INVERSE MULTIPARAMETER EIGENVALUE PROBLEMS FOR MATRICES II

by PATRICK J. BROWNE* and B. D. SLEEMAN

(Received 11th February 1985)

1. Introduction

This is a sequel to our previous paper [4] where we initiated a study of inverse eigenvalue problems for matrices in the multiparameter setting. The one parameter version of the problem under consideration asks for conditions on a given $n \times n$ symmetric matrix A and on n given real numbers $s_{1} \leqq s_{2} \leqq \cdots \leqq s_{n}$ under which a diagonal matrix V can be found so that $A+V$ has s_{1}, \ldots, s_{n} as its eigenvalues. Our motivation for this problem and our method of attack on it in [4] comes chiefly from the work of Hadeler [5] in which sufficient conditions were given for existence of the desired diagonal V. Hadeler's approach in [5] relied heavily on the Brouwer fixed point theorem and this was also our main tool in [4]. Subsequently, using properties of topological degree, Hadeler [6] gave somewhat different conditions for the existence of the diagonal V. It is our desire here to follow this lead and to use degree theory to give some results extending those in [6] to the multiparameter case.

In Section 2 we study the inverse eigenvalue problem for one equation with two spectral parameters and in Section 3 we apply these results to linked systems of such equations and to the quadratic eigenvalue problem thus paralleling our earlier work [4].

2. One equation with two parameters

In this section we are given $n \times n$ symmetric matrices A, B, C where, without loss of generality, we assume that the leading diagonal elements of A namely $a_{i i}=0,1 \leqq i \leqq n$. For each $(\lambda, \mu) \in \mathbb{R}^{2}$ the matrix

$$
W(\lambda, \mu)=A+\lambda B+\mu C
$$

is also symmetric and we list its eigenvalues as

$$
\rho_{1}(A ; \lambda, \mu) \leqq \cdots \leqq \rho_{n}(A ; \lambda, \mu) .
$$

[^0]We are interested in the eigencurves given by

$$
Z_{i}(A)=\left\{(\lambda, \mu) \in \mathbb{R}^{2} \mid \rho_{i}(A ; \lambda, \mu)=0\right\} .
$$

There is no a priori guarantee that the sets $Z_{i}(A)$ are nonempty but various fairly weak conditions preventing $Z_{i}(A)=\varnothing$ have been discussed in [2]. It will be enough for us here to assume that at least one of B, C is positive (or negative) definite.

As in [4], we use the cone $\hat{C} \subset \mathbb{R}^{2}$ given by

$$
\widehat{C}=\left\{(\lambda, \mu) \mid \lambda(B x, x)+\mu(C x, x) \leqq 0, \forall x \in \mathbb{R}^{n}\right\}
$$

and we assume
Hypothesis 2.1. The points $\left(s_{i}, t_{i}\right)$ are \hat{C}-ordered; i.e.

$$
\left(s_{j}, t_{j}\right)-\left(s_{i}, t_{i}\right) \in \hat{C} \text { whenever } j \geqq i
$$

We put

$$
g_{i}^{j}=\sum_{\substack{k=1 \\ k \neq i}}^{n}\left|a_{i k}+s_{j} b_{i k}+t_{j} c_{i k}\right|
$$

and make the further

Hypothesis 2.2.

$$
\begin{gathered}
\left(s_{j}-s_{i}\right) b_{i i}+\left(t_{j}-t_{i}\right) c_{i i}<-g_{i}^{j}-g_{j}^{j} \\
\left(s_{k}-s_{j}\right) b_{k k}+\left(t_{k}-t_{j}\right) c_{k k}<-g_{k}^{j}-g_{j}^{j}
\end{gathered}
$$

$$
1 \leqq i<j<k \leqq n .
$$

Note that Hypothesis 2.1 ensures that the left-hand sides of these two inequalities are, in fact, negative. Now select $\eta>0$ and consider the open bounded region $E \subset \mathbb{R}^{n}$ given by

$$
\begin{aligned}
& E=\left\{\left(v_{1}, \ldots, v_{n}\right) \mid v_{1}+s_{1} b_{11}+t_{1} c_{11}>-\eta, v_{n}+s_{n} b_{n n}+t_{n} c_{n n}<\eta,\right. \\
& v_{i}+s_{j} b_{i i}+t_{j} c_{i i}+g_{i}^{j}<v_{j}+s_{j} b_{j j}+t_{j} c_{j j}-g_{j}^{j}-\varepsilon, \\
& v_{j}+s_{j} b_{j j}+t_{j} c_{j j}+g_{j}^{j}<v_{k}+s_{j} b_{k k}+t_{j} c_{k k}-g_{k}^{j}-\varepsilon, \\
&1 \leqq i<j<k \leqq n\} .
\end{aligned}
$$

It is easy to check that the point

$$
x=\left(-s_{1} b_{11}-t_{1} c_{11}, \ldots,-s_{n} b_{n n}-t_{n} c_{n n}\right)
$$

belongs to E.

