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The fourteenth problem of Hubert asked finite generation of a certain class

of rings and had a counter-example (cf. [4]). On the other hand, many mathe-

maticians gave various sufficient conditions for finite generation of such rings

(see, for instance, [9], [5] and [8]). The purpose of the present paper is to

give a new sufficient condition. The class of rings to be treated is much more

general than those treated before, except for the one in [8].

As for the terminology, we use mainly the one used in our book [7], hence

a ring means a commutative ring with identity and a local ring means a Noe-

therian local ring. When B is a ring, we shall understand by a Z?-algebra a

ring which is a ^-module, and by a B-algebra of finite type a 5-algebra which

is finitely generated over the natural homomorpic image of B.

Our main result can be stated as follows1* :

MAIN THEOREM. Let B be a pseudo-geometric ring and let A be a B-algebra

of Unite type. For a B-subalgebra R of A> R modulo its radical is a B-algebra

of finite type if R is strongly submersiυe in A.

Here, the strong submersiveness is defined as follows:

We say that a ring R is strongly submersive2) in a ring A if (i) A is an

R-algebra and (ii) it holds that if p is a prime ideal of height 0 in R and if V

is a valuation ring of the field of quotients K(p) of R/p such that VΏR/p, then,

there is a pair of a valuation ring V (of a field containing K(p)) which dominates

V and a homomorphism φ from A in V such that the natural homomorphism

Received May 24, 1965.
J> The case where B is a field or a pseudo-geometric Dedekind domain was established

by the writer while he was staying at Woods Hole, Mass, in order to attend 1954 A.M.S.
Summer Institute on Algebraic Geometry. The writer likes to express his thanks to Dr.
David Mumford for the discussion on the condition to be supposed.

2 ) The term "strongly submersive" is introduced because our condition implies uni-
versal submersiveness in the sense of Grothendieck [2], Exposό 9.
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from R into V through V coincides with the one through A ^ > V.

§ 1. Some preliminary results on valuation rings

LEMMA 1.1. Let K and K! be fields such that K^K1 a?ιd let x be a trans-

cendental element over Kf. If valuation rings V and V" of K1 and Kix) re-

spectively are given so that they dominate a valuation ring V of K in common,

then there is a valuation ring F* of K'ix) such that V* dominates both V and

F".

Proof. If the assertion is proved for a larger K1 then the assertion for the

original K! follows from it. Therefore we may assume that K' is algebraically

closed. Let K be the algebraic closure of K (in K') and set V= V Π K. Then

a valuation ring of K dominates V if and only if it is a conjugate of V over

K. We take a valuation ring V" of K{x) which dominates V", then V" Π K is

a valuation ring dominating F, whence there is an automorphism a of K over

K such that (F" Π KY =s F. We extend a to an automorphism of Kix) over

Kix) denote the extension by the same o. Then F"σ dominates V. Obviously,

V"n dominates Vn. Therefore, we have only to prove the assertion under the

additional assumption that K = K. Since Kix) = Kix'1), we may assume that

# e V". Then, considering x-c with c e V if necessary, we may assume that

x is a unit in V". We denote by v, v' and v" valuations whose rings are F, V1

and F" respectively such that vf and t;" are extensions of v. (1) If there is

no element c in V such that vfl(x— c)>0} then K/; = F(x) and therefore it is

enough to take K* to be Vf(x). (2) Assume that there is an element c of F

such that v"(χ — c)>0 and such that oc>v"(x - c)>β (a, β e value group of v)

implies ct>v"{(x- c)n)>β for every natural number n. Then for each poly-

nomial fix) e jfiΓDf], t;"(y*ίΛΓ)) is defined by the minimum of via) + i vn(x- c)

where fix) = *Σia(x- cY {ct^K). Therefore we see easily the existence of a

valuation #* of K'ix) which is an extension of both v' and v". (3) Consider

the remaining case. Let M be the set of all pairs (c, d) of elements of V such

that vid2)>v"iχ- c)>vid)>0. Since the cases (1) and (2) are excluded and

since K is algebraically closed, the set M is not empty. Set D= Π <c, </){=# <iF'.

(3, i) Assume that there is an « e V9 such that a-c&dV for all icyd)^M.

