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Summary

The variance effective size (Ne) was formulated for populations of monoecious plant species that

are partly asexually propagating with discrete or overlapping generations. It was shown that partly

asexually reproducing populations have larger or smaller effective sizes (ratios to the census size N )

than fully sexually reproducing populations, according to whether the term V
c
}ca is smaller or

larger than the term (V
k
}ka­1®β)}2, where c- and V

c
are the mean and variance of the number of

progeny asexually produced per plant per year, respectively, k- and V
k

are the mean and variance of

the number of gametes contributed per plant per year, respectively, and β is the selfing rate of each

plant. Asexual reproduction has no effect on Ne when the two terms are equal, as is true when the

numbers of both sexually and asexually produced progeny per plant per year are Poisson-

distributed (V
c
}ca ¯1 and V

k
}ka ¯1­β). Populations with a larger generation length (L) tend to

have a smaller effective size : for a population model of age-independent survival and fecundity

with an annual rate δ of asexual reproduction, Ne declines asymptotically to

N (2®β)}²3®β­V
k
}ka­(2 V

c
}ca®V

k
}ka®1­β)\δ´ as L gets large, which simplifies to N (2®β)}4

under a Poisson-distributed reproductive contribution. The trade-off relation of Ne and L,

however, does not always hold: for stage-structured populations, increase in the survival rate of

juveniles may act to increase both Ne and L.

1. Introduction

Many plant species and strains, e.g. some strains of

wild rice Oryza rufipogon (Oka & Morishima, 1967),

propagate with a mixed sexual and asexual repro-

duction. In populations in such species, plants leave

progeny both sexually and asexually, and these

progeny have a similar life history, development

pattern, nutritional requirements, and reproductive

contributions to subsequent generations. Asexually

produced plants in this case should play the same

important roles as sexually produced plants in the

process of adaptation and evolution of the popu-

lations. It seems, however, that the population

genetical effects of asexual reproduction have not

been closely investigated until now.

Recently, it has been derived in a deterministic

framework that, for neutral genes, populations with a

mixed reproduction system approach asymptotically

the same equilibrium state of genotypic constitution

as do fully sexually reproducing ones, although more

* Tel : (­81) 75 705 1927. Fax: (­81) 75 705 1914. e-mail :
yonezaw!cc.kyoto-su.ac.jp

generations are required to reach the equilibrium with

higher rates of asexual reproduction (Yonezawa,

1995). For selected genes, however, populations with

a mixed reproduction system tend to maintain a

higher frequency of deleterious or less fit alleles than

fully sexually reproducing populations, indicating that

selection against deleterious or less fit alleles is

weakened or neutralized in the presence of asexual

reproduction.

In small populations, it is not the deterministic

forces but the stochastic factor, random genetic drift,

that is the major determinant of genetic structure of

the populations. Its contribution depends on the value

of the effective population size (Wright, 1969). The

concept of effective population size, which initially

was defined for randomly mating populations in order

to standardize or idealize differential gametic con-

tribution of individuals, differential sex ratios, and

change in the census population size over generations,

has recently been extended to populations that

propagate with animal-specific types of consanguin-

eous or non-random mating (Pollak, 1987; Chesser,

1991 ; Caballero & Hill, 1992; Nunney, 1993; Wang,
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1995). The theory for the effective size of populations

with plant-specific types of life history, however,

remains much less developed.

In this paper, the effective population size is defined

for populations with a mixed sexual and asexual

reproduction system, based on which some population

genetic effects of asexual reproduction are discussed.

Plant species with a mixed reproduction system are

mostly perennial, and propagate with overlapping

generations so that populations in such species are

composed of plants of different ages or demographic

stages. The effective sizes for such populations will

also be formulated in this paper. The effective size for

populations with plant-specific types of life-cycle was

defined previously by Orive (1993) using the co-

alescence time theory.Her equations,while formulated

for a quite general model of the life-cycle, are not

explicit enough to interpret. Here, the effective size

will be defined in a form interpretable in terms of the

reproductive pattern of plants.