For $v \in E, V$ will denote the diagonal matrix $V=\operatorname{diag}\left(v_{1}, \ldots, v_{n}\right)$. We also use \hat{B}, \hat{C} to denote the diagonal matrices

$$
\hat{B}=\operatorname{diag}\left(b_{11}, \ldots, b_{n n}\right), \quad \hat{C}=\operatorname{diag}\left(c_{11}, \ldots, c_{n n}\right)
$$

and $B^{\#}, C^{\#}$ for $B-\hat{B}, C-\hat{C}$ respectively. Now consider the mapping $F_{\theta}, 0 \leqq \theta \leqq 1$, $F_{\theta}: E \rightarrow \mathbb{R}^{n}$ given by

$$
\begin{aligned}
F_{\theta}(v)= & \left(\rho_{1}\left(\theta\left(A+s_{1} B^{\#}+t_{1} C^{\#}\right)+V+s_{1} \hat{B}+t_{1} \hat{C}\right),\right. \\
& \left.\rho_{n}\left(\theta\left(A+s_{n} B^{*}+t_{n} C^{*}\right)+V+s_{n} \hat{B}+t_{n} \hat{C}\right)\right)
\end{aligned}
$$

Our problem of finding a diagonal matrix V so that $\left(s_{i}, t_{i}\right) \in Z_{i}(A+V), 1 \leqq i \leqq n$, is equivalent to finding a point v so that $F_{1}(v)=0$.

Note that for $v \in E$,

$$
\begin{aligned}
v_{i}+s_{j} b_{i i}+t_{j} c_{i i}<v_{j}+s_{j} b_{j j}+t_{j} c_{j j}<v_{k}+s_{j} b_{k k}+t_{j} c_{k k} \\
1 \leqq i<j<k \leqq n .
\end{aligned}
$$

Thus it follows that

$$
F_{0}(v)=v+x
$$

and accordingly $F_{0}(v)=0$ has a unique solution, viz. $v=-x$. Moreover, in terms of the topological degree we see that

$$
d\left(F_{0}, E, 0\right)=1 .
$$

It is clear that F_{0} and F_{1} are homotopy equivalent. To use the homotopy invariance of topological degree we need to show that for each $\theta \in[0,1]$ we have $0 \notin F_{\theta}(\partial E)$. Suppose then that $v \in \partial E$ and $F_{\theta}(v)=0$. Should $v \in \partial E$, because $v_{1}+s_{11} b_{11}+t_{1} c_{11}=-\eta$, we can argue that $W\left(A+V ; s_{1}, t_{1}\right)$ is positive semi-definite (since zero is its smallest eigenvalue) and thus its diagonal entries must be non-negative. Hence $v_{1}+s_{1} b_{11}+t_{1} c_{11} \geqq 0-\mathbf{a}$ contradiction. In like fashion we can dismiss the case $v_{n}+s_{n} b_{n n}+t_{n} c_{n n}=\eta$. We next note that the matrix $\theta\left(A+s_{j} B^{\#}+t_{j} C^{\#}\right)+V+s_{j} \hat{B}+t_{j} \hat{C}$ has diagonal entries $v_{i}+s_{j} b_{i i}+t_{j} c_{i i}$, $1 \leqq i \leqq n$, which are the centres of the Gerschgorin circles for this matrix. The radii of the circles are $\theta g_{i}^{j}, 1 \leqq i \leqq n$, respectively. From the relations defining E we see that the circles corresponding to $i=1, \ldots, j-1$ are all disjoint from the j th circle which in turn is disjoint from the circles corresponding to $i=j+1, \ldots, n$. We use the theorems of Hadamard and Gerschgorin (see [1, Theorems 6.2.1, 6.2.2, p. 231]) to infer that the j th circle contains $\rho_{j}\left(\theta\left(A+s_{j} B^{\#}+t_{j} C^{\#}\right)+V+s_{j} \hat{B}+t_{j} \hat{C}\right)$ and thus if $F_{\theta}(v)=0$ we must have $\left|v_{j}+s_{j} b_{j j}+t_{j} c_{j j}\right| \leqq \theta g_{j}^{j}$. This observation is now sufficient to complete the proof that $F_{\theta}(v) \neq 0$ for $v \in \partial E$.