(3, i, -f) If, furthermore /} is a non-zero principal ideal eVf, then we extend v'

to a valuation #* of K'ix) by ί i*(Σ«/(*" fl)1') = min v'(βί) + ί Vie), and this
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valuation is an extension of υ", and therefore the valuation ring F* of υ* is a

required ring in this case. (3, i, P ) Assume that D is not a principal ideal.

Let G' be the value group of v\ Introducing a new element δ, we construct

the direct sum G* of G and the free additive group generated by δ. A linear

order in G* is derived from the definition that α + mδ> β + nδ (α, β e G ra, w

non-negative integers) if and only if for every d such that (c,d) e Λf, there is

a (c'ydO^M such that α: 4- w u(d') > β + w #(d). Then we extend vf to a

valuation v* of HΓHtf) by that v*{ Σ«/(^~ β)1') = mm vf{ai) + *'• δ. Then the

valuation ring F* of #* is the required ring in this case. (3, i, ^) Assume now

that D = 0. Then we consider G* as above, but its linear order being defined

by that δ is larger than any element of G, and we have required ring similarly.

(3 ii) We have now the case where there is no a such that a — c&dV1 for all

(c, d) e M. Then, for each a e if, there is a (c. d) e Λf such that β - c $ d F .

Let us denote by Aft a), the set of such {c, d). When a polynomial /(^) e K'ίx}

is given, we consider all zero-points au - . , ar of /(*). For each Λ, , we take

an element (c, , J, ) of Mi at) and let (c, rf) be an element of M such that d^diV

for every i. We define «;*(/(#)) to be υ'(f(c)). We shall prove now that this de-

finition is independent of the particular choice of (c, d) e M. Indeed, assume that

(c*, d*) e M and that d* e J7 . /(Λ;) = b Π?-iU - β, ), whence /(c) = &Π, (c - β, ),

/ ( C * ) = * Π , (<?*-Λ, ) . Since Λ - c e r f F " and * - c * e d * V » C ί i P , we see that

c - c * e ^ . Therefore f(c) - fie*) e W 7', Since (c, d) e Λf (βi), we have

v'ic-ciiXvid) and therefore we see that zΛ/(O) = v'(f(c*)). From this, it

follows easily that v* defines a valuation of K'(x) which is an extension of

both υ1 and v". Therefore the valuation ring V* of v* is the required ring in

this case. Thus the proof of Lemma 1 is completed.

LEMMA 1.2. If a ring R is strongly submersive in a ring A, and if α is an

ideal of Ry then R/a is strongly submersive in A/aA.

Proof. Let p be a prime ideal of height 0 in R/a and let φ be the natural

homomorphism from R into R/a. Let p be φ'Hp) and let q be a prime ideal

of R of height 0 which is contained in p. Let Kip) and ϋΓ(q) be the fields of

quotients of Rip- (R/a)/p and R/q respectively. Let V be a valuation ring of

Kip) which contains R/p. We take a valuation ring Fo of /Γ(q) which dominates

Rp/c\Rp. The residue class field KiV0) of 70 contains Kip). Let F' be a

valuation ring of ϋΓ(F0) such that it dominates V and we take the composite
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V of Fo with V. Then V is a valuation ring of K(q) which contains R/q. By

the condition that R is strongly submersive, the natural homomorphism a

from R into V can be extended to a homomorphism from A into a valuation

ring F* which dominates F. Taking the minimal prime divisor tn of m0F*

(mo = the maximal ideal of Fo), we see that F*/m is a valuation ring dominating

V. The natural homomorphism from A into F*/m induces a natural homomor-

phism from A/oA into V*/m and the homomorphism is an extension of the

natural homomorphism from R/o into V. Thus the lemma is proved completely.

As a corollary to these two lemmas, we have

THEOREM 1. Let R be a ring and let A be an R-algebra. If R is strongly

submersive in A, then for an arbitrary R-algebra R', Rf is strongly submersive

in A®RR'.

LEMMA 1.3. Let K be a normal quasi-local ring with field of quotients K

and let L be an algebraic extension field of K. Let /?* be the integral closure

of R in L and let m* be a maximal ideal of R*. Then R = i ? V Π K.

