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On the optimal control of a

manufacturing firm

K.L. Teo, G.C.I. Lin, and L.T. Yeo

Various existing models of the optimal control of production

rates of manufacturing firms are discussed. A new model is

derived by considering the combined effects of: the inventory-

level of the firm, the shipment sent from the firm, the shipment

rate, the orders received by the firm, the demand rate, the rate

of change of the demand rate, the production rate, the

advertising expenditure, and the level of unfilled orders.

Further, a new version of shortage cost is introduced. The well-

known Pontryagin maximum principle and transversality condition

are used to obtain the optimal production rate and the optimal

advertising expenditure. A numerical example is given for

illustration.

1 . Introduction

In dealing with optimal control of production rate of a manufacturing

firm, the demand rate of products has often been taken as an exogenous

variable [?], [2], [3]. However, this is not so as the demand rate of

products may be influenced by many economic factors such as supply

situation, price, purchasing power, advertising, and so on. Although the

demand rate has also been reported [2], [3] to be related with advertising,

this effect has never been combined when dealing with optimal control of

production rate.

In this paper a new model of a manufacturing firm is derived by

considering the combined effects of: the inventory level of the firm, the
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shipment sent from the firm, the shipment rate, the orders received by the

firm, the demand rate, the rate of change of the demand rate, the

production, the production rate, the advertising expenditure, and the level

of unfilled orders. Regarding other economic factors to he constant, the

demand rate is assumed to be related to the advertising done in the

previous time period rather than just taken as an exogenous variable.

(1)

The expression of shortage cost used by Connors, Teichroew [2] is

\ [D(t)-Ml

where C is the shortage cost per unit of products, T is a preassigned
s

time, D(t) the demand rate of products at time t , and u.(t) the

production rate at time t . Since the meaning of this expression

disappears when D(t) < U-.(t) , a modified version of shortage cost is

introduced.

To construct our model for a manufacturing firm over a given planned

period [0, T] , it is assumed that the actual inventory level at time t ,

J(t) , is equal to the production up to the time t , P(t) , minus the

shipment up to the time t , S(t) , plus J. . That is

(2) I(t) = P(t) - S(t) + I± ,

where I± = IQ + SQ , I = 1(0) , and SQ = 5(0) is the initial shipment

sent from the firm. Further, let

(3) Ht) = ux(t)

where "•" denotes the differential operator d/dt and u.(t) is clearly

the production rate at time t .

It is also assumed that the shipment rate of products at time t ,

S(t) , is related to the level of unfilled orders at time t , U(t) , by a

first-order exponential lag with time-constant a (a > %) , namely

(h) S(t) = i • v • j t/(t-T)e"T/a • dx ,
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where V is the desired ratio of the shipment rate and the level of

unfilled orders determined by the firm.

Letting

(5) S{t) = S±(t)

and making a change of variable y = t - T , we obtain

(6) S±(t) = - ̂  ^(tj-v^t)] .

The direct interpretation of equation (6) is that for any given level of

unfilled orders, there is a corresponding desired shipment rate V'U

determined by the firm, and that the rate of change of shipment rate is

proportional to the excess of the desired shipment rate over the actual

shipment rate.

It is further assumed that

(7) U(t) = D(t) - S(t) ,

where £/(£) and S{t) are as defined before and D(t) the order for

products received by the firm up to time t .

Now let us write

(8) D(t) = DA.t) ,

where DAt) is clearly the demand rate of products at time t .

Differentiating equation (7) with respect to t and noting that

S(£) = SA.t) , we have

(9) U(t) = DA,t) - SA.t) .

Finally, the effect of the advertisement on the demand rate is assumed

to be given by the following equation as considered by Connors, Teichroew

C2];

(10) 4z CM*)] = -WAt) + y f A(t-j)'e~T^ [Z^U)] = -AZ^U) + y j

where A(t) is the advertising expenditure at time t .

Equation (10) assumes that if the firm does no advertising, the demand
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rate of its products at any point in time will decrease at a rate

proportional to the demand rate of products at that time. It is also

assumed, however, that the demand rate at any point in time increases in

proportion to the advertising done in the previous time period.

Differentiating equation (10) with respect to t and using the change

of variables, y = t - T , equation (10) may be rewritten as

At) dDAt)
(11) V ~ + (1+X) —±r--+ WAt) = Y'A(t) .

Letting

(12) D2(t) = bA.t) ,

equation (11) can be written as

(13) D2it) = -XD±{t) - (1+X)-D2it) + yA{t) .

Thus the present model comprises equations (3), (5), (6), (8), (9),

(12), and (13) and determines the behaviour of the endogenous variables

P(t), S(t), SAt), D(t) , U{t), D(t) , and D At) for any assumed

behaviour of the exogenous variables u. (t) and A(t) . This model can be

controlled through the appropriate choice of variables u. (production

rate) and A (advertisement decision). For a given production capacity of

the firm, the production rate (units of products per week, say) may be

increased from normal to a maximum by assigning appropriate amount of

overtime.