2. Formulation of the effective population size

(i) Discrete generations

The variance effective size (Wright, 1969) is formulated

for three population models : (a), (b) and (c), as

described in Fig. 1. The effective population size for

model (a) is formulated first, assuming that the

population is composed of N monoecious plants, each

of which leaves progeny plants by rates δ and 1®δ of

asexual and sexual reproduction, respectively, so that

the population at equilibrium is composed of N\δ

asexually produced and N\(1®δ) sexually produced

plants.

Focusing on a neutral diallelic locus with alleles A
"

and A
#

as described in the legend of Fig. 1, the

stochastic change in the frequency of allele A
"

after

one generation, ∆p, can be presented as

∆p¯ (1®δ)\∆p
s
­δ\∆p

a
,

where ∆p
s
and ∆p

a
are the changes that occurred in

sexually and asexually produced plants, respectively.

Then, assuming that sexual and asexual reproduction

occur independently in each plant, the variance due to

random drift, V (∆p), is given by

V (∆p)¯ (1®δ)#\V (∆p
s
)­δ#\V (∆p

a
), (1)

where V (∆p
s
) and V (∆p

a
) are the variances of ∆p

s
and

∆p
a
, respectively.

Following the mathematical procedures adopted in

Kimura & Crow (1963), the variance V (∆p
s
) is derived

as

V (∆p
s
)¯

pq

2Nka (
N

N®1
\
V
k

ka
(1­α)­(1®α)*

E
pq

2Nka (
V
k

ka
(1­α)­(1®α)* , (2)

(a) Discrete generation model

Year: t t+1

N plants 1

1
(b) Simple overlapping generation model

N plants
u

v

d

F2·d2

(c) Stage-structured population model

Adult plants: N·F2

Juvenile plants: N·F1

F1.d1

F1·u11

F2·u22

F
2 ·u

12

F 1
·u 21

V

Reproduce with each plant leaving asexual and sexual
progeny with rates δ and 1–δ, respectively.

Survive to the next year.
Die out.

Fig. 1. Diagrammatic description of the three population
models investigated. The population in year t is assumed
to be composed of three genotypes A

"
A

"
, A

"
A

#
and A

#
A

#
with frequencies G

""
, G

"#
and G

##
, respectively.

Frequencies of alleles A
"

and A
#

are given by p¯
G

""
­G

"#
}2 and q¯G

##
­G

"#
}2, respectively, and the

deviation α from Hardy–Weinberg proportions by
1®G

"#
}(2pq). The census population size N is assumed to

be constant. In model (a), all the N plants are renewed
sexually or asexually each year. In model (b), a fraction u
of the entire population, i.e. N\u plants, survive to the
next year, the remaining fraction 1®u being renewed
each year (�¯ d¯1®u). In model (c), fractions u

""
, u

#"
and d

"
of juveniles remain juvenile, move to the adult

stage the next year, and die out each year, respectively.
Fractions u

##
, u

"#
and d

#
of adults remain adult, return to

the juvenile stage the next year, and die out each year,
respectively. A proportion V of the entire population is
recruited sexually or asexually each year [F

"
­F

#
¯1,

u
""

­u
#"

­d
"
¯1, u

##
­u

"#
­d

#
¯1 and V¯

1®F
"
(u

""
­u

#"
)®F

#
(u

"#
­u

##
)].

where k- and V
k

are the average and variance of the

gametic contribution of the N plants. Similarly, the

variance V (∆p
a
) is

V (∆p
a
)¯

pq

2(N®1) ca
\
V
c

ca
\(1­α)E

pq

2Nca
\
V
c

ca
\(1­α), (3)

where ca and V
c

are the average and variance of the

number of asexually produced progeny per plant. The

total variance V (∆p) of (1) is then
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V (∆p)¯
pq

2N

¬91®δ

2
\((1®α)­(1­α)\

V
k

ka *­δ\(1­α)\
V
c

ca : . (4)

With this variance set equal to pq}(2Ne), the

effective population size Ne is derived as

Ne¯
2N

S­A\δ
, (5)

where S¯ (1®α)­(1­α)\V
k
}ka and A¯ 2(1­α)\

V
c
}ca®(1®α)®(1­α)\V

k
}ka .