Proof. We may assume that L is a normal extension of K. If V is a

valuation ring of K which dominates R, then there is a valuation ring F* of L such

that V*f)K=V. V* contains R* and the maximal ideal of F* lies over some

maximal ideal of R*. Therefore there is an automorphism a of L over K such

that the maximal ideal of F*σ lies over m*. Then F*σ contains /?*m , whence

V= V*σΠK contains # V ΓΊ K. Since the intersection of all such V is R. we

see that R contains #*m* Π K, and we see the assertion.

Now we are to prove

THEOREM 2. Let B be a Noetherian integral domain. Assume that a valua-

tion ring V of a field K is the derived normal ring of a locality P over B.

Then for an arbitrary subfield K! of K containing B, the valuation ring V =VΠKf

is the derived normal ring of a suitable locality over B.

Proof. We may assume that B is a local ring dominated by V and has K'

as its field of quotients. Let A be an affine ring over B such that P = A>$ with

a prime ideal $ of A and let au . . . , « » be a set of generators of A over B.

Let m and m' be the maximal ideals of V and V respectively.

(1) When K is algebraic over Kf. V is the ring of quotients of the integral

closure F* of V in K with respect to tn Π F*. Each at is written in the form
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bi/ci with bi, Ci in V but a not in m Π F*. Therefore, considering all of h, Ci

instead of the α;, we may assume that all the aι are integral over V. Let fAx)

be a monic polynomial over V which has aι as a root for each i. Then, en-

larging B, we may assume that B contains all of the coefficients of these fi(x)

and that the derived normal ring £* of B is quasi-local. Since A is integral

over 23*, V is a ring of quotients of the integral closure B** of B* in /f with

respect to m Π £**. Therefore 5* = V by Lemma 1. 3. Thus this case is settled.

(2) The proof of the other case will be done using induction on the trans-

cendence degree of K over Kf. Let x be an element of V which is transcendental

over F'. Then, by the induction assumption, VΠK'(x) is the derived normal

ring of a locality over B. Therefore, we may assume that K=K'(x). Since F

is the derived normal ring of a locality over the Noetherian valuation ring V,

the residue class field V/m is not algebraic over F'/m'. Hence, in choosing x

above, we may do so that x modulo m is transcendental over F'/m'. Then

(under this new K = K'{x)), we have F = V'{x). Therefore, as in the case (1)

above, we may assume that en are all polynomials in x with coefficients in V

and also that aι = x. Then, enlarging B, we may assume that B contains all

of the coefficients of the polynomials a\ and also that the derived normal ring

J3* of B is quasi-local. Then, since V is a ring of quotients of the derived

normal ring of the integral closure Z?*M of B[_x~\ in K=K'(x), we see easily

that B* = V. Thus the proof of our theorem is completed.

§ 2. An ideal-transform

We shall expose here some facts on an ideal-transform introduced in [3D.

Let α be an ideal of a ring R and let Q be the total quotient ring of R. We

denote by aΓn the set of elements b of Q such that bap c R. Since a'na~m^a~{m+n\

the union S of all a~n (n = 1, 2, . . . ) forms a subring of Q containing R. This

S is called the a-transform of R and is denoted by T(a). This is the set of

elements z of Q such that zan ςz R for some n. Therefore we have

LEMMA 2.1. Let a and b be ideals of a ring R. If an c b for some natural

number n, then Tib) is contained in T(a). Consequently, if α Λ cb and bmς:a

for some natural numbers n and m, then T(a) = T(b). As a particular case, if

these ideals α and b have the same radical and if both a and b have finite basis,

then Γ(α) = ΓH>).

https://doi.org/10.1017/S0027763000011995 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000011995


198 MASAYOSHI NAGATA

LEMMA 2.2. Let a be an ideal of a ring R. Assume that a contains a non-

zero-divisor a. Then a'n is the set of b/an with b<=anR: an.

Proof b e anR : αn if and only if ban c anR} and the assertion is easy.

LEMMA 2.3. Let a and R be as Lemma 2.2 above. Let R' be a ring such

that R^Rf Q Tia). Then there is a one to one correspondence between the set

of prime ideals p of R not containing a and the set of prime ideals pf of Rr not

containing aR' in such a way that if p corresponds to pf then p — p1 Π R. In this

case, Rp = Rf

v.