Assume that the normal working time per week is kO hours, and that

the corresponding production rate is a certain amount of units of products

per week. Then the production rate can be increased by granting overtime

work. Let p ? be the normal production rate (without any overtime) and

p the maximum working hours allowed per week for the available facilities

of the firm. Thus the natural constraint of the control variable u, is

such that

Pi ~ "l ~ Pu •

Since the advertising decision can be controlled completely by the
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firm, it will be considered as the second control variable. This control

variable is denoted by «„ . Let the lower and upper bounds of the amount

allocated to advertising by the firm be a7 and a , respectively, u
lr U £

can then be chosen to satisfy the inequality

a, 5 wo 5 aI 2 u

For convenience of further references, M denotes the class of all

piecewise continuous 2-dimensional vector-valued functions u = (M., Mp)

satisfying the following inequalities

and

al ~ U2 ~ % •

Incorporating the control variables u. and w ? as described above,

the model of the manufac tur ing firm is given by the following system of

differential equations:

dP(t)
dt

dS{t)
dt

dS±(t)

dt
dD{t)
dt

dD±(t)

dt
dD2(t)

dt

= u^t) ,

= sl(t) ,

1 rg
" a Lsi

= Dx{t) ,

1

D2(t) ,

t)-v )J ,

1

- (1+\)D (t)

2. Statement of the problem

The financial success of a firm can be measured by the profit it

makes. For profit maximizing, the problem of the manufacturing firm may be

stated as: subject to the dynamic constraint (lU) with the initial
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condition

(15) xQ = {P(0) = 0, 5(0) = SQ, 51(0) = S1 , 27(0) = DQ,

£/(0) = DQ-SQ, Dx(0) = Dx , D2(0) = D? }

find a control vector u = [u , M ) € M over the planned period [0, T]

that will maximize the profit functional

(16) J(u) = C, f I>At)dt - Co f [M.(t)-p7]dt

,T rT ,T
- C I{t)dt - C) max{ Q?(t)-[P( t )+J .J ] , o}dt - Cc wo

J JO 4 Jo ^ -"O

where

C-. = revenue per unit of product,

Cp = overtime production cost per unit of product,

C_ = inventory holding cost per unit of product for per unit of

time,

CY = shortage cost per unit of product,

C_ = advertising cost per unit of time,

I\. = the initial inventory level,

and

I = P - S + XQ + SQ .

3. Determination of optimal production rate and

optimal advertising decision

As it has been previously stated that the production rate and the

advertising decision can be controlled by the firm, one may now ask: "What

is the best policy the firm shall follow so that it can maximize its profit

over the planned period?" This problem can be solved by applying the well-

known Pontryagin Maximum Principle and Transversality conditions [5].

Noting that
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(17)

(18) H = C±DX

max J(u) =

- C3(p-s) - , 0}

where H is the hamiltonian function and the vector

is the solution of the following system, adjoint to the system (lU),

(19)

dt

dt ~ -"3= -C, ,

(t)

dt

with

/(*) =

if D(t) > P{t)

0 if Dit) < P(t) + JQ ,

and

git) =

1 if Dit) > Pit) + XQ ,

0 if Dit) < Pit) + IQ .
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Maximizing the hamiltonian function E globally with respect to u. and

U- , and denoting them by u* and u* , we obtain

if -C2 + ^ ( t ) < 0 ,

(20)

a n d

(21)

«*(*) = • if - 0 ,

undetermined if -C + ifiAt) = 0

u|(t) =

az if

if -C

< 0 ,

0 ,

u n d e t e r m i n e d i f -C + y\p(t) = 0 .

Since the problem under consideration is a free-end-point problem, it

follows from the Transversality Condition that the boundary condition for

the adjoint system (19) is

(22)

= 0 , \}>2(T) = 0 , tyA

= 0 , = 0 ,

= 0 ,

= 0 .

= 0 ,

Incorporating the control variables u* and u* into the system

equation (lU) and i t s adjoint system equation (19), we obtain a two-point-

boundary- value-problem. This two-point-boundary-value-problem consists of

the following system (23) with the boundary condition (2U) and the adjoint

system (19) with the boundary condition (22).
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(23)

-f
dS(t) , .

dt ~ Sl[t>
dSAt)

= - 77 [S(t)-v.U(t)]

dD(t)

dDAt)
= -X-DAt) -

with the boundary conditions

PAO) = 0 , S(0) = D(0) = DQ

(210
U(0) = DQ- SQ DAO) = DAO) =

2

The optimality problem is now reduced to the problem of solving the above

two-point-boundary-value-problem. It is clear that there are seven initial

conditions and seven terminal conditions in the problem which cannot be

solved by ordinary methods of integration of differential equations. The

problem can be solved by using the Davidson-Fletcher-Powell method [4]

together with the Fibonacci Search Technique. The flow chart of this

method can be found in [7]. The numerical results presented in the next

section are computed by using Subroutine BVP [6].

4. Computational results

The numerical values given to the coefficients and parameters of the

problem are:

C± = 20.0 , C2 = 3.0 , C3 = 1.0 , Ck = 5-0 , C? = 2.0 ,

a = o.k , y = 0.22 , X = 0.05 , v = l . o , I = 0.7 .
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In i t i a l State:

xQ 2 {PQ = 0.0, SQ = 1.3, S± = 0.5, DQ = 1.5,

i/ = 0.2, D = 0.05, D = 0.001} ;
X0 0

Control Constraints:

0 . 1 < u± 5 0.U5 ,

1.2 < uo S 2 . 0 ;

Time: [o, 5] ;

Initial guess for

1.0

1.0

1.0

1.0

1.0

1.0

1.0

Mean Squared
Error

8.176 x io5

Value of i|T
obtained by BVP [6]

for best error

2.000 x

5.000

It.010 x

-2.500 x

3-999

-U.032 x

3.7^7 x

101

ID"1

io1

io1

io1

Best Mean
Squared Error

2.7W x icf10

Profit J(u) : 3.012 x io1

The optimal control policies and optimal trajectories for the above

example are shown in Figures 1 and 2 respectively (pages 121 and 122).
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