For neutral genes, the genotypic array in a

population, whether reproducing fully sexually or

partly asexually, approaches asymptotically the same

state as generations advance (Yonezawa, 1995). Then,

for a population that has persisted sufficiently many

generations after initiation, the deviation from the

Hardy–Weinberg state, α, may be set equal to the

asymptotic value β}(2®β) (Allard et al., 1968; Pollak,

1987), where β is the selfing rate of each plant. With

a constant census population size over generations,

ka ¯ 2(1®δ) and V
k
takes different values according to

the degree of variation in the number of progeny per

plant, being equal to 2(1®δ) (1­β) when the N (1®δ)

sexually produced (selfed or non-selfed) progeny are

randomly and independently contributed from the N

plants. For the asexually produced progeny, ca ¯ δ and

V
c
depends on the variation in the asexual reproductive

contribution of the plants, being equal to δ under a

Poisson-distributed contribution.

The term V
k
}ka is equal to, larger, or smaller than

(1­β), according to whether the number of sexually

produced progeny per plant is multinomially or

Poisson-distributed, more dispersed, or more concen-

trated than multinomial. The term V
c
}ca ¯1 when the

number of asexually produced progeny per plant

obeys a multinomial distribution, taking a larger or

smaller value than unity when the variation is more

dispersed or more concentrated than multinomial.

Thus the terms V
k
}ka and V

c
}ca may be taken as a

criterion to measure the degree of difference in the

reproductive contribution of the plants.

For a fully sexually reproducing species (δ¯ 0), (5)

becomes the same as the equation previously derived

by Kimura & Crow (1963), which, under the asymp-

totic state α¯β}(2®β), is approximately Ne¯
2(2®β)N}²(1®β) (3­β)´ when each of the N plants

contributes exactly one seed (one female gamete) for

the next generation (ka ¯ 2, V
k
E1®β#), and Ne¯

4(1®β}2)}(1­β)# when only one among the N plants

contributes all seeds (all female gametes) [ka ¯ 2, V
k
E

N (1­β)#] (Yonezawa et al., 1996). As previously

derived (Li, 1988; Pollak, 1987), Ne¯N (1®β}2) for

a Poisson-distributed reproductive contribution of the

N plants [ka ¯ 2, V
k
¯ 2(1­β)]. Equation (5) gives

Ne¯ 2N in the case where the plants are randomly

outcrossing (α¯ 0) and each of these plants con-

tributes exactly two gametes to the next generation

(ka ¯ 2, V
k
¯ 0), as for the biparental mating system of

Gale & Lawrence (1984) where the N plants are

randomly paired to make N}2 pairs of intermating,

one progeny from each of the two parents in each

pair, or two progeny from a parent used as female in

each pair, being raised in the next generation.

With a fully asexually reproducing species (δ¯1),

on the other hand, (5) becomes

Ne¯
N

(1­α)\V
c
}ca

,

which, as it should, becomes infinite when each

plant leaves exactly one progeny (ca ¯1, V
c
¯ 0), or

the population is composed of only heterozygotes

(α¯®1, p¯ q¯ 0±5), and becomes 1}(1­α) ap-

proximately when only one among the N plants leaves

N progeny (ca ¯1, V
c
¯N®1). With a Poisson-

distributed reproductive contribution by each plant

(V
c
}ca ¯1), Ne¯N}(1­α), which as expected equals

N}2 when the population is composed only of

homozygotes (α¯1). As generations advance, a pop-

ulation of δ¯1 will sooner or later reach one among

three possible states, i.e. comprising only A
"
A

"
, or

A
"
A

#
, or A

#
A

#
. In this situation, gene frequency does

not change any further, and V (∆p)¯ 0. The effective

population size in this situation may be defined to be

¢, or ‘not defined’.

It is also known from (5) that, when both sexual

and asexual contributions per plant are Poisson-

distributed (V
k
}ka ¯1­β and, V

c
}ca ¯1), Ne becomes

independent of δ, and equals N}(1­α)¯N (1®β}2),

the same as for a population which is fully sexually

reproducing with selfing rate β.