Proof. Let p be a prime ideal of R which does not contain α. Then there

is non-zero-divisor a in α which is not in p. Then Rf^Tia)^Rίa~12 and pRla'1!

is prime, whence pf = pRίa'1'] Π Rf is a prime ideal of R' and pf f)R = pRla'1] Π R

= p, Rfp< = Rίa'^p^a-^ - Rp. Conversely, if pf is a prime ideal of R' which does

not contain aR', then p = pf Π R does not contain a and by the above observation,

we have R'p< = Rp. Thus the assertion is proved completely.

LEMMA 2.4. Let a be non-zero ideal of Krull ring R. Then Tia) is the

intersection of all Rp, letting p run through all prime ideals of height 1 which

do not contain a. Hence Tia) is again a Krull ring.

Proof. T\α) c/? p by Lemma 3, hence Tia) is contained in the intersection

D of all such R$. Let ollf . . . , qs be all of prime ideals of height 1 which

contain α. Let d be an element of D. Since Rqt is a Noetherian valuation ring

for each i, there is a natural number n such that dan c Rq. for each i. By the

finiteness of the number of q, , we can take n to be common for all /. Since

d<= D, we have then da c /?, and we have d<= T( a). Thus D = Γ(α).

REMARK. /# ίΛβ above situation, Tia) is determined by the set of prime

ideals cfj, . . . , ςs of height 1 which contain a.

From this remark, it follows immediately the following

COROLLARY. In the above situation, there are two elements au a2 of a such

that Tia) = TiaiR+a2R).

LEMMA 2.5. Assume that an ideal a of a ring R has a finite basis. Then

for an arbitrary ring R1 between R and Tia), we have Tia) = TiaR1).

Proof. In general, since R Q Rf, we have Tia) g T(aR'), even if α have no
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finite basis. Let b be an element of T(aR'). Then banR' c R1 for a natural

number n. Let βi, . . . , αs be a basis for αΛ. Then we have bai<=R'T{a).

Thefore there is a natural number m such that betid™ £ 2? for all i. Then we

have ban+mQR, and £ s Γ(α). Thus T(α) = T(aR').

COROLLARY. Let α be an ideal of a Krull ring R. Then dT{a) is not of

height 1.

LEMMA 2.6. Let B be a ring and let α be an ideal of a B-algebra R. Assume

that a contains a non-zero-divisor a and let B* be another B-algebra such that

®BB* is exact (i.e., B* is a ring which is a flat B-module). Then a~n(R®BB*)

= (a{R®B*))~n and therefore T(a(R®B*)) = T(α)®JB*

Proof. Denoting by φ the natural homorphism from R into /?(g)5*, we see

that (a(R®B*)Γn = {b*/φ(a)n\b* ΪΞ an{R®B*) : an(R® β*)} = {b*lφ{a)n\b* <Ξ

(anR : dn) ® β*} = α~n® B*. Thus the assertion is proved.

REMARK. Observe that Lemma 2. 6 can be applied when 22* is a ring of

quotients of a polynomial ring over B, hence in particular when B* is either a

ring of quotients of B or Bv - Bix) with a transcendental element x over B.

Let α be an ideal of a ring R. We say that the α-transform is finite if

there is a natural number n such that T(a) is generated by α~n. When R is

Noetherian and α contains a non-zero-divisor, this condition is equivalent to

that 7Nα) is finitely generated over R.

LEMMA 2.7. Let a be an ideal of a pseudo-geometric normal ring B. Then

the following three conditions are equivalent to each other.

(1) The a-transform of B is finite.

(2) For every maximal ideal ni of By the dB\n transform of B\\\ is finite.

(3) For every prime ideal p of B, the dBp-transform of Bp is finite.

Proof. Lemma 2.6 shows that (1) implies (2) and that (2) implies (3).

