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1. Introduction. In general when symmetric matrices are considered, 
the elements of the matrix are taken at least in a principal ideal ring. It is 
interesting to determine what can be attained when the elements are not, 
in general, commutative and, to this end, the following is concerned with 
symmetric matrices with elements in the non-commutative field of real 
quaternions. At the same time some properties of real quaternion unitary 
matrices are obtained which involve symmetric matrices. 

If A has complex elements, a necessary and sufficient condition that A be 
symmetric is that there exists a unitary matrix U such that UA UT = D is a 
real diagonal matrix where UT denotes the transpose of U. (See the principal 
result of (2).) One of the properties of complex matrices importantly involved 
here is that the transpose of a product of two matrices is the product of their 
transposes taken in reverse order. For real quaternion matrices this property 
does not hold in general. The following topics are considered: first, if U is 
unitary and quaternion, necessary and sufficient conditions that UT be unitary 
are determined; next, another proof of the above-mentioned theorem for the 
complex case is given; then, by paralleling this proof, necessary and sufficient 
conditions are determined that a quaternion matrix have the form UD UT where 
D is quaternion diagonal and U is real orthogonal (and UDUT is, of course, 
symmetric) ; finally, another canonical form for another set of quaternion 
symmetric matrices is found. (For relevant material on quaternion matrices 
see ( l ) and (4).) 

2. The transpose of a unitary matrix. If U is a unitary matrix (i.e., 
UUOT = / where UCT denotes the conjugate transpose of U), it does not 
follow that UT is unitary (as in the complex case). Theorems 1 and 2 supply 
necessary and sufficient conditions for this, the latter being expressed in terms 
of symmetric matrices. 

THEOREM 1. If V is a unitary quaternion matrix, a necessary and sufficient 
condition that VT be unitary is that there exist real orthogonal matrices U and W 
such that UVW = D is a diagonal quaternion matrix. 

Proof. Let V = Vi + jV2, where V\ and V2 are complex matrices, and let 
Vi = T\ + iT2 and V2 = W\ + iW2 where Th T2, Wi, and W2 are real 
matrices. 
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Let VT be unitary. Since VVCT = VCTV = 7, the following relations 
result: 

F1
C TFi + V2

CTV2 = 7, FiFiC T + F2
CF2

T = / , 

V1
TV2 = V2

TVlf F2FxCT = VicV2
T. 

Similarly, since VTVC = Ve VT = J / 

F l CT F i + F 2 T F 2 C = If F i F iCT + F a F 2 C T = J f 

F2
TF!C = 7i O T 7 2 l F 2 7i T = 7 i 7 , T . 

Since F i C T Fi + V2
CTV2 = F i C T 7 i + V2

TV2
C and FiF i C T + F 2

C F 2
T = 

F1F1
C T + F2F2

C T , it follows that V2
CTV2 = F2

TF2
C and V2

CV2
T = V2V2

CT. 
In a similar manner, FiC TFi = V^Vi0 and FiFi C T = 7 i ° 7 i T since 7 = 7T. 
Consider the following relations : 

F2
TFX = FiTF2 , F2

TF!C = F1
C TF2 , F2FiT = FiF2

T , F2FiC T = 7 i c 7 , T , 

F2
C TF2 = F2

TF2
C , F 2 F 2

C T = F2
CF2

T , 7 i O T 7i = 7 i T 7 i ° , Fi FiC T = F i c F ^ . 

Since Fi = 7\ + iT2 and F2 = W\ + iW2, it follows from the first pair of 
relations that WiTTj = T^Wu for i = 1, 2; j = 1, 2. From the next pair it 
follows that WiTjT = TjWiT, for i — 1, 2; j = 1, 2. From the next pair it 
follows that 1FITTF2 = W2

TWX and TF2lFiT = WW 2
T , and from the last 

pair that TiTT2 = T2
TT± and T2TiT = TiT2

T. Therefore the set of real 
matrices {Th T2, W\, W2] is such that if X and Y are any two matrices of the 
set, then XYT and YTX are real symmetric. Now the following holds by a 
known theorem (3): if At is an arbitrary set of non-zero complex matrices, 
there exist unitary matrices U and W such that UAtW = Dt where Dt is 
diagonal and real if and only if AiAjCT = AjAiCT and AjCTAi = At

CTAj for 
all i and j . In our case the matrices are all real and it is easily seen that the 
£7 and IF will be real orthogonal matrices. Then since F = T\ + iT2 + j(Wi+ 
iW2), therefore UVW = UTXW + WT2W + j(UWiW + WW2W) = Dx + 
iD2 + j(Dz + iDt) is a diagonal quaternion matrix. 