(ii) O�erlapping generations

One of the simplest population models with over-

lapping generations is described in Fig. 1(b). In this

model, a fraction u of the whole population, i.e. N\u

plants, is assumed to survive to the next year (or

season), N\(1®u) plants being recruited each year by

sexually or asexually produced new plants. It is also

assumed that the newly born plants mature within the

year, and have the same reproductive and survival

potency as older adult plants (age-independent fec-

undity and survival). The annual change in the

frequency of gene A
"

is then

∆p¯ u\∆p
u
­(1®u)\∆p

r
,

where ∆p
u

and ∆p
r

are, respectively, the changes in

gene frequency in the N« (¯N\u) plants that survived

to the next year, and in the N®N« [¯N\(1®u)] plants

that were newly produced sexually or asexually.

Assuming that the survival and reproductive con-

tribution are not correlated, the variance in the total

stochastic change ∆p is

V (∆p)¯ u#\V (∆p
u
)­(1®u)#\V (∆p

r
),
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where V (∆p
u
) and V (∆p

r
) are the variances of ∆p

u
and

∆p
r
, respectively.

Assuming that N« plants randomly sampled from

the N plants survive,

V (∆p
u
)¯

N®N«
N®1

1

N«
pq(1­α)

2
E

pq(1­α) (1®u)

2Nu
.

The variance V(∆p
r
) is now defined for the N\(1®u)

newly reproduced plants and expressed in the same

form as V (∆p) of (2) with N replaced by N\(1®u). In

the present model, the mean reproductive contri-

butions, ka and ca , equal 2(1®δ) (1®u) and δ(1®u),

instead of 2(1®δ) and δ in the previous model,

respectively. The overall variance is then

V (∆p)¯
pq

2N
(1®u) 9(1­α) u­((1®α)­(1­α)\

V
k

ka *
¬

1®δ

2
­(1­α)\

V
c

ca
\δ: . (6)

The stochastic variance for generation length L is

given by L\V (∆p), where V (∆p) stands for the mean

value of V (∆p) over years within generation length.

V (∆p) is obtained with the term pq being substituted

by its mean value, pq. Treating the variance L\V (∆p)

as that which occurred in a single generation of an

ideal population of size Ne, i.e. pq}(2Ne) the effective

population size is derived as

Ne¯
2N

L\(1®u)\²2(1­α) u­S­A\δ´
, (7)

where S and A are the same as in (5).

For populations with a mixed reproduction system,

the generation length L may be defined by either the

mean age at which the plants produce sexual progeny,

or the mean age at which new plants, either sexual or

asexual, are produced (Orive 1993). In the present

model, these are the same because all adults are

assumed to produce both sexual and asexual progeny.

The generation length L is now defined to be the mean

age of reproduction, L¯Σ¢

x="
x\m

x
\l

x
}Σm

x
\l

x
(Hed-

rick, 1984), where x is the age of plant (x&1), m
x

is

the average number of progeny (sexually or asexually

produced) per plant of age x, and l
x
is the probability

of a newborn plant surviving to age x.

In the case where, as can be assumed for many

perennial polycarpic herbaceous plant species, the

fecundity and survival of plants are age-indepen-

dent, l
x
¯ ux−" and m

x
¯1®u (for constant N ), and

L¯ [Σ
x
x\(1®u)\ux−"]}[Σ

x
(1®u)\ux−"]¯1}(1®u).

The effective population size in this case is

Ne¯
2N

2(1­α) u­S­A\δ
. (8)

When the deviation α takes the asymptotic value

β}(2®β), and both sexual and asexual reproductive

contributions are Poisson-distributed (V
k
}ka ¯1­β

and V
c
}ca ¯1), Ne becomes independent of δ, and is

simply Ne¯N(1®β}2)}(1­u), the same as for a

fully sexually reproducing population.

(iii) Stage structured populations

The coalescent inbreeding effective size for stage

structured populations has been defined by Orive

(1993) (cf. section 3 of her paper), but her equation

was not given in an interpretative form. In order to

have an insight into the population genetic effects of

reproductive and demographic patterns of plants, the

variance effective size is here defined using a rather

simple two-stage population model as described in

Fig. 1(c), and then extended to a multi-stage model.

Random mating for sexual reproduction (α¯ 0) and

Poisson-distributed reproductive contribution of

adults (V
k
}ka ¯V

c
}ca ¯1) were implicitly assumed in

Orive’s model, but these assumptions are relaxed in

the present model.