The upshot of these remarks is
Theorem 1. Suppose Hypothesis 2.2 holds. Then there is a diagonal $V=$
$\operatorname{diag}\left(v_{1}, \ldots, v_{n}\right)$ such that

$$
\left(s_{i}, t_{i}\right) \in Z_{i}(A+V)
$$

and

$$
\left|v_{i}+s_{i} b_{i i}+t_{i} c_{i i}\right| \leqq g_{i}^{i}, \quad 1 \leqq i \leqq n .
$$

Theorem 2. The conclusion of Theorem 1 holds if equality is permitted in the two inequalities of Hypothesis 2.2.

Proof. If $g_{j}^{j} \neq 0$ for each $1 \leqq j \leqq n$ then the argument above shows that for each $\theta \in[0,1)$ we have a solution v^{θ} of $F_{\theta}(v)=0$. We select a sequence $\theta_{k} \rightarrow 1$ with corresponding solutions v^{k}. A suitable subsequence of v^{k} must converge and the limit will be a solution of $F_{1}(v)=0$. Whenever $g_{j}^{j}=0$ it is easy to see that it is necessary to use $v_{j}=-s_{j} b_{j j}-t_{j} c_{j j}$.

We should point out that while we have considered here an equation with exactly two parameters, similar arguments can be presented for eigenvalue problems of the form $\left(A+\lambda_{1} B_{1}+\cdots+\lambda_{n} B_{n}\right) x=0$.

3. Linked systems and quadratic eigenvalue problems

Firstly suppose we are given Hermitean matrices A_{1}, B_{1}, C_{1} of size $n_{1} \times n_{1}$, and A_{2}, B_{2}, C_{2} of size $n_{2} \times n_{2}$. Consider the 2×2 multiparameter eigenvalue problem

$$
\begin{array}{lll}
\left(A_{1}+\lambda_{1} B_{1}+\lambda_{2} C_{1}\right) x_{1}=0, & x_{1} \neq 0, & x_{1} \in \mathbb{R}^{n_{1}}, \\
\left(A_{2}+\lambda_{1} B_{2}+\lambda_{2} C_{2}\right) x_{2}=0, & x_{2} \neq 0, & x_{2} \in \mathbb{R}^{n_{2}} .
\end{array}
$$

An eigenvalue is a pair $\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{R}^{2}$ for which this problem can be solved. A customary hypothesis which we shall adopt to ensure the existence of eigenvalues is "right definiteness":

$$
\begin{aligned}
& R D: \text { for all } x_{1} \neq 0, x_{2} \neq 0, \\
& \operatorname{det}\left|\begin{array}{ll}
\left(B_{1} x_{1}, x_{1}\right) & \left(C_{1} x_{1}, x_{1}\right) \\
\left(B_{2} x_{2}, x_{2}\right) & \left(C_{2} x_{2}, x_{2}\right)
\end{array}\right|>0 .
\end{aligned}
$$

There is now no loss in assuming that say both B_{1} and B_{2} are positive definite. Under $R D$ there are $n_{1} n_{2}$ eigenvalues $\lambda=\left(\lambda_{1}, \lambda_{2}\right)$ which can be indexed systematically as $\lambda^{(i, j)}$, $1 \leqq i \leqq n_{1}, 1 \leqq j \leqq n_{2}$, in the sense that

$$
W_{k}\left(\lambda^{(i, j)}\right)=A_{k}+\lambda_{1}^{(i, j)} B_{k}+\lambda_{2}^{(i, j)} C_{k}, \quad k=1,2,
$$

has 0 as its i th (respectively j th) eigenvalue for $k=1$ (respectively 2). The cone \hat{C} for this situation is

$$
\hat{C}=\left\{\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{R}^{2} \mid \lambda_{1}\left(B_{i} x_{i}, x_{i}\right)+\lambda_{2}\left(C_{i} x_{i}, x_{i}\right) \leqq 0 \quad \forall x_{i} \neq 0, i=1,2\right\} .
$$

The recent survey paper [3] provides an overview of the (direct) theory of multiparameter eigenvalue problems.