Conversely, let F be unitary such that real orthogonal matrices U and W 
exist so that UVW = 7) is quaternion and diagonal. Then F = UTDWT

y 

and since UT and WT are real, it is true that F T = (Z7T7WT)T = WDU and 
so F T - (F T ) C T = (IFZ>£/)(JFD£/)CT = T F D C 7 - 1 / ^ 0 ^ ^ = 7, since 7 M ) C T = 
UVW'W* FC T £/T = 7, and so F T is unitary. 

COROLLARY 1.1. If V is a complex unitary matrix, there exist real orthogonal 
matrices U and W such that UVW = D is a diagonal matrix with complex 
elements. 

This follows since in this case F T is always unitary. 
Let us define a unitary quaternion matrix U to be T-unitary if UT is 

unitary. 
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COROLLARY 1.2. A T-unitary matrix V is symmetric if and only if there exists 
a real orthogonal matrix U such that UVUT = D is a quaternion diagonal 
matrix. 

For if F is T-unitary and symmetric, then in the above proof Tt = TV, 
Wi = WfT for i — 1, 2, and the set of matrices {7\, T2} WI, W2] are real, 
symmetric, and commutative in pairs and consequently can be diagonalized 
by a single real orthogonal similarity transformation. The converse is evident. 

The following may also be noted : 

THEOREM 2. If V is unitary, then F"1* is unitary if and only if VV* and F T V 
are symmetric. 

If F and F T are unitary, by the preceding theorem there exist real orthogonal 
matrices U and W such that V = UDW where D is quaternion and diagonal. 
Then F T = WTDUT and VV^ = UD2UT and VTV = WrD2W are symmetric. 

Conversely, let V be unitary and let VTV and VVT be symmetric. Let 
F = Vi -\- jV2 where V\ and F2 are complex; then 

VVT = V^^ - V2
CV2

T +j(V2V1
T + 7 i c 7 2

T ) 
= ViV^ - F2F2

C T + i ( F ! F 2
T + F2FiCT) 

y?v = VITVI _ V,CTV2+j(V2
TVl + FxCTF2) 

= V^V, - V2
TV2

C +j(V1
TV2+ F 2

T Fi c ) . 

From this it follows that 

y2cy2T = v2V*CT, V2Ty2c = 7 2 O T 7 2 > J / ^ T + y^cy^ = J/^T + 7 , 7 ^ 

F2
TFX + F!C TF2 = V^V, + V^Vi0. 

The latter two relations may be rewritten as 

V1
CV2

T - F 2F!C T = FiF 2
T - V2V1

T
1 

V2
TV1 - V1

TV2 = F 2
T 7 i c - F!C TF2 . 

Now F 7 ° T = I = F C T F a n d s o : 

/ = V^^ + F2
CF2

T + j ( F 2 F ! C T - FxcF2
T) 

= F!CTFx + TV3* 7 2 + . ; ( - - 7 2
T 7 ! + FX

TF2), 

F = F ^ 1 , + F2F2
C T +j(V1

cV2
T - F2F1

CT) 
= F 1

TF 1
C + F 2

TF 2
C + j ( - FX

TF2 + F 2
T7i) . 

This means that 

V1
CV1

T + V2V2
CT = J = F / F ^ + F2

TF2
C , 

V1
CV2

T - F 2F!C T = 0 = - F i T F 2 + F 2
T F L 
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Substituting the relations obtained above in these expressions, it follows 
that 

F i °7 i T + V2
CV2

T = I = V^Vf + V2
CTV2} 

FiF 2
T - F2FiT = 0 = F 2

T Fi c - F1
C TF2 . 

But this means that Ve VT = / = F T Ve and so F T is unitary. 
It may be noted that if the matrices in the above Theorem are all complex, 

the result holds since then VT is always unitary and VVT and VTV are 
always symmetric. 

It is known (1 ) that a matrix A is normal if and only if there exists a unitary 
matrix U such that UA UCT — D is a complex diagonal matrix. It is of interest 
to determine what characterizes normal matrices which can be brought into 
diagonal form by T-unitary matrices. 

THEOREM 3. A normal quaternion matrix A can be brought into complex 
diagonal form by means of a T-unitary similarity transformation if and only if A 
is unitarily similar to a complex symmetric matrix S {i.e., UiAUiCT = S) 
under a matrix of the form U\ = DW\ where W\ is real orthogonal and D is a 
unitary quaternion diagonal matrix. 