With model (c), the annual stochastic change in

gene frequency is

∆p¯F
"
\(u

""
­u

#"
)\∆p

"u
­F

#
\(u

##
­u

"#
)\∆p

#u

­(1®ua )∆p
r

¯F
"
\u\

"
\∆p

"u
­F

#
\u\

#
\∆p

#u
­(1®ua )\∆p

r
,

where

u
ji
¯ the survival rate or transition probability with

which a plant of stage i survives to stage j in the next

year (i, j¯1 or 2),

u\
"
¯ u

""
­u

#"
and u\

#
¯ u

"#
­u

##
, the total survival

rate of plants of stage 1 and stage 2, respectively,

ua ¯F
"
\u\

"
­F

#
\u\

#
, the total fraction that survive to

the next year, with the remaining fraction 1®ua
being recruited each year,

∆p
"u

and ∆p
#u

¯ the change in gene frequency in the

plants that survived from stage 1 to either 1 or 2 in

the next year, and in the plants that survived from

stage 2 to either 1 or 2, respectively,

∆p
r
¯ that in the progeny plants which were sexually

or asexually produced by plants of stage 2.

Similarly as in the case of model (b), variances of

∆p
"u

and ∆p
#u

are

V (∆p
"u

)¯
1®u\

"

F
"
\u

"

\
(pq)

"
(1­α)

2N
,

V (∆p
#u

)¯
1®u\

#

F
#
\u

#

\
(pq)

#
(1­α)

2N
,

where (pq)
"
and (pq)

#
denote the value of pq for stage

1 and 2, respectively. In the present model V (∆p
r
) is

defined for the N\(1®ua ) plants newly produced by

plants of stage 2, and is obtained as for (4) with pq, N,

ka and ca being substituted by (pq)
#
, N(1®ua ), 2(1®δ)

¬(1®ua )}F
#

and δ(1®ua )}F
#
, respectively. Since the

genes circulate between the two stages year by year,
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III: Vc/c < (Vk/k +1– β )/2

1+ β
(Poisson-distributed)

Variance in sexual reproductive
contribution (Vk/k )

II: Vc/c = (Vk/k +1– β )/2

0·5

0

Phase I: Vc/c > (Vk /k +1– β )/2
V

ar
ia

nc
e 

in
 a

se
xu

al
 r

ep
ro

du
ct

iv
e

co
nt

ri
bu

ti
on

 (
V c

/c
)

0      1
1

Poisson-
distributed

1– β

2

Fig. 2. The phases of the influence of asexual
reproduction on the effective population size. When a
partly sexually reproducing population has a reproductive
pattern positioned in phase I, II or III, its effective size is
smaller than, as large as, or larger than that of a fully
sexually reproducing population with reproductive
variation V

k
}ka , respectively.

(pg)
"

and (pg)
#

have the same mean value over

generation length, pq. Then, the mean annual variance

is derived as

V (∆p)¯
pq

2N 9F"
\u\

"
\(1®u\

"
)\(1­α)­F

#
\u

#
\(1®u\

#
)

¬(1­α)­
1®ua

2
\((1®α) (1®δ)­(1­α)\

V
k

ka

¬(1®δ)­2(1­α)\
V
c

ca
\δ*: . (9)

As in the previous models, multiplication of V (∆p) by

generation length L defines the variance for generation

length, which, being set equal to pq}(2Ne), gives the

effective population size as

Ne¯ 2N

2(1­α) (ua®u#)­(1®ua ) (S­A\δ)
\
1

L
, (10)

where u#¯F
"
\u#\

"
­F

#
\u#\

#
, and S and A are the same

as in (5). Similarly as in models (a) and (b), Ne

becomes independent of δ and is simply

Ne¯N (1®β}2)}[L\(1®u#)], (11)

when the sexual and asexual reproductive contri-

butions are Poisson-distributed and α¯β}(2®β).

