then the following set of laws forms a basis for the laws of the variety $\mathfrak{A}_{m} \mathfrak{A}_{n} \vee \mathfrak{A}_{n} \mathfrak{A}_{m}$:
(1) $x^{m n}=1$.
(2) $\left[x^{m}, y^{m}\right]^{m}=1$.
(3) $\left[x^{n}, y^{n}\right]^{n}=1$.
(4) $\left[[x, y],\left[x^{-1}, y\right]\right]=1$.

Let \mathfrak{B} denote the variety defined by the laws (1)-(4), and let \mathfrak{U} denote the variety $\mathfrak{A}_{m} \mathfrak{A}_{n} \vee \mathfrak{A}_{n} \mathfrak{A}_{m}$. We prove that $\mathfrak{U}=\mathfrak{B}$ in a series of lemmas. Note however that the laws (1)-(4) hold in $\mathfrak{U}_{m} \mathfrak{U}_{n}$ and in $\mathfrak{A}_{n} \mathfrak{A}_{m}$, so we have $\mathfrak{U} \leqslant \mathfrak{B}$.

Lemma 1. (a) Groups in \mathfrak{B} of exponent dividing m or n are abelian.
(b) Finitely-generated soluble groups in \mathfrak{B} are in \mathfrak{U}.
(c) 2-generator groups in \mathfrak{B} are metabelian.

[^0]Proof. The law (3) reduces to $[x, y]=1$ in a group of exponent dividing m, as does the law (2) in a group of exponent dividing n. Hence (a) holds.

Let $G \in \mathfrak{B}$ be a finitely-generated soluble group. Then G is finite. Now $F(G)=F_{1} \times F_{2}$, where F_{1} has exponent dividing m and F_{2} has exponent dividing n. Let $G_{i}=G / F_{i}$ for $i=1,2$. Then G is a subgroup of $G_{1} \times G_{2}$, and it suffices to show that G_{1} and G_{2} lie in \mathfrak{U}.

Now $F\left(G_{1}\right)$ has exponent dividing n, by law (1) and part (a). But if $g \in G_{1}$ has order dividing n then again by law (1) $\left\langle g, F\left(G_{1}\right)\right\rangle$ has exponent dividing n, and so by (a) is abelian. Hence every element of G_{1} of order dividing n centralizes $F\left(G_{1}\right)$. But $\bigcup_{G}\left(F\left(G_{1}\right)\right) \leqslant F\left(G_{1}\right)$ (Gorenstein (1968), Theorem 6.1.3), so $F\left(G_{1}\right)$ contains all the elements of G_{1} of order dividing n. Hence $G_{1} / F\left(G_{1}\right)$ has exponent dividing m, and so by part (a) is abelian. Then $G_{1} \in \mathfrak{A}_{n} \mathfrak{U}_{m} \leq \mathfrak{U}$. An exactly similar argument shows that $G_{2} \in \mathfrak{A}_{m} \mathfrak{H}_{n} \leqslant \mathfrak{U}$. Hence $G \in \mathfrak{U}$.

By Theorem 2.1 of Higman (1959), (c) is a consequence of the law (4).

Lemma 2. $\left[x^{m},\left(x^{n}\right)^{y}\right]=1$ is a law of \mathfrak{B}.

Proof. First we show that $\left[x^{m},\left(x^{n}\right)^{y}\right]=1$ is a law of \mathfrak{U}. In other words, we must show that it is a law in $\mathfrak{A}_{m} \mathfrak{U}_{n}$ and in $\mathfrak{A}_{n} \mathfrak{U}_{m}$. $\operatorname{In} \mathfrak{A}_{m} \mathfrak{U}_{n}$, a commutator c has order m, and so since $(m, n)=1, c$ is an nth power. Also nth powers commute. So $\left[x, y, z^{n}\right]=1$ is a law of $\mathfrak{A}_{m} \mathfrak{A}_{n}$. But $\left[x^{m},\left(x^{n}\right)^{y}\right]=\left[x^{m}, y^{-1}, x^{n}\right]^{y}$, so $\left[x^{m},\left(x^{n}\right)^{y}\right]=1$ is a law of $\mathfrak{A}_{m} \mathscr{H}_{n}$.