If A = UCTDiU where U is T-unitary and D\ is diagonal and complex, 
there exist real orthogonal matrices V and W such that VUW = D is a 
quaternion diagonal unitary matrix. Then 

WTAW = WTUCTVTVD1V
TVUW = DCTSD 

where S = VDiVT is complex symmetric and normal. Therefore DWTAWDCT 

= 5 where U\ — Z W T is unitary and of the above form. 
If there exists a Ui = DWT of the type described such that U\A UiCT — S 

is complex symmetric and normal, then there exists a real orthogonal matrix 
Fsuchtha t VTSV = Z>iandso 

A = WDOTVD1V
TDWT = UCTD!U, 

where U is T-unitary. 

COROLLARY 3.1. If A = ACT, S is real symmetric. 

COROLLARY 3.2. If A = — ACT, S = iT, where T is real symmetric. 

COROLLARY 3.3. IfA-ACT = I,Sis unitary symmetric. 

3. Matrices of the form UD Z7T, U real orthogonal and D quaternion 
and diagonal. Let us consider first the following proof of the above-
mentioned theorem : 

THEOREM 4. If A = AT has complex elements, there exists a complex unitary 
matrix U such that UA UT = D is a real diagonal matrix. (The converse is 
obvious.) 
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Let A = HV = VK (where H, K are hermitian and V is unitary) be the 
polar form of A. (If A is non-singular, H, V, and K are uniquely determined 
(6); if A is singular (5), some arbitrariness is involved in V.) Then A = HV = 
VK = F T f F = X T F T and so H = KT. If 4 is non-singular, V = V*; if A is 
singular, this can also be attained by means of a proper choice of V as the 
following will show. 

Let UHUCT — D = D\ + 0 where Di is diagonal and real with like roots 
arranged together along the diagonal. Let UVUCT = W, UVTU0T = Wi, 
and UKUCT = UHTUCT = M. Then i I T = t^Df/0 and UHTUCT = 
UUTDUCUCT = M. Let Z>i be of order r, i.e., r < n where w is the order 
of P . Then 

[L4£/CT = DW = DITi = WM = W îilf 

and so WUUTDUCUCT = W1UU£DUCUCT, WUIFD = WiUlPD. 

From Z W = ZWi, it follows that W and Wi have like first r rows. From 
WUITD = WiUlFD, WUUT and WxUU1 have like first r columns. Since 
W and Wi have like first r rows, WUUT and Wit/C/1, have like first r rows also. 
Since DW = WiM = WiUUTDUcUCT, then DWUIF = WXUUTD Then 

-B12 PF£/£/T - , „ v 
A. 

where B n is an r X r matrix and W\UUT has the same form except for the 
matrix X. Let the elements common to both matrices (i.e., the elements of 
Bn, Bn and B2i) be denoted by Wij (according to their row and column 
location in WUUT). From DWUUT = WiUlTD, it follows that if dj denotes 
the7th diagonal element of D, 

diWij = 0, (i = 1, 2, . . . , r; j = r + 1, . . . , »), 

w -̂dy = 0, (j — 1, 2, . . . , r; i = r + 1, . . . , w). 

For this range of subscripts, then, w.u — 0, i.e., Bio and B2i are zero matrices. 
Therefore 

WUIP = B n + X, Wi£/£/T = i5n + F, 

FF = ( B n + X)U°UCT Wi = (Bn + Y)UcUOT 

Therefore 

But 

= UVUCT, - UVTUCT. 

V 

VT = £/c {fr]1^^"?]^ 
and so Bn T = Bu, F = XT. Now if X is chosen to be any unitary and sym
metric matrix of dimension (n — r) X (n — r) then X = XT and V* — V. 

https://doi.org/10.4153/CJM-1956-006-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1956-006-1


MATRICES WITH REAL QUATERNION ELEMENTS 37 

Consequently, it is always possible in the singular case to find a V = VT 

which is suitable for the polar unitary matrix of A. 
.Now ,4 = HV = F i ^ a n d s o 

UAUT = UHUCTUVUT = UVIFIPIFU* = DW = WD 

where W = £/F£/T = 1FT is unitary. If W = W3 + ^ 4 where Wz and W4 

are real, it is then true that D, Wz, and W* are real symmetric matrices which 
commute in pairs and so there exists a real orthogonal matrix U\ that diagonal-
izes all of them. Therefore UiUAlFU? = Ux(DW)UxT = D2 where D2 is 
diagonal with complex elements along the diagonal. Let the diagonal elements 
of£>2be 

P#-i9k (k = 1,2, . . . , r ) , 

and form the diagonal unitary matrix Du with 

«*"* (* = l , 2 , . . . , r ) , 

in the first r diagonal positions followed by ones in the remaining. Then 
(DuUiU) A(DuUiU)T = Dz is real and diagonal and the Theorem is true. 

