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Abstract

It is shown that if m, n are relatively prime positive integers, then the variety consisting of those
soluble groups of exponent mn in which any subgroup of exponent m or n is abelian has a basis of
two-variable laws.

1980 Mathematics subject classification (Amer. Math. Soc.): 20 E 10.

Since the paper of Higman (1959), it has been of interest to ask which varieties
have a 2-variable basis for their laws. In this note, we show that certain
metabelian varieties are defined by 2-variable laws.For unexplained results and
notation on varieties of groups see Neumann (1967), while for other group-theo-
retical results see Gorenstein (1968).

THEOREM. Let m and n be relatively prime positive integers. Then the following
set of laws forms a basis for the laws of the variety 9tm9tn V 2ln2lm

:

(I)*""1 = 1.
(2)[xm,y m)m

Let 93 denote the variety defined by the laws (l)-(4), and let U denote the
variety 9tm9tn V %„%„• We prove that II = 93 in a series of lemmas. Note
however that the laws (l)-(4) hold in 2lm2ln and in 9ln9tm, so we have II < 93.

LEMMA 1. (a) Groups in 93 of exponent dividing m or n are abelian.
(b) Finitely-generated soluble groups in 93 are in W.
(c) 2-generator groups in 93 are metabelian.
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PROOF. The law (3) reduces to [x, y] = 1 in a group of exponent dividing m, as
does the law (2) in a group of exponent dividing n. Hence (a) holds.

Let G £ 93 be a finitely-generated soluble group. Then G is finite. Now
F(G) = /", X F2, where F, has exponent dividing m and F2 has exponent
dividing n. Let G, = G/F, for / = 1, 2. Then G is a subgroup of G, X G2, and it
suffices to show that G, and G2 lie in U.

Now F(G,) has exponent dividing n, by law (1) and part (a). But if g £ G, has
order dividing /i then again by law (1) <g, F(G,)> has exponent dividing «, and
so by (a) is abelian. Hence every element of G, of order dividing n centralizes
F(G,). But (SG(F(G,)) < F{GX) (Gorenstein (1968), Theorem 6.1.3), so F(GX)
contains all the elements of G, of order dividing n. Hence Gx/F(Gt) has
exponent dividing m, and so by part (a) is abelian. Then Gx £ 9tn9tm < II. An
exactly similar argument shows that G2 £ 9tm9tn < U. Hence G £ U.

By Theorem 2.1 of Higman (1959), (c) is a consequence of the law (4).

LEMMA 2. [xm, ( / f ] = 1 is a law of VS.

PROOF. First we show that [xm, {x"Y\ = 1 is a law of II. In other words, we
must show that it is a law in 9tm9tn and in 3tnlm. In 9tm3tn, a commutator c has
order m, and so since (m, n) = 1, c is an nth power. Also «th powers commute.
So [x,y,zn]=l is a law of 3lm9tn. But [xm,(xny] = [xm,y-\ x"Y, s°
[xm, (x"Y] = 1 is a law of 3Im3tn.

Similarly [zm, [x,y]] = 1 is a law of 3tn2tm. But [xm, (x"Y] = [xm, [x",^]], so
[xm, (x"Y] = 1 is a law of 9tn3tm. Hence [xm, ( x " / ] = 1 is a law of U.

But now suppose G £ 93 does not satisfy [xm, (x"Y] = 1. Then G contains
elements g, h with [gm, (gn)h] *= 1. But by Lemma 1 (b) and (c) <g, /i> £ U.
Hence [gm, (g")*] = 1, a contradiction. Hence [xm, (x")>'] = 1 is a law of 33.

LEMMA 3. 93 contains no non-abelian simple group.

PROOF. Suppose G £ 93, G a non-abelian simple group. Then we deduce some
properties of G.

(i)Ifg £ G, theng"1 = 1 org" = 1.
For if g £ G with gm =£ 1 and g" =£ 1, then by Lemma 2, CG(gm) contains all

conjugates of g". But G is simple, so G is generated by the conjugates of g".
Then gm is central in G, which is absurd, since G is a non-abelian simple group.