Similarly $\left[z^{m},[x, y]\right]=1$ is a law of $\mathfrak{A}_{n} \mathfrak{A}_{m}$. But $\left[x^{m},\left(x^{n}\right)^{y}\right]=\left[x^{m},\left[x^{n}, y\right]\right]$, so $\left[x^{m},\left(x^{n}\right)^{y}\right]=1$ is a law of $\mathfrak{A}_{n} \mathfrak{A}_{m}$. Hence $\left[x^{m},\left(x^{n}\right)^{y}\right]=1$ is a law of \mathfrak{U}.

But now suppose $G \in \mathfrak{B}$ does not satisfy $\left[x^{m},\left(x^{n}\right)^{y}\right]=1$. Then G contains elements g, h with $\left[g^{m},\left(g^{n}\right)^{h}\right] \neq 1$. But by Lemma $1(b)$ and $(c)\langle g, h\rangle \in \mathbb{U}$. Hence $\left[g^{m},\left(g^{n}\right)^{h}\right]=1$, a contradiction. Hence $\left[x^{m},\left(x^{n}\right)^{y}\right]=1$ is a law of \mathfrak{B}.

Lemma 3. \mathfrak{B} contains no non-abelian simple group.

Proof. Suppose $G \in \mathfrak{B}, G$ a non-abelian simple group. Then we deduce some properties of G.
(i) If $g \in G$, then $g^{m}=1$ or $g^{n}=1$.

For if $g \in G$ with $g^{m} \neq 1$ and $g^{n} \neq 1$, then by Lemma $2, \mathcal{C}_{G}\left(g^{m}\right)$ contains all conjugates of g^{n}. But G is simple, so G is generated by the conjugates of g^{n}. Then g^{m} is central in G, which is absurd, since G is a non-abelian simple group.
(ii) Suppose that g, h are non-commuting elements of G of the same order, and let $H=\langle g, h\rangle$. Then H is a Frobenius group, with $\langle g\rangle$ and $\langle h\rangle$ as Frobenius complements. In particular, there is an integer α with $\langle g\rangle=\left\langle g^{\alpha}\right\rangle$ and $g^{-\alpha} h \in H^{\prime}$.

Let g, h have order μ. By (i), we may assume for definiteness, that μ divides m. Then by Lemma 1 (c), H is metabelian, and so finite. Again g and h are nth powers. But H^{\prime} is generated by elements $[a, b]$ with a conjugate of g and b a conjugate of h. Then by law (3), these elements have order dividing n. Since H^{\prime} is abelian, it follows that H^{\prime} has exponent dividing n. Now by (i), H / H^{\prime} acts regularly on H^{\prime}. Hence H is a Frobenius group. Since H / H^{\prime} is abelian, it is cyclic (Gorenstein (1968), Theorem 5.3.14(ii). See also Theorem 10.3.1).

Now by (i), $H^{\prime} \cap\langle g\rangle=H^{\prime} \cap\langle h\rangle=1$, as $\left(\mu,\left|H^{\prime}\right|\right)=1$. But $H / H^{\prime}=$ $\left\langle g H^{\prime}, h H^{\prime}\right\rangle$, so H / H^{\prime} has exponent exactly μ. Since H / H^{\prime} is cyclic, we have $\left|H: H^{\prime}\right|=\mu$, whence $H=H^{\prime}\langle g\rangle=H^{\prime}\langle h\rangle$. In other words, $\langle g\rangle$ and $\langle h\rangle$ are Frobenius complements. Then $\langle g\rangle$ and $\langle h\rangle$ are conjugate in H (Gorenstein (1968), Theorem 6.2.1(ii)). Choose $a \in H$ with $\left\langle h^{a}\right\rangle=\langle g\rangle$, say $h^{a}=g^{\alpha}$. Then $g^{-\alpha} h=\left(h^{a}\right)^{-1} h=[a, h] \in H^{\prime}$ as required.
(iii) G contains a non-cyclic abelian subgroup.

Let p be the largest prime dividing the exponent of G. Then G is generated by elements of order p. Hence G contains a pair g, h of non-commuting elements of order p. Let $H=\langle g, h\rangle$. Then by (ii) H is a Frobenius group, with H^{\prime} abelian. Let C be a complement to H^{\prime} in H, and let q be a prime dividing $\left|H^{\prime}\right|$. Then $|C|=p$, and C acts regularly on the abelian group $O_{q}\left(H^{\prime}\right)$. Since $q<p, O_{q}\left(H^{\prime}\right)$ must be non-cyclic.
(iv) G does not exist.

