EXTENSIONS RELATIVE TO A SERRE CLASS

by S. CORMACK

(Received 26th April 1974)

Consider a class C of projective R-modules, where R is a commutative ring with identity, which satisfies the conditions of (2), namely that C is closed under the operations of direct sum and isomorphism and C contains the zero module. Following (2) a module M is said to have C-cotype n (respectively C-type n) if it has a projective resolution $\ldots \rightarrow P_n \rightarrow \ldots \rightarrow P_0 \rightarrow M \rightarrow 0$ with $P_i \in C$ for i > n(respectively $P_i \in C$ for $i \leq n$). Let S be the class of modules of C-cotype -1, equivalently of C-type infinity. It is assumed throughout that S is a Serre Class. We define an abelian category \mathscr{S} of modules with the property that C-cotype is homological dimension in \mathscr{S} , while in the case C = 0, S is just the category of R-modules. It follows that all categorical results on homological dimension also hold for cotype.

In Theorem 12 the restriction to a Serre class S is expressed in terms of the coherence of the ring R. Some examples of such classes are given.

Repeated use is made of the following result of (2).

Theorem 1. Suppose $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ is an exact sequence of *R*-modules. Then for all $n \ge -1$,

- (i) if L has cotype (n-1) and M has cotype n, then N has cotype n,
- (ii) if L has cotype n and N has cotype n, then M has cotype n,
- (iii) if M has cotype n and N has cotype (n+1), then L has cotype n.

Corollary. If $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ is exact and any two of L, M, N belong to S then so does the third. Also $0 \in S$.

It follows that S is a Serre Class if and only if it is closed under submodules; or equivalently, closed under quotient modules.

1. Definition of $\mathcal S$

The category \mathscr{S} has as objects all *R*-modules. The morphisms from *A* to *B* are equivalence classes of *S*-homomorphisms in the sense of Serre (3). The definitions are as follows. Let *G* be a submodule of $A \oplus B$ and let $p: G \rightarrow A, q: G \rightarrow B$ be the projections. *G* is an *S*-homomorphism from *A* to *B* if Ker *p* and Coker *p* both belong to *S* (that is, if *p* is an *S*-isomorphism in the sense of (3)). A relation is defined on *S*-homomorphisms from *A* to *B* by $G \sim H$ if and only if the inclusions $G \cap H \rightarrow G$ and $G \cap H \rightarrow H$ are *S*-isomorphisms;

that is, if and only if $G/G \cap H$ and $H/G \cap H$ both belong to S. Hence $G \sim H$ if and only if G and H are S-equal.

Suppose $G \sim H$ and $H \sim K$. Now $G/G \cap K$ is an extension of a submodule of $H/H \cap K$ by a quotient of $G/G \cap H$. Since S is a Serre class this implies that $G/G \cap K \in S$. This proves that $G \sim K$. We therefore define $\operatorname{Hom}_{\mathscr{S}}(A, B)$ as the set of equivalence classes of S-homomorphisms from A to B. For simplicity of notation we will write G for both an S-homomorphism and its equivalence class.

The identity of $\operatorname{Hom}_{\mathscr{G}}(A, A)$ is the diagonal subset D of $A \oplus A$ with the composition of $G \in \operatorname{Hom}_{\mathscr{G}}(A, B)$ and $H \in \operatorname{Hom}_{\mathscr{G}}(B, C)$ defined by

 $HG = \{(a, c) \in A \oplus C: \exists b \in B \text{ with } (a, b) \in G \text{ and } (b, c) \in H\}.$

Lemma 2. HG is an S-homomorphism and the composition is well defined on equivalence classes. Thus \mathcal{S} is a category.

Proof. If

is a pullback square, $K \rightarrow G$ is an S-isomorphism and hence so is the composition $K \rightarrow A$ in the following commutative square.

Here, $K \rightarrow HG$ is the canonical epimorphism. Hence $p: HG \rightarrow A$ is an S-isomorphism.

Now suppose $G \sim G'$ and K, K' are the corresponding pullbacks. Then $K/K \cap K' \rightarrow G/G \cap G'$ is a monomorphism and there is an epimorphism from $K/K \cap K'$ to $HG/HG \cap HG'$. Thus $HG/HG \cap HG' \in S$ and $HG \sim HG'$.

Similar techniques may be used to prove that \mathscr{S} is an abelian category with the following definitions, where $G, H \in \operatorname{Hom}_{\mathscr{S}}(A, B)$.