(ii) Suppose that g, h are non-commuting elements of G of the same order,
and let H = <g,/i>. Then / / is a Frobenius group, with (g> and <A> as
Frobenius complements. In particular, there is an integer a with <g> = <ga>
andg"7i £ / / ' .
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Let g, h have o rder ft. By (i), we m a y assume for definiteness, t ha t ft d ivides m.
Then by Lemma 1 (c), H is metabelian, and so finite. Again g and h are nth
powers. But H' is generated by elements [a, b] with a conjugate of g and b a
conjugate of h. Then by law (3), these elements have order dividing n. Since H'
is abelian, it follows that H' has exponent dividing n. Now by (i), H/H' acts
regularly on H'. Hence H is a Frobenius group. Since H/H' is abelian, it is
cyclic (Gorenstein (1968), Theorem 5.3.14(ii). See also Theorem 10.3.1).

Now by (i), H' n <g> = H' n <*> = 1, as (jt, | # ' | ) = 1. But / / / / / ' =
(gH', « / / ' ) , so H/H' has exponent exactly ft. Since H/H' is cyclic, we have
\H : H'\ = ju, whence H = / / '<£> = #'<*>• In other words, <g> and <A> are
Frobenius complements. Then <g> and <«> are conjugate in H (Gorenstein
(1968), Theorem 6.2.1(ii)). Choose a G H with <«"> = <g>, say ha = g". Then

g-°h = (A")-'A = [a, h] G / / ' as required.

(iii) G contains a non-cyclic abelian subgroup.

Let p be the largest prime dividing the exponent of G. Then G is generated by
elements of order p. Hence G contains a pair g, h of non-commuting elements of
order p. Let H = <g, «>. Then by (ii) / / is a Frobenius group, with H' abelian.
Let C be a complement to / / ' in 7/, and let q be a prime dividing \H'\. Then
|C| = /?, and C acts regularly on the abelian group Oq(H'). Since q <p, Oq(H')
must be non-cyclic.

(iv) G does not exist.

By (iii), G contains a non-cyclic abelian subgroup, so for some prime p, G
contains the non-cyclic group of order p2. Hence choose g, h e G such that
<g, ft) is non-cyclic of order/?2. Suppose for definiteness that/? divides m.

Let A = Cc(g). By (i) A has exponent dividing m, so by Lemma 1 (a) A is
abelian. If a E A# then again Sc(a) has exponent dividing m, and is abelian.
Also A < QG(a). So fic(a) centralizes g. Then &G(a) < >4. Hence we have
A = QG(a) for any a E: A*.ln particular^ = SG(g"'/i).

Now as G is simple, G is generated by elements of order p (for example, the
conjugates of g). Then there is an element k of order/) in G — A, as y4 is abelian
but (7 is not. Let Hx = <g, £> and i /2 = <n, &>. Then by (ii) there are integers
a, 0 with 1 <a, (1 <p such that g"aA: G H[ and /T^A: G / / j . Replacing g by g"
and hby h0, we suppose that g"'A: G i / | and /r'A: G H'V But //,' and #2 have
exponent dividing n, so (g"'A:)" = (/r'/c)" = 1. Then g~xk, h~lk are wth powers,
and so by law (2), [glk, k~lh]m = 1. But since [g, h] = 1, [g~lk, k~xh] =
[k, g~lh]. As km = (g '/i)m = 1, [g-'/fc, AT1/*]" = [k, g-lh]n = 1, by law (3). Since
(/n, «) = 1, we have [A:, g~xh] = 1. Then /c G QG(g~xh) = y4, contradicting the
choice of k.

LEMMA 4. U = 33.
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PROOF. Suppose 11 =7̂= 93. Then as U < 93, there is a law of 11 which is not a law
of 33. Hence there is a finitely-generated group G with G G 93 — U. By Lemma 3
and Lemma 1 (b), all finite groups in 93 are in 11. Hence G is infinite. We show
first that G" is perfect. Since G/G'" is finitely-generated and soluble, we have
by Lemma 1 (b) that G/G'" G II. But all groups in U are metabelian. Hence
G" = G'" as required.

Now G/G" is finite, while G is finitely-generated. Then G" is finitely-gener-
ated. Now by Zorn's Lemma, G" has a maximal normal subgroup N. Then
G " / N is a simple group, which is non-abelian since G" is perfect. But G" /N G
93, contradicting Lemma 3 and completing the proof.
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