By (iii), G contains a non-cyclic abelian subgroup, so for some prime p, G contains the non-cyclic group of order p^{2}. Hence choose $g, h \in G$ such that $\langle g, h\rangle$ is non-cyclic of order p^{2}. Suppose for definiteness that p divides m.

Let $A=\mathcal{C}_{G}(g)$. By (i) A has exponent dividing m, so by Lemma 1 (a) A is abelian. If $a \in A^{\#}$ then again $\mathcal{C}_{G}(a)$ has exponent dividing m, and is abelian. Also $A \leqslant \bigodot_{G}(a)$. So $\bigodot_{G}(a)$ centralizes g. Then $\bigodot_{G}(a) \leqslant A$. Hence we have $A=\bigodot_{G}(a)$ for any $a \in A^{\#}$. In particular $A=\bigodot_{G}\left(g^{-1} h\right)$.

Now as G is simple, G is generated by elements of order p (for example, the conjugates of g). Then there is an element k of order p in $G-A$, as A is abelian but G is not. Let $H_{1}=\langle g, k\rangle$ and $H_{2}=\langle h, k\rangle$. Then by (ii) there are integers α, β with $1 \leqslant \alpha, \beta<p$ such that $g^{-\alpha} k \in H_{1}^{\prime}$ and $h^{-\beta} k \in H_{2}^{\prime}$. Replacing g by g^{α} and h by h^{β}, we suppose that $g^{-1} k \in H_{1}^{\prime}$ and $h^{-1} k \in H_{2}^{\prime}$. But H_{1}^{\prime} and H_{2}^{\prime} have exponent dividing n, so $\left(g^{-1} k\right)^{n}=\left(h^{-1} k\right)^{n}=1$. Then $g^{-1} k, h^{-1} k$ are m th powers, and so by law (2), $\left[g^{-1} k, k^{-1} h\right]^{m}=1$. But since $[g, h]=1$, $\left[g^{-1} k, k^{-1} h\right]=$ $\left[k, g^{-1} h\right]$. As $k^{m}=\left(g^{-1} h\right)^{m}=1,\left[g^{-1} k, k^{-1} h\right]^{n}=\left[k, g^{-1} h\right]^{n}=1$, by law (3). Since $(m, n)=1$, we have $\left[k, g^{-1} h\right]=1$. Then $k \in \mathcal{C}_{G}\left(g^{-1} h\right)=A$, contradicting the choice of k.

Lemma 4. $\mathfrak{U}=\mathfrak{B}$.

Proof. Suppose $\mathfrak{U} \neq \mathfrak{B}$. Then as $\mathfrak{U}<\mathfrak{B}$, there is a law of \mathfrak{U} which is not a law of \mathfrak{B}. Hence there is a finitely-generated group G with $G \in \mathfrak{B}-\mathfrak{U}$. By Lemma 3 and Lemma 1 (b), all finite groups in \mathfrak{B} are in \mathfrak{U}. Hence G is infinite. We show first that $G^{\prime \prime}$ is perfect. Since $G / G^{\prime \prime \prime}$ is finitely-generated and soluble, we have by Lemma 1 (b) that $G / G^{\prime \prime \prime} \in \mathfrak{U}$. But all groups in \mathfrak{H} are metabelian. Hence $G^{\prime \prime}=G^{\prime \prime \prime}$ as required.

Now $G / G^{\prime \prime}$ is finite, while G is finitely-generated. Then $G^{\prime \prime}$ is finitely-generated. Now by Zorn's Lemma, $G^{\prime \prime}$ has a maximal normal subgroup N. Then $G^{\prime \prime} / N$ is a simple group, which is non-abelian since $G^{\prime \prime}$ is perfect. But $G^{\prime \prime} / N \in$ \mathfrak{B}, contradicting Lemma 3 and completing the proof.

References

D. Gorenstein (1968), Finite groups (Harper and Row, New York, Evanston, London).
G. Higman (1959), 'Some remarks on varieties of groups', Quart. J. Math. Oxford Ser. 10, 165-178.
H. Neumann (1967), Varieties of groups (Ergebnisse der Mathematik und ihrer Grenzgebiete 37, Springer-Verlag, Berlin, Heidelberg, New York).

Department of Mathematics
Institute of Advanced Studies
The Australian National University
P.O. Box 4

Canberra, A.C.T. 2600
Australia

[^0]: © Copyright Australian Mathematical Society 1981

