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1. Introduction

This is a sequel to our previous paper [4] where we initiated a study of inverse
eigenvalue problems for matrices in the multiparameter setting. The one parameter
version of the problem under consideration asks for conditions on a given nxn
symmetric matrix A and on n given real numbers sl^s2^'" ^sn under which a
diagonal matrix V can be found so that A + V has sl,...,sn as its eigenvalues. Our
motivation for this problem and our method of attack on it in [4] comes chiefly from
the work of Hadeler [5] in which sufficient conditions were given for existence of the
desired diagonal V. Hadeler's approach in [5] relied heavily on the Brouwer fixed point
theorem and this was also our main tool in [4]. Subsequently, using properties of
topological degree, Hadeler [6] gave somewhat different conditions for the existence of
the diagonal V. It is our desire here to follow this lead and to use degree theory to give
some results extending those in [6] to the multiparameter case.

In Section 2 we study the inverse eigenvalue problem for one equation with two
spectral parameters and in Section 3 we apply these results to linked systems of such
equations and to the quadratic eigenvalue problem thus paralleling our earlier work [4].

2. One equation with two parameters

In this section we are given n x n symmetric matrices A, B, C where, without loss of
generality, we assume that the leading diagonal elements of A namely a,; = 0, l ^ i ^ n .
For each (A, n) e U2 the matrix

is also symmetric and we list its eigenvalues as

•Research supported in part by the NSERC of Canada and The University of Dundee.
343

https://doi.org/10.1017/S0013091500017788 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500017788


344 P. J. BROWNE AND B. D. SLEEMAN

We are interested in the eigencurves given by

There is no a priori guarantee that the sets Z,{A) are nonempty but various fairly weak
conditions preventing Z((A) = 0 have been discussed in [2]. It will be enough for us
here to assume that at least one of B, C is positive (or negative) definite.

As in [4], we use the cone CclR2 given by

and we assume

Hypothesis 2.1. The points (s,, I,) are C-ordered; i.e.

(Sj, tj) — (s;, £;) e C whenever j ^ i.

We put
n

i X ^ I L * I

k = l

and make the further

Hypothesis 2.2.

j - tdca <-g{- gj,

(sk - sj)bkk + (tk- tj)ckk <-g{- gj,

Note that Hypothesis 2.1 ensures that the left-hand sides of these two inequalities are, in
fact, negative. Now select tj>0 and consider the open bounded region EcW given by

E={(vu...,vn)\vl+s1bll+t1c11>-ri,vn + snb

Vi + Sjbu + tjCu+g{ < vj+Sjbjj + tjCjj-gj - e,

Vj + Sjbjj + tjCjj+gj <vk + Sjbkk + tjCkk - g{ - e,

It is easy to check that the point

x = (-s1fe11-t1c1!,. . . , -snbm-tncnn)

belongs to E.
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For veE, V will denote the diagonal matrix V=d\ag(vl,...,vn). We also use B,C to
denote the diagonal matrices

B = diag(blu.. .,bj, C = diag(cU)... ,cj

and B* ,C* for B — B, C — C respectively. Now consider the mapping F9, 0^9^ 1,
Fe:£-»Rn given by

Our problem of finding a diagonal matrix V so that (sht,)eZt(A + V), l^i^n, is
equivalent to finding a point v so that F1(y)=0.

Note that for veE,

jbjj + tjCjj <vk + Sjbkk + tfkk,

Thus it follows that

and accordingly Fo(v) = 0 has a unique solution, viz. v= — x. Moreover, in terms of the
topological degree we see that