(i) Let $G+H = \{(a, b_1+b_2): (a, b_1) \in G \text{ and } (a, b_2) \in H\}$. Then $\operatorname{Hom}_{\mathscr{S}}(A, B)$ is an abelian group with zero $N = \{(a, 0): a \in A\}$ and inverse $-G = \{(a, b): (a, -b) \in G\}$.

(ii) Let $X = p(G \cap N)$. X is the submodule of elements a in A such that $(a, 0) \in G$. Let i: $X \to A$ be the inclusion and $K = \{(x, i(x)): x \in X\}$. Then $K \in \text{Hom}_{\mathscr{S}}(X, A)$ is a kernel of G.

(iii) Let Y = B/q(G) and let $j: B \to Y$ be the projection. Define $C = \{(b, j(b)): b \in B\}$. Then $C \in \text{Hom}_{\mathscr{G}}(B, Y)$ is a cokernel of G.

376

(iv) Let Z = q(G) with inclusion $k: Z \rightarrow B$. Define $I = \{(a, z): (a, k(z)) \in G\}$ and $J = \{(z, k(z)): z \in Z\}$. Then $I \in \text{Hom}_{\mathscr{S}}(A, Z)$ is an image of G and $J \in \text{Hom}_{\mathscr{S}}(Z, B)$ is a coimage of G.

We therefore have the following analysis of G.

Theorem 3. $G \in \text{Hom}_{\mathscr{G}}(A, B)$ is a monomorphism (epimorphism) in \mathscr{S} if and only if $q: G \rightarrow B$ is an S-monomorphism (epimorphism).

Proof. G is a monomorphism in \mathcal{S} if and only if $K \sim N$ as submodules of $X \oplus A$. But $K \cap N = 0$ so $K \sim N$ if and only if $K \in S$ and $N \in S$. K and N are both isomorphic to X which is isomorphic to Ker $(q: G \rightarrow B)$. Hence $K \in S$ and $N \in S$ if and only if Ker $q \in S$. The dual result is proved similarly.

It follows that A and B are S-isomorphic in the sense of Serre if and only if there is an isomorphism $G \in \operatorname{Hom}_{\mathscr{G}}(A, B)$. The null objects of the category \mathscr{G} are the modules in S and we have

Proposition 4. Hom_{\mathscr{G}} (A, B) = 0 for all B if and only if $A \in S$.

Proof. If $\operatorname{Hom}_{\mathscr{S}}(A, A) = 0$, then $D \sim N$; but $D \cap N = 0$ and A is isomorphic to N. Therefore $A \in S$. Conversely if $A \in S$ and $G \in \operatorname{Hom}_{\mathscr{S}}(A, B)$ then $p: G \rightarrow A$ is an S-isomorphism so $G \in S$. It follows that $G \sim N$.

Finally note that if S = 0 then \mathcal{S} reduces to the category of *R*-modules and module homomorphisms.

2. Extensions in \mathcal{S}

The functors Ext^n can be defined in any abelian category which has sufficient projectives. We show that every projective *R*-module is a projective object of \mathscr{G} . Hence every *R*-module has a projective resolution in \mathscr{G} .

Lemma 5. If A and B are S-isomorphic then they have the same cotype.

Proof. It is sufficient to prove that if $f: A \rightarrow B$ is an S-isomorphism then A and B have the same cotype. But now let

be exact with $K, C \in S$. The result follows immediately from Theorem 1.

Theorem 6. A module A of C-cotype zero is a projective object in \mathcal{S} .

Proof. Suppose $G \in \text{Hom}_{\mathscr{S}}(A, C)$ and let $H \in \text{Hom}_{\mathscr{S}}(B, C)$ be an epimorphism is \mathscr{S} . We must produce $K \in \text{Hom}_{\mathscr{S}}(A, B)$ such that $HK \sim G$. The first step reduces the problem to the case in which $q: H \rightarrow C$ is epi.

Let X = q(H) and $i: X \to C$ the inclusion. Then i is an S-isomorphism since H is an epimorphism in \mathscr{S} and $q: H \to X$ is epi. Also H can be considered as $H' \in \operatorname{Hom}_{\mathscr{S}}(B, X)$. Let $G' = \{(a, x) \in A \oplus X: (a, i(x)) \in G\}$. Then $G' \to G$ is mono and so is the map $G/G' \to C/i(X)$ induced by the projections. Hence $G' \to G$ is an S-isomorphism; therefore so is the composition $G' \to G \to A$. Thus $G' \in \operatorname{Hom}_{\mathscr{S}}(A, X)$ while $H' \in \operatorname{Hom}_{\mathscr{S}}(B, X)$ is such that $q: H' \to X$ is epi. Moreover, if $K \in \operatorname{Hom}_{\mathscr{S}}(A, B)$ satisfies $H'K \sim G'$, then $HK = iH'K \sim iG' = G$. It is therefore sufficient to prove the result in the case where $q: H \to C$ is epi.