Therefore we have only to show that (3) implies (1). Assume that (1) does

not hold. Starting with B = Bo, we define a sequence of rings J50, Bu . . . as

follows: When Bi is defined, we define JB, +I to be the derived normal ring of

one Bίa~n] which contains (αB,-)"1. Then this sequence is well defined and

T(α) is the union of all the B, , because (i) T(a) is a Krull ring by Lemma 2.4,

hence is a normal ring, which implies that the derived normal ring of any
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Bίa~m] is contained in T(a), (ii) since B is pseudo-geometric and since Bίa~nl

is finitely generated over B, Bίa~n2 is also pseudo-geometric, hence the derived

normal ring of B[_a~nΊ is finitely generated over B, (iii) therefore BίC(αJB, )" ι3

is finitely generated over B and (iv) Lemma 2.5 shows that BiίiaBi)"1! is

contained in Tia) hence the finite generation of it shows that there is one n

such that this ring is contained in Z?[α~Λ]. If there exists one i such that aBi

is not of height 1, then Tia) = Bi by Lemma 2.4. This is not the case. Let o,

be the intersection of prime divisors of height 1 of aBi. Then oo c αi c

cij/C(i, + 1 c and the union α* of all the α, is an ideal of T(a). α* does not

contain 1 because no αt contains 1. Let p* be a prime ideal of Tia) such that

p* contains α* and set p = p* Π £. Then we see that the α£p-transform of Bp

is not finite. Thus (3) implies (1), and the proof of Lemma 2.7 is completed.

LEMMA 2.8. Let a be an ideal of an integral domain R. If b^R generates

a prime ideal in R and if a^FbR, then b generates a prime ideal in Tia).

Proof. Let a be a non-zero element of α which is not in bR. Then an

arbitrary element of Tia) is of the form q/an with q<=anR: an by Lemma 2.2.

Assume that (q/an)iq'/am) tabT(a) (<? e anR : an, q' e amR : αm). This shows

that qq'/an*m = bq"/at with qn<=a'R: a*. Then, replacing one of w, w, ί by a

larger number if necessary, we may assume that t = n + m. Then we have

qq1 = bqlf. Since bR is a prime ideal, one of q, q\ say q is in £J?, and q = q*b

with 0* e R. Since (a*/? : αΛ) : bR=anR : ^αM = (anR : W) : αw = </Ή : αΛ, we see

that q*!an<^ T(a), and we see that qlan <=bTia). Thus b is a prime element in

Tia).

LEMMA 2.9. Le£ c\ be a prime ideal of a ring R and let a be an ideal of R

which contains a non-zero-divisor and such that α^ς. Let q' be the prime ideal

of Tia) which lies over ς and consider the derived normal rings R* and R'*

of R/q and Tia)/qf respectively. If R* and /?'* are Krull rings and if height

α#'*>2, then Rf* is the aR*-transform TiaR*) of the ring #*.

Proof. It is obvious by definition that T(aR*) contains Tia)/q'. Since

TiaR*) is a Krull ring hence is normal, we see that TiaR*) contains R!*.

Therefore we have, by the corollary to Lemma 2.4 and by Lemma* 2.5, that

TiaR*) = T(aR'*) = Rf*. Thus the lemma is proved.

REMARK. If we do not assume that R'* is a Krull ring and height aR'>2,
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then we have that T{aR*) = T(aR'*).

§ 3. Proof of the main theorem

We begin with a well known lemma:

LEMMA 3.1. Let B be a Noetherian ring and let Abe a B-algebra of finite

type. If A is integral over its B-subalgebra R, then R is also a B-algebra of

finite type.

Proof. We may assume that R contains B Let au . . . , an be a set of

generators of A over B, For each aιy let fax) be a monic polynomial over R

which has a, as a root. Let R1 be the subiring of R generated by all the co-

efficients of fί(x)y . . . , fn(x) over B. Then R is a submodule of the finite R'~

module A, whence R is a finite i?'-module, and R is finitely generated over B.

Now we are to prove our main theorem:

THEOREM 3. Lei B be a pseudo-geometric ring and let A be a B-algebra of

finite type. Let R be B-subalgebra of A. If R is strongly submersive in A, then

R modulo its radical is a B-algebra of finite type.

The first step. We may assume that the radical of A is zero, because of

the assumption and the assertion. The condition of strong submersiveness is

maintained even if A is replaced by an A1 which is a finite A-module and which

is a subring of the total quotient ring of A. Therefore, first, we may assume

that A is the direct sum of a finite number of integral domains Ai (* = 1, . . . , s)

which are J3-algebras of finite type. Then, since Ai are pseudo-geometric, we

may assume furthermore that each Ai is a normal ring. Let α, be the kernel

of the natural homomorphism from R into Ai. If height αα>0 for an or, then

the direct summand AΛ may be omitted because Att has no effect for the validity

of strong submersiveness.