The equilibrium fractions of non-reproductive and

reproductive plants, referred to as F=
"

and F=
#
, should

equal (1®u
##

)}(1­u
#"

®u
##

) and u
#"

}(1­u
#"

®u
##

),

respectively, since relations F=
"
­F=

#
¯1 and F=

#
¯

F=
"
\u

#"
­F=

#
\u

##
should be satisfied under equilibrium.

The generation length L in this model is formulated

as follows. With age-independent survival, the prob-

ability (l
x
) of a newly produced plant surviving to age

x is given by u
""x

­u
#"x

where u
""x

and u
#"x

denote the

probability that the newly produced plant is in stage

1 and 2 after x years, respectively. The probabilities

u
""x

and u
#"x

are given by the elements in the first

column of the matrix

9u""

u
#"

u
"#

u
##

:x¯ 9u""x

u
#"x

u
"#x

u
##x

: .
With an additional assumption that plants of any ages

in stage 2 have the same reproductive ability, the

average number of progeny of plants of age x is given

by m
x
¯ (u

""x
\0­u

#"x
\a)}l

x
¯ u

#"x
\a}l

x
, where a is the

progeny number produced per year per plant of stage

2, and equals (1®ua )}F
#

if the population size N and

the fractions F
"

and F
#

are constant over years. The

generation length in this situation is independent of a

and is L¯Σ
x
x\u

#"x
}Σ

x
u
#"x

. In most perennial species,

plants that have once reached the reproductive stage

never return to the non-reproductive stage, and then

u
"#

¯ 0. In this case, u
#"x

¯ u
#"

\(ux

##
®ux

""
)}(u

##
®u

""
)

and L¯ (1®u
""

\u
##

)}[(1®u
""

)\(1®u
##

)].

Equation (11) can readily be extended to the case of

more than two stages if the constituent parameters are

redefined as follows:

ua ¯ 3
w

i="

F
i
\03w

j="

u
ji1¯3

i

F
i
\u\i

,

u#¯3
i

F
i 03

j

u
ji1#¯3

i

F
i
\(u\i

)#,

l
x
¯ 3

j="

u
j"x

,

m
x
¯3

j

a
j
\u

j"x
}l

x
,

where w is the number of different stages, a
j
is the

number of progeny per year per plant of stage j, u
ji

is

the transition probability of a plant in stage i surviving

to stage j in the next year (i, j¯1, 2,…,w), u\i
¯Σ

j
u
ji
,

the total survival rate of a plant of stage i, and u
j"x

is

the probability that a newly produced plant (stage 1)

is in stage j after x years, which is given by the element

of row j and column 1 in the matrix [u
ji
]x.

3. Discussion

Equations derived in this paper allow us to show how

asexual reproduction influences Ne. The pattern with

which asexual reproduction (δ) affects Ne depends on

the sign and value of the term A¯ 2(1­α)\
V
c
}ca®(1®α)®(1­α)V

k
}ka , a component of Ne in all

three models investigated [cf. (5), (8) and (10)]. In the
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presence of asexual reproduction (δ" 0), Ne takes a

larger or smaller value than for a fully sexually

reproducing population (δ¯ 0), according to whether

A! 0 or A" 0, i.e. whether the asexual reproduc-

tive variation V
c
}ca is smaller or larger than

²V
k
}ka­(1®α)}(1­α)´}2. In the case where both sex-

ual and asexual reproduction are Poisson-distributed

(V
k
}ka ¯1­β, V

c
}ca ¯1) and α¯β}(2®β), the term A

becomes zero, and Ne takes the same value as for a

fully sexually reproducing population with repro-

ductive variation V
k
}ka . The influence on Ne of the

reproductive patterns can be summarized as in Fig. 2,

from which it can be perceived that the condition for

asexual reproduction acting to increase Ne is rather

limited.

The influence on Ne of the survival pattern of plants

can be inferred from equations for models (b) and (c).

Equation (8) for model (b) indicates that Ne decreases

with increase in the survival rate u and therefore

generation length L[¯1}(1®u)], since variance in the

lifetime reproductive contribution is enlarged with

higher annual survival rate [cf. (15)].

A similar trend is also recognized in stage-structured

populations: longer persistence of adult plants is

associated with longer generation length and smaller

effective population size. Numerical computations of

the five parameters Fq
"
, Fq

#
, ua , L and Ne (for conditions

V
k
}ka ¯1­β and V

c
}ca ¯1) were obtained for some

typical combinations of the four transition rates, from

which demographic and genetic influences of the

transition rates could be derived (Table 1). It is seen

from this table that Ne is reduced whenever the

transition rates of adult plants, u
"#

and u
##

, change to

increase L. Of u
"#

and u
##

, the latter seems to be the

dominant determinant of L and Ne, since the influence

of u
"#

on L and Ne is reversed depending on whether

u
##

is reduced (u\
#
fixed) or fixed, while increase in u

##

causes the same influence whether u
"#

is reduced (u\
#

fixed) or fixed, acting to lengthen L and reduce Ne.