As before we may assume A_{1}, A_{2} have zero leading diagonals.
Theorem 3. Suppose we are given points

$$
s^{(i, j)}=\left(s_{1}^{(i, j)}, s_{2}^{(i, j)}\right) \in \mathbb{R}^{2} \quad 1 \leqq i \leqq n_{1}, \quad 1 \leqq j \leqq n_{2}
$$

with

$$
s^{(1,1)}, \ldots, s^{\left(n_{1}, n_{1}\right)}, s^{\left(n_{1}, n_{1}+1\right)}, \ldots, s^{\left(n_{1}, n_{2}\right)}
$$

ordered by \hat{C}--here we have assumed that $n_{1} \leqq n_{2}$. If $s^{(1,1)}, \ldots, s^{\left(n_{1}, n_{1}\right)}$ satisfy Hypothesis 2.2 with respect to A_{1}, B_{1}, C_{1} and $s^{(1,1)}, \ldots, s^{\left(n_{1}, n_{1}\right)}, s^{\left(n_{1}, n_{1}+1\right)}, \ldots, s^{\left(n_{2}, n_{2}\right)}$ satisfy Hypothesis 2.2 with respect to A_{2}, B_{2}, C_{2}, then diagonal matrices D_{1}, D_{2} of sizes $n_{1} \times n_{1}$ and $n_{2} \times n_{2}$ respectively can be found so that

$$
\begin{gathered}
s^{(i, i)} \in Z_{i}\left(A_{1}+D_{1}\right) \cap Z_{1}\left(A_{2}+D_{2}\right), \quad 1 \leqq i \leqq n_{1} \\
s^{\left(n_{1}, i\right)} \in Z_{i}\left(A_{2}+D_{2}\right), \quad n_{1}+1 \leqq i \leqq n_{2} .
\end{gathered}
$$

This is parallel to our earlier result [4, Theorem 4.1].
As a further application of our main result we consider the quadratic eigenvalue problem

$$
\left(A+\lambda B+\lambda^{2} C\right) x=0, \quad x \neq 0
$$

where A, B, C are given $n \times n$ symmetric matrices. We can assume that either B or C is positive definite and we ask for conditions under which a diagonal D can be found so that the problem with $A+D$ in place of A has given numbers s_{1}, \ldots, s_{n} as eigenvalues.

Theorem 4. Suppose $\left(s_{i},,_{i}^{2}\right), 1 \leqq i \leqq n$, are \hat{C}-ordered and satisfy Hypothesis 2.2 with respect to A, B, C. Then a diagonal D can be found so that the quadratic eigenvalue problem $\left(A+D+\lambda B+\lambda^{2} C\right) x=0$ has $\lambda=s_{1}, \ldots, s_{n}$, as eigenvalues.

The above results answer but a few of the many open questions in inverse eigenvalue theory in the multiparameter setting. Our earlier discussion ([4], Section 6) gave a brief outline of other interesting possibilities.

REFERENCES

1. E. K. Blum, Numerical Analysis and Computation, Theory and Practice (Addison-Wesley, Reading, Mass., 1972).
2. P. Binding and P. J. Browne, Spectral properties of two-parameter eigenvalue problems, Proc. Roy. Soc. Edinburgh 89A (1981), 157-173.
3. P. J. Browne, Multiparameter problems: The last decade, Proceedings 1982 Dundee Conference on Ordinary and Partial Differential Equations (Springer-Verlag Lecture Notes in Mathematics, Vol. 964), 95-109.
4. P. J. Browne and B. D. Sleeman, Inverse multiparameter eigenvalue problems for matrices, Proc. Roy. Soc. Edinburgh 100 A (1985), 29-38.
5. K. P. Hadeler, Ein inverses eigenwertproblem, Lin. Alg. and Appns. 1 (1968), 83-101.
6. K. P. Hadeler, Existenz- und eindeutigkeitssatze fur inverse eigenwertaufgaben mit hilfe des topologischen abbildungsgrades, Arch. Rational Mech. Anal. 42 (1971), 317-322.

Department of Mathematics and Statistics University of Calgary
Calgary, Alberta
Canada T2N 1N4

Department of Mathematical Sciences University of Dundee
Dundee DD1 4H4

[^0]: *Research supported in part by the NSERC of Canada and The University of Dundee.