Now by Lemma 5, G has cotype 0 since A does; so by definition there is an exact sequence $0 \rightarrow X \rightarrow P \xrightarrow{\phi} G \rightarrow 0$ with P projective and $X \in S$. Hence there exists a map $\alpha: P \rightarrow H$ such that the following diagram is commutative.

For clarity the various projection maps are here distinguished by subscripts. Let $\pi = p_G \phi$, $\theta = p_H \alpha$ and $\beta = q_G \phi = q_H \alpha$. Now define $K \subseteq A \oplus B$ as $K = (\pi, \theta)(P)$. The diagram

is commutative with π an S-isomorphism and (π, θ) ep. Therefore $K \in \text{Hom}_{\mathscr{A}}(A, B)$.

It remains to verify that $HK \sim G$. If $(a, c) \in G$, choose $x \in P$ with $\phi(x) = (a, c)$. Then $\alpha(x) = (\theta(x), c) \in H$ and $\pi(x) = a$, so $(a, \theta(x)) \in K$. Hence $(a, c) \in HK$; that is $G \subseteq HK$. Let $Y = \text{Ker } p_H$ which belongs to S. Then $q = q_H \mid Y$: $Y \rightarrow C$ is mono so $q(Y) \in S$. Hence the quotient Z of q(Y) modulo the subgroup $q(Y) \cap q_G(\text{Ker } p_G)$ also belongs to S. We define a map $\psi: HK \rightarrow Z$ with kernel G. This will complete the proof by showing that HK/G is isomorphic to a subgroup of Z and hence belongs to S.

To define ψ let $(a, c) \in HK$. Choose $x \in P$ such that $\pi(x) = a$ and $(\theta(x), c) \in H$. Let $z = c - \beta(x)$. Since $(0, z) = (\theta(x), c) - \alpha(x)$, which belongs

to *H*, we have $z \in q(Y)$. Define $\psi(a, c)$ as the equivalence class represented by *z*. If x' is another choice, then

$$z-z' = \beta(x')-\beta(x)$$
 and $(0, \beta(x')-\beta(x)) = \phi(x')-\phi(x) \in \operatorname{Ker} p_G$.

Hence z and z' represent the same element of Z. Finally,

$$(a, c) = \phi(p) + (0, c - \beta(p))$$

so $(a, c) \in \text{Ker } \psi$ if and only if $(0, c - \beta(p)) \in G$. It follows that $\text{Ker } \psi = G$. This completes the proof.

Corollary 7. *S has sufficient projectives.*

Proof. Every projective module has cotype zero and so is a projective object in \mathscr{S} . Hence a projective resolution in the module category gives rise to a projective resolution in \mathscr{S} .

The functors $\operatorname{Ext}_{\mathscr{S}}^n$ are therefore defined and $\operatorname{Ext}_{\mathscr{S}}^1(A, B) = 0$ for all B if and only if A is a projective object in \mathscr{S} .

Lemma 8. If A has finite cotype and $\operatorname{Ext}^{1}_{\mathscr{S}}(A, B) = 0$ for all B then A has cotype 0.

Proof. Suppose A has cotype r. There is an exact sequence

$$0 \to K \to P \to A \to 0 \tag{(*)}$$

with P projective and K of cotype (r-1). A is a projective object of \mathscr{S} ; so this sequence splits in \mathscr{S} giving an isomorphism $G \in \operatorname{Hom}_{\mathscr{S}}(A \oplus K, P)$. Hence $A \oplus K$ has cotype 0. Theorem 1 (iii) applied to the sequence

$$0 \rightarrow A \rightarrow A \oplus K \rightarrow K \rightarrow 0$$

shows that (if $r \ge 2$) A has cotype (r-2). Hence A has cotype 0.

Theorem 9. If A has finite cotype, then $\operatorname{Ext}_{\mathscr{G}}^{n+1}(A, B) = 0$ for all B if and only if A has cotype $n \ (n \ge -1)$.