The transition rates of juvenile plants, u
""

and u
#"

,

give a somewhat different pattern. The trade-off

relation between L and Ne noted above does not hold

unless the sum u\
"
is fixed. When u

""
increases with u

#"

unchanged, both L and Ne get large. Ne increases

without any change in L when u
#"

increases with u
""

unchanged.

In model (c), the mean time (in years or seasons) to

maturity, i.e. maturation time, is Σ¢

x="
x\ux−"

""
\u

#"
}

Σ ux−"

""
\u

#"
¯1}(1®u

""
), which increases with increase

in u
""

. This equation together with the computations of

Table 1 shows that increase in u
""

with the other rates

fixed causes an increase in both Ne and maturation

time, coinciding with Nunney’s (1993) conclusion that

Ne increase as the maturation time is lengthened. This

trend, however, is not seen in the case where u
""

increases with u\
"

fixed, for maturation time is

lengthened but Ne (and also F=
#
) is reduced. This

inconsistency occurred because Ne of the present

paper was defined differently from Nunney’s (1993):

the former on the basis of a constant total number of

juveniles and adults, and the latter on a constant

number of adults. Then, while the fraction of adults

F=
#
[¯ u

#"
}(1­u

#"
®u

##
)] is unchanged, Ne of the

present paper should give the same trend as Nunney’s

(1993), but not otherwise.

It will be useful for a global understanding of the

theory of effective size to discuss relations of the

equations derived in this paper with those obtained

previously. For fully sexually reproducing and ran-

domly outcrossing populations (δ¯ 0 and α¯ 0), (8)

simplifies to

Ne¯ 2N}(1­2u­V
k
}ka ). (12)

This equation can also be derived from the equation

of Hill (1972), which was derived using different

methods and parameters as

Ne¯ 4N
c
L}(2­σ#

n
), (13)

where N
c

(N in his terminology) is the number of

individuals entering the population each year, L is

generation length, and σ#
n

is the variance in lifetime

reproductive (gametic) contribution.

With age-independent fecundity and survival as

assumed in model (b) in this paper, the term N
c
L in

Hill’s equation equals the census population size N

since N
c
¯N\(1®u) and L¯1}(1®u). The lifetime

reproductive variance σ#
n

is related to the annual

reproductive variance V
k

as follows.

The lifetime gametic contribution, n
i
, of individual

i can be expressed as

n
i
¯ 3

Li

j="

k
ij
¯3

j

(k
ij
®ka )­ka \L

i
,

where k
ij

is the annual gametic contribution of

individual i at age j, ka is the mean annual gametic

contribution of the plants comprising the population

(assumed to be constant in years within generation

length), and L
i

is the lifetime length (in years) of

individual i, which has a mean equal to the generation

length L with the age-independent fecundity model.

Then, the mean lifetime reproductive contribution is

na ¯ka \L and, as it should, na ¯ 2 since ka ¯ 2(1®u) and

L¯1}(1®u) when the census size N is constant. The

deviation of n
i
from this mean is then

n
i
®na ¯3

j

(k
ij
®ka )­ka \(L

i
®L).

Now, as previously discussed by Hill (1972), the

variance of lifetime reproductive contribution σ#
n

can

be partitioned into two components as

σ#
n
¯L\V

k
­ka #\V

L
, (14)

where V
L

is the variance in the length of life L
i
. The

first component L\V
k

in (14) is caused by the

differential annual reproductive contribution of indi-

viduals, which, as it should, diminishes when all

individuals leave the same number of gametes each

year (V
k
¯ 0). The second component ka #\V

L
is ascribed
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Table 1. Patterns of the effects of the four transition rates on the

demographic and genetic features of stage-structured populations

Effect on

Increase in Under condition Fq
"