Next consider the case where A = AT is a quaternion matrix and the 
possibility of transforming such a matrix by means of a real orthogonal 
matrix into a diagonal quaternion matrix. I t may be noted first that a quater
nion matrix has a polar form (4) A = HV = VK with the same properties 
as mentioned above in connection with the singular and non-singular case. 
F may, of course, be merely unitary and not necessarily T-unitary. 

THEOREM 5. If A is a quaternion matrix, there exists a real orthogonal matrix 
U such that UA UT = D is diagonal and quaternion if and only if A is symmetric 
with a real hermitian polar matrix. 

Let A = HV = VK where H has real elements and A is symmetric. Then 
AT = (HV)T = V^IP = VTH and so VK = V*H. Whether A is singular 
or non-singular, the preceding proof may be followed ; the matrix U is real in 
this case, and the relations DW = DWi = WD = W±D result so that W = 
J3n + X and Wx = Bn+ Y from which V = UT(Bn + X)U and F T = 
UT(Bn + F)[7. Then F T = C/T(^n

T + XT)f/ = t /T(J5n + Y)U, which is 
permissible since U is real. Therefore J5nT = Bu and X T = Y.lî A is singular 
and if X is chosen to be unitary and symmetric, then V — F T ; if A is non-
singular, then X does not appear above and V = VT holds automatically. 
Then HV = VH — A where F i s T-unitary and symmetric. By Corollary 1.2, 
there exists a real orthogonal Ui such that UiVUiT = P i is diagonal and 
quaternion with like diagonal elements grouped together. Then 

UxAU? = U1VUxTUxHUiT = UxHUxTUxVUxT = DxUxHUxT - UxHUxTDx. 

Then UxHUxT falls into a direct sum of real symmetric block matrices as 
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determined by D\ and a real orthogonal U2 can then be determined so that 
U2UiAUiTU2

T = D is quaternion diagonal. 
Conversely, if A = UTDU for U real orthogonal, let D = Dr-Dq where DT 

consists of the real parts of each diagonal element of D and Dq is composed 
of the corresponding quaternion part of absolute value one. (If A is singular, 
Dq is arbitrary to some extent but not necessarily diagonal.) Then 

A = UTDrU-UTDqU = UTDqU-UTDrU 

is symmetric and the hermitian polar matrix, UTDrU, has the required 
property. 

THEOREM 6. If A is a symmetric quaternion matrix with a real polar unitary 
matrix, there exists a real orthogonal matrix U such that 

where Di and D2 are real diagonal and M = — Mc; and conversely. 

Let A = HV = VK = VTHT = KTVT since V is real orthogonal. As 
before H = KT and V = VT. (In the singular case, let U be a complex unitary 
matrix such that UVUCT = D; then UVTUCT = DCT and applying this 
transformation to VTHT = F ^ T = HV = HVT, there results 

DCTM = DM = MiD = MXDCT 

where M = UFFU07 and ikfi = UHUCT are hermitian, and D has along 
the diagonal elements of absolute value one.) If in a given row, say k, of M 
one element mkj ^ 0, then d^m^j = dkmkj (where dk is the ^th diagonal element 
of D) and so dk is + 1 or — 1 ; if all elements of the feth row are zero, dk is 
arbitrary except that it must have absolute value one. If the &th row of M is 
zero, so is the corresponding row of Mi, and conversely. By choosing the 
arbitrary dk to be either + 1 or — 1, it is evident that D = DCT and therefore 
V = VT. 

If V = / , (or can be taken to be / ) , then A = H = # C T = ifT and so 4 
is real and symmetric and consequently can be brought into diagonal form 
by a real orthogonal transformation. For the case where A is quaternion 
symmetric (as considered here), there exists a real orthogonal matrix W so 
that WVWT = Ii + I2 = D where Ii and I2 are diagonal with + 1 and — 1, 
respectively, along the diagonal. Then 

WAWT = WHW^WVW* = WVWTWHTWT - HiD = DHiT 

where Hi = WHW*. Let 
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be subdivided to correspond to Ii + 12 (where HiT = H\c). Then Kx = KiT 

and K± — KJ are real symmetric and K2 = — K2
C and i£3 = — i^3C while 

i£3 = — -^2T. Therefore, 

Let PFii^iPFiT = Di and ^ 2 ^ 4 ^ 2 T = #2 be real and diagonal where W\ and 
PF2 are real orthogonal, and JJ\ = PFi + W2. Then 

where M = — W\K<LW<? — — M. The converse is evident. 
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