The second step. Let Q be the total quotient ring of R. Then by the as-

sumption made above, Q is a subring of the total quotient ring of A. Hence

we can consider R! = AdQ. Then the strong submersiveness of R in A implies

that R is strongly submersive in R1. Since R1 is contained in Q, we see that

Rf is integral over R. Hence, by virtue of Lemma 3.1, it is enough to show

that Rf is a B-algebra of finite type. Since R' is strongly snbmersive in A, we

may assume that R-R'. Then R! is the direct sum of a finite number of
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normal rings, say Ru . . . , Rt. Let βi be the identity of /?,-. Then Ri is strongly

submersive in Aa. R is a Z?-algebra of finite type if and only if all the Ri are

β-algebras of finite type. Therefore we may assume that R is a normal ring.

B may also be replaced by a J5-algebra of finite type contained in R. Therefore

we may assume that B is a normal ring and that the field of quotients of B is

the field of quotients Q of R. Thus we have assumed that *

(i) R is a normal ring with field of quotients Q,

(ii) A is the direct sum of normal rings Au . . . , As each Ai is a B-algebra

of finite type, and, denoting by e/ the identity of A, , the ring Rε; is naturally

isomorphic to R.

(in) R=AΠQ,

(iv) B is a subring of R, the field of quotients of B is Q and B is a normal

ring.

The third step. When Si is a subset of Au we denote by <7(S, ) the set of

elements a of A such that tfe; e S/. An ideal α of A is a prime ideal if and

only if there is a prime ideal pi of Ai for a suitable i such that α = (?(&•)• We

note also that with symbols as above, (RΠ σ(Si))ei = Reid Si.

LEMMA 3.2. R is a Krull ring. For each prime ideal p of height 1 in R,

there is a prime ideal pi of height 1 in Ai for a suitable i such that p = σipi) Π /?.

Proof. Since R-Q(λAy we see that R is the intersection of Noetherian

valuation rings QOσiV), where V runs through (Ai)$t for all possible i and

prime ideals pi of height 1 in Ai. Therefore we see the assertion easily.

LEMMA 3.3. There is a normal affine ring Br over B such that (1) B1 is a

subring of R and (2) for every prime ideal p of height 1 in R, p Π B' is a prime

ideal of height 1 in B1.

Proof For each affine ring B' over B such that B' c R, let E(B') be the

set of prime ideals p of height 1 in R such that p Π Bf is not of height 1. Note

that since B' and R have Q as common field of quotients, pθ B1 is different

from 0. We see obviously that if B"^B', then E(B') <^E(Bn). Since Ai is an

afϊine ring over Bεu there is a pair of a non-zero elemet bi of B and a trans-

cendence base Ziu . . . , zun) of Ai over Bi such that AίC^,7leι] is integral over

siBlbT1, Ziu , 2,7ml Therefore, if a prime ideal p of height 1 in R does not

contain any of au . . . , #5, then considering a prime ideal p? of Ai such that
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p = (j(pi) Π R, we have that pi Π Bεi is of height 1 in Bεj, whence pΠB is of

height 1. This shows that E{B) is a finite set. Therefore, we have only to

show that* if p<=E{B), then there is an affine ring Br over B such that Bf ^ R

and such that p Φ E(Br). Theorem 2 shows that Zfy is a locality over B, whence

there is a finite number of elements au . . . , ar of R such that R^ is a ring of

quotients of B[_ax . . . , ar~\. Then U?(.B[ΛI, . . . , arl) does not contain p and

the proof of Lemma 3.3 is completed.

Now, by virtue of the above lemma and the proof, we may assume that for

every affine ring B' over B such that B'^R, it holds that E{B') is empty.

LEMMA 3.4. Let F(B) be the set of prime ideals p' of height 1 in B such

that there is no prime ideal p of height 1 in R such that p Π B = p1. Then F(B)

is a finite set.

Proof. If bu . . . , bs are taken as in the proof of Lemma 3.3, then we see

that every member of F(B) contains some of bi as is seen quite easily. There-

fore the assertion is proved.