Fq
#

ua L Ne

u
""

u\
"
, u

"#
and u

##
fixed (u

#"
decreased)

u
##

small (monocarpy inclined) ­ ® ­ ­ ®
u
##

large (polycarpy inclined) ­ ® ® ­ ®
u
#"

, u
"#

and u
##

fixed
u
##

small 0 0 ­ ­ ®­
u
##

large 0 0 ­ ­ ­

u
#"

u\
"
, u

"#
and u

##
fixed (u

""
decreased)

u
##

small ® ­ ® ® ­
u
##

large ® ­ ­ ® ­
u
""

, u
"#

and u
##

fixed ® ­ ­ 0 ­

u
"#

u\
#
, u

""
and u

#"
fixed (u

##
decreased) ­ ® 0 ® ­

u
""

, u
#"

and u
##

fixed 0 0 ­ ­ ®

u
##

u\
#
, u

""
and u

#"
fixed (u

"#
decreased) ® ­ 0 ­ ®

u
""

, u
#"

and u
"#

fixed ® ­ ­ ­ ®

­, ® : increase and decrease, respectively.
0 : no effect.
®­ : decrease as u

""
increases from zero to a median value, and increase as u

""
increases over the median value.

to the difference in lifetime length, and diminishes

when all individuals have the same lifetime length

(V
L
¯ 0).

Since na ¯ka \L¯ 2, a relation L¯ 2}ka can be

assumed. V
L

is presented in terms of u as V
L
¯

Σ¢

x="
x#\ux−"\(1®u)}Σ

x
ux−"\(1®u)®L#¯ u}(1®u)#.

The variance σ#
n

is then

σ#
n
¯ 2\V

k
}ka­4u. (15)

With this relation being substituted into Hill’s

equation, (12) is again obtained. In the case when

u¯ 0 (therefore L¯1, V
L
¯ 0, ka ¯ 2 and σ#

n
¯V

k
),

both the present and Hill’s equations, (12) and (13)

respectively, become Ne¯ 2N}(1­V
k
}2), well known

for the discrete generation model.

It has now been shown that, for fully sexually

reproducing and randomly mating populations with

age-independent fecundity and survival, the equation

derived in this paper defines the same equation as

Hill’s (1972). As pointed out by Nunney (1993),

equations formulated in terms of annual parameters

such as u, ka and V
k
will be more convenient than those

formulated in terms of lifetime parameters such as L

and σ#
n
, since annual parameters are easier to estimate

and interpret than lifetime parameters. In principle,

any lifetime parameters could be described in terms of

annual parameters if fecundity and survival of plants

are age-independent.

With Poisson-distributed reproductive contribution

and random outcrossing (V
k
}ka ¯1 and α¯ 0), (8) is

further simplified to

Ne¯N}(1­u)¯N}(2®1}L). (16)

Equation (16) can also be derived from the inbreeding

effective size obtained previously by Felsenstein (1971)

and Johnson (1977), which, in the terminology of

Caballero (1994), is Ne¯N
c
\L}²1­Σn

i="
z#
i+"

(1}l
i+"

®1}l
i
)´ where n is the number of age classes, and z

i
is

the probability that a newborn came from a parent at

least of age i, the other symbols being defined as in this

paper. Under the conditions of N
c
\L¯N, l

x
¯ ux−",

m
x
¯1®u and n¯¢ as can be assumed for age-

independent fecundity and survival, the effective

population size of Felsenstein (1971) and Johnson

(1977) can readily be simplified to N}(1­u). The same

result, N}(2®b), was also derived by Orive (1993)

using a coalescent model (note that her parameter b,

i.e. newborns per adult per time unit, equals 1®u). As

expected, (16) is identical to that derived by Nunney

(1991) for dioecious populations with a 1 :1 sex ratio.

From (16), Nunney (1991) concluded that Ne

declines asymptotically to N}2 with increasing gen-

eration length. Equation (8) of this paper with

condition u¯1 gives a more general form of the

asymptotic effect size as (2N)}²2(1­α)­S­A\δ´.
This asymptotic size under conditions of α¯β}(2®β)

and δ¯ 0 becomes Ne¯N (2®β)}(3®β­V
k
}ka ),

which simplifies to N (2®β)}4 when the progeny

number per plant is Poisson-distributed (V
k
}ka ¯

1­β).
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