Proof. Proposition 4 gives the result for n = -1. Theorem 6 and Lemma 8 prove the result for n = 0. We use induction on n > 0. Suppose A has cotype r. The exact sequence (*) gives rise to a long exact sequence

... $\rightarrow \operatorname{Ext}_{\mathscr{G}}^{n}(P, B) \rightarrow \operatorname{Ext}_{\mathscr{G}}^{n}(K, B) \rightarrow \operatorname{Ext}_{\mathscr{G}}^{n+1}(A, B) \rightarrow \operatorname{Ext}_{\mathscr{G}}^{n+1}(P, B) \rightarrow \ldots$

for all B. $\operatorname{Ext}_{\mathscr{G}}^{n}(P, B) = 0$ by Theorem 6 and $\operatorname{Ext}_{\mathscr{G}}^{n+1}(A, B) = 0$ by hypothesis. Hence $\operatorname{Ext}_{\mathscr{G}}^{n}(K, B) = 0$; so by induction, K has cotype (n-1). It follows that A has cotype n. Conversely, if A has cotype $n(n \ge 0)$, then K has cotype (n-1) so $\operatorname{Ext}_{\mathscr{G}}^{n}(K, B) = 0 = \operatorname{Ext}_{\mathscr{G}}^{n+1}(P, B)$ which implies the result.

This theorem shows that, as long as modules have finite cotype, then cotype is simply homological dimension in the category \mathscr{S} . We also see that the *C*-cotype of a module depends only on the derived class *S*. Note that $C \subseteq S$; Since $C \in C$ it has a projective resolution $0 \rightarrow C \rightarrow C \rightarrow 0$. *C* is determined by *S* provided C is closed under direct summands, since then $C = S \cap P$ where P is the class of projective modules (2, Theorem 2). In general the following relations hold between C and S.

Lemma 10. If C and C' both have derived class S then for every $C \in C$ there exists $X \in S \cap P$ and $C' \in C'$ such that $C' = C \oplus X$.

To prove this, note that if $C \in C \subseteq S$ there is an exact sequence $0 \rightarrow X \rightarrow C' \rightarrow C \rightarrow 0$ with $X \in S$ and $C' \in C'$. The result follows since C is projective.

In particular, for a given class C with derived class S, let $C' = S \cap P$. This is a class. Let S' be its derived class. $C \subseteq C'$ so $S \subseteq S'$. Conversely if $A \in S'$ there is an exact sequence

 $\dots \rightarrow C'_n \rightarrow \dots \rightarrow C'_0 \rightarrow A \rightarrow 0$

with $C'_i \in S \cap P$ for all *i*. Thus if either S is Serre or the sequence is finite we find that $A \in S$ (by the Corollary to Theorem 1). Hence, for a Serre class S, $S \cap P$ also has derived class S.

Corollary 11. $C \subseteq S \cap P$ with equality if and only if C is closed under direct summands. If S is Serre, then for every $C' \in S \cap P$ there exists $X \in S \cap P$ such that $C' \oplus X \in C$.

3. Conditions for S to be a Serre class

The ring R is said to be (0, C)-coherent if every module of C-type 0 belongs to S.

Theorem 12. S is a Serre class if and only if R is (0, C)-coherent.

Proof. Suppose S is Serre and A has C-type 0. Then A has a projective resolution $\dots \rightarrow P \rightarrow C \rightarrow A \rightarrow 0$ with $C \in C \subseteq S$. Hence A, being a quotient of C, belongs to S. Conversely, let $A \in S$ and $A \rightarrow B$ epi. A has type 0, therefore by (1, Lemma 7) B has type 0 and so belongs to S. Hence S is closed under quotients.

The following are examples of classes for which S is Serre. For proofs see (1).

(i) The class F of finitely generated free modules over a Noetherian ring R. Then S is the class of finitely generated R-modules.

(iii) The class D of free graded R-modules with generators in only a finite number of dimensions, where R is a finite dimensional ring. Then S is the class of R-modules with generators in only a finite number of dimensions.

REFERENCES

(1) J. F. ADAMS, Lectures on generalised cohomology, lecture 5. Lecture notes vol. 99 (Springer-Verlag, Berlin, 1969).

380

(2) S. CORMACK, An analogue of homological dimension using a general class of projective modules, J. London Math. Soc. (2) 1 (1969), 760-764.

(3) J. P. SERRE, Groupes d'homotopie et classes de groupes abéliens, Ann. of Math. 58 (1953), 258-294.

UNIVERSITY OF EDINBURGH