Now we have the following, by virtue of Lemma 2.4.

LEMMA 3.5. Let a be the intersection of the members of F(B). Then, under

the assuption made just before Lemma 3. 4, we see that R is the a-transform

T{a) of B.

The fourth step. We proceed with the proof of our main theorem by in-

duction on the altitude ( = Krull dimension) of B. Let x be a transcendental

element over B. Then for any prime ideal q of height at least 2, there is a

prime element p of B(x) such that P<BC\B(X). Lemma 2.6 shows that B may

be replaced by B(x). We want to show that R is Noetherian. Let q be an

arbitrary prime ideal of R. We have only to show that q has a finite basis.

(1) When q contains a prime element p. R/pR is strongly submersive in

A/pA; these are B/{pRC\ B)-algebras. Therefore by our induction assumption,

R/pR is finitely generated over B/(pRRB). Therefore q/pR has a finite basis,

which shows that q has a finite basis.

(2) When height q>2. qB(x) contains a prime element p as remarked

above. If a^pB(x), then R0B(x) contains p~\ which is not the case. There-

fore p remains to be prime in R®B(x) by Lemma 2.8 Therefore (1) above

shows that (\(R®Bκχ)) has a finite basis. Therefore q has a finite basis,
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(3) When height q = l. Set q' = B Π q. Then Bq. = Rq by Lemma 2.3. Set

q" = q'R: q. q" is not contained in any prime ideal of height 1. Therefore

height (\n>2. As in (2) above, c\μ{R®B(x)) contains a prime element, and

therefore q" has a finite basis. Then we see that q'Vqq" is a finite i?/q-module.

Since R/q is Noetherian by (2) above, we see that (qftq")/^1 is a finite i?/q-

module. Therefore q Π q" is generated by a finite number of elements by virtue

of the fact that q' has a finite basis. On the other hand, since R/q and R/o"

are Noetherian, we see that 2?/(qΠq") is Noetherian. This and that q Π q" has

a finite basis imply that q has a finite basis. Thus R is Noetherian.

The fifth step. Assume for a moment that R is not finitely generated over

B. Then we have a sequence of rings B - Bo, Biy B%, . . . with ideals Oo, aίt α2,

. . . respectively, as in the proof of Lemma 2. 7. Let α* be the union of all α,

and let m* be a minimal prime divisor of α* (in #). We may assume that

B = Bm with m = m* Π β. Let B* be the completion of B. Then i ? 0 5 * is

strongly submersive in A®B*, R®B*=T(aB*), and tf<g)£* is not finitely

generated over B*. Therefore we may replace B with B*, dropping the condition

that B is a normal ring but assuming that the radical of B is zero. Then, re-

peating the steps as before, we may assume the conditions at the end of the

fourth step and also that B is of finitely generated type over a complete local

ring. This assumption enables us to use altitude formula. In particular, we

have that if we enlarge B so that (i) in* is generated by m and (ii) R/m* = B/m

(this is possible, because if p is a prime element of R contained in m*, then

R/pR is finitely generated over B/{pRP\B) by our induction assumption), then

we see that height in* = height m. Now, we consider again the completion B*

of B. Let q* be an arbitrary prime ideal of height 0 in £*. Let q** be the

prime ideal of R&B* which lies over q*. Then /?®JB*/q** is strongly sub-

mersive in (A®B*)/<\**(A®B*). Therefore the derived normal ring ^£(q**)

of (/?® J3*)/q** is a Krull ring, and if p** is a prime ideal of height greater

than 1 in the ring, then £** Π (/?® B*)/q** is of height greater than 1 because

of the altitude formula. Therefore we see that α/fίq**) is of height greater

than 1. This shows by virtue of Lemma 2.9 that R(c\**) = (T(qB(q*)), where

B(<fΊ is the derived normal ring of J3/q*. If every ^(q**) is finitely generated

over J3/q*, then, because of the fact that R<g>B* is a subring of the total

quotient ring of £*, we §ee that R must be finitely generated over B (see the
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second step). Thus we may assume that B is a complete local integral domain

with maximal ideal m and the R/mR is a finite 5/m-module. Then we see that

Rm* = B by (37,4) in [7], this is a contradiction to our choice of m*. Thus R

must be finitely generated over B.
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