It is clear that Fo and F t are homotopy equivalent. To use the homotopy invariance of
topological degree we need to show that for each 0e[0,1] we have 0£Fe(dE). Suppose
then that vedE and Fe(v) = 0. Should vedE, because vl + sllbll + tlcll = —ri, we can
argue that W(A + V;sl,t1) is positive semi-definite (since zero is its smallest eigenvalue)
and thus its diagonal entries must be non-negative. Hence Uj + Sjfen + tiCn^O—a
contradiction. In like fashion we can dismiss the case vn + snbnn + tncm = rj. We next note
that the matrix 6{A + SjB* +tjC*)+ V + SjB + tjC has diagonal entries Vi + Sjbu + tjCu,
l^i^n, which are the centres of the Gerschgorin circles for this matrix. The radii of the
circles are 6g{, l^i^n, respectively. From the relations defining E we see that the circles
corresponding to i = l,...,j—l are all disjoint from the 7th circle which in turn is
disjoint from the circles corresponding to i=j+l,...,n. We use the theorems of
Hadamard and Gerschgorin (see [1, Theorems 6.2.1, 6.2.2, p. 231]) to infer that the jth
circle contains pfflA + SjB* +tjC*)+ V + SjB + tjC) and thus if Fe(v) = 0 we must have
\DJ+Sjbjj+tjCjj\^Ogij. This observation is now sufficient to complete the proof that
F9(i;)^0for vedE.

The upshot of these remarks is

Theorem 1. Suppose Hypothesis 2.2 holds. Then there is a diagonal V=
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diag(i7l9..., vn) such that

and

Theorem 2. The conclusion of Theorem 1 holds if equality is permitted in the two
inequalities of Hypothesis 2.2.

Proof. If gJjj=O for each l^j^n then the argument above shows that for each
0e[0,1) we have a solution v6 of F8(v)=0. We select a sequence 0k-+l with
corresponding solutions vk. A suitable subsequence of vk must converge and the limit
will be a solution of Fl(v) = 0. Whenever gj=O it is easy to see that it is necessary to use
vj=-sJbJj~tJcJJ-

We should point out that while we have considered here an equation with exactly
two parameters, similar arguments can be presented for eigenvalue problems of the form

3. Linked systems and quadratic eigenvalue problems

Firstly suppose we are given Hermitean matrices Alt Bu Cl of size nt x«,, and A2,
B2, C2 of size n2 x n2. Consider the 2x2 multiparameter eigenvalue problem

_ x2e W2.

An eigenvalue is a pair (Xu k2) e R2 for which this problem can be solved. A customary
hypothesis which we shall adopt to ensure the existence of eigenvalues is "right
definiteness":

RD: for a l l x^O, x 2 ^0,

det ' i l'
(B2x2, x2) (C2x2, x2)

There is now no loss in assuming that say both Bj and B2 are positive definite. Under
RD there are n^n2 eigenvalues X = (Xuk2) which can be indexed systematically as A'1-0,
l^i^ni, l^j^n2, in the sense that

has 0 as its ith (respectively jth) eigenvalue for k = 1 (respectively 2). The cone C for this
situation is
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The recent survey paper [3] provides an overview of the (direct) theory of
multiparameter eigenvalue problems.

As before we may assume Au A2 have zero leading diagonals.

Theorem 3. Suppose we are given points

with

s ( l , l ) s(ni,ni) s(ni,m + l) s<ni,n2)

ordered by C—here we have assumed that n1 ̂  n2. If s
(1 '1 ) , . . . , s(ni>ni) satisfy Hypothesis 2.2

with respect to Au Bu Cy and s(1>1),...,s(Bl-Bl), s^uni + i),...,s(n2-"2) satisfy Hypothesis 2.2
with respect to A2, B2, C2, then diagonal matrices Du D2 of sizes nt x nl and n2 x n2

respectively can be found so that

s(U)eZl{A1+Dl)nZl(A2

This is parallel to our earlier result [4, Theorem 4.1].
As a further application of our main result we consider the quadratic eigenvalue

problem

where A, B, C are given nxn symmetric matrices. We can assume that either B or C is
positive definite and we ask for conditions under which a diagonal D can be found so
that the problem with A + D in place of A has given numbers su...,sn as eigenvalues.

Theorem 4. Suppose (sbsf), l^i^n, are C-ordered and satisfy Hypothesis 2.2 with
respect to A, B, C. Then a diagonal D can be found so that the quadratic eigenvalue
problem (A + D + IB + X2C)x = 0 has k = su...,smas eigenvalues.

The above results answer but a few of the many open questions in inverse eigenvalue
theory in the multiparameter setting. Our earlier discussion ([4], Section 6) gave a brief
outline of other interesting possibilities.
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